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Abstract

Abstract. We consider a supercritical branching process in time-dependent environ-
ment ξ. We assume that the offspring distributions depend regularly (Ck or real-
analytically) on real parameters λ. We show that the extinction probability qλ(ξ),
given the environment ξ ”inherits” this regularity whenever the offspring distributions
satisfy a condition of contraction-type. Our proof makes use of the Poincaré metric on
the complex unit disk and a real-analytic implicit function theorem.
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1 Introduction

Consider a Galton-Watson process, (Gn)n≥0, with G0 = 1 and where the offspring dis-
tribution, pλ, of the particles depends on external parameters, λ ∈ U , with U ⊂ R

n an
open subset [in a growth-experiment λ could describe e.g. temperature, concentration of
chemicals etc.]. For fixed λ it is well known that the extinction probability of the process
qλ ∈ [0, 1] is the smallest fixed point q = φp

λ
(q) ∈ [0, 1] of the probability generating func-

tion φp
λ
(s) ≡

∑∞
k=0 pλ(k)sk for the offspring distribution (for details see e.g. [2, Chapter 1,

Theorem 5.1]).
It is natural to ask how the fixed point depends upon λ. We are here interested in the

regularity of this dependency. The answer is simple : If for λ0 ∈ U we have qλ0
< 1 (and

φpλ0
is not the identity) then in a neighborhood of λ0 the map λ 7→ qλ is as smooth as

the map (λ, s) 7→ φp
λ
(s). To see this note that s = qλ0

is a zero of the map F (λ0, s) =
s − φpλ0

(s). Using φpλ0
(1) = 1, φpλ0

(qλ0
) = qλ0

< 1 and strict convexity we see that
∂
∂s |s=qλ0

φpλ0
(s) < 1. The graph of φpλ0

thus cuts the diagonal transversally1, so that

∂sF (λ0, qλ0
) = 1 − ∂sφpλ0

(qλ0
) is non-zero, whence invertible. Then (see e.g. [10, p 364,

Theorem 2.1]) there is a locally defined implicit function qλ which is as smooth as F and
for which F (λ, qλ) = 0 in a neighborhood of λ = λ0. And this function determines precisely
our extinction probability.

On the other hand, if qλ0
= 1, a discontinuity may appear in the derivative of qλ, as the

following simple example shows (a geometric law): φp
λ
(s) = λ

1−(1−λ)s , λ ∈ (0, 1) for which

qλ = 1 for λ ∈ [ 12 , 1) but qλ = λ/(1−λ) for λ ∈ (0, 1
2 ]. The transition occurs precisely at the

border between what is known in the theory of branching processes as the subcritical and the
supercritical regimes (where φ′p

λ
(1)−1 changes sign and the above-mentioned transversality
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1for more on the notion of transversality see e.g. [8, p. 289]
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at the fixed point s = 1 is lost).

If in addition the offspring distribution may change from generation to generation in
an environment, the difficulty of the above problem increases considerably. The extinction
probability (depending on the environment, see e.g. [1]) then satisfies a functional equation
(1). Nevertheless, we show (Theorem 2.2) that smoothness of the extinction probability
persists when imposing Assumption 2.1 (a contraction property of the generating functions).
A similar result is stated in section 6 for multitype branching processes. The main novelty in
the proof is that transversality, which is needed for an implicit function theorem, is achieved
by using the Poincaré metric from complex analysis. This idea may be useful when studying
the regularity of solutions of other functional equations involving probability generating
functions. We are grateful to anonymous referees for valuable suggestions and remarks.

2 Branching process in varying and random environ-

ments

Consider in the following a branching process (Zn)n≥0 where the offspring distribution of the
particles changes from one generation to the other (depending on an environment variable)
and also depends on a parameter λ ∈ U (where U ⊂ Rn is open and non-empty). The
environment is described by a given sequence ξ = (ξn)n≥0 with values in a dynamical
system (E, E , T ) where E is a set, E a σ-algebra and T : E → E an E-measurable map.
Here, ξn+1 = Tξn.

We construct (Zn) as follows : To each environment-value ξ ∈ E and each parameter-
value λ ∈ U we associate a probability law pλ(ξ) on the set of non-negative integers N0.

We write φp
λ
(ξ)(s) =

∑

k≥0

(pλ(ξ))ks
k for the probability generating function (pgf) associated

to this law. We then consider a collection of particles that reproduce independently of
each other. Call Z0 the initial population (0th generation). Each particle reproduces and
gives birth to particles following the law pλ(ξ). This gives the first generation denoted Z1.
Similarly, we denote Zn the n-th generation. To go from the n-th generation to the (n+ 1)-
th generation, each particle reproduces independently following the law pλ(T nξ), i.e. in the
environment shifted n times, so that if we denote by Pλ,ξ the distribution of the branching
process given λ and ξ and by Eλ,ξ the corresponding expectation, we have

Eλ, ξ(s
Zn+1 |Zn = 1) = φp

λ
(T nξ)(s).

Let qλ(ξ) = Pλ,ξ(limn→+∞ Zn = 0|Z0 = 1) denote the extinction probability of the
branching process given parameter λ and environment ξ. We will study the regularity of
qλ(ξ) as a function of λ under the following :

Assumption 2.1 ∀λ ∈ U there is α = α(λ) < 1 so that sup
ξ∈E

φp
λ
(ξ)(α) < α.

Under this assumption it is clear that non-certain extinction of the process occurs. In-
deed, by setting α1 = supξ∈E φp

λ
(ξ)(α), we have φp

λ
(ξ)([0, α]) ⊂ [0, α1], ξ ∈ E, which

implies that qλ(ξ) ≤ α1 < α(λ) < 1.
A class of probability distributions satisfying this assumption may be described in the

following way : Fix 0 < δ < 1
4 and suppose that every probability distribution (uniformly

in λ and ξ) satisfies
∑

n≥2 pn ≥ p0 + δ (where pn ≡ pλ(ξ)(n), n ∈ N). A straightforward

calculation shows that φp
λ
(ξ)(1 − δ) ≤ 1 − δ − δ2/4. Thus the above condition is verified

with α = 1 − δ and supξ∈E φp
λ
(ξ)(α) ≤ α− δ2/4 < α.

Theorem 2.2 Suppose that Assumption 2.1 is satisfied. If λ ∈ U → pλ = (pλ(ξ))ξ∈E ∈
L∞(E; ℓ1(N0)) is of class Ck or is real-analytic (see section 4) then so is λ ∈ U → qλ =
(qλ(ξ))ξ∈E ∈ L∞(E).
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Remarks. Our setup covers e.g. the following two cases :

1. Varying Environment: E = N0 ≡ N ∪ {0}, the set of non-negative integers and
Tξ = ξ+ 1 (E contains all subsets of N0). This corresponds to the model of branching
process in a varying environment (BPVE), which is a generalization of the Galton-
Watson process with no time-homogeneity reproduction assumption (see [6, 5]).

2. Random Environment: (E, E , T, π) is a probability-space equipped with a measurable
transformation T and such that the probability π is T -invariant and ergodic. Then
(Zn)n≥0 is called a branching process in a random environment (BPRE). It has two
levels of stochasticity, the first one is given by the realizations ξ of the environment
while the second one, once ξ is fixed, is determined by the trajectories of a Markov
chain (see [1]). One may replace in assumption 2.1, ”supremum” by ”π-essential
supremum”. All conclusions are then modulo sets of measure zero.

Let us here briefly outline the proof of the theorem:

Given a parameter λ and initial environment ξ write Φ
(n)
λ,ξ(s) ≡ Eλ,ξ(s

Zn |Z0 = 1). Since

Eλ,ξ(s
Zn |Z1) =

(
Φ

(n−1)
λ,Tξ (s)

)Z1

, we have the recurrence relation Φ
(n)
λ,ξ(s) = φp

λ
(ξ)(Φ

(n−1)
λ,Tξ (s)).

As is well-known (we refer to e.g. [1] for details) the extinction probability qλ(ξ) = {limn→+∞ Zn =
0} is obtained as the limit of the increasing (and bounded) sequence Pλ,ξ(Zn = 0|Z0 = 1)=

Φ
(n)
λ,ξ(0). Continuity of φp

λ
(ξ) then implies that qλ(ξ) is a solution of the functional equation :

qλ(ξ) = φp
λ
(ξ) (qλ(Tξ)) . (1)

Setting α1 = supξ∈E φp
λ
(ξ)(α), Assumption 2.1 implies φp

λ
(ξ)([0, α]) ⊂ [0, α1], ξ ∈ E.

Using Lemma 4.3 below, it follows that qλ(ξ) is the unique solution of (1) satisfying 0 ≤
qλ(ξ) ≤ α < 1, ξ ∈ E.

In order to study the regularity of λ ∈ U → (qλ(ξ))ξ∈E we consider it as a fixed point of
the map :

(Γ(pλ,q))(ξ) = φp
λ
(ξ)

(
q(Tξ)

)
,

acting upon q ∈ L∞(E), with ‖q‖∞ ≤ α. We will proceed in two steps :

1. For fixed λ we will use Assumption 2.1 and the Poincaré metric from complex analysis
to show that the linearization ∂

∂q
Γ(pλ,q) of Γλ at the fixed point q = qλ has spectral radius

strictly smaller than one.

2. The q-derivative of the smooth map :

(λ,q) 7→ q− Γ(pλ,q) (2)

is therefore invertible at q = qλ. An implicit function theorem then implies that the solution
qλ inherits the regularity of the map (2) and we arrive at the wanted conclusion.

3 Examples

Let E be a set equipped with a σ-algebra E and let T : E → E be an E-measurable map.
Let ξ ∈ E → aξ ∈ (0, 1] be a measurable map and 0 < λ < 1 a parameter. As in the
above, for given ξ ∈ E and parameter 0 < λ < 1, we denote by pλ(ξ) and qλ(ξ) the offspring
distribution (on N0) and the extinction probability, respectively, of a branching process (Zn)
starting at time zero with one particle.

Example 1. (Binary offspring distribution) Let

(pλ(ξ))0 = λaξ, (pλ(ξ))2 = 1 − λaξ, (pλ(ξ))k = 0 for k ∈ N0 \ {0, 2}.
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As a function of λ we write pλ = (pλ(ξ))ξ∈E ∈ X ≡ L∞(E; ℓ1(N0)) in the polynomial form :
pλ = f0 + λf1 with f0 = (0, 0, 1, 0, . . .)ξ∈E ∈ X and f1 = (aξ, 0,−aξ, 0, . . .)ξ∈E ∈ X being
measurably bounded and real-valued. The map λ ∈ (0, 1) 7→ pλ = (pλ(ξ))ξ∈E ∈ X is real
analytic in λ.

The associated pgf is φp
λ
(ξ)(s) = λaξ(1− s2) + s2. When λ ∈ (0, 1

2 ) we may find α such

that λ
1−λ < α < 1. Our Assumption 2.1 is satisfied since uniformly in ξ ∈ E :

φp
λ
(ξ)(α) ≤ λ(1 − α2) + α2 <

α

1 + α
(1 − α2) + α2 < α.

Consequently, by Theorem 2.2 the map λ ∈ (0, 1
2 ) → qλ ∈ L∞(E) is real-analytic. In gen-

eral, qλ may not admit an analytic extension at λ = 1
2 . To see this, simply consider aξ ≡ 1,

∀ξ ∈ E for which qλ(ξ) = min{1, λ
1−λ} and this function has a discontinuous derivative at

λ = 1
2 .

Example 2 (Geometric offspring distribution) Let

(pλ(ξ))k = (λaξ)(1 − λaξ)
k, k = {0, 1, 2, . . .}. (3)

The associated pgf is

φp
λ
(ξ)(s) =

λaξ

1 − s (1 − λaξ)
.

Suppose that λ ∈ U ≡ (0, 1
2 ). Setting α = 1

2(1−λ) ∈ (1
2 , 1) we see that φp

λ
(ξ)(α) ≤

λ
1−α (1−λ) = 2 − 1

α < α so that Assumption 2.1 is verified. To apply our Theorem we need

to show that the map λ ∈ U 7→ pλ = (pλ(ξ))ξ∈E ∈ X = L∞(E; ℓ1(N0)) is real-analytic.
One shows (we omit the somewhat lengthy calculations) that pλ is a uniform limit in X of
λ-polynomials, whence admits an analytic extension, on the domain

Ũ ≡ {x+ iy ∈ C : |y| < x, x2 + y2 < x}

which indeed forms an open neighborhood of U in C.
We may apply our Theorem to conclude that the map λ ∈ (0, 1

2 ) → qλ ∈ L∞(E) is
real-analytic. As in the previous example, qλ may not admit an analytic extension at λ = 1

2

(consider as in the previous example aξ ≡ 1, ∀ξ ∈ E so that qλ(ξ) = min{1, λ
1−λ}).

4 The functional setup

Throughout, a Ck-map refers to the standard notion from differential calculus of a Ck-map
between Banach spaces, see e.g. [10, Chap XIII]. Analytic means that the function admits
locally norm-convergent power-series expansions. Real-analytic, that in addition it takes
real values on real vectors and parameters.

Let ℓ1(N0) = {x : N0 → C : ‖x‖ℓ1 =
∑

n≥0

|xn| < +∞} denote the space of summable

sequences. To each element x ∈ ℓ1(N0) we associate a generating function φx(s) =
∑
xns

n,
|s| ≤ 1. This function is holomorphic in the unit disk D = {z ∈ C : |z| < 1} and has
a continuous extension to the closed disc. We will consider measurable maps from E into
either ℓ1(N0) or C. More precisely, we consider the Banach spaces (the maps considered
being measurable) :

X = L∞(E; ℓ1(N0)) = {x = (x(ξ))ξ∈E : E → ℓ1(N0) : ‖x‖
X
< +∞}

with ‖x‖
X

= supξ∈E ‖x(ξ)‖ℓ1 and Y ≡ L∞(E). We identify ∆ = {p : N0 → [0, 1] :
∑

n pn =
1} with the space of probability measures on N0 and write

∆(E) = {p : E → ∆ (meas.)} ⊂ X
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for the space of measurable maps of E into probability measures on N0. We define a
transformation, Γ of (x,q) ∈ X ×BY (0, 1) as follows :

Γ(x,q)(ξ) ≡ φx(ξ) (q(Tξ)) , ξ ∈ E. (4)

Lemma 4.1 The map Γ : X ×BY (0, 1) → Y is real-analytic.

Proof: Measurability of ξ → Γ(x,q)(ξ) follows because the map is a composition of con-
tinuous or measurable maps. The image is bounded in norm by ‖x‖X so is an element of Y .
Γ is linear in x (since φx is linear in x ∈ ℓ1(N0)), whence analytic in x. For |s| < 1, ξ ∈ E,
the function φx(ξ)(s+h) admits a convergent and uniformly bounded power-series expansion
for |h| ≤ 1 − s. Then also Γ(x,q + h) admits a norm-convergent power-series expansion for
‖h‖∞ ≤ 1−‖q‖∞. So Γ is indeed analytic. When x and q are real-valued, then so is Γ(x,q).

Write Dr = {z ∈ C : |z| < r}, r > 0. We will need the following technical Lemma.

Lemma 4.2 Let ψ : Dα → Dα (with 0 < α < 1) be a holomorphic map and let

Dψ(z) =

∣∣∣∣
dψ(z)

dz

∣∣∣∣
α2 − |z|2

α2 − |ψ(z)|2
, (5)

be the conformal derivative with respect to the Poincaré metric dDα
on Dα. Then

(a) Dψ(z) ≤ 1 for all z ∈ Dα.
(b) If ψ(Dα) ⊂ Dα

1
with 0 < α1 < α then Dψ(z) ≤ α1/α for all z ∈ Dα.

Proof: The first part is a standard result in complex analysis. We refer to e.g. [4, Chapter
I.4] for standard properties of the Poincaré metric on Riemann surfaces. The Poincaré metric
dDα

on Dα is given by the line element ds = 2|dz|/(α2−|z|2) (unique up to a constant factor).
The conformal derivative with respect to this metric is then given by formula (5). By [4,
Theorem I.4.1] its value can not exceed one, as claimed. To see part (b) note that the
conformal derivative of R(z) = α1z/α verifies :

DR(z) =
α1

α

1 − |z|2

1 − α2
1|z|

2/α2
≤
α1

α
.

Under the hypothesis of (b), w = R−1 ◦ψ(z) defines a holomorphic map of Dα into itself so
that (DR−1 ◦ ψ) Dψ ≤ 1 and therefore

Dψ(z) ≤ DR(w) ≤ α1/α.

Lemma 4.3 Let ∆(E,α) denote the set of p ∈ ∆(E) that verifies

sup
ξ∈E

∑

n

(p(ξ))nα
n < α. (6)

Let p ∈ ∆(E,α). Then, the map q ∈ BY (0, α) → Γ(p,q) ∈ BY (0, α) has a unique
fixed point, qp ∈ L∞(E; [0, α]) ⊂ BY (0, α). At the fixed point the q-partial derivative
∂qΓ(p,qp) ∈ L(Y ) has spectral radius strictly smaller than one.

The map p ∈ ∆(E,α) → qp ∈ L∞(E; [0, α]) is real-analytic.

Proof: Given ξ ∈ E we write gn = φp(T nξ), n ≥ 0 for the sequence of generating functions
along the orbit of ξ. Let α1 denote the supremum on the left hand side in (6). Then gn(Dα) ⊂
Dα1

. As each gn : Dα → Dα is holomorphic Lemma 4.2 shows that the conformal derivative
given by equation (5) verifies : Dgn ≤ α1/α. The composed map, g(n) = g0 ◦ · · · ◦ gn−1,
then has conformal derivative not exceeding (α1/α)n. Taking the restriction to z ∈ Dα1

and
noting that w = g(n)(z) ∈ Dα1

we may use (5) to convert back to the standard Euclidean
metric and obtain :

|
dg(n)(z)

dz
| ≤

(α1

α

)n α2 − |w|2

α2 − |z|2
≤

(α1

α

)n α2

α2 − α2
1

. (7)
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By the Mean-value theorem g
(n)

|Dα1

is α2

α2−α2
1

(α1/α)n-Lipschitz on Dα1
. The (decreasing)

intersection ∩n≥0g
(n)(Dα1

) therefore contains a unique element qp(ξ) ∈ Dα1
. Since g(n)

maps [0, α] into [0, α1] ⊂ [0, α]. The unique fixed point must be real-valued and thus verify
0 ≤ qp(ξ) ≤ α1 < α. Being a limit of measurable functions ξ ∈ E → qp(ξ) is measurable
and thus a fixed point of q 7→ Γ(p,q) with qp ∈ L∞(E, [0, α[). Let A = ∂qΓ(p,qp) be the
q-derivative at the fixed point. The uniform bound (7) implies that

‖An ‖L(Y ) ≤
(α1

α

)n α2

α2 − α2
1

, n ≥ 0. (8)

This shows that the spectral radius ρsp(A) verifies

ρsp(A) = lim
n→∞

(
‖An ‖L(Y )

)1/n

≤
α1

α
< 1. (9)

Now, write F (x,q) = q − Γ(x,q). The map F : X ×BY (0, 1) → Y , is real-analytic and
F (p,qp) = 0. As the operator A has spectral radius strictly smaller than one, ∂qF (p,qp) =
1−A is invertible. By the implicit function theorem, the equation F (x,q) = q−Γ(x,q) = 0

gives rise to a real-analytic implicit function x 7→ q(x) ∈ X defined in a neighborhood of
p and such that q(p) = qp (see e.g. [10, Theorem 2.1, p. 364] for the implicit function
theorem, and [3, Section 5.6.7] for the real-analytic part).

5 Proof of Theorem 2.2

Fix λ0 ∈ U and α0 = α(λ0) < 1 (from Assumption 2.1). The hypotheses of the theorem
states that the map λ ∈ U ⊂ Rn 7→ pλ ∈ X is of class Ck (respectively, real-analytic).
Assumption 2.1 also means that pλ0

belongs to ∆(E,α) ⊂ X . By Lemma 4.3 the map
p ∈ ∆(E,α) 7→ qp ∈ L∞([0, α0]) is real-analytic at pλ0

, so the composed map λ ∈ U 7→
qλ ≡ qpλ

∈ Y is then also Ck (respectively, real-analytic) in a neighborhood of λ0. Being
the unique fixed point of q 7→ Γ(pλ,q) the function qλ(ξ) = qpλ

(ξ), ξ ∈ E verifies equation
(1) as we wished to show.

6 Multitype Branching Process

The above analysis applies also to Multitype Branching Processes [7]. Such a branching
process (Zn)n≥0 takes values in N d

0 , with d < +∞ being the number of different types.
In an environment ξ and for a parameter λ each particle of type i = 1, . . . , d reproduces
independently according to a pgf

φp
λ
(i,ξ)(s) =

∑

k1≥0

· · ·
∑

kd≥0

(pλ(i, ξ))
k1,...,kd

sk1

1 · · · skd

d , s = (s1, . . . , sd),

where pλ(i, ξ) is probability on Nd
0.

Denote pλ(ξ) = (pλ(1, ξ), . . . , pλ(d, ξ)) and let e1, . . . , ed denote the standard canonical
basis in Rd. Then there are d extinction probabilities given by qλ(i, ξ) = Pλ,ξ(limn→+∞ Zn =
0|Z0 = ei), i.e. depending on the type of the 0th generation particle. Define the vector valued
function Qλ(ξ) = (qλ(1, ξ), . . . , qλ(d, ξ)) and the vector valued map

Φp
λ
(ξ)(s) = (φp

λ
(1,ξ)(s), . . . , φp

λ
(d,ξ)(s)) : [0, 1]d → [0, 1]d.

Then we have the following functional equation, which may be obtained in the same way as
(1),

Qλ(ξ) = Φp
λ
(ξ) (Qλ(Tξ)) , ξ ∈ E. (10)
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Assumption 6.1 ∀λ ∈ U there are α̃,α ∈ [0, 1)d with α̃ ≺ α so that for all ξ ∈ E :
Φp

λ
(ξ)(α) ≺ α̃.

Here s = (s1, . . . , sd) ≺ t = (t1, . . . , td) is the lattice ordering meaning that every si < ti,
i = 1, . . . , d. Under this assumption we have the following

Theorem 6.2 Suppose that Assumption 6.1 is satisfied. If each map λ ∈ U → (pλ(i, ξ))ξ∈E ∈
L∞(E; ℓ1(Nd

0)), i = 1, . . . , d is of class Ck or is real-analytic then so is the map λ ∈ U →
Qλ = (Qλ(ξ))ξ∈E ∈ L∞(E; [0, 1)d).

The proof is very similar to the one presented in section 4. Set α = (α1, . . . , αd) and
define the poly-disk Pα = Dα1

× · · · × Dαd
. Consider the Kobayashi (or Caratheodory)

distance (see e.g. [9]) between points s, t ∈ Pα. In this particular case it is given by
dPα

(s, t) = max{dDα1
(s1, t1), . . . , dDα

d
(sd, td)} where each dDαi

is the Poincaré metric on
Dαi

. Assumption 6.1 implies that Φp
λ
(ξ) is an L-Lipschitz contraction on (Pα, dPα

) with

L = maxi α̃i/αi < 1, precisely as we showed in Lemma 4.2 for the Poincaré metric. The
proof continues from there and an implicit function theorem concludes.
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