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Abstract

We intend to present in this course the basic tools in spectral analy-
sis and to illustrate the theory by presenting examples coming from the
Schrédinger operator theory and from various branches of physics : sta-
tistical mechanics, superconductivity, fluid mechanics.
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1 Introduction

Our starting point could be the theory of Hermitian matrices, that is of the
matrices satisfying : A* = A. If we look for eigenvalues and corresponding
eigenvectors of A, that is for pairs (u,\) with u € C*, u # 0 and A € C such
that Au = Au, we know that the eigenvalues are real and that one can find an
orthonormal basis of eigenvectors associated with real eigenvalues.

In order to extend this theory to the case of spaces with infinite dimension
(that is replacing the space C™ by a general Hilbert space H), the first attempt
consists in developing the theory of compact selfadjoint operators. But it is far
to cover all the interesting cases that are present in Quantum Mechanics. So our
aim is to present a general theory but it is perhaps good to start by looking at
specific operators and to ask naive questions about the existence of pairs (u, A)
with u in some suitable domain, u # 0 and A € C such that Au = Au. We shall
discover in particular that the answer at these questions may depend strongly
on the choice of the domain and on the precise definition of the operator.

1.1 The free Laplacian

The Laplacian —A has no eigenvectors in L%, but it has for any A € RT an
eigenvector in S&'(R™) (actually in L>°) and for any A € C an eigenvector in
D'(R™). So what is the right way to extend the theory of Hermitian matrices
on CF ?

On the other hand, it is easy to produce (take for simplicity m = 1) approximate

.’L‘—’n,2
n

eigenvectors in the form u,(z) = ﬁ expiz-& x( ), where x is a compactly

supported function of L?-norm equal to 1.

1.2 The harmonic oscillator
As we shall see the harmonic oscillator
H = —d*/da* 4 2?

plays a central role in the theory of quantum mechanics. When looking for
eigenvectors in S(R), we obtain that there is a sequence of eigenvalues A, (n €
N)

An=02n—-1).

In particular the fundamental level (in other words the lowest eigenvalue) is
A =1
and the splitting between the two first eigenvalues is 2.
The first eigenfunction is given by
22

d1(x) =01 exp —— (1.2.1)



and the other eigenvectors are obtained by applying the creation operator

LT = —d/dx+z . (1.2.2)
We observe indeed that
H=L*"-L™ + 1, (1.2.3)
where
L™ =d/dx+=x, (1.2.4)
and has the property
L~ ¢, =0. (1.2.5)

Note that if u € L? is a distributional solution of L*u = 0, then u = 0. Note
also that if u € L? is a distributional solution of L=u = 0, then u = u¢; for
some p € R.

The nt'-eigenfunction is then given by

$n = cn(LT)" 11 .
This can be shown by recursion using the identity
LY (H+2)=HL". (1.2.6)
It is easy to see that ¢, (x) = P,(x) exp—gg—2 where P,(z) is a polynomial of
order n — 1. Onme can also show that the ¢, are mutually orthogonal. The

proof of this point is identical to the finite dimensional case, if we observe the
following identity (expressing that H is symmetric) :

< Hu,v >r2=<u,Hv >r2, Vu € S(R),Vv € S(R) , (1.2.7)

which is obtained through an integration by parts.
Then it is a standard exercise to show that the family (¢, )nen is total and that
we have obtained an orthonormal hilbertian basis of L2, which in some sense
permits to diagonalize the operator H.
Another way to understand the completeness is to show that starting of an eigen-
vector v in 8’(R) associated with A € R solution (in the sense of distribution)
of

Hu=M\u,

then there exists k& € N and ¢, # 0 such that (L™)*u = c,¢; and that the
corresponding A is equal to (2k + 1).
For this proof, we admit that any eigenvector can be shown to be in S(R) and
use the identity

L~ (H-2)=HL", (1.2.8)

and the inequality
< Hu,u>>0, Vu € S(R) . (1.2.9)



This property is called ”positivity” of the operator.
Actually one can show by various ways that

< Hu,u >> ||ul|*, Yu € S(R) . (1.2.10)
One way is to first establish the Heisenberg Principle! :
(lulfo) < 2llzullzz|lu'l]zz , Yu € S(R) . (1.2.11)
The trick is to observe the identity
d d

1= — . p—p. — . 1.2.12
dx e dx ( )

The inequality (1.2.10) is simply the consequence of the identity
< Hu,u >= |[u/[|? + ||zul|? , (1.2.13)

which is proved through an integration by parts, and of the application in
(1.2.11) of Cauchy-Schwarz inequality.

Another way is to directly observe the identity

< Hu,u >=||[L7u||* + ||u||*, Vu € S . (1.2.14)

1.3 The problem of the boundary

We mainly consider the operator —%22 and look at various problems that can be
asked naively about the existence of eigenvectors for the problem in L2(]0, 1[).

1.3.1 Ill-posed problems
Look first at pairs (u,\) € H'(]0,1[) x C (u # 0) such that
—du/dr = u, u(0) =0.

It is immediate to see that no such pairs exist.
Look now at pairs (u,\) € H2(]0,1[) x C (u # 0) such that

—d?u/dr? = \u .

We can find for any A two linearly independent solutions.

1Here is a more “physical” version. If u is normalized by llull L2y = 1, |u|? dz defines
a probability measure. One can define (z) = [ z|u|?dz, mean value of the position and
the variance oy = ((z — (z))?). Similarly, we can consider: (D) := [(Dgu) - %(z)dz and
op, = ||(Dz — (Dz))u||?. Then (1.2.11) can be extended in the form :

az-apmzi.



1.3.2 The periodic problem
Here we consider pairs (u, ) € H2P"(]0,1[) x C (u # 0) such that

—d?u/dr? = \u .
Here
H*P"(10,1]) = {u € H*(0,1]) , u(0) = u(1) and u'(0) = /(1)} .

Here we recall that H?(]0, 1]) is included in C([0,1]) by the injection theorem
of Sobolev. It is an easy exercise to show that the pairs are described by two
families

[ )
X =412n? | u, = pcos2mnx forneN, peR\O0,

A =4n’n? | v, = psin2mnx , forn € N*, p e R\O0.

One observes that A\ = 0 is the lowest eigenvalue and that its multiplicity is
one. This means that the corresponding eigenspace is of dimension one (the
other eigenspaces are of dimension 2). Moreover an eigenvector in this subspace
neither vanishes in ]0, 1[. This is quite evident because ug = p # 0.

One observes also that one can find an orthonormal basis in L?(]0, 1]) of eigen-
vectors by normalizing the family (cos2mnz (n € N),sin27nz (n € N*)) or the
family exp 2winz (n € Z).

We are just recovering the L2-theory of the Fourier series.

1.3.3 The Dirichlet problem

Here we consider pairs (u,\) € H>P(]0,1[) x C (u # 0) such that —d?u/dz? =
Au.
Here
H*P(10,1]) = {u € H*(10,1]) , u(0) = u(1) = 0} .
It is again an easy exercise to show that the pairs are described by

A=n%n?, v, =psinmnz , forne N*, g€ R\O0.

One observes that A = 72 is the lowest eigenvalue, that its multiplicity is one
(Here all the eigenspaces are one-dimensional) and that an eigenvector in this
subspace neither vanishes in ]0, 1].

1.3.4 The Neumann problem

Here we consider pairs
(u, \) € H*N(]0,1[) x C (u # 0) such that

—d?u/dz? = \u .



Here
H*>N(0,1]) = {u € H*(J0,1[) , v/(0) = u'(1) = 0} .

It is again an easy exercise to show that the pairs are described by

2 v, =pcosmnz, forneN, peR\O.

\=7’n
One observes that A = 0 is the lowest eigenvalue, that its multiplicity is one
(Here all the eigenspaces are one-dimensional) and that the corresponding eigenspace
is of dimension one and that an eigenvector in this subspace neither vanishes in
10, 1].

1.3.5 Conclusion

All these examples enter in the so called Sturm-Liouville theory. We emphasize
on one property which was always verified in each case: the eigenspace corre-
sponding to the lowest eigenvalue is one dimensional and one can find a strictly
positive (in ]0,1[ or in | — oo, +oo[ in the case of the harmonic oscillator) cor-
responding eigenvector. We suggest to the reader to come back at this
introduction after have read the course. He will surely realize that
the theory has permitted to clarify many badly posed problems.

2 Unbounded operators, adjoints, Selfadjoint op-
erators

2.1 Unbounded operators

We consider an Hilbert space H. The scalar product will be denoted by :
(u, v)1 or more simply by : (u, v) when no confusion is possible. We take
the convention that the scalar product is antilinear with respect to the second
argument.

A linear operator (or more simply an operator) T in H is a linear map u +— Tu
defined on a subspace Hg of H, denoted by D(T") and which is called the domain
of T. We shall also denote by R(T') (or Im T or Range(T)) the range of Ho by
T. We shall say that T is bounded if it is continuous from D(T") into H. When
D(T) = 'H, we recover the notion of linear continuous operators on H. We recall
that with

[ Tull#

[lull2

7|30y = sup (2.1.1)
u#0
L(H) is a Banach space. When D(T') is not equal to H, we shall always assume
that
D(T) is dense in H. (2.1.2)

Note that, if T is bounded, then it admits a unique continuous extension to H.
In this case the generalized notion is not interesting.
We are mainly interested in extensions of this theory and would like to consider



unbounded operators.

— When using this word, we mean more precisely “non necessarily bounded op-
erators”. —

The point is to find a natural notion replacing this notion of boundedness. This
is the object of the next definition.

The operator is called closed if the graph G(T') of T is closed in H x H. We
recall that

GT)={(z,yy e HxH,zeDT), y=Tx}. (2.1.3)
Equivalently, we can say

Definition 2.1.1. (Closed operators).
Let T be an operator on H with (dense) domain D(T). We say that T is closed
if the conditions

o u, € D(T),
o u, —uinH,

e Tu, —vinH

imply
e ue D(T),
o v="Tu.

Example 2.1.2.

1. To = —A with D(Tp) = C§°(R™) is not closed.
For this, it is enough to consider? some u in H?(R™) and not in C§°(R™)
and to consider a sequence u, € C§° such that w, — v in H 2. The
sequence (u,, —Au,) is contained in G(Tpy) and converges in L? x L? to
(u, —Au) which does not belong to G(Tp).

2. Ty = —A with D(Ty) = H?(R™) is closed.
We observe indeed that if u,, — wu in L? and (—Awu,) — v in L? then
—Au = v € L2 The last step is to observe that this implies that u €
H?(R™) (take the Fourier transform) and (u, —Au) € G(T}).

2We recall that the Sobolev space H®(R™) is defined as the space
H*(R™) :={u € §'(R™) | (1 + |¢]*)2d € L*(®™)} .

Here &’ is the set of tempered distributions. H(R™) is equipped with the natural Hilbertian
norm :

il o= [+l lae)de.

By Hilbertian norm, we mean that the norm is associated to a scalar product.
When s € N, we can also describe H® by

HS(R™) := {u € L2(R™) | D2u € L?,VYas. t. |a| < s} .

The natural norm associated with the second definition is equivalent to the first one.



This example suggests another definition.

Definition 2.1.3.
The operator T is called closable if the closure of the graph of T is a graph.

We can then define the closure T' of the operator by a limit procedure via
its graph. We observe indeed that we can consider

D(T):={xcH|Iys. t. (z,y) € GT)})

For any = € D(T'), the assumption that G(7') is a graph says that y is unique.
One can consequently define T' by

Tr=y.

In a more explicit way, the domain of T is the set of the x € H such that
xn, — x € H and Tz, is a Cauchy sequence and for such z’s we define T" by

Ter= lim Tz, .
n—-+o0o

Example 2.1.4.
To = —A with D(Ty) = C§° is closable and is closure is T .

Let us prove it, as an exercise. Let T, the closure of Ty. Let u € L? such that
there exists u, € C§° such that u,, — w in L? and —Awu,, — v in L?. We get
by distribution theory that u € L? satisfies —Au = v € L?. By the ellipticity
of the Laplacian (use the Fourier transform), we get that u € H?. We have
consequently shown that D(Ty) C H2. But C§° is dense in H? and this gives
the inverse inclusion : H? C D(Tp). We have consequently,

H?=D(Ty) = D(Ty) ,
and it is then easy to verify that Ty = Ty.

These examples lead to a more general question.

Realization of differential operators as unbounded operators. Let
Q C R™ and let P(x, D,) be a partial differential operator with C'*° coefficients
in Q. Then the operator P’ defined by

D(P®) = C(Q) , Pu= P(x,D,)u,Yu € C(R) ,
is closable. Here H = L?(Q2). We have indeed

G(P9?) C Gq:={(u,f) eHxH| P(z,D,)u= finD'(Q)}.

10



The proof is then actually a simple exercise in distribution theory. This inclusion
shows that G(P9) is a graph. Note that the corresponding operator is defined
as P with domain

min

D(P!

: 2
{u e L2(Q) | 3 a sequence u, € CF(Q) s.t { up — win L3(Q)

P(z, Dy)u, converges in L%(Q) b

The operator PS,

is then defined for such u by
PE w= lim P(x,D,)u, .

min
n—-+4oo

Using the theory of distributions, this gives :
P2 w=P(z,Dy)u .

Note that there exists also a natural closed operator whose graph is Gq and
extending P : this is the operator P, with domain

D% :={ue L*), P(z,D,)uc L*(Q)},
and such that R R
P% = P(z,D,)u ,Yu € D% |
where the last equality is in the distributional sense. Note that P is an exten-
sion of P}, in the sense that :

P =P u, Yu e D(PY

Conclusion.
We have associated with a differential operator P(x, D,) in an open set {2 three
natural operators. It would be important to know better the connection between
these three operators.

Remark 2.1.5. (Link between continuity and closeness).
If Ho = H, the closed graph Theorem says that a closed operator T is continuous.

2.2 Adjoints.

When we have an operator T in £(H), it is easy to define the Hilbertian adjoint
T* by the identity :

(T*u,v)p = (u, Tv)n ,Yu € H,Yv € H . (2.2.1)

The map v — (u,Tv)y defines a continuous antilinear map on H and can be
expressed, using Riesz’s Theorem, by the scalar product by an element which is
called T*u. The linearity and the continuity of 7™ is then easily proved using
(2.2.1).

Let us now give the definition of the adjoint of an unbounded operator.

11



Definition 2.2.1. (Adjoint )
If T is an unbounded operator on H whose domain D(T) is dense in H, we first
define the domain of T™ by

D(T*) ={ue™H,D(T)>v+— {u,Tv),

can be extended as an antilinear continuous form on H} .
Using the Riesz’s Theorem, there exists f € H such that
(f,v) = (u,Tv), Yu € D(T*),Yv € D(T) .

The uniqueness of [ is a consequence of the density of D(T) in H and we can
then define T*u by
T'u=f.

Remark 2.2.2.
When D(T) = H and if T is bounded , then we recover as T* the Hilbertian
adjoint.

Example 2.2.3.
=T .

Let us treat in detail this example. We get

D(Tg) ={ue L?| the map C§° 3 v — (u, —Av),
can be extended as an antilinear continuous form on L%} .

‘We observe that
(u, —Av)p2 = / u(—Av)dzr = (—Au)() .

The last equality just means that we are considering the distribution (—Au) on
the test function v. The condition appearing in the definition is just that this
distribution is in L?(R™). Coming back to the definition of D(T}), we get

D(Ty)={uel?| —Auec L?*}.
But as already seen, this gives
D(Ty) = H? , Tju= —Au, Yu € H*.

Proposition 2.2.4. .
T* s a closed operator.

Proof.
Let (vy,) be a sequence in D(T*) such that v, — v in H and T*v,, — w* in H
for some pair (v, w*). We would like to show that (v, w*) belongs to the graph
of T*.
For all w € D(T), we have :
(Tu,v) = lim (Tu,v,) = lim {(u,T*v,) = (u,w") . (2.2.2)

n—-+oo n—-+4oo

12



Coming back to the definition of D(T*), we get from (2.2.2) that v € D(T™)
and T*v = w*. This means that (v, w*) belongs to the graph of T*.

Proposition 2.2.5. .
Let T be an operator in H with domain D(T). Then the graph G(T*) of T* can
be characterized by

G(T*) ={V(G(T))}*, (2.2.3)
where V' is the unitary operator defined on H x H by
V{u,v} = {v,—u} . (2.2.4)

Proof.
We just observe that for any v € D(T') and (v, w*) € H x H we have the identity

V(u,Tu), (v,w ) rxrn = (Tu,v)p — (u,w* gy

The right hand side vanishes for all w € D(T) iff v € D(T*) and w* = T*v, that
is if (v, w*) belongs to G(T*). The left hand side vanishes for all u € D(T) iff
(v, w*) belongs to V(G(T))*.
Standard Hilbertian analysis, using the continuity of V and V~! = —V, then
shows that L

(V(GI)} = (VG = {VED)}H .

End of proof We have not analyzed till now under which condition the do-
main of the adjoint is dense in H. This is one of the objects of the next theorem.

Theorem 2.2.6.
Let T be a closable operator. Then we have

1. D(T*) is dense in H,

2. T** = (T*)* = T, where we have denoted by T the operator whose graph

is G(T).

Proof.
For the first point, let us assume that D(T*) is not dense in H. Then there
exists w # 0 such that w is orthogonal to D(T).
We consequently get that for any v € D(T*), we have

<(va) ’ (T*Uv _U)>H><H =0.

This shows that (0,w) is orthogonal to V(G(T™¥)).
But the previous proposition gives :

V(G(T)) = G(T")* .
We now apply V to this identity and get, using V? = —1,
V(G(T")*") =G(T) .

13



But, for any closed subspace M C H, we have
V(M) = V(M)
as a consequence of the identity

<V(U7U) ) (J?,y)>7—¢><')-( = <(U,’U) ’ V(xvy»ﬁx’)-( .

We finally obtain that (0,w) belongs to the closure of the graph of T, that is
the graph of T because T is closable, and consequently that w = 0. This gives
the contradiction.

For the second point, we first observe that, D(T*) being dense in H, we can of
course define (T*)*. Using again the proposition and the closeness of T*, we
obtain G(T**) = G(T) and T** =T.

This means more explicitly that

End of the proof.

2.3 Symmetric and selfadjoint operators.

Definition 2.3.1. (symmetric operators).
We shall say that T : Ho — H s symmetric if it satisfies

(Tu,v)r = (u, Tvyp ,Yu,v € Ho .
Example 2.3.2. .
T = —A with D(T) = C§°(R™).
If T is symmetric it is easy to see that
D(T) c D(T™) (2.3.1)
and that
Tu=T"u, Yue D(T). (2.3.2)

The two conditions (2.3.1) and (2.3.2) express the property that (T, D(T*))
is an extension of (T, D(T)).

Exercise 2.3.3.
Show that a symmetric operator is closable.

Hint :
Show that, if u, is a sequence in D(T') such that, for some ¢ € H, we have
U, — 0 and Tu, — £, then ¢ = 0.

For a symmetric operator, we have consequently two natural closed exten-
sions:

14



e The minimal one denoted by T}, (or previously T), which is obtained
by taking the operator whose graph is the closure of the graph of T,

e The maximal one denoted by T}, the adjoint of T

If T#¢ is a selfadjoint extension of T', then 7% is automatically an extension of
Tonin and admits® as an extension Tz

Definition 2.3.4.
We shall say that T is selfadjoint if T* =T, i. e.

D(T)=D(T*), and Tu=T"u, Yue D(T).

Starting of a symmetric operator, it is a natural question to ask for the ex-
istence and the uniqueness of a selfadjoint extension. We shall see later that a
natural way is to prove the equality between T}, and Tj,qz-

Exercise 2.3.5. Analysis of differential operators.

Give simple criteria in the case of operators with constant coefficients for ob-
taining symmetric operators on C3°(R™). In particular, verify that the operator
D, = %87«7 is symmetric.

Proposition 2.3.6.
A selfadjoint operator is closed.

This is immediate because T* is closed.

Proposition 2.3.7.
Let T be a selfadjoint operator which is invertible. Then T~ is also selfadjoint.

By invertible, we mean here that T' admits an inverse T~! from R(T) into
D(T). Let us first show that R(T) is dense in H. Let w € H such that
< Tu,w >y= 0, Yu € D(T).

Coming back to the definition of T*, this implies in particular that w € D(T*)
and T*w = 0. But T is selfadjoint and injective and this implies that w = 0.
We consequently know that D(7~!) is dense in H.

Coming back to the analysis of the corresponding graphs it is now easy to show
the second assertion by coming back to the corresponding graphs and by using
Proposition 2.2.5.

Remark 2.3.8.
If T is selfadjoint T 4+ M is selfadjoint for any real .

3Use Proposition 2.2.5.
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3 Representation theorems

We assume that the reader knows about this material but recall it for complete-

ness4 .

3.1 Riesz’s Theorem.

Theorem 3.1.1. (Riesz’s Theorem)
Let u — F(u) a linear continuous form on H. Then there exists a unique w € H
such that

F(u) = {u,w)p , Yu e H . (3.1.1)

There is a similar version with antilinear maps :
Theorem 3.1.2.
Let u — F(u) a antilinear continuous form on H. Then there erxists a unique
w € H such that
Fu) =<w,u>y, YueH. (3.1.2)
3.2 Lax-Milgram’s situation.
Let us now consider a continuous sesquilinear form a defined on V x V :
(u,v) = a(u,v) .

We recall that the continuity can be expressed by the existence of C' such that

la(u,v)| < Cllullv - ||v||lv , Yu,v eV . (3.2.1)

It is immediate to associate, using the Riesz Theorem, a linear map A € L(V)
such that
a(u,v) =< Au,v >y . (3.2.2)

Definition 3.2.1. (V-ellipticity)
We shall say that a is V -elliptic, if there exists a > 0, such that

la(u,u)| > al|ull? , YueV . (3.2.3)

Theorem 3.2.2. (Laz-Milgram’s Theorem)
Let a be a continuous sesquilinear form on V x V. If a is V-elliptic, then A is
an isomorphism from V onto V.

The proof is in three steps.

Step 1.
A is injective. We get indeed from (3.2.3)

[(Au, u)y | > allu|} , Vue V. (3.2.4)

4Here we follow, almost verbatim, the book of D. Huet [Hu].
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Using Cauchy-Schwarz in the left hand side, we first get
| Aully - [lullv = allullf , Yue V,

and consequently
[|Au|lv > allully , Yu eV . (3.2.5)

This gives clearly the injectivity but actually more.

Step 2.
A(V) is dense in V.
Let us consider w € V such that < Av,u >y= O , Vv € V. In particular, we
can take v = u. This gives a(u,u) = 0 and v = 0 using (3.2.3).

Step 3.
R(A) := A(V) is closed in V.
Let v,, a Cauchy sequence in A(V') and u,, the sequence such that Au, = v,.
But using (3.2.5), we get that w, is a Cauchy sequence which is consequently
convergent to some u € V. But the sequence Au, tends to Au by continuity
and this shows that v, — v = Au and v € R(A).

Step 4.
The three previous steps show that A is bijective. The continuity of A~! is a
consequence of (3.2.5) or of the Banach Theorem.

Remark 3.2.3. .

Let us suppose for simplicity that V' is a real Hilbert space. Using the isomor-
phism I between V and V' given by the Riesz Theorem, one gets also a natural
operator A from V onto V' such that

a(u,v) = (Au)(v) , Yo e V. (3.2.6)
We have
A=TocA.
3.3 An alternative point of view: V,H V'.
We now consider two Hilbert spaces V' and H such that

VCH. (3.3.1)

By this notation of inclusion, we mean also that the injection of V into H is
continuous or equivalently that there exists a constant C' > 0 such that, for any
u € V, we have

lullr < Cllully

We also assume that
V is dense in H. (3.3.2)
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In this case, there exists a natural injection from H into the space V’ which is
defined as the space of continuous linear forms on V. We observe indeed that
if h € H then V 3 u +—< u,h >y is continuous on V. So there exists ¢, € V'
such that

lp(u) =<u,h >y ,YueV.

The injectivity is a consequence of the density of V' in H.

We can also associate to the sesquilinear form a an unbounded operator S on
H.

We first define D(S) by

D(S) ={u €V |v+ al(u,v) is continuous on V for the topology induced by H}.
(3.3.3)
Using again the Riesz Theorem and assumption (3.3.2), this defines Su in H by

a(u,v) =< Su,v >y, Yo e V. (3.3.4)
Theorem 3.2.2 is completed by

Theorem 3.3.1. .
Under the same assumptions, S is bijective from D(S) onto H and S~ € L(H).
Moreover D(S) is dense in 'H.

Proof.
We first show that S is injective. This is a consequence of

allullf; < Callull} < Cla(u,u)| = C| < Su,u >3 | < C|[Sulls - [[ullx , Vu € D(S),
which leads to
allullx < C||Sullx , Yu € D(S) . (3.3.5)

We get directly the surjectivity in the following way. If h € H and if w € V is
chosen such that
<h7v>7'l = <w,’l}>v ,V'U ev )

(which follows from Riesz’s Theorem), we can take u = A~lw in V, which is a
solution of
a(u,v) =< w,v >y .

We then show that u € D(S), using the identity
a(u,v) = (h,v)y , YO EV |

and get simultaneously
Su=h.

The continuity of S~! is a consequence of (3.3.5).
Let us show the last statement of density.
Let h € H s. t.

(u,h) =0, Yu € D(5) .
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By the surjectivity of .S, there exists v s. t. :
Sv=h.

We get
< Sv,u>n=0, Yu € D(S)

Taking v = v and using the V' — ellipticity, we get that v = 0 and consequently
h=0.
We now consider an hermitian sesquilinear form, that is satisfying

a(u,v) = a(v,u) , Yu,v € V. (3.3.6)
This property is transmitted to S in the following way

Theorem 3.3.2.
If a is hermitian and V -elliptic, we have

1. S is closed;

2. 8§=5%
3. D(S) is dense in V.
Proof of 2.
We first observe that the assumption of Hermiticity gives
< Su,v >y=<u,Sv >y, Yue D(S), Yv e D(5). (3.3.7)
In other words S is symmetric. This means in particular that
D(S) c D(S™) . (3.3.8)
Let v € D(S*). Using the surjectivity of S, there exists vy € D(S) such that
Svg = S*v .

For all u € D(S), we get that

< Su,vg >p=< u, Svg >y=< u,S*v >y=< Su,v >y .
Using again the surjectivity of S, we get v = vy € D(S). This shows that
D(S) = D(5*) and Sv = S*v, Vv € D(S).

Proof of 1.
S is closed because S* is closed and S = S*.

Proof of 3.
Let A € V such that
<u,h>y=0, Yu € D(S) .

Let f € V such that Af = h (A is an isomorphism from V onto V).
We then have

0=<u,h>y=<u,Af >y=< Af,u>y =a(f,u) =alu, f) =< Su, f >x .

Using the surjectivity, we get f = 0 and consequently h = 0.
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4 Semi-bounded operators and Friedrichs exten-
sion.

4.1 Definition

Definition 4.1.1.
Let Ty be a symmetric unbounded operator of domain D(Ty). We say that T is
semibounded (from below) if there exists a constant C such that

< Tou,u >> —C||ull3, , Yu € D(Tp) . (4.1.1)

Example 4.1.2. (The Schridinger operator).
We consider on R™ the operator

Py(x,D;):=-A+V(zx), (4.1.2)

where V(z) is a continuous function on R™ (called the potential) such that there
exists C s.t. :
V(z) > -C, Ve eR™. (4.1.3)

Then the operator Ty defined by
D(Ty) = C§°(R™) and Tou = Py (z, Dy)u , Yu € D(Tp) ,

is a symmetric, semibounded operator.
We have indeed, with H = L?(R™),

< P(z,Dp)u,u >y = [pu(—Au+Vu)-ade
= me |Vu(z)|?dz + me V(x)|u(z)? dv (4.1.4)
> —C|lull3, -
Exercise 4.1.3.

Let us consider on L?(R?; C?) the operator Z?Zl o; D, with domain S(R?; C?).
Here the o are 2 x 2 Hermitian matrices such that :

o - ag 4oy oy = 205 .

Show that this operator symmetric but not semi-bounded. This operator is
called the Dirac operator. Its domain is H!(R?, C?) and its square is the
Laplacian :

(Z O‘]’Da:j)2 = (—A) ® I([:2 .
j=1

4.2 Analysis of the Coulomb case.

There are two important inequalities which are useful when considering the
Coulomb case which plays an important role in atomic Physics. By Coulomb
case, we mean the analysis on R3 of the operator

Z

Sy=-A-2,
"
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or of the Klein-Gordon operator

Z
Ky =v—A+1-2 .
T

The operator v/—A + 1 can easily defined on S(R?), using the Fourier trans-

form F, by
F(V=A+1u)(p) = Vp*+ LFu)(p) -

The first one is the Hardy Inequality (which can be found for example in the
book of Kato ([Kal, p. 305-307)) :

[P de < [ i) ap (12.1)
R3 R3
and the second one is due to Kato and says that
_ ™ N
[ @ e <3 [ 1ol i)l ap. (422)
R3 R3

One proof of the Hardy inequality consists in writing that, for any v € R and
any u € C§°(R3;R), we have :

x
/RS [Vu + VWude >0. (4.2.3)
This leads to :
Vul? + 2 —uffdr > 2y [ V- ud
|Vul +7Wu| x > —2y uWu x .
R3 R3

But an integration by part gives :

Optimizing over « leads to v = % and gives then the result.

Remark 4.2.1. .
The same idea works for N > 3 but fails for N = 2. So a good exercise’® is to
look for substitutes in this case by starting from the inequality :

x
/}R3 |Vu — 'y(x)WuF drx > 0. (4.2.4)

The function v(x) can be assumed radial : v(x) = g(|z|) and the question is to
find a differential inequality on g leading at a weaker Hardy’s type inequality.
One can for example try g(r) = In(r).

5We thank M.J. Esteban for explaining to us the trick.
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For the proof of Kato’s inequality, there is a another tricky nice estimate
which, as far as we know, goes back to Hardy and Littlewood. In the case of
the Coulomb potential, we can write, using the explicit computation for the

Fourier-transform of z — ‘—i‘ :

Jrs S 0 /|2“( p)dp-dp’ = [ps ps ﬂ(p): ) M) LT )dp - dpf

P p—p'[?
~ h h(p’ =
= Jroxre 00V Ty 0 )dp -

where h is a strictly positive measurable function to be determined later.
We then use Cauchy-Schwarz in the last equality in order to get

We now write [p'| = &’|p| in the integral [ |%|2mdp'. We then take

h(p) = Ip|.

The integral becomes

o A e
I Pl =P

with p = wlp|.

This is clearly a convergent integral. Moreover, observing the invariance by
rotation, one can show that the integral is independent of w € S?. Hence we
can compute it with w = (1,0,0).

We finally obtain the existence of an explicit constant C' such that

[ [a)s——ie) andy < C [l d.

The optimization of the trick leads to C' = 3
Let us now show how one can use these inequalities.

If we use (4.2.1), we get the semi-boundedness for any Z > 0 for the
Schrodinger Coulomb operator (using Cauchy-Schwarz Inequality).

L dr < ([ 2 julde) - Jul] .
R3 T r2

But we can rewrite the Hardy Inequality in the form

1
/3 T—2|u|2 dr <4< —-Au,u >L2(R3) -
R
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So we get, for any € > 0,

3T

1 1
/ “Jul de < e < —Au,u >p2 +—||ul?. (4.2.5)
R €
This leads to :
22
< Szu,u>r2> (1 —€eZ) < —Au,u > —?||u|| .

Taking € = %, we have finally shown that
< Szu,u >p2> —Z2||ul|? . (4.2.6)

Here we are probably not optimal® but there is another way to see that the
behavior with respect to Z is correct. We just observe some invariance of the
model. Let us suppose that we have proved the inequality for Z = 1. In order
to treat the general case, we make a change of variable x = py. The operator
Sz becomes in the new coordinates :

Taking p = Z~1, we obtain

Sy =27* <—Ay—l) .
Y

The other inequality (4.2.2) is with this respect much better and quite im-
portant for the analysis of the relativistic case. Let us see what we obtain in
the case of Klein-Gordon using Kato’s Inequality.

We have -
<Kzu,u>p2> (1—Z§) <V-A4+1u, u>p2 .

Here the nature of the result is different. The proof gives only that K is
semibounded if Z < % This is actually more than a technical problem !

4.3 Friedrichs’s extension

Theorem 4.3.1.
A symmetric semibounded operator Ty on H (with D(Tpy) dense in H) admits a
selfadjoint extension.

61t can be proven (see any standard book in quantum mechanics) that the negative spec-

trum of this operator is discrete and is described by a sequence of eigenvalues tending to O :

2
742? with n € N*. An eigenfunction related to the lowest eigenvalue 7% (Z =1) is given by

T — expfé\x\.
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The extension constructed in the proof is the so-called Friedrichs extension.
The proof can be seen as a variant of Lax-Milgram’s Lemma. We can assume
indeed by possibly replacing Ty by Ty + Aol d that T} satisfies

< Tou,u >3> |[ul3, , Yu € D(Ty) . (4.3.1)
Let us consider the associated form a priori defined on D(Ty) x D(Tp) :
(u,v) — ag(u,v) := (Tou, V)3 . (4.3.2)
The inequality (4.3.1) says that
ao(u,u) > ||ul|3, , Yu € D(Tp) . (4.3.3)
We introduce V' as the completion in H of D(T}) for the norm
u > po(u) = vao(u,u) .

More concretely u € H belongs to V, if there exists w, € D(Tp) such that
Uy — u in ‘H and u, is a Cauchy sequence for the norm pg.
As a natural norm for V', we get as a candidate :

lully = lim po(un) , (4.3.4)

where u,, is a Cauchy sequence for py tending to u in H.
Let us show that the definition does not depend on the Cauchy sequence. This
is the object of the

Lemma 4.3.2.
Let x,, a Cauchy sequence in D(Ty) for po such that x, — 0 in H. Then
pO(xn) — 0.

Proof of the lemma.
First observe that pg(x,,) is a Cauchy sequence in R* and consequently conver-
gent in R¥.
Let us suppose by contradiction that

po(zn) = a>0. (4.3.5)
We first observe that
aO(xna xm) = ao(ﬂfm xn) + ao(xm Tm — xn) y

and that a Cauchy-Schwarz inequality is satisfied :

|ao(@n, Tm — 0)| < Vao(Tn, Tn) - Vao(@m — T, Ty — Tn) -
Using also that x,, is a Cauchy sequence for py, we obtain that

Ve > 0,3IN s. t. ¥n > N, ¥m > N, |aog(zp, 2m) — ?| < €. (4.3.6)
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We take € = 0‘72 and consider the corresponding N given by (4.3.6). Coming
back to the definition of ag we obtain,

1
| < Toxn, xm > | > 502 ,¥n > N,¥Ym >N . (4.3.7)

But as m — 400, the left hand side in (4.3.7) tends to 0 because x,, — 0 and
this gives a contradiction.
##.
We now observe that
lullv = [lullr (4.3.8)

as a consequence of (4.3.3) and (4.3.4).

This means that the injection of V' in H is continuous. Note also that V', which
contains D(Tp), is dense in H, by density of D(Tp) in H. Moreover, we get a
natural scalar product on V' by extension of ag :

< U,V Syi= 1ir41_1 ao(Un, V) , (4.3.9)

where u,, and v, are Cauchy sequences for py tending respectively to u and v
in H.
By the second version of the Lax-Milgram Theorem (in the context V,H, V")
applied with

a(u,v) = <u,v >y,

we get an unbounded selfadjoint operator S on H extending T whose domain
D(S) satisfies D(S) C V.

Remark 4.3.3. (Friedrichs extension starting from a sesquilinear form)

One can also start directly from a semi-bounded sesquilinear form ag defined on
a dense subspace of H.

As we shall see below, this is actually the right way to proceed for the Neumann

realization of the Laplacian, where we consider on C°(Q) the sequilinear form

(u,v) — (Vu, Vv).

4.4 Applications

Application 1: The Dirichlet realization.
Let © be an open set in R™ such that Q is compact and let Ty be the unbounded
operator defined by

D(Ty) =C5°(Q), To = —A..

The involved Hilbert space is H = L?(Q). It is clear that T} is symmetric and
positive” (hence semi-bounded). Following the previous general construction,
we prefer to consider : Ty := Ty + Id.

7"We shall in fact see later that it is strictly positive.

25



It is easy to see® that V is the closure in H!(Q) of C§°(£2). This means, at least
if Q is regular, the space H}(Q2). The domain of S is then described as

D(S) == {ue HLQ) | — Aue L2(Q)}.

S is then the operator (—A + 1) acting in the sense of distributions.
When € is regular, a standard regularity theorem (see [Lio2], [LiMa]) permits
to show that

D(S) = H*(Q)N Hy () . (4.4.1)

So we have shown the following theorem

Theorem 4.4.1.
The operator Ty defined by

D(Ty) = H*(Q)NHI(Q), Ty = —A,
is selfadjoint and called the Dirichlet realization of —A in ).

We have just to observe that T3 = S — 1 and to use Remark 2.3.8.
Note that T} is a selfadjoint extension of Tj.
Note that by the technique developed in Subsection ??, we have also constructed
another selfadjoint extension of Ty. So we have constructed, when €2 is relatively
compact, two different selfadjoint realizations of Ty. We say in this case that Ty
is not essentially selfadjoint.

Application 2: The harmonic oscillator.
We can start from
H(): —A+|J3|2—|—1,

with domain
D(Hy) = Cg°(R™) .

Following the scheme of the construction of the Friedrichs extension, we first
get that

V =B'R"):={uec H'R™) |zjuc L*R™), Vjel,---,m]}.

One can indeed first show that V' C B!(R™) and then get the equality by proving
the property that C§°(R™) is dense in B'(R™). One can then determine the
domain of S as

D(S) = {u € BYR™) | (~A + |z|* + 1)u € L*(R™)} .

8We recall that there are two ways for describing HJ (). In the first definition we just
take the closure of C§°(Q2) in H1 ().
In the second definition, we describe H}(S2) as the subspace in H!(2) of the distributions
whose trace is zero at the boundary. This supposes that the boundary I' = O£ is regular. In
this case, there exists a unique application vy continuous from H'(£2) onto H? (") extending
the map C*®(Q) > u + ur. It is a standard result (cf Brézis [Br] or Lions-Magenes [LiMa])
that H}(Q) = HL (), when the boundary is regular.
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By a regularity theorem (differential quotients method [LiMa]), one can show
that

D(S) = B*(R™) := {u € H*(R™) | 2%u € L*(R™) , Ya's. t. |a| < 2}.

Application 3 : Schrédinger operator with Coulomb potential
We consequently start from

D(Ty) = C°(R?), Ty = —A — % : (4.4.2)

We have seen that Ty is semibounded and replacing Ty by Tp+2, the assumptions
of the proof of Friedrich’s extension theorem are satisfied. We now claim that

V = H'(R?).

Having in mind that C§°(R?) is dense in H!(R?), we have just to verify that
the norm po and the norm || - || 1 (gs) are equivalent on C§°(R?). This results
immediately of (4.2.5).

With a little more effort, one gets that D(S) = H?(R3).

Application 4 : Neumann problem.

The reader should have some minimal knowledge of Sobolev Spaces and traces
of distributions for reading this subsection (See for example Brézis [Br]). Let Q2
be a bounded domain with regular boundary in R™. Take H = L?(Q2). Let us
consider the sesquilinear form :

ag(u,v) :/<Vu, VU>(Cmd£E+/ uvdz
Q Q

on C* ().

Using Remark 4.3.3 and the density of C>°(Q) in H'(2), we can extend the
sesquilinear form to V' = H*(2) According to the definition of the domain of S,
we observe that, for u € D(S), then it should exist some f € L?(Q) such that,
for all v € H(Q) :

a(u,v) = /Qf(a:)@dm (4.4.3)

Then, one can find first show (by taking in (4.4.3) v € C§°(f2)) that, in the
sense of distribution,
—Autu=f, (4.4.4)

and consequently that :
D(S) c W(Q) :={uec H'(Q)| — Au e L*(Q)}. (4.4.5)

But this is not enough for characterizing the domain.
We refer to [Liol], [Lio2], [LiMa] or better [DaLi], Vol. 4 (p. 1222-1225)) for a
detailed explanation. We first recall the Green-Riemann Formula :

/Q (Vu | Vo) = /Q (—Au) - 5dz + / (Ou/Ov)T duse | (4.4.6)

[2}9)
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where duaq is the induced measure on the boundary, which is clearly true for
u e H?(Q) (or for u € C1(Q)) and v € H'(Q). We unfortunately do not know
that W (Q) C H?(Q2) and the inclusion in H'(2) is not sufficient for defining
the normal trace. But this formula can be extended in the following way.

We first observe that, for v € Hg(Q2) and u € W, we have :

/Q (Vu | Vo) = /Q (—Aw) - 5da . (4.4.7)

This shows that the expression

b, (v) == /Q<Vu | Vo) — /Q(—Au) -vdx

which is well defined for u € W and v € H'(2) depends only of the restriction
of v to 0fL.

If vg € C*(09), we can then extend vy inside 2 as a function v = Ruvg in
C*>(Q) and the distribution ? is defined as the map vg — ®,(Ruvp).

One observes also that, when u € C1(Q) or u € H%(Q2), the Green-Riemann
formula shows that :

By (v0) = /8 (@u/fov)ia don

So we have found a natural way to extend the notion of trace of the normal
derivative for u € W and we write :

Tu =, .

We then conclude (using (4.4.4) and again (4.4.3) this time in full generality)
that :
D(S) = {u e W(Q) [ nu =0},

and that
S=-A+1.

The operator S is called the Neumann realization of the Laplacian in L?().

Remark 4.4.2.
Another “standard” regularity theorem shows that

D(S) = {u € H*(Q) | mu =0},

and the notion of normal trace u — yiu for u € H?(Q) is more standard'®.

9By chosing a more specific R continuous from H? (092) into H'(S2), we get that &, can
be extended as a linear form on H % (092).
10The trace is in H 2 (092).
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5 Compact operators : general properties and
examples.

5.1 Definition and properties.

We just recall here very briefly the basic properties of compact operators and
their spectral theory. We will emphasize on examples. We refer to the book by
H. Brézis [Br| (Chap. VI).

Let us recall that an operator T from a Banach F into a Banach F' is compact
if the range of the unit ball in £ by T is relatively compact in F'. We denote by
K(E, F) the space of compact operators which is a closed subspace in L(E, F').
There is an alternative equivalent definition in the case when E and F are
Hilbert spaces by using sequences. The operator is compact if and only if, for
any sequence x, which converges weakly in E, Tz, is a strongly convergent
sequence in F'. Here we recall that a sequence is said to be weakly convergent in
‘H, if, for any y € H, the sequence < x,,y >4 is convergent. Such a sequence is
bounded (Banach-Steinhaus’s Theorem) and we recall that, in this case, there
exists a unique « € H, such that < z,,y >y—< z,y >y for all y € H. In this
case, we write : x, — y.

Let us recall that when one composes a continuous operator and a compact

operator (in any order) one gets a compact operator. This could be one way to
prove the compactness.
Another efficient way for proving compactness of an operator T is to show that
it is the limit (for the norm convergence) of a sequence of continuous operators
with finite rank (that is whose range is a finite dimensional space). We observe
indeed that a continuous operator with finite rank is clearly a compact operator
(in a finite dimensional space the closed bounded sets are compact).

5.2 Examples

Continuous kernels

The first example of this type is the operator Tk associated to the continuous
kernel K on [0,1] x [0,1].

By this we mean that the operator Tk is defined by

E>uw— (Tku)(x) = /0 K(z,y)u(y)dy . (5.2.1)

Here E could be the Banach space C°([0,1]) (with the Sup norm) or L?(]0, 1).

Proposition 5.2.1.
If the kernel K is continuous, then the operator Tk is compact from E into E.

There are two standard proofs for this proposition. The first one is based on
Ascoli’s Theorem giving a criterion relating equicontinuity of a subset of con-
tinuous functions on a compact and relatively compact sets in C9([0, 1]).
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The other one is based on the Stone-Weierstrass Theorem permitting to recover
the operator as the limit of a sequence of finite rank operators T, associated
to kernels K, of the form K, (z,y) = ;”Zl fin(@)gjn(y).

Let us study three other examples.
The first example comes from statistical mechanics, the second one from the
spectral theory for the Dirichlet realization of the Laplacian and the third one
from Quantum Mechanics.

The transfer operator. The transfer operator is the operator associated
with the kernel

V(y)

exp —t|x —y|2exp—T , (5.2.2)

Ki(z,y) = exp—

V()
2
where ¢ > 0, and V' is a C*°(R) function such that
/ exp —V(z)dx < o0 .
R
The L2- boundedness of operators with integral kernel is proven very often

through the

Lemma 5.2.2. Schur’s Lemma
Let K an operator associated with an integral kernel K, that is a function
(z,y) — K(x,y) on R™ x R™ satisfying

Ml = Supr{:GRm me |K(Z‘,y)| dy < 400 )

My = sup,cm Jon K (2,9)] dz < +00 (5.2.3)

Then K, initially defined for uw € C5°(R™) by

(Ku)(z) = - K(z,y)u(y)dy ,

can be extended as a continuous linear operator in L(L?(R™)) (still denoted by
K or Tk ), whose norm satisfies

K[| < /MM . (5.2.4)

Proof:
By the Cauchy-Schwarz inequality, we have

Ku(x)? < / K (2, ) () Py / K (z,y)|dy < M, / K (2, 9) |u(y) Py

Integrating with respect to z and using Fubini’s Theorem, we then obtain the
result.
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In our case, the operator Tk is actually an Hilbert-Schmidt operator, i.e.
an operator whose integral kernel is in L?(R™ x R™) (with m = 1). One can
indeed prove, using Cauchy-Schwarz’s inequality, show that :

Ku@P < [ lut)Pdy [ 1KGo)Pdy.
and one obtains :
[Tk || < [|K|[L2@®m xrm) - (5.2.5)

It is then easy to show that Tk is a compact operator. Its kernel K is indeed
the limit in L? of a sequence K, such that Tk, is of finite rank. If ¢; is
an orthonormal basis in L?(R™), one first shows that the basis ¢5 ® ¢¢ is an
orthonormal basis in L?(R™ x R™). Here we have by definition :

(0% @ bo)(x,y) = Pr(x)de(y) -
We then obtain o
K(z,y) =Y crodr(@)pe(y) -
k.0

‘We now introduce

K, (z,y) := Z Ck,é@c(w)@(y)'

k+4<n

It is then easy to see that Tk is of finite rank because its range is included in
the linear space generated by the ¢i’s (k=1,---,n). Moreover, we have

nll}/{r»loo ||K — Kn||L2(]Rm xRM) = 0.
Coming back to the corresponding operators, we get

i 1Tk = T, [l ey =0

The inverse of the Dirichlet operator

We come back to the operator S, which was introduced in the study of the
Dirichlet realization. One can show the following

Proposition 5.2.3.
The operator S™1 is compact.

Proof.
The operator S~! can indeed be considered as the composition of a continuous
operator from L? into V = HE(Q) and of the continuous injection of V into
L?(Q). If Q is relatively compact, we know (cf [Br]) that we have compact
injection from H'(2) into L?(Q2). For the continuity result, we observe that, for
all w € D(95) :

1Sullaellullze > (Su | u) = a(u,u) > of[ull§, > allullv||ully -
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This gives, for all u € D(S), the inequality :
[[Sull# > allully . (5.2.6)

Using the surjectivity of S, we get :

. (5.2.7)

QIr

1S 2wy <

Note that in our example o« = 1 but that this part of the proof is completely
general.

The inverse of the harmonic oscillator.

The analysis is analogous. We have seen that the Sobolev space Hg(R) has
to be replaced by the space

B'R) :={u € L*(R), 2u € L? and du/dx € L?} .

We can then prove, using a standard precompactness criterion, that B!(R) has
compact injection in L?(IR). One has in particular to use the inequality :

1
/| @ < e (5.28)

It is very important to realize that the space H'(R) is not compactly injected in
L?. To understand this point, it is enough to consider the sequence u, = x(z—n)
where y is a function in C§°(R) with norm in L? equal to 1. It is a bounded
sequence in H', which converges weakly in H' to 0 and is not convergent in
L2(R).

5.3 Adjoints and compact operators

We recall'! that the adjoint of a bounded operator in the Hilbertian case is
bounded. When E and F are different Hilbert spaces , the Hilbertian adjoint is
defined through the identity :

<Tx,y>p=<x,T'y>g,Vr e E VYyeF. (5.3.1)

Example 5.3.1.
Let Q be an open set in R™ and Il the operator of restriction to Q: L?(R™) >
u > usq. Then IIg is the operator of extension by 0.

Exercise 5.3.2.
Let o be the trace operator on x,, = 0 defined from H*(R7") onto Hz(R™1).
Determine the adjoint.

11'We are mainly following Brézis’s exposition [Br].
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In an Hilbert space, we have

MLt =721t

In particular, if M is a closed subspace, we have already used the property
(M)t =M. (5.3.2)

In the case of bounded operators (T' € L(E, F)), one gets easily the proper-
ties
N(T*) = R(T)*, (5.3.3)

and
R(T) = (N(T*))* . (5.3.4)

Let us also recall the proposition

Proposition 5.3.3.
The adjoint of a compact operator is compact.

5.4 Precompactness

We assume that the reader is aware of the basic results concerning compact sets
in metric spaces. We in particular recall that in a complete metric space E, an
efficient way to show that a subset M is relatively compact is to show, that for
any € > 0, one can recover M by a finite family of balls of radius € in F.

The second standard point is to remember Ascoli’s Theorem, giving a crite-
rion for a bounded subset in C°(K) (K compact in R™) to be relatively compact
in term of uniform equicontinuity. Ascoli’s Theorem gives in particular :

e the compact injection of C*(K) into C°(K)
e the compact injection of H™(f2) into C°(K), for m > 2 and with K = Q.

Let us recall finally a general proposition permitting to show that a subset
in L? is relatively compact.

Proposition 5.4.1. Let A C L?(R™). Let us assume that :

1. A is bounded in L*(R™), that is there exists M > 0 such that :
[lu|lpz <M, Vue A.
2. The expression €(u,R) := flleR|u(x)|2dx tends to zero as R — 400
uniformly with respect to u € A.

3. For h € R™, let 7y, defined on L* by : (thu)(z) = u(x — h). Then the
expression 6(u, h) := ||Thu — ul|r2 tends to zero as h — 0, uniformly with
respect to A.

Then A is relatively compact in L?.
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This proposition can be applied for showing :
e the compact injection of H}(Q) in L?(2) when  is regular and bounded,
e the compact injection of H*(2) in L?(Q2) when  is regular and bounded,

e the compact injection of BY(R™) in L?(R™).
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6 Spectral theory for bounded operators.

6.1 Fredholm’s alternative

Let us first recall Riesz’s Theorem.

Theorem 6.1.1. L
Let E be a normed linear space such that Bg is compact then E is finite dimen-
sional.

Let us now describe Fredholm’s alternative.

Theorem 6.1.2.

Let T € K(E). Then

(i) N(I —T) is finite dimensional.

(it) R(I —T) is closed (of finite codimension).
(i1i)) R(I —T) = E if and only if N(I —T) = {0} .

We shall only use this theorem in the Hilbertian framework, so £ = H, and
we shall prove it for simplicity under the additional assumption that T'= T*.
Proof.

We divide the proof in successive steps.

Step 1.

(i) is a consequence of Riesz’s Theorem.

Step 2.

Let us show that R(I —T) is closed.

Let y, a sequence in R(I — T') such that y,, — y in H. We would like to show
that y € R(I —T).

Let z,, in N(I —T)* such that y, = z,, — Tz,,.

Step 2a. Let us first show the weaker property that the sequence x,, is
bounded.
Let us indeed suppose that there exists a subsequence z,,; such that ||z, || —
+o00. Considering un,; = 2n,/||zn,||, we observe that

() up; = Tup, —0.

The sequence being bounded, we observe that (after possibly extracting a sub-
sequence) one can consider that the sequence u,, is weakly convergent. This
implies that T'u,, is convergent (7' is compact). Using now (x), we get the
convergence of u,; to u :

Up; —u, Tu=u, [lul]|=1.

But u € N(I —T)%, hence we get u = 0 and a contradiction.
Step 2b. We have consequently obtained that the sequence z,, is bounded.

One can consequently extract a subsequence x,; that weakly converges to
in H. Using the compactness of T, we get T'w,; converges strongly to T@.
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Hence the sequence z,,; tends strongly to y + T'Zo.
We have finally
y + Txoo = xoo 9

and consequently proved that y = oo — TToo.

Step 3.
If N(I —T) = {0}, then N(I —T*) = 0 (here we use for simplification our
additional assumption) and R(I — T') being closed, we get

RI-T)=N{I-T)*=H.
The converse is also immediate as T' = T™*.

Step 4.
We have
RI-T)-=N(I-T*)=N(I-T).

This shows, according to (¢) that R(I —T) is of finite codimension (second state-
ment of (ii)).

This ends the proof of Fredholm’s alternative in the particular case that T'
is selfadjoint.

Remark 6.1.3.
Under the same asumptions, it is possible to show that

dim N(I = T) = dim N(I —T").

6.2 Resolvent set for bounded operators

In this subsection, F could be a Banach on R or C, but we will essentially need
the Hilbertian case in the applications treated here.

Definition 6.2.1. (Resolvent set)
For T € L(E), the resolvent set is defined by
o(T)={X € C; (T — X)) is bijective from E on E}. (6.2.1)

Note that in this case (T'— M)~! is continuous (Banach’s Theorem). It is
easy to see that o(T) is an open set in C. If A\g € o(T), we oberve that

(T —=X) = (T = Xo) (Id + (A= Xo)(T = X))

Hence (T — M) is invertible if [A — Ao| < [[(T — Xo)Y|~!. We also get the
following identity for all A, Ay € o(T) :

(TN =T =2)" =N =2)T = N)"HT =X)L (6.2.2)
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Definition 6.2.2. (Spectrum)
The spectrum of T, o(T), is the complementary set of o(T) in C.

Note that o(T") is a closed set in C. This is typically the case when T is a
compact injective operator in a Banach space of infinite dimension.

We say that A is an eigenvalue if N(T' — AI) # 0. N(T — A is called the
eigenspace associated with .

Definition 6.2.3. (Point spectrum)
The point spectrum o,(T) of T is defined as the set of the eigenvalues of T'.

Example 6.2.4. (Basic example)
Let H = L*(]0,1[) and f € C°([0,1]). Let Ty be the operator of multiplication
by f. Then one has :

o(Ty)= Im f=:{\eC|3xecl0,1] with f(x) =} .

op(Ty) = Sta(f) =: {\ € C | meas(f~*(\)) >0} .
For the first assertion, it is first immediate to see that if A & Im f, then
Ty—x-1 is a continuous inverse of Ty — X. On the other side, if A\ = f(xo) for
some xo €0, 1] then we have (T —A)un, — 0 and ||u,|| =1 for u,, = ﬁx(%),
where x is a C§° function such that ||x|| = 1. This shows that f(]0,1[) C o(T})
and we can conclude by considering the closure.

Note that the point spectrum is not necessarily closed. Note also that one
can have a strict inclusion of the point spectrum in the spectrum as can be
observed in the following example :

Example 6.2.5.
Let us consider F = ¢2(N) and let T be the shift operator defined by :

(Tu)o=0, (Tu)p =tp—1,n>0,

where u = (ug, -+ ,un, -+ ) € £2(N). Then it is easy to see that T est injective
(so 0 is not an eigenvalue) and is not surjective (so 0 is in the spectrum of T').

As another interesting example, one can consider :

Example 6.2.6.
Let E = (?(Z,C) and let T be the operator defined by :

1
(Tw), = 3 (Up—1+Uny1) , REZ,

for u € £?(Z). Then it is easy to see (by using expansion in Fourier series
that T has no eigenvalues and its spectrum is [—1,+1].

12)

12Using the isomorphism between £2(Z; C) and L?(S' ; C), which associates to the sequence
(un)nez the fonction Y-, un expind, one has to analyze the operator of multiplication by
cosf :
f—Tf=cosbf.
It is then analyzed as in example 6.2.4. One concludes that the spectrum of 7 is [—1, +1].
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Exercise 6.2.7.
Let a € [0,1]. Let p and ¢ integers which are mutually prime. Analyze the
spectrum ¥, of the operator H, defined on ¢%(Z) by

(Hou)y = % (Up—1 + Upy1) + cos 2ﬂ(§n +a)u,,neZ.
In order to make the analysis easier, one can admit (particular case of the so-
called Floquet theory), that one has ¥ = Ngejo,1)3, Where ¥y is the spectrum
of H, reduced to the space of the u’s in > such that w,, = exp 2inf u,, for
n € 7Z.
This operator plays an important role in Solid State Physics and is called the
Harper’s operator.
We now replace the rational % by an irrational number 8. So we consider the
operator Hg o := (741 + 7_1) 4+ cos 2m(B - + ) on (*(Z,C), where 7, (k € Z)
is the operator defined on ¢2(Z,C) by (Txu)n = Un_k-
Show that, if 8 ¢ Q, then the spectrum of Hg o is independent of . For this,
one can first prove that Hg . is unitary equivalent with Hg o41g for any k € Z.
Secondly, one can use the density of the set {o«+ SZ+Z} in R. Finally, one can
use the inequality

Hp.0 — Hpo|| < 27| — o] .

Proposition 6.2.8. -
The spectrum o(T') is a compact set included in the ball B(0,||T|]).

This proposition is immediate if we observe that (I — %) is invertible if
A>T
6.3 Spectral theory for compact operators

In the case of a compact operator, one has a more precise description of the
spectrum.

Theorem 6.3.1.
Let T € K(E) where E is an infinite dimensional Banach space. Then

1.
0eo(T).

o(T)\{0} = op(T) \ {0} .
3. We are in one (and only one) of the following cases
o cither o(T) = {0},
o cither o(T) \ {0} is finite,

e oro(T)\{0} can be described as a sequence of distincts points tending
to 0.
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Proof.
a) If 0 € o(T), then T admits a continuous inverse 7! and the identity, which
can be considered as :
I=ToT™ !,

is a compact operator, as the composition of the compact operator 7" and the
continuous operator T—!. Using Riesz’s Theorem we get a contradiction in the
case F is supposed of infinite dimension.

b) The fact that, if A # 0 and A € o(T), then X is an eigenvalue, comes directly
from the Fredholm’s alternative applied to (I — £).

c¢) The last step comes essentially from the following lemma :

Lemma 6.3.2.

Let (A\n)n>1 a sequence of distincts points A, — A and A\, € o(T) \ {0}, for all
n > 0.

Then A = 0.

Proof.
We just give the proof in the Hilbertian case. For all n > 0, let e, be a
normalized eigenvector such that (T" — A,)e, = 0 and let E,, be the vectorial
space spanned by {ej, ea, - ,e,}. Let us show that we have a strict inclusion
of E,, in Fpy1.
We prove this point by recursion. Let us assume the result up to order n — 1
and let us show it at order n. If E,11 = E,,, then e, 1 € E, and we can write

n
En+l = E Qj €y .
j=1

Let us apply T to this relation. Using the property that e, is an eigenvector,

we obtain
n n
)\n+1 E Q;€j = E aj)\jej.
Jj=1 Jj=1

Using the recursion assumption, {e1,---,e,} is a basis of E, and the \; be-
ing distincts, we obtain a; = 0 for all j = 1,--- ,n and a contradiction with
llensall = 1.

So we can find a sequence u,, such that u,, € E, NE;- | and ||u,|| = 1. T being
compact, one would extract a convergent subsequence (still denoted by Tu,,)
from the sequence (T'u,) and, if A\, — A # 0, one would also have the conver-
gence of this subsequence (ﬁTun) and consequently the Cauchy property.

Let us show that this leads to a contradiction. We remark that

(T = Ap)En C Ep_y .

Let n > m > 2. We have

e = Bl = | et — St iy — |2
||(T—An)un _ (T—/\m)um

X 22— U2+ [[un]?
2 [lunl* =1
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We can consequently not extract a Cauchy subsequence from the sequence
%Tun. This is in contradiction with the assumption A # 0.
This ends the proof of the lemma and of the theorem.

We shall now consider the Hilbertian case and see which new properties can
be obtained by using the additional assumption that T is selfadjoint.

6.4 Spectrum of selfadjoint operators.

As T =T%*, the spectrum is real. If Im A # 0, one immediately verifies that :
| Tm | fful? < | Im (T = Mu, u) < (T = Nul] - [[u]] -

This shows immediately that the map (T"— A) is injective and with close range.
But the orthogonal of the range of (T' — \) is the kernel of (T — \) which is
reduced to 0. So (T — \) is bijective.

This was actually, a consequence of the Lax-Milgram theorem (in the simple
case when V = H), once we have observed the inequality

(T = Nu,u)| > | Tm Al [ul[? .
Using again Lax-Milgram’s theorem, we can show

Theorem 6.4.1.

Let T € L(H) be a selfadjoint operator. Then the spectrum of T is contained in
[m, M] with m = inf(Tu,u)/||u||> and M = sup(Tu,u)/||u||>. Moreover m and
M belong to the spectrum of T.

Proof:
We have already mentioned that the spectrum is real. Now if A > M, we can
apply the Lax-Milgram to the sequilinear-form (u,v) — A(u,v) — (T'u,v).
Let us now show that M € o(T).

We observe that, by Cauchy-Schwarz applied to the scalar product (u,v) —
M{u,v) — (Tu,v), we have :

[((Mu—Tu,v)| < {(Mu— Tu,u)% (Mv — Tv,v)% .
In particular, we get :
1
[|Mu = Tulls < [|M = T||Z 50 (Mu — Tu,u)? . (6.4.1)
Let (un)nez be a sequence such that ||u,|| = 1 and (T'uy,, un) — M asn — +oo.
By (6.4.1), we get that (T' — M )u,, tends to 0 as n — +oo. This implies that
M € o(T). If not, we would get that u,, = (M —T)~*((M — T)u,) tends to 0

in contradiction with ||u,|| = 1.
This theorem admits the following important corollary
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Corollary 6.4.2.
Let T € L(H) be a selfadjoint operator such that o(T) = {0}. Then T = 0.

We first indeed show that m = M = 0 and consequently that < Tu,u >x=0
for all w € H. But < Tu,v > can be written as a linear combination of terms
of the type < T'w,w >3 and this gives the result by taking v = Tu.

Another connected property which is useful is the

Proposition 6.4.3.
If T is positive and selfadjoint then ||T|| = M.

The proof is quite similar. We observe that :
(Tu, v)| < (Tw,u)? (T, v)? .
This implies, using Riesz’s Theorem :
I Tull < (17| (T, u))=
Coming back to the definition of ||T’||, we obtain :
1Tl < |72 M=

and the inequality :
IT]| < M.

But it is immediate that :
(Tu, u) < [T [ul]? .

This gives the converse inequality and the proposition.

6.5 Spectral theory for compact selfadjoint operators

We have a very precise description of the selfadjoint compact operators.

Theorem 6.5.1.
Let H be a separable Hilbert'3 space and T a compact selfadjoint operator. Then
H admits an Hilbertian basis consisting of eigenvectors of T'.

Proof.
Let (An)n>1 be the sequence of disjoint eigenvalues of T', except 0. Their exis-
tence comes from Theorem 6.3.1 and we also observe that the eigenvalues are

real.
Let us define \y = 0.

13that is having a countable dense set.

41



We define Eg = N(T') and E,, = N(T — M\, I); We know (from Riesz’s Theorem)
that
0< dim E, < +00.

Let us show that H is the Hilbertian sum of the (Ey)n>0.

(i) The spaces (E,) are mutually orthogonal. If w € E,, and v € E,, with
m # n, we have

<Tu,v >p= A < U, v >y=< U, Tv >= Ay < U,V > ,
and consequently
<u,v>n=0.

(ii) Let F' be the linear space spanned by the (E),),>0. Let us verify that F
is dense in H. It is clear that TF C F and, using the selfadjoint character of
T, we have also TF+ c F*. The operator T, obtained by restriction of T" to
F- . is a compact selfadjoint operator. But one shows easily that o(T) = {0}
and consequently T = 0. But F- ¢ N(T) C F and hence F- = {0}. F is
consequently dense in H.

(iii) To end the proof, one chooses in each E, an Hilbertian basis. Taking
the union of these bases, one obtains an Hilbertian basis of H effectively formed
with eigenvectors of T.

Remark 6.5.2.
If T is a compact selfadjoint operator, we can write any u in the form

—+o00
u:Zun, with u, € B, .

n=0

This permits to write

+oo
Tu= Z Al .
n=1

If, for k € N*, we define Ty, by

k
Tiu = E Anlp ,
n=1

we easily see that Ty is of finite rank and that

[T =Tkl < sup |An|.
n>k+1

Hence the operator T appears as the limit in L(H) of the sequence Ty as k —
+00.
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7 Examples.

We go back to our previous examples and analyze their properties.

7.1 The transfer operator.
7.1.1 Compactness

The transfer operator (which was introduced in (??) is compact and admits
consequently a sequence of eigenvalues A, tending to 0 as n — 4o00. Let us
show the

Lemma 7.1.1.
The transfer operator is positive and injective.

Proof of the lemma.
V(z)

Let u € L*(R). We can write'*, with ¢(z) = exp — <~ u(x)

< T, u >p= / exp —tlz — y[26(x)B(g) dady
RZ

Using the properties of the Fourier transform and of the convolution, we deduce

2 ~
< Ticwusn=co [ eo—Elige e,

R

where ¢; > 0 is a normalization constant.

The spectrum is consequently the union of a sequence of positive eigenvalues

and of its limit 0. Tk can be diagonalized in an orthonormal basis of eigenvec-
tors associated with strictly positive eigenvalues. We emphasize that 0 is in the
spectrum but not an eigenvalue.
Theorem 6.4.1 says also that ||Tk|| is the largest eigenvalue and is isolated. A
natural question is then to discuss the multiplicity of each eigenvalue, i. e. the
dimension of each associated eigenspace. We shall see later (Krein-Rutman’s
Theorem) that the largest eigenvalue is of multiplicity 1.

7.1.2 About the physical origin of the problem.

Our initial problem was to find a rather general approach for the estimate of
the decay of correlations attached to ”gaussian like” measures of the type

exp —®(X) dX (7.1.1)

on R™ with ®. One proof of this estimate (in the case when ® has a particular
structure) is based on the analysis of the transfer matrix method, originally

141f we make only the weak assumption that exp —V € L!(R), it is better to start for the
proof of the positivity by considering u’s in C§°(R) and then to treat the general case by using
the density of C3° in L2
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due to Kramers-Wannier, that we have already seen for the study of the Ising
model. We present here briefly the technique for our toy model. We shall only
consider the case when d = 1 and treat the periodic case, that is the case when
{1,---,n} is a representation of AP*" = Z/nZ.

We consider the particular potential ®

n

1
- vaj %“' (7.1.2)

M (X)=d

where we take the convention that x,, 11 = z1 and where h is possibly a semiclas-
sical parameter which is sometimes chosen equal to one if we are not interested
in the “semiclassical” aspects. More generally, we could more generally consider
examples of the form:

Z () + I(zj,z41)) (7.1.3)

Jj=1

b‘l>—‘

where [ is a symmetric ”interaction” potential on R x R. Let us mention how-
ever that the example (7.1.2) appears naturally in quantum field theory when
the so called ”lattice approximation” is introduced. For this special class of
potentials, we shall demonstrate that the informations given by the transfer
operator method are complementary to the other approachs we have explained
before. We shall present the ”dictionary” between the properties of the measure
h~% -exp —®;(X) dX on R™ and the spectral properties of the transfer operator
Kv (which is also called Kac operator for some particular models introduced
by M. Kac) whose integral kernel is real and given on R x R by

-3 Vix) [z —yf? V(y)
K - LA .7 N | MR 2 1.4
v(z,y) =h"Zexp oh exp m exp oh (7.14)
By integral kernel (or distribution kernel), we mean'® a distribution in D’(R?)
such that the operator is defined from C§°(R) into D’(R) by the formula

/R(Kvu)(x)v(x) dr = Ky (z,y)u(z)v(y)dedy , Yu, v € C5°(R) .

RxR

(7.1.5)
This dictionary permits to obtain interesting connections between estimates
for the quotient o /p1 of the two first largest eigenvalues of the transfer operator
and corresponding estimates controlling the speed of convergence of thermody-
namic quantities. In particular this speed of convergence is exponentially rapid

as n — +00.
We know that when the operator K is compact, symmetric and injective,
then there exists a decreasing (in modulus) sequence p; of eigenvalues tending

15Here we shall always consider much more regular kernels which are in particular continu-
ous. So the notation [ can be interpreted in the usual sense. In general, this means that the
distribution kernel Ky is applied to the test function (z,y) — u(x) v(y).
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to 0 and a corresponding sequence of eigenfunctions u; which can be normalized
in order to get an orthonormal basis of L?(IR). Moreover, the operator becomes
the limit in norm of the family of operators K(V) whose corresponding kernel
are defined by

N
KM (2,y) = Zujug'(x) u;(y) - (7.1.6)

We recall indeed that
1K — KM < sup [u] - (7.1.7)
j>N

The symmetric operators'® are called trace class if we have in addition the
property that

1K [er =Y 5] < 400 (7.1.8)
J
In this case, we get that
1K = KN sr < > |yl - (7.1.9)
>N

For a trace class symmetric operator, we can in particular define the trace as
Tr K=Y p, (7.1.10)
J

and this operation is continuous on the space of the trace class operators
| Tr K| < ||K]|e - (7.1.11)

This of course extends the usual notion of trace for matrices. We can actually
compute directly the trace of a trace-class operator in the following way. We
first observe that

Tr K= lim Tr KW, (7.1.12)
N—+o00
Then we observe that
N
T KW = Zuj = / KNz, z)dz . (7.1.13)
j=1 R

We consequently obtain that

Tr K= lim [ K™ (z2)de. (7.1.14)
N—+oco R

16When K is not symmetric, trace class operators can still be defined by considering vK*K.
Note that when K is trace class, one can compute the trace by considering any orthonormal
basis e; : Tr K =3, (Keg, e;).
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If we observe that z +— >~ |15 [uj(2)|? is in L(R), then it is naturall” to hope
(but this is not trivial!) that z — K (z,x) is in L! and that

Tr K= / K(z,x)dx . (7.1.15)
R

Note that it is only when K is positive that the finiteness of the right hand side
in (7.1.15) will imply the trace class property.

In the case the operator is Hilbert-Schmidt, that is with a kernel K in L?, then
the operator is also compact and we have the identity

Z;@:/ \K (z,y)|? dady . (7.1.16)
j RxR

This gives an easy criterion for verifying the compactness of the operator. Let
us first look at the thermodynamic limit. This means that we are interested in
the limit lim,, 4 o % In (fRn exp —P(X) dX). We start from the decomposition:

exp —®(X) = Ky (z1,22) - Ky (w2,23) - Ky (Zn_1,Tn) - Kv(xn,21) (7.1.17)

and we observe that
[ exp—a(x) ax = [ Kealw.v) dy (7.1.18)
n R

where Ky ,(x,y) is the distribution kernel of (Kv)". Our assumption on V
permits to see that (K )" is trace class'® and we rewrite (7.1.18) in the form:

/n exp—®(X)dX = Tr [(Kv)"] = Zﬂg : (7.1.19)

where the p; are introduced in (7.1.24).
We note also for future use that

Kyn(z,y) = ZM?W (@) u;(y) - (7.1.20)

17Let us sketch a proof of (7.1.15) in our particular case. K being positive and with an
V(z)
2

explicit kernel : exp — exp—J|r — y|? exp— V;y), one can find an Hilbert-Schmidt
operator L satisfying L*L = K. The kernel of L is given, for a suitable 0, by L(z,y) =
co exp —0|z — y|% exp —#. We note indeed that cg exp —0|z — y|? is the distribution kernel
of exp tgA for a suitable ty > 0.

Then we observe that L is Hilbert-Schmidt and that ||L||% ¢ = >-; 4 = Tr K. Using the

previously mentioned formula for the Hilbert-Schmidt norm and the property that
K(z,x) :/L*(:v,z)L(z,:v)dz:/L*(z,:v) L(z,z)dz,

one obtains (7.1.15).
183ee for example [Ro].
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In particular we get for the thermodynamic limit:

In [, exp—®(X)dX
i Ble @ —0X)dX (7.1.21)

n— o0 n

Moreover the speed of the convergence is easily estimated by:

|1n Jgn exp —®(X) dX
n
n

-1 —Inks 4+ Inn+ O(exp —d2n) ,

(7.1.22)

M2
—In = —nln(—
| = —nin(52)

where ko is the multiplicity of ps.

7.1.3 Krein-Rutman’s Theorem.
We observe now that the kernel (z,y) — Ky (z,y) satisfies the condition
Ky(z,y) >0, Vz,y e R. (7.1.23)

In particular it satisfies the assumptions of the extended Perron-Frobenius The-
orem also called Krein-Rutman’s Theorem and our positive operator Ky admits
consequently a largest eigenvalue p1 equal to || Ky || which is simple and corre-
sponds to a unique strictly positive normalized eigenfunction which we denote
by u;. Let p; the sequence of eigenvalues that we order as a decreasing sequence
tending to O:

0< Hi+1 < Hj <... < po < 1. (7124)

We shall denote by u; a corresponding orthonormal basis of eigenvectors with

Kvuj = pjuy , [lugl] =1 (7.1.25)

Let us present the statements:

Definition 7.1.2.

Let A be a bounded positive operator on a Hilbert space H = L?(X,dv) where
(X,v) is a measured space. Then we say that A has a strictly positive kernel if,
for each choice of a non negative function 8 € H (|0]] #0), we have

0 < Af
almost everywhere.

It is immediate to see that the transfer operator satisfies this condition.
The theorem generalizing the Perron-Frobenius Theorem is then the following:

Theorem 7.1.3.
Let A be a bounded positive compact symmetric operator on H having a strictly
positive kernel and let'® ||A|| = X be the largest eigenvalue of A. Then A has
multiplicity 1 and the corresponding eigenvector uy can be chosen to be a strictly
positive function.

198ee Proposition 6.4.3
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Proof:
Since A maps real functions into real functions, we may assume that wu) is real.
We now prove that

(Aux,ux) < (Aual, [ual).

This is an immediate consequence of the strict positivity of the kernel. We just
write:

Uy = u}\" — Uy
and

lux| = uf +uy
and the above inequality is then a consequence of

(Auf,ui) >0,
and

(uy, Auy) > 0.

We then obtain
Muall* = (Aun, un) < (Afual, fual) < [JAJ] [Jual[* = Afual? -
This implies
(Aux, ux) = (Alual, [ual) -
This equality means
(uy, Auy) + (uy, Auf) = 0.
We then get a contradiction unless u;r = 0 or u, = 0. We can then assume
uy > 0 and the assumption gives again
0< <0,AUA> = )\<9,U,)\> s

for any positive §. This gives

uy >0 ae.
But

Uy = )\71AU)\
and this gives

uyx >0 a.e.

Finally if there are two linearly independent eigenvectors vy and uy correspond-
ing to A\, we would obtain the same property for vy by considering as new Hilbert
space the orthogonal of uy in H. But it is impossible to have two orthogonal
vectors which are strictly positive.

q.e.d.

Remark 7.1.4.

In the case t = 0, we keep the positivity but lose the injectivity ! The spectrum is
easy to determine. We are indeed dealing with the orthonormal projector asso-
ciated to the function x +— exp —@, The real number 1 is a simple eigenvalue
and 0 is an eigenvalue whose corresponding eigenspace is infinite dimensional.
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7.2 The Dirichlet realization, a model of operator with
compact resolvent.

We can apply Theorem 6.5.1 to the operator (—Ap + Id)~!. We have seen that
this operator is compact and it is clearly injective (by construction). It was also
seen as a selfadjoint and positive. Moreover, the norm of this operator is less or
equal to 1.

There exists consequently a sequence of distinct eigenvalues u, tending to 0
(with 0 < p,, < 1) and a corresponding orthonormal basis of eigenvectors such
that (Ap+1)~1 is diagonalized. If ¢,,, j is a corresponding eigenvector associated
with p,, that is, if

(_AD + I)_1¢n,j = Mn¢n,j )

we first observe that ¢, ; € D(—Ap + I); hence ¢, ; € H(Q) N H?(Q) (if Q is
relatively compact with regular boundary) and

1
—Ap¢n,; = (M_ —1)¢n,; .

n

The function ¢, ; is consequently an eigenvector of —Ap associated with the
eigenvalue \,, = (I%ﬂ -1).

Let us show, as easily imagined, that this basis ¢, ; permits effectively the
diagonalization of —Ap.

Let us indeed consider u = En jUn,j ¢n.; in the domain of —Ap. Let us consider
the scalar product < —Apu, ¢, ¢ >. Using the selfadjoint character of —Ap,
we get

< =ApU, P >H=< U, —ADpOm 1 >H= ApUm,e -
Observing, that D(Ap) = R(S™!), one obtains that the domain of —Ap is
characterized by
D(=Ap) ={ue€ L* | Y AJun,|* < +oo} .
n,Jy
Here we have used the property that for any N, we have the identity :
Z un,j(bn,j = S(Z )\nun,jgﬁn,j) .

n<N n<N

We have consequently given a meaning to the following diagonalization formula

~Ap =) M\lg, , (7.2.1)

where IIg, is the orthogonal projector on the eigenspace F,, associated with the
eigenvalue \,,.

Let us remark that it results from the property that the sequence p,, tends to
0 the property that \,, tend to +oo.

Let us also prove the
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Lemma 7.2.1.
The lowest eigenvalue of the Dirichlet realization of the Laplacian in a relatively
compact domain  is strictly positive :

A >0, (7.2.2)

Proof.
We know that A; > 0; the Dirichlet realization of the Laplacian is indeed posi-
tive. If A\; = 0, a corresponding normalized eigenvector ¢; would satisfy

< _A¢15¢1 >= 07

and consequently
V¢, =0, dans Q.

This leads first ¢; = Cste in each connected component of 2 but because the
trace of ¢1 on 9 vanishes (¢1 € HE(Q)) implies that ¢;1 = 0. So we get a
contradiction.

Finally it results from standard regularity theorems (See [Br], [LiMa]) that
the eigenvectors belong (if 2 is regular) to C*°(Q).

‘We now show the

Proposition 7.2.2.
The lowest eigenvalue is simple and one can choose the first eigenfunction to be
strictly positive.

The natural idea is to apply Krein-Rutman’s Theorem to (—Ap + 1)71.
One has to show that this operator is positivity improving. This is indeed the
case if the domain is connected but the proof will not be given. We will only
show that (—Ap + I)~! is positivity preserving and observe that this implies
(following the proof of Krein Rutman) that if 2 is an eigenfunction then || is
an eigenfunction.

Lemma 7.2.3.
The operator (—Ap + 1)~ is positivity preserving.

The proof is a consequence of the Maximum principle. It is enough to show
that
—Aut+u=f,vu=0and f >0 a.e,

implies that u > 0 almost everywhere.

We introduce uy = maxu,0 and u— = —inf(u,0). A standard proposition (see
below) (see Lieb-Loss) shows that uy and u_ belong to Hg(£2). Multiplying by
u_, we obtain

P = -l = [ fu-do >0,

which implies u_ = 0.
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Proposition 7.2.4.
Suppose that f € L (R") with Vf € L{ (R™). Then also V|f| € L, .(R") and
with the notation

. =, z#0
signz = {(l)z,l ) j), (7.2.3)
we have
V|fl(z) = Re{sign(f(z))Vf(x)} almost everywhere. (7.2.4)
In particular,
IVIfI| < IVF

almost everywhere.

Proof of Proposition 7.2.4.
Suppose first that « € C*°(R"™) and define |z|. = 1/|2|2 + €2 — ¢, for z € C and
€ > 0. We observe that

0 < |zle < |2[ and HH(I] =lz|.
Then |ule € C*°(R™) and

(7.2.5)

Let now f be as in the proposition and define fs as the convolution

fs = [f*ps

with ps being a standard approximation of the unity for convolution. Explicitly,
we take a p € C§°(R™) with

p>0, / plx)dr =1,

and define ps(z) := 6 "p(x/d), for x € R™ and § > 0.
Then f5 — f, |fs| — |f| and Vfs — Vf in L (R") as § — 0.

Take a test function ¢ € C§°(R™). We may extract a subsequence {0 }ren
(with dx, — 0 for k¥ — oo) such that f5, () — f(z) for almost every x € supp ¢.
We restrict our attention to this subsequence. For simplicity of notation we
omit the k from the notation and write lims_.o instead of limy_, .

We now calculate, using dominated convergence and (7.2.5),

[olnas = tim (Vo). d
— lim Ji [ (V)fs. do
= —lim lim/¢ Re (/sVs)

e—06—0 |f6|2 +62
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Using the pointwise convergence of f5(x) and ||V fs — V f| 1 (supp ) — 0, we can
take the limit 6 — 0 and get

/(V¢)|f|dx =— /¢ RFﬂQfZJ; . (7.2.6)

Now, ¢V f € L'(R"™) and \/% — signf(z) as € — 0, so we get (7.2.4) from

(7.2.6) by dominated convergence. I

We can now look at the property of a positive eigenfunction. The eigenfunc-
tion is positive,in C*°(£2) by a regularity theorem and satisfies

—Au=Xu>0.

Hence u is superharmonic and (see Lieb-Loss) satisfies the mean value property :
For all y € Q, for all R > 0 such that B(y, R) € €2, then

!
u(y) > —— u(z)dz
(y) > BOE i (2)

Moreover, we know that infu = 0. Applying this mean value property with y
(if any) such that u(y) = 0, we obtain that u = 0 in B(y, R). Using in addition
a connectedness argument, we obtain that in a connected open set w is either
identically 0 or strictly positive.

Let us come back to what appears in the proof of Krein-Rutamn. u;\r and uy
are either 0 or strictly positive eigenfunctions and we have also (u;\r s uy) =0.
Hence uj\' or u, should vanish.

7.3 Extension to operators with compact resolvent

What we have done for the analysis of the Dirichlet realization is indeed quite
general. It can be applied to selfadjoint operators, which are bounded from
below and with compact resolvent.

We show that in this case, there exists an infinite sequence (if the Hilbert space
is infinite dimensional) of real eigenvalues )\, tending to +oo such that the cor-
responding eigenspaces are mutually orthogonal, of finite dimension and such
that their corresponding Hilbertian sum is equal to H.

Typically, one can apply the method to the Neumann realization of the Lapla-
cian in a relatively compact domain 2 or to the harmonic oscillator in R™.

7.4 Operators with compact resolvent : the Schrodinger
operator in an unbounded domain.

We just recall some criteria of compactness for the resolvent of the Schrodinger
operator P = —A 4+ V in R™ in connection with the precompactness criterion.
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In the case of the Schrédinger equation on R™ and if V' is C* and bounded
from below, the domain of the selfadjoint extension is always contained in

Q(P) := HL(R™) = {u € H'(R™)|(V + C)%u € L*(R™)} .

Q(P) is usually called the form domain of the form

U — |Vul*dz + V(z)|u(z)|* do .
R7YL R7YL

It is then easy to see that, if V tends to oo, then the injection of H{, in L?
is compact (using a criterion of precompactness). We then obtain, observing
that (P + 1)~! is continuous from L? into H{, that the resolvent (P + X\)~! is
compact for A & o(P).

In the case of a compact manifold M and if we consider the Laplace-Beltrami
operator on M, then the compactness of the resolvent is obtain without addi-
tional assumption on V. The domain of the operator is H2(M) and we have
compact injection from H?(M) into L?(M).

The condition that V' — oo as |z| — oo is not a necessary condition. We can
indeed replace it by the weaker sufficient condition

Proposition 7.4.1.
Let us assume that the injection of Hi,(R™) into L*(R™) is compact then P is
with compact resolvent.

More concretely, the way to verify this criterion is to show the existence of
a continuous function z — p(x) tending to co as |x| — +oo such that

Hy(R™) C LA(R™) . (7.4.1)

Of course, the preceding case corresponds to p = V, but, as typical example of
this strategy, we shall show in exercise 7.4.3 that the Schrédinger operator on
R2, —A + 22 - y2 + 1, is with compact inverse.

On the other hand, the criterion that V — 400 as |z| — 400 is not not too far
from optimality.

We can indeed prove

Lemma 7.4.2.
Suppose that V> 0 and that there exists v > 0 and a sequence o, such that
|on| — 400 and such that

sup sup V(z) <+oo. (7.4.2)
neENzeB(op,r)

Then —A +V + 1 is not with compact inverse.

Proof.
Let us consider the sequence

Pn(x) =P(x —04) - (7.4.3)
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Here 9 is a compactly supported function of L? norm 1 and with support in
B(0,r).

We observe that the ¢, are an orthogonal sequence (after possibly extracting
a subsequence for obtaining that the supports of ¢, and ¢,  are disjoint for
n # n’) which satisfies for some constant C

|6nllFr2 +[|Vnllz: < C. (7.4.4)
In particular, there exists C' such that :
I(=A+V +1)én|lz2 < C, VneN.

But we can not extract from this sequence a strongly convergent sequence in
L?, because ¢, is weakly convergent to 0 and ||¢,|| = 1. So the operator
(—=A+V +I)~! can not be a compact operator.

Exercise 7.4.3.
Show that the unbounded operator on L*(R?)

d? d?
pi= - L2
dx? dy2+xy ’

s with compact resolvent.

Hint.
One can introduce

1 1
Xlz_.a”l:vXQZ_.ay)X3:$y7
i i
and show, for j = 1,2 and for a suitable constant C, the following inequality :
[[(z? +y* + 1)_i[Xj,X3]u||2 < C (< Pu,u>reqgey +|[ull?) |

for all u € C§°(R?).
One can also observe that

i[X1,Xs] =y, i[Xe, X3] =2,
and then
122 + y* + 1) 75 [Xy, XaJul [ + [|(2? +y? + 1) 73 [Xa, XaJul|* + [[ul
> (@ +y* + D3ul”
For the control of ||(z2 + 2 + 1)~ %[ X1, Xs]u||?, one can remark that

Y

2 2 -1 2
¢t +y + 1) 1 X, Xslul||f = (————
la® 49"+ D7 X Xl = (s

u | (Xl X3 — X3 Xl)u> 5
perform an integration by parts, and control a commutator.
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7.5 The Schrodinger operator with magnetic field

We can consider on R™ the so-called Schrédinger operator with magnetic field :

PA,V = —As+V , (751)
where
1
—Ay = 0, — Ai(x))?. 5.
A Z(ia@] Aj(x)) (7.5.2)
Jj=1
Here  — A = (A1(z),- -, An(z)) is a vector field on R™ called the “magnetic

potential” and V is called the electric potential. It is easy to see that, when
V is semi-bounded, the operator is symmetric and semi-bounded on C§°(R™).
We can therefore consider the Friedrichs extension and analyze the property of
this selfadjoint extension.

A general question arises if one can get operator of the type P4, which are with
compact resolvent if V' = 0. This is the problem which is called the problem of
the magnetic bottle.

The “heuristical” idea is that the module of the magnetic field can play in some
sense the role of the electric potential if it does not oscillate too rapidly (m > 2).
For defining the magnetic field it is probably easier to consider the magnetic
potential as a one-form

o4 = ZAj(a:)dxj .
j=1
The magnetic field is then defined as the two form
wp =doa = Z(&TjAk — Oy Aj)dxj Adxy, .
j<k
The case when m = 2 is particularly simple. In this case,
wp = Bdx Ndxs

and we can identify wp with the function?’ z — B(xz) = curl (4)(x).
The proof is particularly simple in the case when B(z) has a constant sign (say
B(z) > 0). In this case, we immediately have the inequality

B(z)|u(z)*de << —Aju,u >p: . (7.5.3)
R2

We observe indeed the following identities between operators

1

i

B(z) (X1, Xo], —Ax = X7+ X35 . (7.5.4)

Here 1 1
Xl = ;8T1 — Al(x) ) X2 = 28T2 - AQ(x) )

20Here, for french readers, curl denotes the rotational (in french “rotationnel”) rot .
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Note also that :
(—Aau, u) = || Xqul]* + || Xoul?

for all u € C§°(R?).

To obtain (7.5.3) is then easy through an integration by parts. One can also
use, introducing Z = X + i X5, the positivity of Z*Z or ZZ*.

We then easily obtain as in the previous example that the operator is with
compact resolvent if B(z) — +oo.

As a simple example, one can think of

A= (—xixo, +a123)

which gives
B(z) = 21 + 73 .

Note that the case m = 2 is rather particular and it is more difficult to treat
m > 2. We have indeed to introduce partition of unity.

7.6 Laplace Beltrami operators on a Riemannian compact
manifold

If M is a compact riemannian manifold, it is well known that in this case one
can canonically define a measure duy; on M and consequently the Hilbertian
space L?(M). We have also a canonical definition of the gradient. At each
point = of M, we have indeed a scalar product on T, M giving an isomorphism
between T, M and T, M. Using this family of isomorphisms we have a natural
identification between the C*°-vector fields on M and the 1-forms on M. In
this identification, the vector field gradu associated to a C*° function on M
corresponds to the 1-form du.

Considering on C*° (M) x C°°(M) the sesquilinear form

(u,v) — ag(u,v) := / < gradu(z) , gradv(x) >, dpar -
M

There is a natural differential operator —A,; called the Laplace-Beltrami oper-
ator on M such that

ao(u,v) =< —=Apu, v >r20r) -

In this context, it is not diffficult to define the Friedrichs extension and to get a
selfadjoint extension of —A s as a selfadjoint operator on L?(M). The domain
is easily characterized as being H2(M), the Sobolev space naturally associated
to L?(M) and one can show that the injection of H?(M) into L?(M) is com-
pact because M is compact. The selfadjoint extension of —Aj; is with compact
resolvent and the general theory can be applied to this example.
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The case on the circle S!

The simplest model is the operator —d?/df? on the circle of radius one whose
spectrum is {n?, n € N}. For n > 0 the multiplicity is 2. An orthonormal basis
is given by the functions 6 — (27r)*% exp ind for n € Z. Here the form domain of
the operator is H17¢"(S1) and the domain of the operator is H%?¢"(S!). These
spaces have two descriptions. One is to describe these operators as H1Pe" .=
{u € HY(J0,27] | u(0) = u(2m)} and H?*P¢" := {u € H?*(]0,27] | u(0) =
u(2m) , u'(0) = u'(2m)}.

The other way is to consider the Fourier coefficients of w.
The Fourier coefficients of u € H*P°" are in h*. Here

h* = {u, € (*(2) | n*Fu, € (*(Z)}.

It is then easy to prove the compact injection from H'P¢" in L?(S') or equiva-
lently from h! into ¢2.

More generally, elliptic symmetric positive operators of order m > 0 admit a
selfadjoint extension with compact resolvent. We refer to the book by Berger-
Gauduchon-Mazet [BGM] for this central subject in Riemannian geometry.

The Laplacian on S?
One can also consider the Laplacian on S?. We describe as usual S? by the
spherical coordinates, with

x =cos¢sind,y =sinpsinb,z = cosd, with ¢ € [—m, x[, 6 €]0,7[, (7.6.1)

and we add the two poles “North” and “South”, corresponding to the two points
(0,0,1) and (0,0,—1).
We are looking for eigenfunctions of the Fiedrichs extension of

1 02 1 9 0
2 _ _ v A
= 5000  sm6 00 sin 6 50 (7.6.2)
in L?(sin 0df d¢), satisfying
LYy = 06+ 1) Yo - (7.6.3)

The standard spherical harmonics, corresponding to £ > 0 and for an integer
m € {—4,...,{}, are defined by

f=msin?t g, (7.6.4)

1 1 d
Yo (0, ®) = co.m expimop—-—(— —
e (0, 9) = com expimé 2o (= 55 95)
where c¢ ., is an explicit normalization constant.
For future extensions, we prefer to take this as a definition for m > 0 and then

to observe that
Yo,—m = CemYem - (7.6.5)
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For ¢ = 0, we get m = 0 and the constant. For ¢ = 1, we obtain, for m = 1,
the function (0,¢) — sinfexpi¢ and for m = —1, the function sinexp —i¢d
and for m = 0 the function cos @, which shows that the multiplicity is 3 for the
eigenvalue 2.

To show the completeness it is enough to show that, for given m > 0, the
orthogonal family (indexed by ¢ € {m + N}) of functions 0 — ¢, () =
kg (— g Lyt sin® @ span all L2(]0,7[, sin 0d6).

For this, we consider x € C§°(]0, w[) and assume that

/7T X (0)e,m (0)sinfdd =0, V0 € {m + N} .
0

We would like to deduce that this implies y = 0. After a change of variable
t = cosf and an integration by parts, we obtain that this problem is equivalent
to the problem to show that, if

/1 V()1 =)™ ()dt =0, V0 € {m + N},

then ¢ = 0.

Observing that the space spanned by the functions (1 — #2)=™((1 — t2)¢)(¢=™)
(which are actually polynomials of exact order ¢) is the space of all polynomials
we can conclude the completeness.
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8 Selfadjoint unbounded operators and spectral
theory.

8.1 Introduction

We assume that H is an Hilbert space. Once we have a selfadjoint operator we
can apply the basic spectral decomposition, which we shall now describe without
to give complete proofs. Before to explain the general case, let us come back
to the spectral theorem for compact operators T' or operators with compact
resolvent. This will permit us to introduce a new vocabulary.

We have seen that one can obtain a decomposition of H in the form

H = ®renVi , (8.1.1)

such that
Tur = A\pug if up € Vi . (8.1.2)

Hence we have decomposed H into a direct sum of orthogonal subspaces Vj, in
which the selfadjoint operator T is reduced to multiplication by \.
If Py denotes the orthogonal projection operator onto Vi, we can write

I=> P, (8.1.3)
k

(the limit is in the strong-convergence sense) and

Tu=» MPyu, Yue D(T). (8.1.4)
k

Here we recall the definition :

Definition 8.1.1.
An operator P € L(H) is called an orthogonal projection if P = P* and P? = P.

If we assume that T is semibounded (with compact resolvent?!), we can
introduce for any A € R
Gr=@a <AV, (8.1.5)

and F is the orthogonal projection onto G :

Ex= > Pi. (8.1.6)

e <A

It is easy to see that the function A — E) has values in £(H) and satisfy the
following properties :

o Ex=E%;

L4 EA ' E[L = Einf()\,p,);

21Note that if (T — Xg) ™! is compact for some Ag € p(T), then it is true for any A € p(T).
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e forall A\, Exto = Ey;
(] hm)\_,_oo E)\ =0 5 hmA—>+oo E)\ =1Id.
e I/, >0

All the limits above are in the sense of the strong convergence.
We also observe that
Ey\, —Ex.—0o=F .

Then in the sense of vectorvalued distributions, we have

dEy = Z(S)\k ® Py, (8.1.7)
k

where 4y, is the Dirac measure at the point A;. Hence, in the sense of Stieltjes
integrals (this will be explained in more detail below), one can write

x = /+O<> dE\(x) ,

— 00

and

+oo
T:/ ME) .

— 00
This is in this form that we shall generalize the previous formulas to the case
of any selfadjoint operator T'.

Functional calculus for operators with compact resolvent
If f is a continuous (or piecewise continuous function) one can also define f(7")

as
F) =" fw) - Pe,
k
as an unbounded operator whose domain is

D(f(T)) = {z € H| Y |f ) Pllaxl]* < +o0}
k

where x;, = Prx.

We can also write f(T) in the form :
< f(T)a,y >n= / fN) d < Exz,y>,
R
where the domain of f(T) is described as

D(F(T)) = {z € H| /R|f()\)|2 d < Bxz,z >p< +00} .
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Remark 8.1.2.

There are, for semibounded operators with compact resolvent, two possible con-
ventions for the notation of the eigenvalues. The first one is to classify them
mto an increasing sequence

B < M1
counting each eigenvalue according to its multiplicity. The second one is to

describe them as a strictly increasing sequence A\, with A\ eigenvalue of multi-
plicity my,.

We now present a list of properties which are easy to verify in this particular
case and which will be still true in the general case.

1. If f and g coincide on o(T'), then f(T) = g(T). For any (z,y) € H X H,
the support of the measure d (Exz,y) is contained?? in o(T).

2. If f and g are functions on R,
F(M)g(T) = (f - g)(T) .

In particular, if (T' — z) is invertible, the inverse is given by f(T) where f
is a continuous function such that f(\) = (A — 2)~%, VA € o(T).

3. If f is bounded, then f(T') is bounded and we have

LA < sup [f(N)] . (8.1.8)

Xeo(T)

4. The function f may be complex. Note that, in this case, we get

F(I) = F(T). (8.1.9)

An interesting case is, for z € C \ R, the function A — (X — 2)~!. Then
we get from (8.1.8)

(T = ) |eir < | Tm 2|~ (8.1.10)

5. More generally, this works also for z € R\ ¢(T'). We then obtain in this
case the spectral theorem

(T = 2) "Ml < dlz,0(T) ™. (8.1.11)
6. If f € C°(R), we have :

A

mz|>e 0z

f(T) = 1 jim / WT — 2)"tdx.dy . (8.1.12)
|I

T e—0t

22 At the moment, we have not defined o(T) when T is unbounded. Think here simply of
the set of the eigenvalues !
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Here f is defined by :

fl,y) = (f(2) + iy f (2)x() »

where x(y) is equal to 1 in a neighborhood of 0 and with compact support.
This formula can be proven using the Green-Formula (first prove it with
T replaced by the scalar \) or using that :

1
zZ—A

0z = TO(x,0) »

where &y o) is the Dirac measure at (A,0) € R? and 0: = (0, + i9,) .
One should observe that f is not holomorphic but “almost” holomorphic
in the sense that :

of 10z = 0O(y) ,

asy — 0.

Exercise 8.1.3. ~
Show that, one can also find, for any N > 1, f such that in addition

of joz=0@y"),

asy — 0.

8.2 Spectrum.

We now come back to the notion of spectrum that we have only met for bounded
operators.

Definition 8.2.1.

The resolvent set of a closed operator T is the set of the A in C such that the
range of (T'—X) is equal to H and such that (T'— ) admits a continuous operator
denoted by R(\) whose range is included in D(T) such that :

RONT = X) = Ipry ,

and
(T — MR\ =1y .

As in the bounded case, we observe that the resolvent set is open. Note also
that the continuity of R(A) is actually a consequence of the property that the
graph of R(\) is closed (using that T is closed) and that R(\) is defined on H.

Definition 8.2.2.
The spectrum of a closed operator T is defined as the complementary set in C
of the resolvent set.
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It is then rather easy to show that the spectrum o(T") is closed in C.
The proof of the fact that the spectrum is contained in R if T is selfadjoint is
very close to the bounded case.
The spectrum o(7") is not empty if T is selfadjoint.
The proof is by contradiction. If T has empty spectrum 7! is a bounded
selfadjoint operator with spectrum equal to {0}. We observe indeed that, for
A # 0, the inverse of T—! — X is given, if A™1 € p(T), by \™1T(T — A=1)~L.
Hence T~ should be the 0 operator, which contradicts T oT~! = I'. This is no
longer true in the non selfadjoint case. At the end of the chapter, we give some
example appearing naturally in various questions in Fluid Mechanics.

8.3 Spectral family and resolution of the identity.

Definition 8.3.1.

A family of orthogonal projectors E(A\) (or Ey), —co < A < oo in an Hilbert
space H is called a resolution of the identity (or spectral family) if it satisfies
the following conditions :

E\)E(p) = E(min(A, ) , (8.3.1)
o
E(—o0) =0, E(+00) =1, (8.3.2)
where E(+00) is defined 2 by
E(to0)x = AEIEOO E(Nx (8.3.3)
for all x in 'H,
o
EM+0)=E(\), (8.3.4)
where E(\+0) is defined by
EA+0)z = Hégi{r}DA E(p)z . (8.3.5)

Remark 8.3.2.
We have shown an example of such a family in the previous subsection.

Proposition 8.3.3.
Let E(X) be a resolution of identity (=spectral family); then for all x,y € H,
the function

A< ENa,y > (8.3.6)

is a function of bounded variation whose total variation®* satisfies
Viz,y) <|lzll - [lyll , Yo,y € K. (8.3.7)

23(8.3.1) gives the existence of the limit (cf also Lemma 8.3.4). The limit in (8.3.3) is taken
in H. We observe indeed that A — (E(\)z,z) = ||E(\)z||? is monotonically increasing.
24Gee the definition in (8.3.9)
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Proof.
Let Ay < Ay < -+ < \y,. We first get from the assumption (8.3.1) that

Ela,p) = Ep — Pa
is an orthogonal projection. From the Cauchy-Schwarz inequality we have

Z?:Q | < E]Aj_h)\j]x,y >| = ZJZZQ | < E]Aj—h)\j]x’E]A.7—17A.7‘]y > |
<=2 1Bzl ||E]1Aj_1,xj]y]||

n 2 n
< (5o 1B, oael?) T (s 1B, 0l 2)
1 1
= (1B a2l1?) 7 (1B aaul?)? -

1
2

But for m > n, we get

m—1
121> > (1B a2l = D 1 Bx a2l - (83.8)
We finally obtain that, for any finite sequence \; < \g < --- < A, we have

n
STI< By gy > <zl - Iyl -
j=2

This shows the bounded variation and the estimate of the total variation defined
as

V(z,y) := R sup)\ Z| < BTy > |- (8.3.9)
LA

Hence we have shown that, for all  and y in H, the function A\ — (E(X\)z,y)
is with bounded variation and we can then show the existence of E(\ + 0) and
E(X —0). This is the object of

Lemma 8.3.4.
If E(X\) is a family of projectors satisfying (8.3.1) and (8.8.2), then, for all
A € R, the operators

Bao= lm  E(), Evo= lim_ B(u). (8.3.10)

are well defined when considering the limit for the strong convergence topology.

Proof.
Let us show the existence of the left limit. From (8.3.8), we get that, for any
€ > 0, there exists A\g < A such that, VX', VA" € [A\g, A[, such that X < X’

||E]A’,A”]x||2 S €.

It is then easy to show that E,_1 x is a Cauchy sequence converging to a limit
and that this limit does not depend on the choice of the sequence tending to .
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The proof of the existence of the limit from the right is the same. This ends the
proof of the lemma.

It is then classical (Stieltjes integrals) that one can define for any continuous

complex valued function A — f(A) the integrals f: FOA(EN)z,y) as a limit?>
of Riemann sums.

Proposition 8.3.5.
Let f be a continuous function on R with complex values and let x € H. Then
it is possible to define for oo < 3, the integral

B
| 1 dea
as the strong limit in H of the Riemann sum :

Z'f()\;)(E}‘H—l - EA]‘)J: 9 (8311)

where
a=A1 <A< <A\, =0,

and
Xj €10, Al
when max; [Aj41 — Aj| — 0.
The proof is easy using the uniform continuity of f. Note also that the no-
tation could be misleading. May be f]a 4 F(N)dE\x is less ambiguous.

We now arrive like in the standard theory to the generalized integral.

Definition 8.3.6.
For any given © € H and any continuous function f on R, the integral :

4+ oo
| tovies
is defined as the strong limit in H, if it exists of ff f(NdE\z when @ — —o0
and 3 — 4o0.

Remark 8.3.7.

The theory works more generally for any borelian function (cf Reed-Simon,
Vol. 1 [RS-I]). This can be important, because we are in particular interested
in the case when f(t) = 1j_o (1)

One possibility for the reader who wants to understand how this can be made is
to look at Rudin’s book [Rul], which gives the following theorem (Theorem 8.14,
p. 173)

25The best is to first consider the case when & = y and then use a depolarisation formula,
in the same way that, when we have an Hilbertian norm, we can recover the scalar product
from the norm.
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Theorem 8.3.8. .

1. If p is a complex Borel measure on R and if
(*)  f(z) =p(] —o0,2]), Vz €R,

then f is a normalized function with bounded variation (NBV). By NBV
we mean, with bounded variation, but also continuous from the right and
such that limg_,_ o f(x) = 0.

2. Conwversely, to every f € NBV , there corresponds a unique complex Borel
measure p such that (x) is satisfied.

Theorem 8.3.9.
For x given in 'H and if f is a complex valued continuous function on R, the
following conditions are equivalent

/+DO F(N)dE\x exists ; (8.3.12)
° oo
/ )2 Exz| < +00; (8.3.13)
° o
Y= / fd(< Exy,z >x) (8.3.14)

is a continuous linear form.

Hint for the proof.

a)
(8.3.12) implies (8.3.14) essentially by using repeatedly the Banach-Steinhaus
Theorem (also called Uniform Boundedness Theorem) and the definition of the

integral.

b)
Let us prove that (8.3.14) implies (8.3.13).

Let F be the linear form appearing in (8.3.14). If we introduce

B
y= / f(NdEx\z,
then we first observe (coming back to the Riemann integrals) that

y=Egy-
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It is then not too difficult to show that

Fly) = [T2FNd < Bxa,y >
_+f+°° Nd < Exz, Bl gy >
f ooj f()\)d < E]O, B]E)\ir y >
= [PTNd < Exz,y >
= ||y||2

Using (8.3.14), we get ||y||? < ||F]| - ||ly|| and consequently
yll < [1F] - (8.3.15)

Here we observe that the r.h.s. is independent of « and S.

On the other hand, coming back to Riemann sums, we get

B
yl]? = / )| Erc]?
We finally obtain
B
/ FO 2l Exal 2 < (| FIP - (8.3.16)

Hence, taking the limits o« — —oco and 8 — +00, we obtain (8.3.13).

¢)
For the last implication, it is enough to observe that, for o/ < a < 8 < ', we
have

’

6’ B a B
I [, s0vasa= [ syamsa = [ popdiEsas [ 150 P

Theorem 8.3.10.
Let A — f()\) be a real-valued continuous function. Let

+oo
= foet [ IO dEWe) < . )

Then Dy is dense in H and we can define Ty whose domain is defined by
D(Ty) = Dy,

and

+oo
Ty = [ TNAENY)
for all x in D(T¥) and y in H.
The operator T is selfadjoint.
Finally, we have

Ty Ey is an extension of ExTy . (8.3.17)
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Proof of the theorem.
From property (8.3.2), we obtain that, for any y in H, there exists a sequence
(atn, Bn) such that Fy, g1y — y as n — +oo.
But Ej, gy belongs to Dy, for any «, (3, and this shows the density of Dy in ‘H.
We now observe that f being real and F being symmetric the symmetry is clear.

We observe that, for fo = 1, we have Ty, = I and for fi(\) = A, we obtain
a selfadjoint operator T, := 1.
In this case we say that

T = /mx dE(\)

— 00

is a spectral decomposition of T" and we shall note that

+00 +oo
HMW=/ Vﬂﬂﬁmﬁ=/ Xed|[E(A\)a]?

for z € D(T).
More generally
+o0 +oo
HHW=[ mmwwmez[ POV PA(IEONz])

for x € D(T¥).

Conclusion. We have consequently seen in this subsection how one can as-
sociate to a spectral family of projectors a selfadjoint operator. We have seen
in the introduction that the converse was true for a compact operator or an
operator with compact resolvent. It remains to prove that this is true in the
general case.

8.4 The spectral decomposition Theorem.

The spectral decomposition Theorem makes explicit that the preceding situation
is actually the general one.

Theorem 8.4.1.
Any selfadjoint operator T in an Hilbert space H admits a spectral decomposition

such that
<Ta,y>= [pAd < Exz,y >y,

Tz = [; Md(Exz) . (8.4.1)

”Proof”.
We shall only give the main points of the proof. We refer to [Hu|, [Le-Br] or
[DalLi] for detailed proofs or to [RS-I] for another proof which we describe now
shortly. Another interesting proof is based on Formula 8.1.12 and presented in
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the book of Davies [Da].

Step 1.
It is rather natural to imagine that it is essentially enough to treat the case when
T is a bounded selfadjoint operator (or at least a normal bounded operator, that
is satisfying T*T = TT*). If A is indeed a general semibounded selfadjoint op-
erator, one can come back to the bounded case by considering (A + \g) ™!, with

Mo real, which is bounded and selfadjoint. In the general case?®, one can con-

sider (A +4)71.
Step 2.
We analyze first the spectrum of P(T') where P is a polynomial.

Lemma 8.4.2. .
If P is a polynomial, then

o(P(T)) = {P(\) | X € o(T)} (8.4.2)

Proof.
We start from the identity P(x) — P(A) = (z — A\)Q@Qx(x) and from the corre-
sponding identity between bounded operators P(T) — P(\) = (T — \)Qx(T).
This permits to construct the inverse of (T — ) if one knows the inverse of
P(T)— P(\).

Conversely, we observe that, if z € C and if \j(z) are the roots of A —
(P(\) — z), then we can write :

(P(T) = 2) =] [(T = X(2)) -
J
This permits to construct the inverse of (P(7') — z) if one has the inverses of
(T — Xj(2)) (for all 7).

Lemma 8.4.3.
Let T be a bounded self-adjoint operator. Then

1P(T)]| = S [P - (8.4.3)

We first observe that
IIP(T)||> = ||P(T)*P(T)||

This is the consequence of the general property for bounded linear operators
that :
* 2
||A*All = [|A]] .

26Here we recall that an example of operator which is not semibounded is given in Exer-
cise 4.1.3
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We recall that the proof is obtained by observing first that :

|AZA[[ = sup)jy) <1,y <1 (A" Az, y)|

SUPzy ]| <1 [yl <1 [(Az, Ay)
%4

IA I

)

and secondly that :

||A||? = sup (Az, Az) = sup (A*Az,z) < ||A*A|| .

lle]]<1 =<1
We then observe that :
IP(D)I? = [I[(PP)(T)]]
= SUP e (pp) (1) M| (using Theorem 6.4.1)

Supeq(r) [(PP)(A)]  (using Lemma 8.4.2)
(supreor POV

Step 3.
We have defined a map ® from the set of polynomials into £(H) defined by
P— ®(P)=P(T), (8.4.4)
which is continuous
|@(P)lley = sup |[P(A)] . (84.5)
Aeo(T)

The set o(T') is a compact in R and using the Stone-Weierstrass theorem (which
states the density of the polynomials in C°(o(T'))), the map ® can be uniquely
extended to C°(o(T)). We still denote by ® this extension. The properties of
® are described in the following theorem

Theorem 8.4.4.
Let T be as selfadjoint continuous operator on H. Then there exists a unique
map ® from C°(a(T)) into L(H) with the following properties :

1.
O(f+9)=2(f) +2(g), D\f)=22(f);
®(1) =1Id, O(f) =@(f)*;
O(fg) = @(f) o P(9)

2.

/.
o(@(f) ={f(N) [Aea(D)}.

5. If o satisfies Tip = M, then () = f(A).
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6. If f >0, then ®(f) > 0.

All these properties are obtained by showing first the properties for polyno-
mials P and then extending the properties by continuity to continuous functions.
For the last item, note that :

Step 4.
We are now ready to introduce the measures. Let ) € H. Then

f=<, [T >u=< 9, (f)) >x

is a positive linear functional on C°(o(T)). By measure theory (Riesz Theorem)
(cf Rudin [Rul]), there exists a unique measure p,, on o(7T'), such that

<P, f(T)Y >n= FN)dpy (A) (8.4.6)

o(T)

This measure is called the spectral measure associated with the vector ¢ € H.
This measure is a Borel measure. This means that we can extend the map ®
and (8.4.6) to Borelian functions.

Using the standard Hilbert calculus (that is the link between sesquilinear form
and quadratic forms) we can also construct for any z and y in H a complex
measure di, , such that

<z, ®(f)y >n= FNdpiz,y(A) - (8.4.7)
o(T)

Using the Riesz representation Theorem (Theorem 3.1.1), this gives as, when f is
bounded, an operator f(7T'). If f = 1)_. ), we recover the operator E,, = f(T')
which permits to construct indeed the spectral family announced in Theorem
8.4.1.

Remark 8.4.5.

Modulo some care concerning the domains of the operator, the properties men-
tioned at the first subsection of this section for operators with compact resolvent
are preserved in the case of an unbounded selfadjoint operator.

8.5 Applications of the spectral theorem:

One of the first applications of the spectral theorem (Property 2.) is the follow-
ing property :

Proposition 8.5.1.

A o (T) ||| < [[(T" = Nzl , (8.5.1)
for all x in D(T).
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This proposition is frequently used in the following context. Except very
special cases like the harmonic oscillator, it is usually difficult to get explicitely
the values of the eigenvalues of an operator. One consequently tries to localize
these eigenvalues by using approximations. Let us suppose for example that one
has found \g and y in D(L) such that

(T = Xo)yll < € (8.5.2)

and ||y|| = 1 then we deduce the existence of A in the spectrum of L such that
A= Xo| <e.

Standard examples are the case of hermitian matrices or the case of the anhar-
monic oscillator T' := —hQ% +22+2*. In the second case the first eigenfunction
of the harmonic oscillator —hzj—; + 22 can be used as approximate eigenfunc-
tion y in (8.5.2) with \g = h. We then find (8.5.2) with e = O(h?).

Another application is, using the property that the spectrum is real, the follow-
ing inequality

| Tm A [|z]] < [[(T" = X)z]| (8.5.3)
and this gives an upper bound on the norm of (7T'— A\)~! in £(H) by 1/| Im )|.
One can also consider the operator T, = —d? / dz? + 22 + ex*. One can show

that near each eigenvalue of the harmonic oscillator (2n + 1), then there exists,
when e > 0 is small enough, an eigenvalue A, (¢) of Te.

Another good example to analyze is the construction of a sequence of approx-
imate eigenvectors considered in Subsection 1.1. From the construction of w,
such that, with T'= —A,

1
1T = &)unll2em) = O(=)

one obtains that

do(T),e) << vneN.
n
As n — +oo, we get £2 € o(T).
It is then easy to show that
o(P) = [0, +o0l.

It is enough to prove indeed, using the Fourier transform, that, for any b > 0,
(—A +b) has an inverse (—A + b)~! sending L? onto H?2.

Here we have followed in a particular case the proof of the following general
theorem

Theorem 8.5.2.

Let T be a selfadjoint operator. Then A\ € o(P) if and only if there exists a
sequence (Up)neN, Un € D(T) such that ||up|| = 1 and ||[(T — Nuy|| — 0 as
n — +o00.

Exercise 8.5.3.
Show the “only if”, after reading of the proof of Proposition 8.5.4.
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Note also the following characterization.

Proposition 8.5.4.

o(T)={NeR, st.Ve>0,E(J\—e,\+¢[) #0} (8.5.4)

The proof uses in one direction the explicit construction of (7' — \) through
Proposition 8.5.1. If A and €y > 0 are such Ejy_¢, x4c,[ = 0. Then there exists
a continous function f on R, such that f(¢) = (¢t — A\)~! on the support of the
measure dF. This permits to construct the inverse and to show that A is in
the resolvent set of T'.

Conversely, let A in the set defined by the r.h.s of (8.5.4) later denoted by &(T').
For any n € N*, let us take z,, such that ||z,|| = 1 and E(JA—L1, A+ 1))z, = z,.
Using property 2., with the function fn(t) = (t — A)1jy_1 xy1((t), we get :

1 1 1 1
- = — S - <= =_.
1 = Nzall = 17 = NEOA = = A+ = anl| < ~[foal| = ~

Applying Proposition 8.5.1, we obtain :

5(T) C o(T) .

8.6 Examples of functions of a selfadjoint operator

We shall for example meet usually in spectral theory the functions

1. f is the characteristic function of | — 0o, A], ¥Yj_oc ) ; ®(f) = f(T') is then
®(f) = E(N).

2. f is the characteristic function of | — o0, A[, Y{_o z ; f(T) is then ®(f) =
E(\ —0).

3. f is a compactly supported continuous function. f(T") will be an operator
whose spectrum is localized in the support of f.

4. fi(\) = exp(itA) with ¢ real.
f+(T) is then a solution of the functional equation

(0 —iT)(f(t,T)) =0
£0,7) =1Id

We note here that, for all real ¢, f;(T') = exp(itT) is a bounded unitary
operator .

5. g¢(\) = exp(—tA) with ¢ real positive. ¢;(T) is then a solution of the
functional equation

Oy +T)(g(t,T)) =0, fort>0
9(0,T) =1Id.



We have discussed in the introduction the case of an operator with compact
resolvent. The other case to understand for the beginner is of course the case
of the free Laplacian —A on R"™. Using the Fourier transform F, we get as
unbounded operator the operator of multiplication by ¢2. It is not difficult
to define directly the functional calculus which simply becomes for a borelian
function ¢ :

p(—A) = F1o()F . (8.6.1)
One possibility is to start from (—A + 1)7!, for which this formula is true and
to then follow what was our construction of the functional calculus. Another
possibility is to use the Formula (8.1.12) and to use that (8.6.1) is satisfied for
(—A+2)71, with z € C\ R.
The spectral family is then defined by

< B9 >12m= / F(6)-3(6) de .

£2<A

8.7 Spectrum and spectral measures

Another interest of the spectral theorem is to permit the study of the different
properties of the spectrum according to the nature of the spectral measure and
this leads to the definition of the continuous spectrum and of the pure point
spectrum. Let us briefly discuss (without proof) these notions.

Starting of a selfadjoint operator T', one defines H,, (pure point subspace) as
the set defined as

Hpp ={¢ € H| fr—=< f(T),% >y is a pure point measure } (8.7.1)

We recall that a measure on X is pure point if

w(x) =3 u{a}) (8.7.2)

reX

One can verify that H,, is a closed subspace of H and that the corresponding
orthogonal projection Il satisfies

Iy, D(T) C D(T) .

In this case T3, is naturally defined as unbounded operator on H,;;, and one
defines the pure point spectrum of T' by

opp(T) = (Tyn,,) - (8.7.3)
We can similarly define H, (continuous subspace) as the set defined as
He={y eH| fr< f(T),9 >3 is a continuous measure } (8.7.4)
We recall that a measure on X is continuous if

pu{z})=0,vVere X. (8.7.5)
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One can verify that H. is a closed subspace of H and that the corresponding
orthogonal projection Iy satisfies

I, D(T) C D(T) .
Moreover, it can be shown (See [RS-1]), that
H=H,y®H, . (8.7.6)

In this case T3, is naturally defined as unbounded operator on ‘H. and one
defines the continuous spectrum of 7' by

o.(T) =0o(Tyy,) - (8.7.7)

Example 8.7.1.
The spectrum of —A is continuous.

‘We observe indeed that

lim If(&))2de =0, Vf € L*(R™) .
0 >0 J]gr-xl<e

One can still refine this discussion by using the natural decomposition of the
measure given by the Radon-Nikodym Theorem. This leads to the notion of
absolutely continuous spectrum and of singularly continuous spectrum.
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9 Non-self adjoint operators and e-pseudospectrum

When the operators are not selfadjoint, one should think that the spectrum is
not the right object because it becomes very unstable by perturbation. It has
been realized in the recent years that a family of sets (parametrized by € > 0)
in C called the e-pseudospectrum is the right object for getting this stability.

9.1 Main definitions and properties

Here we follow Chapter 4 in the book by L.N. Trefethen and M. Embree [TrEm].

Definition 9.1.1.
If A is a closed operator with dense domain D(A) in an Hilbert space H, the
e-pseudospectrum o.(A) of A is defined by

0 (A) = {2 € C | ||z — A)Y|| > %}.

Remark 9.1.2.
In one part of the literature, > is replaced by > in the above definition. We
have chosen the definition which leads to the simplest equivalent definitions.

We take the convention that ||(2I — A)7!|| = +oo if 2 € 0(A), where o(A)
denotes the spectrum of A, so it is clear that we always have :

o(A) Coe(A).

When A is selfadjoint (or more generally normal), o.(A) is, by the Spectral
Theorem, given by,

o.(A)={z€C|d(z,0(A)) <e€}.

So this is only in the case of non self-adjoint operators that this new concept (first
appearing in numerical analysis, see Trefethen [Tr1, Tr2]) becomes interesting.
Although formulated in a rather abstract way, the following (easy versionof a)
result by Roch-Silbermann [RoSi] explains rather well to what corresponds the
e-pseudospectrum :

Proposition 9.1.3.

oc(A) = U o(A+64A) .
{6AeL(H) 8. T. |I8A|lzry<e}

In other words, z is in the e-pseudospectrum of A if z is in the spectrum of
some perturbation A+ JA of A with ||0A|| < e. This is indeed a natural notion
thinking of the fact that the models we are analyzing are only approximations
of the real problem and of the fact that the numerical analysis of the model goes
through the analysis of explicitly computable approximated problems. Numer-
ical examples are treated in [Tr2].
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Proof

Let us show the easy part of this characterization of the e-pseudospectrum. If
[[(z— A)~7|| < L, it is clear that for any 0A such that ||§A|| <€, (A+ A —z)
is invertible. Its inverse is obtined by observing that

(z—A)Hz—A—-6A)=1—(2—A)10A.
But the left hand side is invertible because
I(z = A)~10A| < |I(z — A~ I64]] < 1.

The inverse is consequently given by

(z=A=6A)" =D ((z—A) 164 | (z— A"
J
The converse is not very difficult. If ||(z — A)7!|| > 1, by definition of the

norm, there exists u € H such that ||u|| = 1 and

_ 1
Iz = )Ml = > .

Let v = (z — A)~tu. Let (§A) the linear bounded operator such that
(6A)z = —p 2u(v|z), Vo € H.

It is clear that v is an eigenvector of A 4+ §A associated to z and that ||[d4]| =
1
- <€
M
Hence we have found a perturbation A + JA of A such that z € 0(A+ dA) and
[|04]] < e.

Another presentation for defining the e-pseudospectrum is to say that z €

oc.(A) iff z € o(A) or if there exists an e-pseudoeigenvector that is u € D(A)
such that ||u]| =1 and ||(z — A)ul|| <.

Theorem 9.1.4 (e-Pseudospectrum of the adjoint).
For any closed densely defined operator A and any € > 0, we have
0c(A%) = 0.(4),
where for a subset ¥ in C we denote by X the set
Y={zeC|zex}.

Proof
This is immediate using that, if z & o(A),

Itz = A~ I =1z - 47
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9.2 e-Pseudospectrum : complete analysis of the differen-
tiation operator.

We consider the operator A defined on L?(]0,1]) by
D(A) = {u€ H'(]0,1]), u(1) = 0},

and
Au=1u",Yu € D(A).

This is clearly a closed operator with dense domain.
The adjoint of A is defined on L?(]0,1]) by

D(A") = {u € H'(0,1]), u(0) = 0},

and
Au=—u',Vu € D(A*).

Lemma 9.2.1.
o(A) =0 and A has compact resolvent.

First we can observe that (A — z) is injective on D(A) for any z € C. Then
one easily verifies that for any z € C, the inverse is given by

(z—A)*lfz/ expz(z —s) f(s)ds.

It is also clear that this operator is compact.

To analyze the e-pseudospectrum is more interesting. For this we need to

estimate
P(z) = l(z— A7

The first remark is that ¢ depends only on Re z. For this we can observe that
the map u +— expiazu is a unitary transform on L?(]0, 1[), which maps D(A)
onto D(A).

The main result is the following

Theorem 9.2.2.
The function ¥ is a subharmonic function which depends only of Re z and
satisfies

1
< — 2.1
P(z) < Te s’ for Rez >0, (9.2.1)
and P .
exp— Rez
=TT 5 .. T . 2.2
P(2) 5 Fo s (’)(| Rez|)’f0r Rez <0 (9.2.2)

This implies for the e-pseudospectrum of A :
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Corollary 9.2.3.
For e > 0, the e-pseudospectrum of A is an hyperplane of the form

0e(A) ={z € C|Rez < ce} (9.2.3)
with (o)
Ine) ase,— 0
Ce ™~ { ¢ as e too. (9.2.4)

Rough estimate from below for Re z <0
A first (non optimal) step is to think?” “semi-classical”. Let us take z real and
let us consider

x ¢, (x) = |2z|% exp 2 .

This function is not in Ker (z — A) because it does not satisfies the boundary
condition. But when z — —oo, the boundary condition at x = 1 is “almost
satisfied”. Actually ¢, lives very close to 0. Moreover, for z < 0,

H¢z||2 =1—exp2z

Hence the norm tends to 1 as z — —o0.
Let us indeed consider for n > 0 a cut-off function yx, such that x, = 1 on

[0,1—mn] and xn =0 on [1 — 3,1] and let us introduce

¢z,n(x) = X77¢z .

We now observe that ¢, , € D(A) and that

(z = A)zn(z) = —xy¥= -

The L? norm of the right hand side is exponentially small like exp(1 — 7)z.
This shows that, for any 7 > 0 there exists 2z, < 0 such that

1
Yol exp—(1—n)z <Y(z), for z < z,. (9.2.5)
n
This is not as good as in the statement of the theorem but this suggests a rather
general point of view.

Rough estimate from above for Re z >0

Here we will try to estimate ¢ (z) from above by using an a priori estimate for
(A — z) (with z real).

For u € D(A), we have

(A= 2)u|u) = —z]|u|? —|—/0 o' (t)u(t)dt .

27The semi-classical parameter is h = ﬁ
z
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But by an integration by parts, we observe that

1u’ i = — 1u i — |lu(0)|?.
/0 (tya(t) dt / ()i ()t — [u(0)|

Coming back to the previous equality and taking the real part, we obtain

1
= Re (A = 2)ulu) = 2[|u]® + S[u(0)* > 2[|ul*.

Then we obtain
[|(A = 2)u|| > z||ul|, Yu € D(A), (9.2.6)

which implies (9.2.1).

Schur’s Lemma

The operator (A — z)~! being an operator associated to an integral kernel, one
can analyze what is given by Schur’s lemma or by the Hilbert-Schmidt criterion.
The kernel is defined by

0fors<z
expz(x —s) for x < s

K(z,s) = {

According to Schur’s Lemma, we have to consider sup,, [ K (xz, s)ds and sup, [ K(z, s)dz.
If we are interested with the Hilbert-Schmidt norm, we have to compute [ [ K (z, s5)2dzxds.
All these computations can be done rather explicitely !

For z # 0, we have

1
sup/K(m, s)ds =—(1—exp—2z),
T z
and )
sup/K(x, s)dx = ;(1 —exp —2)
This gives
U(z) <

This is actually an improved version of (9.2.1) for z > 0 and for z < 0, it is
better to write it in the form

(1 —exp—2). (9.2.7)

ISEN=

P(z) < ;(exp —z-1), (9.2.8)

and to compare it to the lower bound obtained in (9.2.5).
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A more accurate estimate for z < 0
We can rewrite (2 — A)~! in the form

(Z—A)_l :Rl_RQ,
with .
Ryv(x) :== / exp z(x — s) v(s),ds
0
and N
Rov(z) = / expz(xz — s) v(s), ds
0
Observing that Rj can be treated as for the proof of (9.2.7), we first obtain

1
Re 2~

IRl < —

It remains to control ||R1||. This norm can be computed explicitly. We have
indeed

1
ol = llexpal] [ exp—zs v(s)ds
0
Hence we have just to compute the norm of the linear form
1
v / exp —zs v(s) ds
0

which is the L2-norm of s — exp —zs.
This gives

1 1 _, .
||R1||:||expzrc||~||exp—zx||=—2—Z\/(1—62z)(6*22—1)Z—Qe (1—e*).

Combining the estimates of || R;|| and || Rz|| leads to the upper bound for (9.2.2).

Remark 9.2.4.

One can discretize the preceding problem by considering, for n € N*, the matriz
Ap =nAy with Ay = I+ J where J is the n x n matriz such that J; j = d;11,5.
One can observe that the spectrum of A,, is —n. It is also interesting to analyze
the pseudospectrum.

Remark 9.2.5.
There is a semi-classical version of the pseudospectrum for families Ap. One
can then relate the € appearing in the definition of the e-pseudospectrum with the

parameter h (which could typically be in |0, hg]). For example, we can consider
e(h) = hV.

Exercise 9.2.6.
Analyze the pseudospectrum of d% + Ag(0) on the circle.
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9.3 Another example of non selfadjoint operator without
spectrum

We consider the spectrum of the operator

on the line.

We can take as domain D(A) the space of the u € L?(R) such that Au € L*(R).
We note that C§°(R) is dense for the graph norm in D(A). Hence A is the
closed extension of the differential operator % + 22 with domain C§°(R). We
note that the operator is not selfadjoint. The adjoint is —% + 2.

The two following inequalities can be useful.
Re (Au|u) > ||zul|* > 0. (9.3.1)
This inequality is first proved for v € C§°(R) and then extended to v € D(A)
using the density of C§°(R). This implies that (D(A) has continuous injection
in the weighted space L with p(x) = |z|. Together with the fact that D(A) C

H} (R), this implies that (A + I) is invertible and that the inverse is compact.
The second inequality is

lla?ul [ + [[|* < C (|| Aul® + [Jull?) . (9.3.2)
To prove it, we observe that
[ Aul[? = [[/|* + [|lz*ul|* — 2 Re (v, 2*u).
Using an integration by parts, we get
2 Re (u', 2%u) = 2(zu, u).
Hence we get (using Cauchy-Schwarz)
[ Aull* = [Ju'[]* + llz*ul* = 2[Jzu|||[ul] -

One can then use the consequence of our first inequality (9.3.1)

llzul® < 5 (IJAull® + [ull?)

N =

to get the conclusion.
(9.3.2) permits to obtain that

D(A) = {u € H'(R), z*u € L*(R)}, (9.3.3)

which is not obvious at all.
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One will show that A has an inverse, that the inverse is compact but that
its spectrum is empty.

We consider on R, the differential equation

u 4+ 2?u=f. (9.3.4)

For all f € L%(R), let us show that there exists a unique solution in L?(R) de
(9.3.4). An elementary calculus gives

1 x 1
u(z) = exp—§x3 / exp §y3f(y) dy .

One has to work a little for showing that v € L? (this is easier if f is compactly
supported). If we denote by K the operator which associates to f the solution
u, the distribution kernel of K is given by

K = {

0 ify>z
expi(y® —a%) ify<az

We note that if there exists an eigenvalue of K A # 0 and if u is a corresponding
eigenfunction, then u) satisfies

1
uh + zuy = TUA - (9.3.5)

From this we deduce that K has no non zero eigenvalue. One can indeed solve
explicitly (9.3.5) :
_c x? 1
ux(z) = Cexp 3 eXP T

It is then easy to see that noone can be in L?(R) when C # 0.
To show that K is compact, we can actually show that K is Hilbert-Schmidt.
That is, we will show that K(z,y) is in L?(R?). We have

2 oo 2
/ exp = (y° — 23) dedy = / </ exp = (y° — 2°) dy) dx .
y<z 3 —o0 —o0 3

Dividing the domain of integration in two parts, we first consider :

+1 x 9 5 5
/ / expg(y —z°)dy | dz
—1 —o0

which is bounded from above by

! 2
26/ exp gyg dy .

* 2
/ (/ exp—(yg—x3)dy> dz .
|z|>1 —00 3
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Here we observe that
2 3 3) — 2 _ 2 2
exp 2 (y” —a27) = exp oy —a)(y” +y+a7),

and that . .
(v +yz +2°) > 5(3/2 +a?) > 5552 :
This leads, as y < z, to the upper bound la majoration

2 1
exp = (y* — 2%) < exp 5 (y — @)z

* 2 1
/ </ eXp_(y3 _ x3) dy) dr < 3/ —de < 400.
lz>1 \Jooo 3 |z[>1 T

This implies that the spectrum of K is 0.

Non self-adjoint effects.
We can also try to estimate the “solution” operator K, corresponding to the
equation

and to

u' 4 2u = \f . (9.3.6)

It is easy, to see that we can reduce the computation to the case when A réel.
We have indeed

Ky=exp—iImAz KR, expi Im Az .
For A < 0, we easily find, observing that v € S(R) and
Re (u' + 2%u — N u) 2 = (2%u — N u) > —A||u||?,

the estimate )
1Kl 22y < -3

The case A = 0 has been treated before. Without to much effort, we get the
same result for | Re A\| < 1.

So we have to consider the case when A > 1 and control the estimate as A\ — +oo.
Proceeding as in the case A = 0, we first obtain

o0 siy>«x
Kx(z,y) = { exp (2(y® —2%) - Ay —2)) siy<az

Again, we see that K (z,y) is in L2(R?) :

+oo x 2
||K)\||2L2(R2) = / </ exp <§(y3 —2%) —2\(y — x)) dy) dz .
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The proof is similar to the case A = 0. We cut the domain of integration.

/11M < 1 Oo exp <§<y3 —a®) = 2M\(y — x)) dy) dz

is bounded after a new partition of the domain of integration by
1 —1—4vX
AV s (1+472)° /

— 0o

2 1
exp <§y3 - 2)\y> dy < 3V A es(14222)° 7
and by

Joas (Jimavmesp (G — o%) — 20y — ) dy) da
<4\/Xbup vel-1- W1 (f Ly €XD —2A(y —x)dy)
§2>\ 8)\2 .

Then we consider

+1 x 2
/ </ exp <§(y3 — %) —2\(y — x)) dy) dx
-1 —00
which is bounded by

2 —1—4vX

2e3T2A I exp(%y3 —2)\y) dy
< 26%—',-2)\

< Ces+2x

and by

f 1_ay/x €XP — 2A(y — )dy) dx

I Efl R oD (2(5° —2%) = 2\(y — 1)) dy) d
I
< +exp(4N(1 +2V/N))

We look now at

/IHNX </; exp <§(y3 —2%) —2\(y — x)) dy) dx

which is similarly controlled by

—1—-4v/x
4V X exp 2X(1 + 4V/N) /

— 00

1+4V X T
/ </ exp —2A(y — ) dy) dx
1 —1-4vX
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Finally, we have to estimate

/QHM (/_OO exp (%(gf ) — oAy — x)) dy) da

Here we observe that

2 2
exp §(y3 — %) = exp 3 - o) (y® +yx + 7)
and that
L,
(y* + 2?) > ix .

l\D|’—‘

(y* +ya +a%) >

This leads to the upper bound
2 1
exp = (y* — 2%) exp —2A(y — x) < exp 2(y —7)(2” —6A)..
By simple integration, we get :

f\ 2| >1+4v/A (fjoo exp (%(93 —a%) — 2/\(y_$)) dy) dx

1
<3f‘ \>1+4\fw276)\dx < +0o0.

The last bound can be controlled independently of Re A. Hence, we have finally
proved the existence of C' > 0 such that, for Re A > 1, we have

|[Kxllzrs < C|AC exp C Re AS

Remark 9.3.1.

Using the Laplace integral method, one can get the asymptotics of || Kx||us.
Note that ||Ka||lgs > ||K)\||£(L2),

One can also find a lower bound of ||Kx||z(r2) using quasimodes.

Note that K is the resolvent of the unbounded operator —% +22. This operator
is not  selfadjoint. He is with compact resolvent and has empty spectrum.
Moreover, the norm of the resolvent depends only of Re \.

This example shows that when the operators are not selfadjoint many things
can occur. In particular the fact that if z € p(T), then ||(T —2) 71| is controlled
by m and that in particular that if z € R then |[(T — 2)7!|| < can
become completely wrong.

In this context, the notion of pseudo-spectrum can be helpful. We leave this
as an exercise to the reader.

|Imz|

Remark 9.3.2.

Other interesting examples to analyze in the same spirit are for example the
2

complex harmonic oscillator (— dde +ix?) with ¢ € R (See Davies (1999), [Tr,?/

[Zw] and references therein). The spectrum can be seen as the spectrum of —
rotated by % in the complex plane.
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10 Essentially selfadjoint operators

10.1 Introduction

In most of the examples which were presented, the abstract operators are as-
sociated with differential operators. These differential operators are naturally
defined on C§°(Q2) or D'(2). Most of the time (for suitable potentials increas-
ing slowly at co) they are also defined (when 2 = R™) on S(R™) or S'(R™).
It is important to understand how the abstract point of view can be related
to the PDE point of view. The theory of the essential selfadjointness gives
a clear understanding of the problem. The question is to decide if, starting
from a symmetric operator T', whose domain D(T') = Hy is dense in H, there
exists a unique selfadjoint extension T¢** of T. We recall that it means that
D(T) c D(T*) and T***v = Tu , Yu € D(T). This leads to

Definition 10.1.1.
A symmetric operator T with domain Hy is called essentially selfadjoint if its
closure is selfadjoint.

Proposition 10.1.2.

If T is essentially selfadjoint, then its selfadjoint extension®®

1S unique.

Indeed suppose that S is a selfadjoint extension of T'. Then S is closed and
being an extension of T', is also an extension of its smallest extension 7. We
recall from Theorem 2.2.6 that T = T**. Thus, S = S* C (T™*)* = T**, and so
S =T**.

Example 10.1.3.
Here we give a list of examples and counter-examples which will be analyzed
later.

1. The differential operator —A with domain Hy = C§°(R™) is essentially
selfadjoint (see later).

2. The differential operators —A + |z|? with domain Hy = C§°(R™) or
H; = S(R™) are essentially selfadjoint and admit consequently a unique
selfadjoint extension. This extension is the same for the two operators.
The domain can be explicitely described as

B2(R™) =
{u € L*(R™) | 22 DPu € L2(R™) , Ya, 3 € N™ with|a| + |8] < 21 .

3. The differential operator —A with domain C§°(€2) (where  is an open
bounded set with smooth boundary) is not essentially selfadjoint. There
exists a lot of selfadjoint extensions related to the choice of a boundary
problem. As we have seen before, we have already met two such exten-
sions :

28 Although, it will not help in this course, note that the converse is true. See for example
the book [Ro], in which the essential selfadjointness is defined differently.
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e the Dirichlet realization whose domain is the set H}(Q) N H%(Q),

e the Neumann realization whose domain is the set

{ue H*(Q) | (9u/dv) 90 = 0}

4. The Laplace Beltrami operator on a compact manifold M with domain
C®° (M) is essentially selfadjoint on L?(M). The domain of the selfadjoint
extension can be described as H?(M) (which can be described using local
charts).

10.2 Basic criteria.

We now give some criteria in order to verify that an operator is essentially
selfadjoint. As already mentioned, one can prove essential selfadjointness by
proving that the minimal closed extension T, := T coincides with T*. One
easily verifies (see Proposition 2.2.5 in conjonction with the definition of T') that
T* =T and we recall that T** = T.

We now observe the

Proposition 10.2.1.
Any closed symmetric extension of T is a restriction of T*.

Proof.
Let S is a closed symmetric extension of 7.
We have indeed T' C S C S* and, observing that S* C T*, we consequently get
ScT.

In particular, if T is selfadjoint then T is the unique selfadjoint extension of
T.

We can characterize the selfadjointness through the following general crite-
rion

Theorem 10.2.2.
Let T be a closed symmetric operator. Then the following statements are equiv-
alent :

1. T is selfadjoint.
2. Ker (T +1) = {0};
3. Range (T +1i) =H.

Proof.
1. implies 2.
This property was already observed (because T = T* and +i & o(T)).
2. implies 3. .
We first observe that the property that ker (T +i) = {0} implies that R(T — i)
is dense in ‘H. Note that the converse is also true. For getting 3., it remains
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to show that R(T — i) is closed. But, for all ¢ in D(T'), we have (using the
symmetry of T')
(T = Dgll* = ITgl* + ]I . (10.2.1)

If ¢, is a sequence in D(T') such that (T + i)¢,, converges to some ¥,. The
previous identity shows that ¢,, is a Cauchy sequence, so there exists ¢ such
that ¢, — ¢ in H. But T'¢, = (T +1)py — i¢y, is convergent and using that
the graph is closed, we obtain that ¢o, € D(T) and T¢oo = Yo-

3. implies 1. .

Let ¢ € D(T*). Let n € D(T) such that (T' —i)n = (T* — i)¢. T being
symmetric, we have also (T —14)(n — ¢) = 0. But, if (T + ) is surjective, then
(T* —14) is injective and we get ¢ = n. This proves that ¢ € D(T).

Remark 10.2.3.
Here we have used and proved during the proof of the assertion “2. implies 3.7
the following lemma

Lemma 10.2.4.
If T is closed and symmetric, then R(T +1) is closed.

This theorem gives as a corollary a criterion for essential selfadjointness in
the form

Corollary 10.2.5.
Let A with domain D(A) be a symmetric operator. Then the following are
equivalent

1. A is essentially selfadjoint.
2. Ker(A* +1) = {0}.
3. The two spaces R(A £ i) are dense in H.

We have indeed essentially to apply the previous theorem to A, oberving in
addition that A is symmetric and that Lemma 10.2.4 is true.

Let us here emphasize that in this case, to specify the operator A, it is not
necessary to give the exact domain of A but a core for A that is a subspace D
such that the closure of A,p is A,

In the same spirit, we have in the semibounded case the following

Theorem 10.2.6.
Let T be a positive, symmetric operator. Then the following statements are
equivalent :

1. T is essentially selfadjoint.

2.
Ker (T* +b) = {0} for someb>0.

3. Range (T +b) is dense for some b > 0.
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The proof essentially the same as for the previous corollary, if one observes
that if T is positive then the following trivial estimate is a good substitute for
(10.2.1) :

(T + byu,u) > b||u|* .

Example 10.2.7. (The free Laplacian)
The operator —A with domain C§° is essentially selfadjoint. Its selfadjoint
extension is —A with domain H?.

10.3 The Kato -Rellich theorem

We would like to consider the case when P = —A + V when V is regular and
tends to 0 as |x| — 4o0o0. Here V' can be considered as a perturbation of the
Laplacian. One can then apply a general theorem due to Kato-Rellich.

Theorem 10.3.1.
Let A be a selfadjoint operator, B be a symmetric operator whose domain con-
tains D(A). Let us assume the existence of a and b such that 0 < a < 1 and
b > 0 such that

|Bul| < a|[Aul[ +b|[ull (10.3.1)

for all w € D(A). Then A+ B is selfadjoint on D(A).
If A is essentially selfadjoint on*® D C D(A), then A+ B has the same property.

Proof.

Step 1.
We start from the following identity which only uses that (4 + B) with domain
D(A) is symmetric.

(A + B £ iXul|? = ||(A+ B)ul|?> + X2||ul[> , Yu € D(A) . (10.3.2)

By the triangle inequality and the symmetry of A + B, we get for a real

A > 0, and for any u € D(A) :
V2|[(A+ B —iX)ul| |(A =+ B)ul| + Alful|

|Aul| — ||Bul| + A||ul] (10.3.3)

2 |
2 |
> (1= a)l[Aul[ + (A = b)][u]|

‘We now choose A > b.

Step 2.
Let us show that (A+ B) with domain D(A) is closed. If we start indeed from a
pair (4, fn) with u, € D(A) and f,, = (A+ B)u,, such that (un, fn) — (u, f) in
‘H. From (10.3.3), we get that Au, is a Cauchy sequence in H. A being closed,
we get u € D(A) and the existence of g such that Au,, — g = Au.
Now from (10.3.2) and (10.3.1), we get also that Bu,, is a Cauchy sequence and

29By this we mean that the closure of A/pis A.
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there exists v such that Bu,, — v in H.
We claim that Bu = v. We have indeed, for any h € D(A),

<wv,h>y= WETDQ < Bup, h >n= WETDQ < Up, Bh >y=< u, Bh >y=< Bu,h >3 .

Using the density of D(A), we get v = Bu. (We could have also used that B is
closable).
We conclude by observing that (A 4+ B)u = f (with f = ¢g + v) as expected.

Step 3.
In order to apply Theorem 10.2.2, we have to show that (A+ B=i)) is surjective.
The main element in the proof is the following

Lemma 10.3.2. .
For XA > 0 large enough, we have

[[B(A+iN) Y| <1. (10.3.4)

Proof.
We observe that, for u € D(A),

[[(A £ i\ ul> = || Au||* + N2||u]|* . (10.3.5)
For u € D(A), we have, using two times (10.3.5) and then (10.3.1)

[[Bull < al[Aul| + b||ull
< al|[(A+iAu|| + 2[[(A+ i\l (10.3.6)
<(a+2)I(A+iNull.

It is then enough to choose A > 0 large enough such that

b
(G+X)<1.

Writing
A+B—id=[T+B(A—i\N)(A-i)), (10.3.7)

it is easy to deduce the surjectivity using the lemma and the surjectivity of
(A —1N).
Application.

As an application, let us treat the case of the Schrédinger operator with
Coulomb potential.
Proposition 10.3.3.
The operator —A — ﬁ with domain C§°(R3) is essentially selfadjoint.

We recall that the operator is well defined because  belongs to L? (R?).
We first observe a Sobolev type inequality.
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Lemma 10.3.4. :
There exists a constant C' such that for allu € H*(R?), all a > 0 and all x € R3,
we have

lu(z)| < ClallAullo + a™*[lullo) -

(Prove first the inequality®® for all v with 2 = 0 and a = 1, then use
translation and dilation.)
In the second step, we show that the potential V = —% is a perturbation of the
Laplacian.
There exists indeed a constant C' such that for all u € H?(R?) and all b > 0, we
have
IVally < COllAullo + b~ ullo) -

For this proof we observe that, for any R > 0,

/ V(@) () Pdz = / V@) P / V(@) |u(z) Pde

j2|>R

and treat the first term of the right hand side using the Sobolev’s type inequality
and the second term by the trivial estimate [V (z)] < .

Remark 10.3.5.
We note that the same proof shows that —A+V is essentially selfadjoint starting
from C§°(R™) if V € L2+ L%, that is if V = V1+Va with Vi € L? and Va € L.

10.4 Other criteria of selfadjointness for Schrodinger op-
erators

We present in this subsection two criteria which are specific of the Schrédinger
case. The first one seems due to Rellich (See [Sima]) and we present it in the
easy case when the potential is regular. The second one permits to treat singular
potentials and is due to Kato (cf [HiSi] or [Ro]).

The first theorem is adapted to operators which are already know to be
positive on C§°(R™).

Theorem 10.4.1.

A Schrédinger operator T = —A 4+ V on R™ associated with a C° potential V,
which is semibounded on C§°(R™), is essentially selfadjoint. In other words, the
Friedrichs extension is the unique selfadjoint extension starting from C§°(R™).

This theorem is complementary to the second theorem (Theorem 10.4.4)
which will be stated at the end of this subsection because we do not have to
assume the positivity of the potential but only the semi-boundedness of the
operator T.

30In this case, this is just the Sobolev’s injection theorem of HZ(R®) into CP(R?), where
CP(R3) is the space of the continuous bounded functions.
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Proof.
Let T be our operator. Possibly by adding a constant, we can assume that

< Tu,u >y> ||ul?, Yu € Cg°(R™) . (10.4.1)

Of course this inequality can be rewritten in the form :

IVul? + [ V(@)lu(@)Pde > |[ul®, Vu e CF°(R™) .

Rm,
In this form, the inequality can be extended to the elements of H},,(R™),
corresponding to the distributions of H!(R™) with compact support :
||V |2 +/ V(2)|u(x)|?dz > ||u||*, Yu € Hclomp(Rm) . (10.4.2)
RTTL

According to the general criterion of essential selfadjointness (cf Theorem 10.2.6),
it is enough to verify that R(T) is dense. Let us show this property.
Let f € L?(R™), such that

< f,Tu>y=0, Yu e C°(R™) . (10.4.3)

We have to show that f = 0.

Because T' is real, one can assume that f is real.

We first observe that (10.4.3) implies that : (—=A + V)f = 0 in D'(R™). A
standard regularity theorem for the Laplacian®! implies that f € H lzoc(Rm).
We now introduce a family of cutoff functions (i by

Cri=C(z/k), VkEN, (10.4.4)

where ¢ is a C* function satisfying 0 < (<1, (=1 on B(0,1) and supp ¢ C
B(0,2).

For any v € C* and any f € H? ., we have the identity

oc?

JV(Cf)- (Cku Ydz + [ C(2)?V (@)u(z) f(z) dz
= [1(VC) (@) Pu(a) f(z) dz + 377, [ (f(iu) — w(8:f)) (2)Ck(2)(DiCr) (x) da
+(f(2) , TC;JO

When f satisfies (10.4.3), we get :

Jom V(G f) - V(Gu)dx + [ CG(x)?V (x)u(z) f(x) do
—f| V) (@) *u(z) f (2 )dx+21 1 (f(Ou) = u(0if)) (x)Ck (2)(Dir)
1

for all u € C*°(R™).
This formula can be extended to functions v € H, llo .- In particular, we can take

u=f.
‘We obtain

<GS ckf>+/<;k ) (@ |2da:—/|v<k| F@)Pde . (1047)

31This is the property that f € Lloc( m), Af € L?

(10.4.5)

(R™) implies that f € H;. (R™).

loc loc
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Using (10.4.1), (10.4.7) and taking the limit k¥ — +o00, we get

AP = limp oo [IGe f][?
< lmsupy g (< V(GS) s V(GS) > + [ GV (@)|f(@)? do)
= limsupy_ o [ f(2)*|(VG)(2)[* dz = 0.
(10.4.8)
This proves the theorem.

Remark 10.4.2.
When V is C*°, we get, in the previous proof, that f € C'°° and we immediately
can prove (10.4.7) without going through the previous discussion.

Example 10.4.3.

o IfV >0 and C*, then the Schrédinger operator —A + V' with domain
C§°(R™) is essentially selfadjoint. The operator —A+V is indeed positive.

o If ¢ is C on R™, then the operators —A + |V¢|?> & A¢ are essentially
selfadjoint. They are indeed positive on C§°(R™). They can actually be
written in the form Ej Z;Z; with Zj = Oy, F 0y;¢. These operators
appear naturally in statistical mechanics.

Let us now mention, without proof, a quite general theorem due to Kato
(See for example [Ro]).

Theorem 10.4.4.
Let V in L? (R™) such that V > 0 almost everywhere on R™. Then —A +V

loc
with domain C§°(R™) is essentially selfadjoint.

This theorem is based on the so called Kato’s inequality.

Remark 10.4.5.
This last theorem may be extended to the case of the Schrédinger operator with
magnetic regular potential A (See Subsection 7.5).

10.5 Non-selfadjoint case : Maximal accretivity and ap-
plication to the Fokker-Planck operator

10.5.1 Accretive operators

We collect here some material on accretive operators. The references could be
the books by Dautray-Lions (Vol. 5, Chapter XVII), Reed-Simon or the book
of B. Davies. Let H be a complex (or real) Hilbert space.

Definition 10.5.1.
Let A be an unbounded operator in H with domain D(A). We say that A is

accretive if
Re (Ax | x)3 >0, Yz € D(A) . (10.5.1)
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Definition 10.5.2.
An accretive operator A is mazimally accretive if it does not exist an accretive
extension A with strict inclusion of D(A) in D(A).

Proposition 10.5.3.
Let A be an accretive operator with domain D(A) dense in H. Then A is closable
and its closed extension A is accretive.

For the analysis of the Fokker-Planck operator, the following criterion, which
extends the standard criterion of essential self-adjointness, will be the most
suitable

Theorem 10.5.4.
For an accretive operator A, the following conditions are equivalent

1. A is mazimally accretive.

2. There exists A\g > 0 such that A* + Mgl 1is injective.

3. There exists Ay > 0 such that the range of A+ A1 is dense in 'H.

Note that in this case —A is the infinitesimal generator of a contraction

semi-group.

10.5.2 Application to the Fokker-Planck operator
We would like to show

Proposition 10.5.5. o
Let'V be a C* potential on R™, then the closure K of the Fokker-Planck operator
defined on C§°(R?™) by

1
KH:—AU+ZWF—g%n%, (10.5.2)
where

Xo:=-VV(2) -0y +v- 0, (10.5.3)

is maximally accretive.
Moreover K* is also mazximally accretive.

The idea is to adapt the proof that a semi-bounded Schrodinger operator
with regular potential is essentially self-adjoint on L?(R™).

Proof:

We apply the abstract criterion taking H = L?(R™ x R") and A = K. The
operators being real, we can consider everywhere real functions. The accretivity
on C§°(R?") is clear. We can then consider the closure K.
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Changing K in T := K + (5§ + 1)1, we would like to show that its range is
dense.
Let f € L?(R™), with m = 2n, such that

< f|Tu>n=0, Yue C&R™). (10.5.4)

We have to show that f = 0.
Because K is real, one can assume that f is real.
We first observe that (10.5.4) implies that :

(A, +v%/4+1—X)f =0, inD'(R™).

The standard hypoellipticity theorem for the Hérmander operators®? of type 2
implies that f € C>(R™).
We now introduce a family of cut-off functions (j := (g, k., by

Cha ko (2, 0) := ((x/k1)C(v/k2) , Yk € N? | (10.5.5)

where ¢ is a C*° function satisfying 0 < ( <1, (=1 on B(0,1) and supp ¢ C
B(0,2).
For any u € C§°, we have the identity

S VoG f) - Vo(Geu) dedv + [ C(z,v)%(v? /4 + Du(z,v) f(z,v) dzdv
+ ff(wav)(XO(szu))(%v) dx dv
= [|(VoCi) (@, v)Pu(z,v) f(2,v) dodv
+>2 f 5v1U u(0u, f)) (@, v)Ck (2, v) (0, Ck) (2, v) dz dv
+{f(z,v) | TGu) .

(10.5.6)
When f satisfies (10.5.4), we get :
Jam Vo (G f) - Vo (Ceu) dzdo + [ (v /4+ Du(x,v) f(z,v) dxdv
-|-ff (z,v) Xo(gfu))(x,v)dxdv 10.5.7
= [t o) e o (1057
+ Ez 1 f 8“1” (87)7f)) (.13, U)Ck (Qf, U)(avick)(xv U) dl‘ dU )
for all u € C°°(R™). In particular, we can take u = f.
We obtain
< VolCef) | Vo(Grf) > + [ GG (0?/4+ 1| f(2,v)]* dwdv
+ [ f(2,0)(Xo(G2 f)) (=, v) dwdv (10.5.8)

= [IVulk?|f (2, 0)* da dv .
With an additional integration by part, we get

< Vo G f) | VoG f) > + [ G 0?4+ 1) f(z,0)]* dzdv
+ [ Gof (@, 0)*(XoCk) (2, v) dx dv (10.5.9)
= [ VoG |f (2, 0)? dzdv .

32These operators are in the form P = — Z§:1 X]? + Xo + a(z), where the X; are real
vectorfield. If the X; together with the brackets [X,, X;n] span at each point x the whole
tangent space, then one can show that the corresponding operator is hypoelliptic. P is said
hypoelliptic if for any u € D’ and any open set w, Pu € C*°(w) implies that u € C®(w).
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This leads to the existence of a constant C' such that, for all &,

16 f1I? + g lICkofI1?

< CEIIR +CRllG I 171+ CEITV@a gl . (0510

(The constant C' will possibly be changed from line to line). This leads to

1
Ik A1 + glick o £ < oz + ) IAIR + Cl) -GN IS (105.10)
2 1 2

where
C(k1) = sup |V,V(2)]
|z| <2k1
This implies )
C(k 1
16 117 < O ;21) + AP (10.5.12)
2 1

This finally leads to f = 0. For example, one can take first the limit
ko — 400, which leads to

T C
IIC(k—l)fll2 < k—%llfll2 :

and then the limit k1 — +00.
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11 Discrete spectrum, essential spectrum

11.1 Discrete spectrum

We have already recalled in Proposition 8.5.4 a characterization of the spectrum.
Let us now complete this characterization by introducing different spectra.

Definition 11.1.1.
If T is a selfadjoint operator, we shall call discrete spectrum of T the set

odgisc(T) ={A € c(T) s. t. Je > 0,dim range (E(JA — €, A + ¢[)) < 400} .

With this new definition, we can say that, for a selfadjoint operator with
compact resolvent, the spectrum is reduced to the discrete spectrum.
For a compact selfadjoint operator, the spectrum is discrete outside 0. We see
in this case that the discrete spectrum is not closed.
Equivalently, let us observe now give another characterization :

Proposition 11.1.2.

Let T be a selfadjoint operator. A real X\ is in the discrete spectrum if and only

if :

A is an isolated point in o(T) and if X is an eigenvalue of finite multiplicity.
Proof.

If A\ € 04isc(T), we immediately see that there exists ¢y such that, Ve such

that 0 < € < €, Ejx_cat¢ becomes a projector independent of e with finite

range. This is actually the projector IIy = 1{,3(7) and we observe moreover

Ejzxpqef = 0 and Ejy_ 5y = 0. This shows that A is an isolated point in o(T').

Using the spectral representation of T', one immediately get that, if x = Il x

(x # 0), then z is an eigenvector of T'. Moreover, one easily obtains that (T'—\)

is invertible on R(I — IIy). One can indeed find a continuous bounded f such
that f(T)(T — \)(I —1II\) = (I —II)).

Conversely, let A be isolated. The previous proof as already shown that in
this case the range of II) is an eigenspace. The assumption of finite multiplicity
permits then to conclude.

Remark 11.1.3.

The discrete spectrum is not a closed set ! If we consider in R3, the Schrédinger
operator with coulomb potential, the discrete spectrum is a sequence of eigenval-
ues tending to 0 but O does not belong to the discrete spectrum.

11.2 Essential spectrum

Definition 11.2.1.
The essential spectrum is the complementary in the spectrum of the discrete
spectrum.

Intuitively, a point of the essential spectrum corresponds
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e cither to a point in the continuous spectrum,
e or to a limit point of a sequence of eigenvalues with finite multiplicity,
e or to an eigenvalue of infinite multiplicity.
The discrete spectrum being composed of isolated points, we get
Proposition 11.2.2.
The essential spectrum of a selfadjoint operator T is closed in R.
11.3 Basic examples:
1. The essential spectrum of a compact selfadjoint operator is reduced to 0.
2. The essential spectrum of an operator with compact resolvent is empty.

3. The Laplacian on R™ —A is a selfadjoint operator on L?(R") whose domain
is the Sobolev space H2(R™). The spectrum is continuous and equal to
RF. The essential spectrum is also R and the operator has no discrete
spectrum.

4. The Schrédinger operator with constant magnetic field (B # 0) in R?:

B B
Sp = (Day = =) + (Day + —2)° | (11.3.1)
with . 18
D’I‘ = _87" = T3 -
I i 7 Oz

The spectrum is formed with eigenvalues (2k + 1)|B| but the spectrum
is not discrete because each eigenvalue is with infinite multiplicity. This
example will be analyzed later.

11.4 Weyl’s criterion:

We have already mentioned that the essential spectrum is a closed set. In order
to determine the essential spectrum it is useful to have theorems proving the
invariance by perturbation. The following characterization is in this spirit quite
useful.

Theorem 11.4.1.

Let T be a selfadjoint operator. Then X belongs to the essential spectrum iff
there exists a sequence u, in D(T) with ||u,|| = 1 such that u, tends weakly®
to 0 and such that ||(T — Nuy|| — 0 as n — oo.

33We recall that we say that a sequence u, in a separable Hilbert space H is weakly con-
vergent if, for any g in H, < un|g > is convergent. In this case, there exists a unique f such
that < un|g >n—< flg > and ||un|| is @ bounded sequence.
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Let us give a partial proof of the theorem and we refer to [Ro], [HiSi] or
[RS-1V] for a complete proof.
The sequence appearing in the theorem is called a Weyl sequence. A point A
such that there exists an associated Weyl sequence is said to belong to the Weyl
spectrum W (T'). Let us show the inclusion

W(T) C Gess(T) . (11.4.1)

We have already seen that
W(T)Co(T). (11.4.2)

Let us suppose by contradiction that A € ogisc(T). Let Iy := Ej,; be the
associated spectral projector. We first observe that, II, being finite range,
hence compact, we have :

IIhu, - 0€H. (11.4.3)

Let us define
Wy = (I — H)\)U,n .

We get ||wy|| — +1 and (T — Nwy, = (I —II\)(T — Nu, — 0.
But (T'— \) is invertible on R(I —1IIy), so we get w, — 0 and the contradiction.
This shows the announced inclusion (11.4.1).

Corollary 11.4.2.
The operator —_hQA +V with V a continuous function tending to 0 as |x| — oo
(x € RP) has Rt as essential spectrum.

For proving the inclusion of R* in the essential spectrum, we can indeed
consider the sequence

un(z) = exp(iz - En~ P2 x((@ — Ra)/n)

with x > 0 and supported in the ball B(0,1) and equal to one on say B(0, %)
The sequence R,, is chosen such that |R,| (for example |R,,| = n?) tends to oo
and such that the support of the w,, are disjoints.

This is a particular case of a Weyl sequence (called in [HiSi] a Zhislin sequence).
The converse can be obtained by abstract analysis and the fact that we know
that the essential spectrum of —A is [0, +oo[. This idea is formalized through
the notion of relative compactness.

Definition 11.4.3.

If T is a closed operator with a dense domain D, we shall say that the operator
V' is relatively compact with respect to T or T-compact if Dy C Dy and if the
image by V' of a closed ball in Dt (for the graph-norm w — /|u||? + ||Tu|? )

1s relatively compact in H.

In other words, we shall say that V is T-compact, if, from each sequence u,,
in Dy bounded in H and such that T'u, is bounded in H, one can extract a
subsequence u,,; such that Vu,, is convergent in H. Here we recall (exercise)
that when T is closed, then D(T') equipped with the graph norm is an Hilbert
space.
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Example 11.4.4.

If V' is the multiplication operator by a continuous function V tending to 0
then V is (—A)-compact. This is a consequence of Proposition 5.4.1 and of the
uniform continuity of V. on each compact.

Weyl’s Theorem says

Theorem 11.4.5. .

Let T be a selfadjoint operator, and V' be symmetric and T-compact, then T +
V' is selfadjoint and the essential spectrum of T + V is equal to the essential
spectrum of T .

The first part can be deduced from what was discussed in the previous
subsection (See Theorem 10.3.1). We observe indeed the following variant of
Lions’s Lemma :

Lemma 11.4.6.
If V is T-compact and closable, then, for any a > 0, there exists b > 0 such that

[|Vul| < al|Tul| + bl|ul| , Yu € D(T) . (11.4.4)

Proof of the lemma.
The proof is by contradiction. If (11.4.4) is not true, then there exists a > 0
such that, Vn € N*, there exists u, € D(T) such that

al|Tun|| + nllun|| < [|[Vun| - (11.4.5)

Observing that ||Vu,|| # 0 and that the inequation is homogeneous, we can in
addition assume that wu,, satisfies the condition :

[Vun|[=1. (11.4.6)

From these two properties we get that the sequence Tu,, is bounded and that
Uy — 0.

On the other hand, by T-compactness, we can extract a subsequence u,, such
that Vu,, is convergent to v with |[v|| = 1. But (0,v) is in the closure of the
graph of V', hence in the graph of the closure of V and consequently v = 0
(contradiction).

For the second part we can use the Theorem 11.4.1. If we take a Weyl’s
sequence u, such that u, — 0 (weakly) and (T' — X\)u, — 0 strongly, let us
consider (T'+V — A)u,. We have simply to show that one can extract a subse-
quence uy, such that (T +V — Auy,, — 0.

But Tu, is a bounded sequence. By the T-compactness, we can extract a sub-
sequence such that Vu,, converges strongly to some v in ‘H. It remains to show
that v = 0. But here we can observe that for any f € D(T), we have

<v,f>= lim <Vuy,,f>= lim <u,,Vf>=0.
k—-+o0 k—-+oo )
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Here we have used the symmetry of V' and the weak convergence of u, to 0.
Using the density of D(T') in H, we obtain v = 0.

This shows that a Weyl sequence for T is a Weyl sequence for 7'+ V. For the
converse, one can intertwine the roles of 7" and T'+ V, once we have shown that
V is (T + V)-compact. For this, we can use Lemma 11.4.6, and observe that
the following inequality is true :

ITull < —— (1T + Vyull +b]Jul]) (11.47)

This shows that if u,, is a sequence such that (||u,|| + ||(T + V)u,||) is bounded,
then this sequence has also the property that (||un|| + ||Tux||) is bounded.
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12 The max-min principle

12.1 Introduction

The max-min principle is an alternative way for describing the lowest part of
the spectrum when it is discrete. It gives also an efficient way to localize these
eigenvalues or to follow their dependence on various parameters.

12.2 On positivity
We first recall the following definition

Definition 12.2.1.
Let A be a symmetric operator. We say that A is positive (and we write A > 0),

if
< Au,u>>0, Yu e D(A) . (12.2.1)

The following proposition relates the positivity with the spectrum

Proposition 12.2.2.
Let A be a selfadjoint operator. Then A > 0 if and only if o(A) C [0, +o0].

Proof.
It is clear that if the spectrum is in R, then the operator is positive. This can
be seen for example through the spectral representation :

< Au,u >= / A d||Exul? .
AE€a(A)

Now, if A > 0, then, for any a > 0, A + a is invertible. We have indeed
allul[® << (A+a)u,u >< [[(A+ a)ul| [Ju]] ,

which leads to
allu]] < ||(A+ a)ul|, Yu € D(A) . (12.2.2)

This inequality gives the closed range and the injectivity. A being selfadjoint,
we get also from the injectivity, the density of the image of (A + a). This shows
that —a is not in the spectrum of A.

Example 12.2.3.
Let us consider the Schrodinger operator P := —A + V, with V. € C* and

semi-bounded, then
o(P) C [inf V,4o0] . (12.2.3)
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12.3 Variational characterization of the discrete spectrum

Theorem 12.3.1.

Let A be a selfadjoint semibounded operator. Let Y := inf 0.55(A) and let us con-
sider o(A)N] — 00, X[, described as a sequence (finite or infinite) of eigenvalues
that we write in the form

A <A< < Ay

Then we have

A\ = inf 2 < Ap,p >, 12.3.1
1 ¢€D}g)’¢¢ol|¢ll ¢, ¢ ( )
Ao = inf 6] 72 < Ag, ¢ >, (12.3.2)

ED(A)NK{,¢#0

and, forn > 2,

P inf |6l 72 < Ag, ¢ >, (12.3.3)
pED(ANKL |, 640
where
Kj = Bi<y Ker (A — /\7) .
Proof.

Step 1. Let us start, with the lowest eigenvalue. Let us define p;(A) by

A):=  inf 2 < Ap o> . 12.3.4
p1(A) ¢6D%3>,¢¢0”¢” ¢, ¢ ( )

If ¢; is an eigenvector associated to A1, we get immediately the inequality

p(A) < Ai(A) . (12.3.5)

Let us prove the converse inequality. Using the spectral theorem, one get im-
mediately that A > inf o(A).
So we get

info(A) < pi(A). (12.3.6)

Now, if the spectrum below X is not empty, we get
A(4) < pa(4) .
We have consequently the equality. We have actually a little more.

We have indeed proved that, if u(4) < X, then, the spectrum
below ¥ is not empty, and the lowest eigenvalue is 11(A).
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Step 2. The proof is by recursion, applying Step 1 to A/ paynx+

n—1

This ends the proof of Theorem 12.3.1.

Example 12.3.2. (Payne-Polya- Weinberger Inequality.)
Let P = —-A+V with V € C* positive and V' — +o0 as |z] — +o0.
Let us assume that V is even

Viz)=V(-z). (12.3.7)

Then )\s satisfies

Ay < inf < Po,¢ > (12.3.8)

»€Q(P),¢ odd

Let u; be the first normalized eigenvector. We admit that the lowest eigenvalue
of the Schrédinger operator is simple (variant of the Krein-Rutman’s Theorem)
and that the first eigenvector can be chosen strictly positive, with exponential
decay at oo together with Vu; (this is a consequence of Agmon’s inequality
[Ag]). Then it is not difficult to verify that u, is even. Let us consider v; 1= xju;.
vj is in the form domain of P. We observe that

P(a:jul) = )\11‘j’u,1 — 28ju1 .
Taking the scalar product with z;u;, we then obtain

()\2 — )\1)||a:ju1||2 —-2< ajul,a:jul >

|2 (12.3.9)
1

ININAIA

We now use the uncertainty principle (1.2.11) and get :

(Mo — M) < 4105 - (12.3.10)
On the other hand,
|[Vuq|)? + - V(z)|uy(z)*de = M1, (12.3.11)
and this gives
[[Vug]]?> < Ap . (12.3.12)

Putting the inequalities (12.3.9) and (12.3.12), we get, summing over j,

4
Ao — A < — A (12.3.13)
m

This inequality is not optimal, in the sense that for m = 1 and V(z) = 22, we

have )\2 — )\1 = 2)\1.
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Example 12.3.3.

Let us consider Sy, := —h2A +V on R™ where V is a C™ potential tending to
0 at oo and such that inf,cgm V(z) < 0.

Then if A > 0 is small enough, there exists at least one eigenvalue for S;,. We
note that the essential spectrum is [0, 400[. The proof of the existence of this
eigenvalue is elementary. If x,,;, is one point such that V(2. ) = inf, V(x), it
is enough to show that, with ¢y, (x) = exp —% |7 — 2 pmin|?, the quotient %

tends as h — 0 to V(Zmin) < 0.

12.4 Max-min principle

We now give a more flexible criterion for the determination of the bottom of
the spectrum and for the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need an explicit knowledge of the various
eigenspaces.

Theorem 12.4.1.
Let H an Hilbert space of infinite dimension®* and A be a selfadjoint semi-
bounded operator of domain D(A) C H. Let us introduce

fin(A)

3

= sup inf (Ad | o) . (12.4.1)
Y9251 { ¢ € [Span(¢17 e wn—l)]l; }
¢ € D(A) and [|¢]| =1

Then either

(a) pn(A) is the n-th eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has a discrete spectrum in

] — 00, pn(A)]

or

(b) pn(A) corresponds to the bottom of the essential spectrum. In this case, we
have p;(A) = p,(A) for all j > n.

Remark 12.4.2.

In the case when the operator is with compact resolvent, case (b) does not
occur and the supremum in (12.4.1) is a maximum. Similarly the infimum is a
minimum. This explains the traditional terminology “ Max-Min principle” for
this theorem.

Proof.
If Q is a borelian, let Eq be the projection-valued measure for A (see Remark
8.3.7).
We first prove that
dim (RangeFy_w o)) < nif a < pn(A). (12.4.2)
dim (RangeFEy_o o) > nif a > pn(A) . (12.4.3)

34In the case of a finite dimensional Hilbert space of dimension d, the minimax principle
holds for n < d.
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Notons que la conjonction de (12.4.2) et (12.4.3) montre que i, (A) est dans
le spectre de A.

Step 1: Proof of (12.4.2).
Let a and n be given such that a < p,(A). Let us prove (12.4.2) by contra-
diction. If it was false, then we would have dim (Range(Ej_o o)) > n and
we could find an n-dimensional space V' C Range(F)_o q[). Note now, that A
being bounded from below, Range(E|_ 4) is included in D(A).
So we can find an n-dimensional space V' C D(A), such that

VoeV, <Ap, p><all¢|?. (12.4.4)

But then given any w1, -+ ,%,_1 in H, we can find ¢ € VN {¢1,--- ,¥p_1}+
such that ||¢|| = 1 and < A¢, ¢ >< a. Coming back to the definition, this
shows that p,(A) < a and a contradiction.

Note that we have proved in this step the following proposition

Proposition 12.4.3.
Suppose that there exists a and an n-dimensional subspace V- C D(A) such that
(12.4.4) is satisfied. Then we have the inequality :

un(A) <a. (12.4.5)

Modulo the complete proof of the theorem, we obtain

Corollary 12.4.4.

Under the same assumption as in Proposition 12.4.3, if a is below the bottom
of the essential spectrum of A, then A has at least n eigenvalues (counted with
multiplicity).

Exercise 12.4.5.

In continuation of Example 12.3.3, show that for any € > 0 and any N, there
exists ho > 0 such that for h €]0, ho], Sn has at least N eigenvalues in

[inf V,inf V+€]. One can treat first the case when V' has a unique non degenerate
minimum at 0.

Step 2 : Proof of (12.4.3).
Suppose that (12.4.3) is false. Then dim ( Range (Ej_s,q) < n — 1, so we
can find (n — 1) generators 1, - - , 1,1 of this space. Then any ¢ € D(A) N
span{yy, -+ ,¥,_1}+ is in Range (Ela,+o0])> 80

< Ap, ¢ >>allg||.

Therefore, coming back to the definition of p,(A), we get p,(A) > a in contra-
diction with our initial assumption.

Before to continue the proof, let us emphasize on one point.
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Remark 12.4.6.
In the definition of p,(A), ¥1,--- ,%n_1 are only assumed to belong to the
Hilbert space H.

Step 3 : pnp(A) < +oo.
First the semi-boundedness from below of A gives a uniform lower bound.
Secondly, if p,(A) = 400, this would mean by (12.4.2) that :
dim(Range(E)_ o q1)) < n for all a,
and consequently that H is finite dimensional. This is a contradiction, if H is
infinite dimensional. But the finite case is trivial, we have indeed p,(A4) < [|4]],
in this case.

As the statement of the theorem suggests, there are two cases to consider
and this will be the object of the two next steps.

Step 4.
Let us first assume (with p,, = p,(A)) that

dim (Range(E)—oo i, +[)) = +00, Ye > 0. (12.4.6)

We claim that, in this case, we are in the second alternative in the theorem.
Using (12.4.2) and (12.4.6), we get indeed

dim (Range(E),, —c u,+e)) = +00, Ve > 0. (12.4.7)

This shows that i, (A) € Tess(A).
On the other hand, using again (12.4.2), we immediately get that | — 0o, p, (A)[
does not contain any point in the essential spectrum. Thus u,(A4) = inf{\ | A €

Oess(A)}.

Let us show now that p,+1 = p, in this case. From the definition of the
wr(A), it is clear that p,411 > uyn, since one can take 1, = ¥,_1.
But if g1 > pn, (12.4.2) would also be satisfied for p,11, and this is in
contradiction with (12.4.6).

Step 5.

Let us now assume that
dim (Range(E|_o 1, +e,[) < 00, for some g > 0. (12.4.8)

Then it is clear, that the spectrum is discrete in | — 0o, u,, + €g[. Therefore pu,
is an eigenvalue. Then, for €; > 0 small enough,

Range(E)_ ) = Range(Ej_o 1, +e,[) >

and by (12.4.3)
dim (RangeEy_o 1) > 1. (12.4.9)

So there are at least n eigenvalues Fy < Fy < --- < E,, < u, for A. If E,, were
strictly less than p,, dim(RangeE)_ g,)) would equal n in contradiction with
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(12.4.2).
This ends the proof of Theorem 12.4.1.

A first natural extension of Theorem 12.4.1 is obtained by

Theorem 12.4.7.
Let A be a selfadjoint semibounded operator and Q(A) its form domain
Then

35

n(A) = sup inf (Ap | d)n - (12.4.10)
IR { b € [span(en, . ., dn1)]*: }
¢ € Q(A) and ||9]| =1
Proof.

Let fi,, be the right hand side of (12.4.10). By imitating the proof of the previous
theorem, we get that each fi,, obeys one of the two conditions. These conditions
determine p,, and consequently p, = fin.

One can also note (see Subsection 3.3) that, when constructing the Friedrichs
extension, one has shown that the domain of the Friedrichs extension is dense
in the form domain.

Applications

e [t is very often useful to apply the max-min principle by taking the mini-
mum over a dense set in Q(A).

e The max-min principle permits to control the continuity of the eigenvalues
with respect to parameters. For example the lowest eigenvalue A;(e€) of
—%;2 + 22 + ex? increases with respect to e. Show that € — A;(e) is right
continuous on [0, +oo[. (The reader can admit that the corresponding
eigenfunction is in S(R) for € > 0).

e The max-min principle permits to give an upperbound on the bottom of
the spectrum and the comparison between the spectrum of two operators.
If A < B in the sense that, Q(B) C Q(A) and®®

< Au,u ><< Bu,u >, Yu € Q(B) ,

then
An(A) < A (B) .

Similar conclusions occur if we have D(B) C D(A).

35associated by completion with the form u +— (u|Au) initially defined on D(A).

361t is enough to verify the inequality on a dense set in Q(B).
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Example 12.4.8. (Comparison between Dirichlet and Neumann)

Let © be a bounded regular connected open set in R”. Then the N-th eigenvalue
of the Neumann realization of —A + V' is less or equal to the N-th eigenvalue
of the Dirichlet realization. It is indeed enough to observe the inclusion of the
form domains.

Example 12.4.9. (monotonicity with respect to the domain)

Let Q1 C Q2 C R™ two bounded regular open sets. Then the n — th eigenvalue
of the Dirichlet realization of the Schrédinger operator in €25 is less or equal to
the n-th eigenvalue of the Dirichlet realization of the Schrédinger operator in
Q1. We observe that we can indeed identify H} (1) with a subspace of H}(Q2)
by just an extension by 0 in Q2 \ Q5.

We then have

)‘H(QQ) = SUP {4y o 4pp 1 €L2(02)} lnf{ e HO QQ } ||V¢||%2(Qz)
. < ¢, > L2(Q2) and ||¢||=1 5
< SUP {41, ,thn_1€L2(Q2)} mf{ b e HO } ||V¢||L2 Qo
. < ¢, > L2(Q2) and ||¢||=1 )
= SuP{w1,~~~,wnf1€L2(Qz)} mf{ ¢ c H() } ||V¢||L2 (951
L <Y >1e,) and sl )
= SUP {4y o app 1 €L2(94)} mf{ ¢ c HO (Ql) } ||V¢||L2(Q1)
< &% >12(0,) and [jg|=1

= (7).

Note that this argument is not valid for the Neumann realization.

12.5 CLR inequality
In order to complete the picture, let us mention (confer [RS-IV], p. 101) that,

if m > 3, then the following theorem due to Cwickel-Lieb-Rozenbljum is true :

Theorem 12.5.1.

There exists a constant L.,, such that, for any V such that V_ € L%, and
if m > 3, the number of strictly negative eigenvalues of S1 N_ is finite and
bounded by

N_< Lm/ (=V)%dx . (12.5.1)
V(z)<0

This shows that when m > 3, we could have examples of negative potentials
V' (which are not identically zero) and such that the corresponding Schrodinger
operator S has no eigenvalues. A sufficient condition is indeed

Lm/ (=V)%de <1.
V<o

In the other direction, we have®” the following results.

37These counterexamples come back (when m = 1 to Avron-Herbst-Simon [AHS] and when
m = 2 to Blanchard-Stubbe [BS]).
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Proposition 12.5.2.
Let V be in L*(R™) (m =1,2). Then S; = —A +V has a negative eigenvalue
if the following condition holds :

V(z)de <O0. (12.5.2)
R"YL

Proof.
We just treat the case when V' € C§°(R™).
We first observe that the the essential spectrum is [0, +oo|. For the proof of the
proposition, it is then enough to find ¢ € D(S7) such that

< Sﬂ/),w >r2rm)< 0.

When m = 1, taking ¢, = exp —alz|, a > 0, we find that

/|w;<x>|2 dr=a,
R

and
lim [ V(z)|a(2)|? de = / V(z)dr <0,
a—0 R R

by the dominated convergence Theorem.
When m = 2, we can take 1q(z) = exp —1]z|*, a > 0, then

™

| Ivea@I? = a,
R2

and

lim . V() [tha(z)|? do = / V(z)dx < 0.

a—0 Jp R2

12.6 Essential spectrum and Persson’s Theorem
We refer to Agmon’s book [Ag] for details.

Theorem 12.6.1.

Let V be a real-valued potential in the Kato-Rellich class®®, and let H = —A+V
be the corresponding self-adjoint, semibounded Schrédinger operator with do-
main H*(R™). Then, the bottom of the essential spectrum is given by

inf 0ss (H) = S(H) (12.6.1)

where

Y(H):= sup | inf {<¢,Hp> |p € C&R™\K)} , (12.6.2)
Kcrm [lgl]=1

where the supremum is over all compact subset I C R™.

38Cf Theorem 10.3.1.
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Essentially this is a corollary of Weyl’s Theorem 11.4.5. We will indeed play
with the fact that

Lemma 12.6.2.
Uess(H) = Oess (H + W) 5

for any regular potential W with compact support.
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13 On the Schrodinger Operator with constant
magnetic field

The Schréodinger operator with magnetic field has been briefly introduced in
Subsection 7.5. We have in particularly given examples where this operator was
with compact resolvent. In this section, we analyze more in detail the properties
of the Schrodinger operator with constant magnetic field in dimension 2 and 3.
This appears to play an important role in Superconductivity theory.

13.1 Dimension 2

We would like to analyze the spectrum of :

B B
=2)" + (Da, + —11)% . (13.1.1)

Sp = (Dy, — 5 5

13.1.1 The case of R?

We first look at the selfadjoint realization in R?. Let us show briefly, how one
can analyze its spectrum. We leave as an exercise to show that the spectrum
(or the discrete spectrum) of two selfadjoints operators S and T are the same
if there exists a unitary operator U such that U(S £4)"'U ! = (T'4+1i)~1. We
note that this implies that U sends the domain of S onto the domain of 7.

In order to determine the spectrum of the operator Sp, we perform a succession
of unitary conjugations. The first one is called a gauge transformation. We
introduce U; on L?(R?) defined, for f € L? by

T1T2

Uif =expiB I (13.1.2)
It satisfies
SpUif =UiSpf , Vf € S(R?), (13.1.3)
with
St = (Dy,)* + (Ds, + Bx1)? . (13.1.4)

Remark 13.1.1. .

U, is a very special case of what is called a gauge transform. More generally,
we can consider U = expi¢ where ¢ is C*°. If Ay := 3 (Da; — Aj)? is a
general Schrodinger operator associated with the magnetic potential A, then
U 'A4U = Aj; where A = A+ grad¢. Here we observe that B := rot A =
rot A. The associated magnetic field is unchanged in a gauge transformation.
We are discussing in our example the very special case (but important!) when

the magnetic potential is constant.

We have now to analyze the spectrum of Sj.
Observing that the operator is with constant coefficients with respect to the xo-
variable, we perform a partial Fourier transform with respect to the zo variable

Uy = Fotr s (13.1.5)
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and get by conjugation, on L*(R3 ),
S% = (Dg,)* + (&2 + Bxy)? . (13.1.6)

We now introduce a third unitary transform Us

(Usf)(y1,&2) = fx1, &), with y =21 + % , (13.1.7)

and we obtain the operator
S} =D, + By, (13.1.8)

operating on L? (Rz@).

The operator depends only on the y variable. It is easy to find for this operator
an orthonormal basis of eigenvectors. We observe indeed that if f € L?(Rg,),
and if ¢y, is the (n + 1)-th eigenfunction of the harmonic oscillator, then

(2, &) = |B|T f(&) - du(|B|7y)

is an eigenvector corresponding to the eigenvalue (2n+1)|B|. So each eigenspace
has an infinite dimension. An orthonormal basis of this eigenvalue can be given
by vectors ej(§2)|B|%f(£2) én(|B|2y) where e; (j € N) is a basis of L?(R).

We have consequently an empty discrete spectrum. The eigenvalues are usually
called Landau levels.

13.2 Magnetic Schrodinger operators in dimension 3

We only consider the Schrédinger operator with constant magnetic field in R3.
After some rotation in R3, we arrive to the model :

P(h,b) = D2+ (Dy, — ba1)* + D?

T3 ?

(13.2.1)

with
b=|B]l.

This time, we can take the Partial Fourier transform, with respect to xo and xz3
in order to get the operator

D2+ (62 — bx1)? + &5 .
When b # 0, we can translate in the 27 variable and get the operator on L?(R?)
Dy, + (blyr)* + €3 -

It is then easy to see that the spectrum is [|b], +00l.
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13.3 The case of Rj.

13.3.1 Preliminaries

For the analysis of the spectrum of the Neumann realization of the Schrédinger
operator with constant magnetic field Sp in R?*, we start like in the case of R?
till (13.1.6). Then we can no more perform the translation and hence we have
to look at the family (parametrized by &) D? + (z + £)? on the half line, with
Neumann condition and more precisely to the groundstate energy p(€). The
bottom of the spectrum is effectively given by :

inf o(SYF") = |Blinf u(€) = 0| B| . (13.3.1)
Similarly, for the Dirichlet realization, we find :
inf o (S2F") = |B|inf A(€) = |B| . (13.3.2)

13.3.2 Main results for a 1D-model

Let us begin with the analysis of a a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples. We
consider the Neumann realization H™¢ in L?(R*) associated to the operator
D2 + (z — €)% Tt is easy to see that the operator is with compact resolvent
and that the lowest eigenvalue pu(¢) of HY¢ is simple . For the second point,
the following simple argument can be used. Suppose by contradiction that the
eigenspace is of dimension 2. Then, we can find in this eigenspace an eigenvector
such that u such that «(0) = «/(0) = 0. But then it should be identically 0 by
Cauchy uniqueness.

We denote by ¢¢ the corresponding strictly positive normal eigenvector. The
minimax shows that p(£) is continuous as a function of £. It is a little more work
(admitted (see Kato [Ka]) to show that the function is C* and actually analytic
(see in the next Subsubsection). It is immediate to show that u(§) — 400 as
¢ — —00. We can indeed compare by monotonicity with D2 + 22 + £2.

The second remark is that ;4(0) = 1. For this, we use the fact that the lowest
eigenvalue of the Neumann realization of D? +t2 in R* is the same as the lowest
eigenvalue of D? + t? in R, but restricted to the even functions, which is also
the same as the lowest eigenvalue of D? + ¢? in R.

Moreover the derivative of p at 0 is strictly negative.
It is a little more difficult to show that

lim =1.
dim u(8)

The proof can be done in the following way. For the upper bound, we ob-
serve that p(£) < A(&) where A(§) is the eigenvalue of the Dirichlet realization.
By monotonicity of A(£), it is easy to see that A(£) is larger than one and tend
to 1 as £ — +oo. Another way is to use the function exp —%(m —€)? as a test
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function.

For the converse, we start from the eigenfunction ¢¢(x), show some uniform
decay of ¢¢(x) near 0 as § — +oo and use z — x(x + §)pe(x + §) as a test
function for the harmonic oscillator in R.

All these remarks lead to the observation that the infimum inf¢cg inf Sp (HY>¢)
is actually a minimum [DaHe] and stricly less than 1. Moreover one can see that
w(€) > 0, for any £, so the minimum is strictly positive. To be more precise on
the variation of pu, let us first establish

1 (&) = ~[u(€) — €we(0)* . (13.3.3)
To get (13.3.3), we observe that, if 7 > 0, then
0= [g, [Dipe(t) + (t — )*pe(t)]pesr(t + T)dt
= —0e(0)gey, (7) + (€ + 7) = p(€)) Jg, pe()perr(t+7)dt .

We then take the limit 7 — 0 to get the formula.

From (13.3.3), it comes that, for any critical point &, of p in R

1 (&) = 2607 (0) > 0. (13.3.4)

So the critical points are necessarily non degenerate local minima. It is then
easy to deduce that there exists a unique & > 0 such that p(€) continues to
decay monotonically till some value ©¢ < 1 and is then increasing monotonically
and tending to 1 at +00. Moreover

Qo =& . (13.3.5)

Finally, it is easy to see that ¢¢(z) decays exponentially at co.
Let us show additional remarks on the properties of u and ¢ () which are
related to the Feynman-Heilmann formula. We admit again (See Kato [Ka]

and the next subsection) that we can “freely” differentiate with respect to &.
Let us start3? from :

HY(€)p(5€) = n(&)¢(€) - (13.3.6)

Differentiating with respect to &, we obtain :

(0:HN (&) — 1 (©)e(5©) + (HN (©)9(:€) — 1(€))(0e) () = 0. (13.3.7)

Taking the scalar product with ¢ in L?(RT), we obtain the socalled Feynman-
Heilmann Formula

+oo
(&) = ((OeH" (€)pe | ) = —2/0 (t = &)lpe(t)dt . (13.3.8)

39We change a little the notations for HV+¢ (this becomes HY (£) ) and ¢ in order to have
an easier way for the differentiation.
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Taking the scalar product with Jz)(-;€), we obtain the identity :

((0eH™ () =1 (€))¢(-:€) | (@) () H{H™ (€)p(5€)—l(€)) (De0) (5€) | (De)(5€)) = 0.

(13.3.9)
In particular, we obtain for £ = £, that :

(O HN (€0)o(:€0) | D) (-5 €0))H((H™ (€) (5 €0) —1(€0)) (Fe0) (5 €0) | (De)(€0)) = 0

(13.3.10)
We observe that the second term is positive (and with some extra work coming
back to (13.3.7) strictly positive) :

(B H™ (€0))(:€0) | De) (-5 60)) < 0. (13.3.11)

Let us differentiate one more (13.3.7) with respect to &.

20 HN(€) — 1'(€))0ep(+5€)
+(HN(E) — u(é))(a ©)(€) (13.3.12)
+(OFHN () — p" (€ )) (56 =

Taking the scalar product with ¢ and £ = £y, we obtain
1" (€0) = 2+ (O H™ (&0) (3 €0) | D) (5 60)) < 2. (13.3.13)

13.3.3 Regularity

Proposition 13.3.1. The eigenvalue p(§) and the corresponding eigenvector
¢¢ are of class C™° with respect to &.

Proof :
Step 1 :
Let 1(&) the lowest eigenvalue of HY(&)). We recall that it is simple. Let
¢, the normalized eigenvector attached to 1u(§o). Let us denote by g the
orthogonal projection on varphie,. The domain of the operator can be seen as

D(H™(€)) = {u € B*(R") | u'(0) =0,

and we observe that it is independent of £. We will use a variant of the so called
Grushin’s method. Let us introduce the unbounded operator on L*(R*) x C

o HN(&) — (&) e
Mo: _< %, 0 )

with domain D(H™(&y)). Let us show its invertibility. By elementary algebra,

we get that the inverse is
_( B0 Ej
flo = ( Ey EBEjT )’
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with :

Ey = ((HN(io)—M(fo))wo)*l (13.3.14)
By = g (13.3.15)
Ey = ¢ (13.3.16)
Ej~ = 0. (13.3.17)

Step 2 :
Let us now introduce

HY(E) —p e
M(ga :u) = ( * ’ .
e 0
Let us show that the inversibility is stable when £ remains near &y, and p remains
near 1(&). We observe that :

M) = M0+( (H(E)—H(fo)g—(u—u(fo)) 8

e (Id+RO ( (V) ~ HY (@) = (1= o) 0 )) |

But the map ¢ — HY () is continuous from C into £(D(H™ (&), L?). So the
result is clear and the inverse can be given by the convergent Neumann series :

M) = Y (-1 ( Ry ( (H(¢) — H@o)g — (1= pl&0)) 0 )) .

JEN
(13.3.18)
Let us denote by

_( E&n)  ET(E
R w) = ( E-(&,n) E*(&n) )

the inverse of M (&, 1). The following result is standard :

Lemma 13.3.2.
The inverse of M (&, ) is a C* map in a neighborhood of (£, 1(&o)) with value
in D(HY (€)) x C)

Proof of Lemma 13.3.2 :
It is clear that

() = ( R ( () = H(6o)) = (1= (&) 0 )) (15.5.19)

is C*°. Let us also observe that :

Mg )™ =) (1T (¢ 1) Ro. (13.3.20)
JEN
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Consider
(&) = (H(&) — H()) — (1 — p(&o)) -
The derivatives of (£, u) are given by :

Oer (&, 1) OeH(E) = —2(t —€)
Aur (&, 1) ~1. (13.3.21)

In view of (13.3.20), we will estimate T'(&, u)? :

(58 (8 ) (5 B e
4

(Eorle )y
(szor(fv M))(Eo’l"(f, ,u))j_l

So
-1 _ BRRY (Eor(g,u))j ] 0
MEm™ = 2jen(=1) (<¢gor<§,u>>(Eor<f,m>ﬂ—1 o)RO- (13.3.23)

It is then easy to show the C*° property.

Lemma 13.3.3.

w is an eigenvalue of H™ (&) if and only if E¥— (&, 1) = 0.

Moreover, if pu is an eigenvalue, ET (&, 1) is the associated eigenvector in a
neighborhood of (o, 11(&0))-

Proof of 13.3.3 :
Again this is simple linear algebra. Expressing that R(, p) is the inverse of
M(€, 1) gives -

B(&n)(H(E) — p) + E* (& n)vi, Id (13.3.24)
E7( m)eee = 1 (13.3.25)
B pes,, = 0 (13.3.26)
E-(&uHE) —p)+ET(En)ps, = 0 (13.3.27)
(H(&) = EE p) + e £ (§pn) = 1d (13.3.28)
VLEL, = 1 (13.3.29)
(H(E) = E" (&) + g BT (E,pn) = 0 (13.3.30)
e B ) = 0. (13.3.31)
Taking the composition of ET (&, ) with (13.3.27) on the left, we get
ET(&mE™ (&) (H(E) —p) + ET (&) ET (& n)eg, =0,
SO
E+(£7M)<PZO _ _E+(57M)E7(57/$)(H(£) — M). (13.3.32)

Et=(& )
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This quantity (13.3.32) is well defined if Eg; = 0. So using (13.3.24) et(13.3.32)
we get,

_EYEmE ()
Et=(&pm)

So we have shown that if Eg’; # 0, then H (&) — p is invertible.

(H(&) —p)~' = E(&, ) (13.3.33)

Conversely, let us assume that Eg'; = 0. Then using (13.3.30), E*(&, ) is an
eigenvector as soon that ET (&, u) is different from 0. But EEE.,L(&)) = Ef = ¢,

is non zero, so by continuityit is also true for ET (&, i) .

Step 3 : Analysis of the equation ET~ (&, pu) = 0.
We have just to compute the implicit function theorem in the neighborhood of
(€0, 1t(&0). But by elementary computations, we have

BT (6 m) =) (=1 (f,reu) (Bor(&, 1))~ e, (13.3.34)

Jjz1

The derivatives at (£o, 1(£o) are easily computed as :

8€E(57N)+7(£07M(50)) = —9020(957’(50,#(50))9050 (13.3.35)
= 2/ (t — o)z, (t) dt (13.3.36)

R+
OEL (& &) = -1 (13.3.37)

In particular 8ME; . (€0, (&) # 0 and the implicit function theorem leads to

Lemma 13.3.4.
There exists 1 > 0 and a C*™ map i on |& —n,& + n| such that

VE €)éo —n, o+l Vi €lu&o) —n, p(€o) +nl, B, =0 <= pn=p(E).
We then obtain a C° function £ +— [i(€) such that f(€) is an eigenvalue of
HN(¢) and which is equal to u(€) at &. By uniqueness, we get that for |¢ — &
small enough fi(§) = u(€).

13.4 Notes

Old results are due to Kato [Ka] and Avron-Herbst-Simon [AHS], but we have
also added more recent results of Dauge-Helffer [DaHe].
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14 Exercises and Problems

14.1 Introduction

We present some exercises or problems proposed in the last years. They some-
times strongly intersect with the course.

14.2 Exercises

Exercise 14.2.1. (After Effros, Avron-Seiler-Simon).

Let P and Q two selfadjoint projectors in a Hilbert space H. i) Let us assume
that A = P — @Q is compact. Show that if X # +1 is in the spectrum, them —\
s in the spectrum with the same multiplicity. For this, one can first show that
with B=1—P —Q,

A2+ B?=1, AB+BA=0.

it) Assume now that A is in addition trace class, that is that the series |u;|,
where [1; are the non zero eigenvalues of A, counted with multiplicity. Compute
Tr A= Zj i; and show that it is an integer.

Exercise 14.2.2. (Temple’s inequality).
Let A be a selfadjoint operator on an Hilbert space and ¢ € D(A) such that

||9]| = 1.

Suppose that A is the unique eigenvalue of A in some interval o, B and that
n = (¢ | Ay) belongs to the interval Jo, B[. Then show that :

€ €?

U <A<+ .
B—n n—a«

with :
e =[(A—n)l.
As a preliminary result, one can show that (A — a)(A — ) and (A—B)(A—N)
are positive operators. Then apply the inequalities with 1.
Show that this inequality is an improvment if €2 < (8 —n)(n — ).

Exercise 14.2.3. .

Let A(x1,22) = (A1(x1,22), Aa(x1,22)) be a C™ wvector field on R2. Let V be
a C™ positive function on R2.

Let P := (Dy, — A1(21,22))? + (Day — Aa(w1,22))% + V(2) the differential
operator defined on C§°(R?).

a) Show that P admits a selfadjoint extension in L?(R?).

b) Show that P is essentially selfadjoint.

Exercise 14.2.4. .
We admit the results of Exercise 14.2.53. Show that the selfadjoint extension in
L*(R?) of

d . 2\2 d2 2
T .= _(d—xl —Z$2$1) — d—xg +IE2 s

s with compact resolvent.
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Exercise 14.2.5. .
Let V be a C™ positive potential in R?. Let us consider, with B € R\ {0}, the
operator

P=D2 + (Dy, +Bx)* +V(z).

a) Recall briefly the spectrum of its selfadjoint extension in the case V = 0.

b) We assume that V' tends to 0 as |z| — +o00. Determine the essential spectrum
of P.

Exercise 14.2.6. .
Let K be a kernel in S(R?) which is strictly positive and symmetric.
a) Show that the associated operator K which is defined on S(R) by

(Ku)(z) = / Kz y)u(y)dy

can be extended as a compact operator on L*(R). b) Let I be an open interval
in R and let us denote by K the operator on L*(I) defined by

() (z) = / K y)u(y)dy

Let \} be the largest eigenvalue of Kr. Show that
M<AL.

Show that we have strict inequality when I is not R.
¢) Let u' be a normalized eigenfunction of K associated with \s. Using its
restriction to I, show the inequality :

Ap S A; (L= [[utp2(zey) ™"

d) Let I, = [—n,n]. Show that X} converges rapidly to A\ as n — +oco. More
precisely, show that, for all j € N, there exists a constant C; such that :

A — A7 [ <Cjn7, VneN*.

Exercise 14.2.7. .

Let us consider in Q =]0,1[xR, a positive C*° function V and let Sy be the
Schrédinger operator So = —A +V defined on C§° ().

(a) Show that Sy admits a selfadjoint extension on L2(). Let S this extension.
(b) Determine if S is with compact resolvent in the following cases :

1. V(x) =0,

2. V(x) = 22 + 23,
3. V(x) =22,

4. V(x) ==}
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5. V(z) = (v1 — x2)2.

Determine the spectrum in the cases (1) and (4). One can first determine the
spectrum of the Dirichlet realization (or of Neumann) of —d?/dx? on ]0,1].

Exercise 14.2.8. .
We consider in R? the operator defined on S(R?; C?) by

DO = alel + 052Dm2 +agz .
Here the matrices o are hermitian 2 X 2 matrices such that :
Qi + Qo = 25”‘ ,

and we recall that Dy, = % % forj=1,2.

a) Is Dy symmetric? ser;Li—bounded ? It is suggested to use the Fourier
transform.

b) Compute D3.

¢) Show that Dy admits a selfadjoint extension Dy in L*(R?; C?), and de-
termine its domain.

d) Determine the spectrum of D;.

e) We suppose that, for all x € R?, V() is a 2 x 2 hermitian matriz, with
bounded C*° coefficients. Show that Dy = Dy+V admits a selfadjoint extension
and determine its domain.

Exercise 14.2.9. .

Let H, be the Dirichlet realization of —d?/dx? +x2 in ] — a,+a[. Show that the
lowest eigenvalue M\ (a) of H, is strictly positive, monotonically decreasing as
a — 400 and tend exponentially fast to 1 as a — +o00. Give an estimate as fine
as possible of |A1(a) — 1].

Exercise 14.2.10. .
We consider on C§°(R?), the operator

Py :=(Dy, —29)? + (Dy, — 21)? .

We recall that D, = %8%,,
Show that its natural selfadjoint extension P is unitary equivalent to the op-
erator —A (of domain H?). Determine its spectrum and its essential spectrum.

Exercise 14.2.11. .
Show that one can associate to the differential operator on C§°(Rx]0,1][) :

Ty = (Dﬂﬂl - xQx%)2 + (D$2)2 )

an unbounded selfadjoint operator T on L*(Rx]0,1[) whose spectrum is with
compact resolvent.
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Exercise 14.2.12. .

Let ¢ be a C?- function on R™ such that |Vp(z)| — +oo as |x| — 400 and with
uniformly bounded second derivatives. Let us consider the differential operator
on Cg°(R?) —A+2V¢-V. We consider this operator as an unbounded operator
on H = L*(R™,exp —2¢ dx). Show that it admits a selfadjoint extension and
that its spectrum is discrete.

We assume in addition that : me exp —2¢dr < +o0o. Show that its lowest
eitgenvalue is simple and determine a corresponding eigenvector.

Exercise 14.2.13. .

We consider in R3 the differential operator So := —A — %, a priori defined on
Cs°(R3).

a) Show that the operator admits a selfadjoint extension S.

b) Show the continuous injection of H?(R3) into the space of the Hélder func-
tions C*(R3), with s €]0, %[, and the compact injection for all compact K of
C*(K) into C°(K).

¢) Determine the essential spectrum of S. One possibility is to start with the
analysis of S, = —A — X where x is C> with compact support.

d) Show using the minimaz-principle that S has at least one eigenvalue. One
can try to minimize over a u —< Sou , u)/||ul|?> with u(z) = exp —ar.

e) Determine this lowest eigenvalue (using the property that the groundstate
should be radial).

Exercise 14.2.14. .

a) Let g be a continuous function on R such that g(0) = 0. Analyze the conver-
gence of the sequence (g(t)un(t))n>1 in L2(R) where u,(t) = v/nx(nt) and x is
a C* function with compact support.

b) let f € C°([0,1];R). Let Ty be the multiplication operator by f defined on
L2()0,1]): u Tpu = fu.

Determine the spectrum of Ty. Discuss in function of f the possible existence
of eigenvalues. Determine the essential spectrum of T.

Exercise 14.2.15. .
Discuss in function of a > 0 the possibility of associating to the differential
operator define on C§°(IR?)
—A—7r7¢
a selfadjoint operator on L*(R3).
Exercise 14.2.16. .
Let Q be a non empty open subset in R and let us consider the multiplication
operator on L?(R?) defined by the multiplication by xo where xq is equal to 1 in

Q and 0 outside. Determine the spectrum, the essential spectrum, the discrete
spectrum.

Exercise 14.2.17. .
Show that the spectrum in R* of P = D2 + a2 + D2 is [1,+00[.
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Exercise 14.2.18. .
Let V € S(R?) be positive and let us consider the operator :

Ti=(-A+1)"2V(-A+1)"2 .

a) Explain how to define (—A +1)"2, as an operator on L2(R%).

b) Show that T is a bounded, selfadjoint, positive, compact operator on L*(R?).
¢) Discuss the injectivity in function of V' ¢

d) Establish a link with the research of pairs (u,p) in H?(R?) x R* such that :

(—A+1—puV)u=0.

Exercise 14.2.19. .
Let § € R.
(a) Show that the operator Ps defined on C§°(R?) by

Ps:= D2 + Df, + 2%yt +atyi + S+ y)

1s semibounded.
One can first show the inequality :

(Pou , u) > [lzul[* + [[yul[* .

(b) Show that there exists a natural selfadjoint extension of Ps.
(¢) What is the corresponding form domain ?
(d) Show that the selfadjoint extension is with compact resolvent.

Exercise 14.2.20. .

Let us consider in RY, the Neumann realization in RT of Py(&) := D? + (t—§)?,
where € is a parameter in R. We would like to find an uppr bound for ©y =
infe (&) where p(€) is the smallest eigenvalue of Py(§). Following the physicist
Kittel, one can proceed by minimizing (Po(£)d(+; p) | &(+; p)) over the normalized
functions ¢(t; p) == c,exp —pt® (p > 0). For which value of & is this quantity
minimal 29 Deduce the inequality :

2
Oy < 1——.
™

14.3 Problems

Problem 14.3.1. .
Let us consider in the disk of R? Q := D(0, R) the Dirichlet realization of the
Schrédinger operator

smy:—A+%vmy (14.3.1)

where V is a C™ potential on Q satisfying :

V(z)>0. (14.3.2)



Here h > 0 is a parameter.

a) Show that this operator is with compact resolvent.
b) Let M\i(h) be the lowest eigenvalue of S(h). We would like to analyze the
behavior of A1 (h) as h — 0. Show that h — A1 (h) is monotonically increasing.
¢) Let us assume that V > 0 on Q; show that there exists € > 0 such that

R*X\i(h) > €. (14.3.3)

d) We assume now that V =0 in an open set w in Q. Show that there exists a
constant C' > 0 such that, for any h > 0,

M(h) < C. (14.3.4)

One can use the study of the Dirichlet realization of —A in w.
e) Let us assume that :

V' > 0 almost everywhere in ) . (14.3.5)
Show that, under this assumption :

lim A (h) = +o0. (14.3.6)

One could proceed by contradiction supposing that there exists C' such that
A1(h) < C, Yh such that 1 > h > 0. (14.3.7)
and establishing the following properties.

e For h >0, let us denote by x +— uy(h)(x) an L?-normalized eigenfunction
associted with A1(h). Show that the family ui(h) (0 < h <1) is bounded
in H(Q).

e Show the existence of a sequence h,, (n € N) tending to 0 asn — 400 and
Uso € L2(Q) such that

ngrfoo u1(hn) = Uso

in L?(Q).
e Deduce that :
/ V(z) too(x)? dz = 0.
Q

e Deduce that us = 0 and make explicite the contradiction.
f) Let us assume that V(0) = 0; show that there exists a constant C, such
that :
A(h) <

=1 Q

g) Let us assume that V(x) = O(|z|*) prés de 0. Show that in this case :

3

A1(h) <

o Q
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h) We assume that V (x) ~ |z|? near 0; discuss if one can hope a lower bound
in the form
1
A (h) > —.
Justify the answer by illustrating the arguments by examples and counterexam-
ples.

Problem 14.3.2. .
We consider on R and for e € I := [—1,+00[ the operator H, = —d*/dz* +
22 + €|z|.
a) Determine the form domain of H. and show that it is independent of e.
b) What is the nature of the spectrum of the associated selfadjoint operator?
¢) Let M\ (€) the smallest eigenvalue. Give rough estimates permitting to estimate
from above or below A\ (€) independently of € on every compact interval of I.
d) Show that, for any compact sub-interval J of I, there exists a constant C
such that, for all € € J, any L?-normalized eigenfunction u. of H, associated
with A1 (€) satisfies :

|[uellBrry < Cy

For this, on can play with : (Hcue, Ue) 12(r)-

e) Show that the lowest eigenvalue is a monotonically increasing sequence of
eel.

f) Show that the lowest eigenvalue is a locally Lipschitzian function of € € 1.
On utilisera de nouveau le principe du maz-min.

g) Show that \(€) — 400, as € — +00 and estimate the asymptotic behavior.
h) Discuss the same questions for the case H. = —d? /dx?+x%+ex* (withe > 0).

Problem 14.3.3. .
The aim of this problem is to analyze the spectrum X (P) of the Dirichlet real-
ization of the operator P := (Dgy, — 322)? + (Da, + 321)? in RT x R.

1. Show that one can a priori compare the infimum of the spectrum of P in
R2and the infimum of X7 (P).

2. Compare P (P) with the spectrum P (Q) of the Dirichlet realization of
Q:=D. + (y1 —y2)® in RT xR,

3. We first consider the following family of Dirichlet problems associated with
the family of differential operators : a+— H(a) defined on ]0,4o00[ by :

H(a) = D]+ (t —a)*.

Compare with the Dirichlet realization of the harmonic oscillator in | —
a, +00.

4. Show that the lowest eigenvalue \(a) of H(«) is a monotonic function of
a € R.
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Show that o +— A« is a continuous function on R.
Analyze the limit of A\(a) as o — —o0.

Analyze the limit of A(«) as a — +00.

> NS =

Compute X(0). For this, one can compare the spectrum of H(0) with the
spectrum of the harmonic oscillator restricted to the odd functions.

9. Let t — u(t;a) the positive L?-normalized eigenfunction associated with
Ma). Let us admit that this is the restriction to R* of a function in S(R).
Let, for a € R, Ty, be the distribution in D'(RT x R) défined by

+oo
¢kuwzé By, @)t )y -

Compute QT,.

10. By constructing starting from T, a suitable sequence of L?-functions tend-
ing to T, show that A(a) € P (Q).

11. Determine P (P).

Problem 14.3.4. .

Let H, be the Dirichlet realization of —d?/dx? + z* in| — a, +al.

(a) Briefly recall the results concerning the case a = +oo.

(b) Show that the lowest eigenvalue A\i(a) of H, is decreasing for a €]0,+o00|
and larger than 1.

(c) Show that A\1(a) tends exponentially fast to 1 as a — +0o. One can use a
suitable construction of approximate eigenvectors.

(d) What is the behavior of A1(a) as a — 0. One can use the change of variable
x = ay and analyze the limit lim, .o a1 (a).

(e) Let u1(a) be the smallest eigenvalue of the Neumann realization in | — a, +al.
Show that pi(a) < A(a).

(f) Show that, if us is a normalized eigenfunction associated with pi(a), then
there exists a constant C' such that, for all a > 1, we have :

l|ruallz2-a,+ap < C -
(g) Show that, for u in C?([—a,+a]) and x in C3(] — a,+al), we have :

+a +a +a
- [ewrauma= [Ciowropa- [ veraera

—a —a —a

(h) Using this identity with uw = u,, a suitable x which should be equal to 1 on
[—a+1,a — 1] , the estimate obtained in (f) and the minimaz principle, show
that there exists C' such that, for a > 1, we have :

A (a) < pi(a) +Ca™? .

Deduce the limit of pi(a) as a — +oo.

128



References

[Ag] S. Agmon : Lecture on exponential decay of solutions of second order
elliptic equations. Math. Notes, t.29, Princeton University Press.

[A-G] N. I. Akhiezer, I. M. Glazman. Theory of linear operators in Hilbert
space, Pitman, Londres, 1981.

[AHS] J. Avron, I. Herbst, and B. Simon : Schrédinger operators with magnetic
fields I. Duke Math. J. 45, p. 847-883 (1978).

[BGM] M. Berger, P. Gauduchon, and E. Mazet : Spectre d’une variété rie-
mannienne, Springer Lecture Notes in Mathematics 194 (1971).

[Br] H. Brézis : Analyse Fonctionnelle. Editions Masson.

[BeSt] A. Bernoff, P. Sternberg : Onset of superconductivity in decreasing fields
for general domains, J. Math. Phys. 39 (1998), p. 1272-1284.

[BS] P. Blanchard, J. Stubbe : Bound states for Schrédinger Hamiltonians :
phase space methods and applications. Rev. in Math. Physics (1997).

[ChLa] C. Cherfils, O. Lafitte : Analytic solutions of the Rayleigh equation for
linear density profiles. Physical Review E, Vol. 62, No 2, August 2000, p.
2967-2970.

[CCLaRa] C. Cherfils-Clerouin, O. Lafitte and P-A. Raviart : Asymptotics
results for the linear stage of the Rayleigh-Taylor instability. Preprint.

[CDV] Y. Colin de Verdiere : Spectres de Graphes. Cours Spécialisés, No 4,
SMF (1998).

[CFKS] H.L. Cycon, R. Froese, W. Kirsch, and B. Simon : Schrédinger opera-
tors. Springer (1987).

[DaHe] M. Dauge, B. Helffer : Eigenvalues variation I, Neumann problem for
Sturm-Liouville operators. Journal of Differential Equations, Vol. 104, n°2,
august 1993, p. 243-262.

[DaLi] R. Dautray, J.-L. Lions : Analyse mathématique et calcul numérique
pour les sciences et les techniques. Tome 2, Chap. VIII, Masson.

[Da] E.B. Davies: Spectral theory and differential operators. Cambridge studies
in advanced Mathematics.

[Di] J. Dieudonné : Calcul infinitésimal. Hermann.

[DiSj] M. Dimassi, J. Sjostrand : Spectral Asymptotics in the Semi-classical
limit. London Mathematical Society, Lecture Note Series 268. Cambridge
University Press 1999.

129



[GlJa] J. Glimm, A. Jaffe : Quantum physics (a functional integral point of
view). Springer Verlag, Second edition (1987).

[GrSj] A. Grigis, J. Sjostrand : Microlocal analysis for differential operators.
An introduction. London Mathematical Society Lecture Note Series, 196.
Cambridge University Press, Cambridge, 1994.

[He-T] B. Helffer : Théorie spectrale pour des opérateurs globalement elliptiques.
Astérisque n° 112 (1984).

[He-II] B. Helffer : Introduction to the semiclassical analysis for the Schrédinger
operator and applications. Springer lecture Notes in Math., n° 1336 (1988).

[He-III] B. Helffer : Semiclassical analysis for Schrodinger operators, Laplace
integrals and transfer operators in large dimension: an introduction. Cours

de DEA, Paris Onze Edition (1995).

[He-IV] B. Helffer : Semiclassical analysis and statistical mechanics.
Cours PostDEA. Ecole doctorale de Mathématiques et de Mécanique de
I’Université Paul Sabatier. December 1998.

[He-V] B. Helffer : Bouteilles magnétiques et supraconductivité (d’apres Helffer-
Morame, Lu-Pan et Helffer-Pan). Séminaire EDP de ’école Polytechnique
2000-2001.

[HelLaf] B. Helffer, O. Lafitte : On spectral questions around the Rayleigh
equation. To appear in Asymptotic Analysis (2003).

[HeMol] B. Helffer, A. Mohamed : Semiclassical analysis for the ground state
energy of a Schrodinger operator with magnetic wells, Journal of Functional
Analysis 138, N° 1 (1996), p. 40-81.

[HeMo2] B. Helffer, A. Morame : Magnetic bottles in connection with super-
conductivity. Journal of Functional Analysis, Vol. 185, No 2, October,
p. 604-680 (2001).

[HeMo3] B. Helffer, A. Morame : Magnetic bottles in connection with super-
conductivity: Case of dimension 3. Proc. Indian Acad. Sci. (Math. Sci.)
Vol. 112, No. 1, February 2002.

[HeMo4| B. Helffer, A. Morame : Magnetic bottles for the Neumann problem:
Curvature effects in the case of dimension 3 (general case). Preprint mp_arc
02-145 (2002). To appear in Annales Ecole Normale Supérieure 2004.

[HeSj] B. Helffer, J. Sjostrand : Multiple wells in the semiclassical limit I.
Comm. in PDE 9(4), p. 337-408, (1984).

[HiSi] P.D. Hislop, I.M. Sigal : Introduction to Spectral Theory — With
applications to Schrodinger Operators — Applied Mathematical Sciences
113. Springer (1995).

130



[Ho] L. Héormander : The analysis of linear partial differential operators,
Springer Verlag.

[Hu] D. Huet : Décomposition spectrale et opérateurs, Presses universitaires
de France (1976).

[Ka] T. Kato : Perturbation theory for linear operators, New York, Springer-
Verlag, (1966).

[La] O.D. Lafitte : Sur la phase linéaire de l'instabilité de Rayleigh-Taylor.
Séminaire EDP de I’Ecole Polytechnique. April 2001.

[Le-Br| P. Lévy-Bruhl : Introduction & la théorie spectrale. Editions Dunod
(2003).

[LiLo] E. Lieb, M. Loss : Analysis. Graduate Studies in Mathematics, Vol. 14,
American Mathematical Society.

[Liol] J.L. Lions : Lecture on elliptic partial differential equations. Tata insti-
tute of fundamental research. Bombay (1957).

[Lio2] J.L. Lions : Problemes aux limites dans les EDP. Séminaire de
Mathématiques supérieures de l'université de Montreal. (1962).

[LiMa] J.L. Lions, E. Magenes : Probléemes aux limites non-homogenes. Tome 1.
Editions Dunod.

[RS-I] M. Reed, B. Simon : Methods of modern mathematical Physics. I.
Functional analysis. Academic Press, (1972).

[RS-II] M. Reed, B. Simon : Methods of modern mathematical Physics. II.
Fourier analysis, selfadjointness. Academic Press, (1975).

[RS-III] M. Reed, B. Simon : Methods of modern mathematical Physics. III.
Academic Press, (1976).

[RS-IV] M. Reed, B. Simon : Methods of modern mathematical Physics. IV.
Analysis of operators. Academic Press, (1978).

[Ro] D. Robert : Autour de approximation semi-classique. Birkhduser, Vol.68,
Progress in Mathematics, (1987).

[RoSi] S. Roch and B. Silbermann. C*-algebras techniques in numerical analy-
sis. J. Oper. Theory 35, p. 241-280 (1996).

[Rul] W. Rudin : Real and Complex Analysis. Mc Graw Hill, New York (1974).
[Ru2] W. Rudin : Analyse fonctionnelle. Ediscience international (1997).

[Sib] Y. Sibuya : Global theory of a second order linear ordinary differential
equation with a polynomial coefficient. North holland (1975).

131



[Sima] C.G. Simader : Essential self-adjointness of Schrédinger operators
bounded from below. Math. Z. 159, p. 47-50 (1978).

[Si] B. Simon : Functional integration and quantum physics. Pure and Applied
mathematics n°86, Academic press, New york, (1979).

[Sj] J. Sjostrand. Pseudospectrum for differential operators. Séminaire & I'Ecole
Polytechnique, Exp. No. XVI, Sémin. Equ. Dériv. Partielles, Ecole Poly-
tech., Palaiseau (2003).

[Trl] L.N. Trefethen. Pseudospectra of linear operators. Siam Review 39, p. 383-
400 (1997).

[Tr2] L.N. Trefethen. Spectral methods in Mathlab. STAM Philadelphia (2000).

[TrEm] L.N. Trefethen and M. Embree. Spectra and Pseudospectra—The be-
havior of nonnormal matrices and operators. Lecture Notes (Version of 9
November 2004).

[Yo] K. Yosida : Functional Analysis, Grundlehren der mathematischen Wis-
senschaften 123, Springer Verlag, (1980).

[Zw] M. Zworski. A remark on a paper of E.B. Davies. Proc. Amer. Math. Soc.
129 (10), p. 2955-2957 (2001).

132



