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Introduction

The celebrated nodal domain theorem by Courant [26] says that
the number of nodal domains of an eigenfunction associated with a
k-th eigenvalue of the Dirichlet Laplacian (eigenvalues listed in
increasing order) should be less than or equal to k. Pleijel [17]
proved that equality holds only for finitely many values of k . In
this case we speak of the Courant sharp situation (see [14, 15] for
the connection of this property with the question of minimal
spectral partitions).

If we look at the square, it is immediate that the first, second and
fourth eigenvalues are Courant sharp. We will first analyze the
statement by Pleijel saying that there are no other cases.

In the case of the sphere, it is possible to prove
(Leydold-Karpushin) that the only cases where it occurs are the
first and second eigenvalues.



We mainly discuss some results of Antonie Stern [20] who was a
PhD student of R. Courant and defended her PhD in 1924, see
[37]. These results concern the square and the sphere.
Although containing interesting arguments toward a proof, it is
probably not true that her proofs are complete.
In 1977, Hans Lewy (another former student of R. Courant at
about the same time as A. Stern) apparently forgetting (to
mention) the work of A. Stern proves rigorously the results
concerning the sphere.



The following biographical information has been indicated to us by
Annette Vogt1.

Antonie (Toni) Stern (1892 Dortmund - after 1967 Israel)
studied mathematics. In 1925 she received the doctoral
degree (Dr. phil.) at the Göttingen University, her
advisor was Richard Courant. Obviously she could not
find an academic position as a female mathematician,
but she was a member of the German Mathematical
Society (DMV) from 1926 until 1939 when she managed
to escape Nazi Germany, and went into exile to Palestine,
where her sister Ilse (b. 1900) was living already since
1924.

1A. Vogt. “Wissenschaftlerinnen in Kaiser-Wilhelm-Instituten. A-Z.” Berlin
2008. Veröffentlichungen aus dem Archiv zur Geschichte der
Max-Planck-Gesellschaft, Bd. 12, 2. erw. Aufl., p. 180.



After her thesis, she changed her scientific field, and she
became a researcher in the Kaiser Wilhelm Institute for
Applied Physiology (occupational physiology) in
Dortmund, from 1929 until 1933. Because of the Nazi’s,
she had to leave the KWI in late 1933. She was born in a
Jewish family, the antisemitic laws in Nazi Germany were
introduced in April 1933. What she did between 1933
and 1938 is not known. In the end of 1938 (after the
November 1938 pogrom in Germany, called
“Reichskristallnacht”), she emigrated from Dortmund to
Palestine....



Some motivation coming from the minimal partitions

Before to present these results, we recall briefly the link with the
problem of minimal spectral k-partitions in the two-dimensional
case.

We consider mainly the Dirichlet Laplacian in a bounded domain
Ω ⊂ R2. We assume that Ω is sufficiently regular say with C∞

boundary.

In [15] with T. Hoffmann-Ostenhof and S. Terracini, we have
started to analyze the relations between the nodal domains of the
real-valued eigenfunctions of this Laplacian and the partitions of Ω
by k open sets Di which are minimal in the sense that the
maximum over the Di ’s of the ground state energy (= lowest
eigenvalue) of the Dirichlet realization of the Laplacian H(Di ) in
Di is minimal.
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We denote by λj(Ω) the increasing sequence of its eigenvalues and
by uj some associated orthonormal basis of real-valued
eigenfunctions. The groundstate u1 can be chosen to be strictly
positive in Ω, but the other eigenfunctions uk must have zerosets.
For any real-valued u ∈ C 0

0 (Ω), we define the zero set as

N(u) = {x ∈ Ω
∣∣ u(x) = 0} (1)

and call the components of Ω \ N(u) the nodal domains of u. The
number of nodal domains of u is called µ(u). These µ(u) nodal
domains define a k-partition of Ω, with k = µ(u).



We recall that the Courant nodal theorem says that, for k ≥ 1, and
if λk denotes the k-th eigenvalue and E (λk) the eigenspace of
H(Ω) associated with λk , then, for all real-valued
u ∈ E (λk) \ {0} , µ(u) ≤ k . A theorem due to Pleijel [17] in 1956
says that this cannot be true when the dimension (here we
consider the 2D-case) is larger than one.



Minimal spectral partitions

We now introduce for k ∈ N (k ≥ 1), the notion of k-partition.
We will call k-partition of Ω a family D = {Di}ki=1 of mutually
disjoint open connected sets in Ω. We denote by Ok(Ω) this set.
A spectral minimal partition sequence is defined by

Definition

For any integer k ≥ 1, and for D in Ok(Ω), we set

Λ(D) = max
i
λ(Di ). (2)

Lk(Ω) = inf
D∈Ok

Λ(D). (3)

and call D ∈ Ok a minimal k-partition if Lk = Λ(D).



If k = 2, it is rather well known that L2 = λ2 and that the
associated minimal 2-partition is a nodal partition, i.e. a partition
whose elements are the nodal domains of some eigenfunction
corresponding to λ2.

One can show (Conti-Terracini-Verzini [9, 10, 11] and
Helffer–Hoffmann-Ostenhof–Terracini [15] ) that minimal spectral
partitions always exist, are actually as regular2 as the nodal sets of
an eigenfunction.

2up to set of capacity 0



We say that Di ,Dj are neighbors or Di ∼ Dj , if
Dij := Int (Di ∪ Dj) \ ∂Ω is connected. We associate with each D
a graph G (D) by associating with each Di a vertex and to each
pair Di ∼ Dj an edge. We will say that the graph is bipartite if it
can be colored by two colors (two neighbors having two different
colors). We recall that the graph associated with a collection of
nodal domains of an eigenfunction is always bipartite.



Main results in the 2D case

A natural question is whether a minimal partition of Ω is a nodal
partition, i.e. the family of nodal domains of an eigenfunction of
H(Ω).

We have first the following converse theorem ([15]):

Theorem BP

If the minimal partition is bipartite this is a nodal partition.

A natural question is now to determine how general this previous
situation is.



Surprisingly this only occurs in the so called Courant-sharp
situation. We say that:

Definition Courant-sharp

A pair (u, λk) is Courant-sharp if
u ∈ E (λk) \ {0} and µ(u) = k .



An eigenvalue is
called Courant-sharp if there exists an associated Courant-sharp pair.



For any integer k ≥ 1, we denote by Lk(Ω) the smallest eigenvalue
whose eigenspace contains an eigenfunction of H(Ω) with k nodal
domains. We set Lk(Ω) =∞, if there are no eigenfunctions with k
nodal domains. In general, one can show, that

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) . (4)

The last result gives the full picture of the equality cases :

Theorem 3

Suppose Ω ⊂ R2 is regular.
If Lk = Lk or Lk = λk then

λk = Lk = Lk .

In addition, one can find a Courant-sharp pair (u, λk).

This is therefore interesting to determine for a given open set all
the Courant sharp cases. This is what we want to do in the case of
the square.



Pleijel’s theorem revisited

Pleijel’s theorem as stated in the introduction is the consequence
of a more precise theorem which gives a link between Pleijel’s
theorem and minimal partitions. The classical proof is indeed going
through the proposition

Proposition 1

lim sup
n→+∞

µ(φn)

n
≤ 4π

A(Ω) lim infk→+∞
Lk (Ω)

k

, (5)

where µ(φn) is the cardinal of the nodal components of Ω \ N(φn)

and then to establishing a lower bound for A(Ω) lim infk→+∞
Lk (Ω)

k .
We now focus our analysis on the square.



On Pleijel’s analysis for the square

Consider the rectangle R(a, b) =]0, aπ[×]0, bπ[. The eigenvalues
are given by

λ̂m,n = (
m2

a2
+

n2

b2
) , m, n ≥ 1,

with a corresponding basis of eigenfunctions given by

φm,n(x , y) = sin
mx

a
sin

ny

b
.

It is easy to determine the Courant sharp eigenvalues when b2/a2 is
irrational (see for example [15]). The rational case is more difficult.
In [17], Pleijel claims that in the case of the square, the Dirichlet
eigenvalue λk is Courant sharp if and only if k = 1, 2, 4. His proof
involves the reduction to the analysis of the cases k = 5, 7, 9, and
does not seem well justified for this last point ; he indeed refers to
the book by Courant-Hilbert [27] where only pictures are
presented, actually extracted from an older book by Pockels [35].



Let us consider the general question of analyzing the zero set of
the Dirichlet eigenfunctions for the square S. We have:

φm,n(x , y) = φm(x)φn(y) , with φm(t) = sin(mπt) .

Due to multiplicities, we have (at least) to consider the family of
eigenfunctions,

(x , y) 7→ Φm,n(x , y , θ) := cos θ φm,n(x , y) + sin θ φn,m(x , y) ,

with m, n ≥ 1, and θ ∈ [0, π[.

In Pleijel’s analysis [17] of the Courant sharp property for S, it is
shown that it is enough to consider the eigenvalues λ5, λ7 and λ9

with correspond respectively to the pairs (m, n) = (1, 3),
(m, n) = (2, 3) and (m, n) = (1, 4).



Figure: Nodal sets, Dirichlet eigenvalues λ2 and λ5 (Pockels, [35]).



Pleijel’s reduction argument

Let us briefly recall Pleijel’s argument. Let
N(λ) := # {n | λn < λ} be the counting function. Using a
covering of R2 by the squares ]k, k + 1[×]`, `+ 1[, he first
establishes the estimate

N(λ) >
π

4
λ− 2

√
λ− 1 . (6)

For any n such that λn−1 < λn, we have N(λn) = n − 1, and

n >
π

4
λn − 2

√
λn . (7)



On the other hand, if λn is Courant sharp, the Faber-Krahn
inequality gives the necessary condition

λn
n
≥ j2

π

or
n

λn
≤ πj−2 ∼ 0.545 . (8)

Recall that πj2 is the ground state energy of the disk of area 1.

Combining (7) and (8), leads to the inequality

λn < 68 . (9)



After re-ordering the values m2 + n2, we get the spectral sequence
for λn ≤ 68,

It remains to analyze, among the eigenvalues which are less than
68, the ones which could be Courant sharp, and hence satisfy (8).
Computing the quotients n

λn
in the list, this leaves us with the

eigenvalues λ5, λ7 and λ9.
For these last three cases, Pleijel refers to pictures in
Courant-Hilbert [27], actually reproduced from Pockel [35], see
above. Although the choice of pictures suggests that some
theoretical analysis is involved, one cannot see any systematic
analysis, the difficulty being that we have to analyze the nodal sets
of eigenfunctions living in two-dimentional eigenspaces. Hence one
has to give a detailed proof that eigenvalues λ5, λ7 and λ9 are not
Courant sharp.



Of course we know that Φm,n has mn nodal components (this
corresponds to the “product” situation with θ = 0 or θ = π

2 ).
However, we have already mentioned that the number of nodal
domains for a linear combination of two given independent
eigenfunctions can be smaller or larger than the number of nodal
domains of the given eigenfunctions.



The three cases left by Pleijel

Behind all the computations we have the property that, for
x ∈]0, π[,

sin mx =
√

1− u2 Um−1(u) , (10)

where Um−1 is the Chebyshev polynomial of second type and
u = cos x .



First case : eigenvalue λ5 ((m, n) = (1, 3)).

We look at the zeroes of Φ1,3(x , y , θ). Let,

cos x = u , cos y = v . (11)

This is a C∞ change of variables from the square ]0, π[×]0, π[ onto
]− 1,+1[×]− 1,+1[. In these coordinates, the zero set of
Φ1,3(x , y , θ) inside the square is given by

cos θ (4v 2 − 1) + sin θ (4u2 − 1) = 0 . (12)



Except the two easy cases when cos θ = 0 or sin θ = 0, which can
be analyzed directly (product situation), we immediately get that
the only possible critical point is (u, v) = (0, 0), i.e.
(x , y) = (π2 ,

π
2 ), and that this can only occur for cos θ + sin θ = 0,

i.e. for θ = π
4 .

This analysis shows rigorously that the number of nodal domains is
2, 3 or 4 as claimed in [17], and numerically observed in the
Figures above. As a matter of fact, we have a complete description
of the situation.



Second case: eigenvalue λ7 ((m, n) = (2, 3)).

We look at the zeros of Φ2,3(x , y , θ). We first observe that

Φ3(x , y , θ) = sin x sin y×
×
(
2 cos θ cos x(cos 2y + 2 cos2 y) + 2 sin θ cos y(cos 2x + 2 cos2 x)

)
.

In the coordinates (11), this reads:

Φ3(x , y , θ) = 2
√

1− u2
√

1− v 2
(
u cos θ(4v 2 − 1) + v sin θ(4u2 − 1)

)
.

(13)
We have to look at the solutions of:

Ψ2,3(u, v , θ) := u(4v 2 − 1) cos θ + v(4u2 − 1) sin θ = 0 , (14)

inside [−1,+1]× [−1,+1].



Analysis at the boundary.

Due to symmetries, it suffices to consider the values θ ∈ [0, π2 ] and
the boundaries u = −1 and v = −1.
At the boundary u = −1, we get:

− cos θ (4v 2 − 1) + 3v sin θ = 0 , (15)

with the condition that v ∈ [−1,+1]. An analysis shows that the
zero set of Ψ2,3 always hits the boundary at six points.



Critical points.

We now look at the critical points of Ψ2,3. We get two equations:

(4v 2 − 1) cos θ + 8uv sin θ = 0 , (16)

and
8uv cos θ + (4u2 − 1) sin θ = 0 . (17)

The critical points on the zero set of Ψ2,3 are the common
solutions of (14), (16), and (17).



If cos θ sin θ 6= 0, we obtain that u = v = 0, and these equations
have no common solution. It follows that we have no interior
critical point on their nodal set.
Hence the lines cannot intersect each other.

The number of nodal domains is four (delimited by three non
intersecting lines) or six in the product case. Hence the maximal
number of nodal domains is six.
Hence we are not in a Courant sharp situation.



Figure: Nodal sets, Dirichlet eigenvalues λ7 and λ9 (Pockels, [35]).



Third case : eigenvalue λ9 ((m, n) = (1, 4)).

We look at the zeros of Φ1,4(·, ·, θ). Here we can write

Φ1,4(x , y , θ) = 4 sin x sin y Ψ1,4(u, v , θ)

with

Ψ1,4(u, v , θ) := cos θ v(2v 2 − 1) + sin θ u(2u2 − 1) .

Hence, we have to analyze the equation

cos θ v(2v 2 − 1) + sin θ u(2u2 − 1) = 0 . (18)



At the boundary.

Due to the symmetries, the zero set of Ψ1,4 hits parallel boundaries
at symmetrical points. For u = ±1 these points are given by:

v(2v 2 − 1)± tan θ = 0 .

If we start from θ = 0, we first have three zeroes: 0,± 1√
2

.

Looking at the derivative, we have a double point when v = ± 1√
6

,

which corresponds to tan θ =
√

2
3
√

3
.

For larger values of θ, we have only one point till tan θ = 1.
Hence, there are 3, 2, 1 or 0 solutions satisfying v ∈ [−1,+1].
The analogous equation for v = ±1 appears with cot θ instead of
tan θ, so that the boundary analysis depends on the comparison of

| tan θ| with
√

2
3
√

3
, 1 and 3

√
3√

2
. When the points disappear on

u = ±1, they appear on v = ±1.
Finally, the maximal number of points along the boundary is six
counting with multiplicities.



At the critical points. The critical points of Ψ1,4 satisfy:

cos θ (6v 2 − 1) = 0 , (19)

and
sin θ (6u2 − 1) = 0 . (20)

If we exclude the “product” case, the only critical points are
determined by u2 = 1

6 and v 2 = 1
6 . Plugging these values in (18),

we obtain that interior critical points on the zero set of Ψ1,4 can
only appear when:

cos θ ± sin θ = 0 . (21)

Hence, we only have to look at θ = π
4 and θ = 3π

4 . Because of
symmetries, it suffices to consider θ = π

4 :

Ψ1,4(u, v ,
π

4
) =

1√
2

(u + v)(2(u − v

2
)2 +

3

2
v 2 − 1) .

The zero set is the union of an ellipse contained in the square and
a straight lines, with two intersection points. It follows that the
function Φ1,4(x , y , π4 ) has four nodal domains. Figure 3 shows the
deformation of the nodal set of Φ1,4(x , y , θ) for θ ≤ π

4 close to π
4 .



Hence we have proved that the maximum number of nodal
domains is 4.

Figure: Eigenvalue λ9, deformation of the nodal set near θ = π
4 .



Let us summarize what we have so far obtained for the
eigenfunctions associated with λ9.

I We have determined the aspect of the nodal set of Φ1,4 when
θ = π

4 or 3π
4 , and these are the only cases for which the

interior part of the nodal set hits the boundary at the vertices.

I When θ 6= π
4 or 3π

4 , the nodal set of Φ1,4 has no interior
critical point and hence no self-intersection, and that it hits
the boundary at 2 or 6 points counting multiplicities.

I All nodal sets must contain the lattice points (i π4 , j
π
4 ) for

1 ≤ i , j ≤ 3. This implies, for energy considerations, that the
nodal sets cannot contain any closed component avoiding
these lattice points.

It remains to prove that the maximal number of nodal domains for
Φ1,4 is 4, as suggested by the patterns in Figure 2, and hence that
λ9 is not Courant sharp.



Remark

Figures 2 and 3 indicate that for some values of θ the function
Φ1,4(x , y , θ), has exactly two nodal domains. This phenomenon
was studied by Antonie Stern [20] who claims that for all k ≥ 2,
there are eigenfunctions associated with the Dirichlet eigenvalue
1 + 4k2 of the square [0, π]2, with exactly two nodal domains. This
is what we want to analyze now more carefully.



Figure: Eigenvalue λ23 ((m, n) = (1, 6)), deformation of the nodal set
near θ = π

4 .



The observations of A. Stern

The general topic of A. Stern’s thesis is the asymptotic behaviour
of eigenvalues and eigenfunctions. In Part I, she studies the nodal
sets of eigenfunctions of the Laplacian in the square (with Dirichlet
boundary conditions) or on the sphere. As before, the eigenvalues
are listed in increasing order, with multiplicities.

As we have seen in the previous sections, Pleijel’s theorem [17]
states that for a plane domain, there are only finitely many
Courant sharp Dirichlet eigenvalues. For the square with Dirichlet
boundary conditions, A. Stern claims that there are infinitely many
eigenvalues with an associated eigenfunction having exactly two
nodal domains,



[E1]. . . Im eindimensionalen Fall wird nach den Sätzen
von Sturm3 das Intervall durch die Knoten der nten
Eigenfunktion in n Teilgebiete zerlegt. Dies Gesetz
verliert seine Gültigkeit bei mehrdimensionalen
Eigenwertproblemen, . . . es läßt sich beispielweise leicht
zeigen, daß auf der Kugel bei jedem Eigenwert die
Gebietszahlen 2 oder 3 auftreten, und daß bei Ordnung
nach wachsenden Eigenwerten auch beim Quadrat die
Gebietszahl 2 immer wieder vorkommt.
[Q1]. . . Wir wollen nun zeigen, daß beim Quadrat die
Gebietszahl zwei immer wieder auftritt.

3Journal de Mathématiques, T.1, 1836, p. 106-186, 269-277, 375-444



Theorem Sq1

Let D be the unit square in R2, and ∆ the non-positive Laplacian
with Dirichlet boundary conditions. Then, for any integer m, there
exists an eigenfunction u of −∆, associated with the eigenvalue
(4m2 + 1)π2, whose nodal set inside the square consists of a single
simple closed curve. As a consequence, u has exactly two nodal
domains.

Theorem [Sq1] is stated without proof in Courant-Hilbert [27, p.
455], with a reference to Stern’s thesis [20], and illustrated by two
figures taken from [20].



We first deal with the case of the square, The following theorem
summarizes the main assertions of A. Stern in the case of the
square, see quotation supra and,

[Q2]. . . Wir betrachten die Eigenwerte

λn = λ2r ,1 = 4r 2 + 1 , r = 1, 2, . . .

und die Knotenlinie der zugehörige Eigenfunktion

u2r ,1 + u1,2r = 0 ,

für die sich, wie leicht mittels graphischer Bilder
nachgewiesen werden kann, die Figur 7 ergibt.



[Q3]. . . Laßen wir nur µ von µ = 1 aus abnehmen, so
lösen sich die Doppelpunkte der Knotenlinie alle
gleichzeitig und im gleichem Sinne auf, und es ergibt sich
die Figur 8. Da die Knotenlinie aus einem
Doppelpunktlosen Zuge besteht, teilt sich das Quadrat in
zwei Gebiete und zwar geschieht dies für alle Werte
r = 1, 2, . . . , also Eigenwerte λn = λ2r ,1 = 4r 2 + 1 .



Theorem

For any r ∈ N, consider the family Φ1,2r (x , y , θ) of eigenfunctions
of the Laplacian in the square [0, π]2, associated with the Dirichlet
eigenvalue 1 + 4r 2,

Φ1,2r (x , y , θ) := cos θ sin x sin(2ry) + sin θ sin(2rx) sin y .

Then,

1. for θ = π
4 , the nodal pattern of Φ is as shown in the figures

(below left).

2. for θ < π
4 , and θ sufficiently close to π

4 the double points all
disappear at the same time and in a similar manner as in the
figures (below right). The nodal set consists of a line with no
double point. It divides the square in two domains.



Comments. Although this is not stated explicitly in the thesis of
A. Stern, one can infer that

I The eigenfunction Φ(x , y , π4 ) has 2r nodal domains and 2r − 2
double points,

I For θ close to and different from π
4 , the nodal sets consists of

the boundary of the square and a connected simple curve from
one point of the boundary to a symmetric point. This curve
divides the domain into two connected components.



Figure: Case r = 6, nodal pattern for θ = π
4 and θ close to π

4 , facsimile
from [20]



Figure: Nodal domains, courtesy Virginie Bonnaillie-Noël [25]



Property P1

Let φ and ψ be two linearly independent eigenfunctions associated
with the same eigenvalue for the square S. Let µ be a real
parameter, and consider the family of eigenfunctions φµ = ψ + µφ.
Let N(φ) denote the nodal set of the eigenfunction φ.

1. Consider the domains in S \ N(φ) ∪ N(ψ) in which µφψ > 0
and hatch them (‘schraffieren’). Then the nodal set N(φµ)
avoids the hatched domains,

2. The points in N(φ) ∩ N(ψ) belong to the nodal set N(φµ) for
all µ,



These properties are clear. A. Stern also mentions the following.

Property P2

The nodal set N(φµ) depends continuously on µ.

which is rather clear near regular point, but not so clear near
multiple points.
Finally, A. Stern mentions her use of a graphical method which
may have been classical at her time, and could explain the amazing
quality of her pictures. On this occasion, she also gives the idea of
looking at the intersections of the nodal set N(φµ) with horizontal
or vertical lines.



All in all, the arguments given by A. Stern seem very sketchy and
we have found necessary to write the details in the same spirit as
for Pleijel’s statement. The complete proof is based on:

1. Complete determination of the multiple points of N(Φ
π
4 ) ;

2. Absence of multiple points in N(Φθ), when θ is different from
π
4 , and close to π

4 ;

3. Connectedness of the nodal set N(Φθ), or why there are no
other components, e.g. closed inner components, in the nodal
set.



Sketch of the proof of Stern’s Theorem
Consider the eigenvalue λ̂1,R := 1 + R2 for the square S with
Dirichlet boundary conditions, and the eigenfunction

Φθ(x , y) :=: Φ(x , y , θ) := cos θ sin x sin(Ry) + sin θ sin(Rx) sin y ,

for θ ∈ [0, π[.
Introduce the Q-squares,

Qi ,j :=]
iπ

R
,

(i + 1)π

R
[×]

jπ

R
,

(j + 1)π

R
[ , for 0 ≤ i , j ≤ R − 1 ,

and the lattice,

L :=

{
(

iπ

R
,

jπ

R
) | 1 ≤ i , j ≤ R − 1

}
.

The basic idea is to start from the analysis of a given nodal set,
e.g. from the nodal set for θ = π

4 , and then to use a perturbation
argument.



Here are the key points.

1 One defines checkerboards by Q-squares (depending on the
sign of cos θ), whose black squares do not contain any nodal
point of Φθ.

2 The lattice L is contained in N(Φθ) for all θ.

3 Determine the possible critical zeroes of the eigenfunction Φθ,
both in the interior of the square or on the boundary and note
that the points in L are not critical zeroes.

4 Determine whether critical zeroes are degenerate or not and
their order when they are degenerate.



5 Determine how critical zeroes appear or disappear when θ
varies, and how the nodal set N(Φθ) evolves. For this
purpose, make a local analysis in the square Qi ,j , depending
on whether it is contained in S or touches the boundary,

6 Determine the nodal sets of the eigenfunctions associated with
the eigenvalue λ̂1,R for θ = π

4 and 3π
4 , and prove a separation

lemma in the Qi ,j to determine whether the medians of this
Q-square meet the nodal set of Φθ when θ = π

4 or 3π
4 .

7 Prove that the nodal set N(Φθ) does not contain any closed
component.



Figure: Typical nodal patterns for the eigenvalue (1, 8)



The case of the sphere: A. Stern (1925), H. Lewy (1977)
Let us now go back to another chapter of Antonie Stern’s 1925
thesis [20], written under the supervision of Richard Courant.

Pleijel’s theorem has been generalized to surfaces by J. Peetre [33],
see also [24]. For example, only finitely many eigenvalues of the
sphere are Courant sharp. A. Stern claims that there is always a
spherical harmonic with exactly three nodal domains (resp. with
exactly two nodal domains), when the degree is odd (resp. even),
see [20], Einleitung, citation [E1] supra and

[K1] . . . Zunächst wollen wir zeigen, daß es zu jedem
Eigenwert Eigenfunktionen gibt, deren Nullinien die
Kugelfläche nur in zwei oder drei Gebiete teilen.
[K2] . . . ebenso wollen wir jetzt zeigen, daß die
Gebietszahl drei bei allen Eigenwerten

λn = 2r(2r + 1) r = 1, 2, · · ·

immer wieder vorkommt.



Theorem SP1

Let S2 be the unit sphere in R3, and ∆ the non-positive spherical
Laplacian. For any odd integer `, there exists a spherical harmonic,
of degree `, whose nodal set consists of a single simple closed
curve. As a consequence, u has exactly two nodal domains.

Theorem SP2

Let S2 be the unit sphere in R3, and ∆ the non-positive spherical
Laplacian. For any even integer ` ≥ 2, there exists a spherical
harmonic, of degree `, whose nodal set consists of two disjoint
simple closed curves. As a consequence, u has exactly three nodal
domains.



Theorems [SP1] and [SP2] do not seem to be mentioned in
Courant-Hilbert [27]. On the other hand, Stern’s results on
spherical harmonics appear in the 1977 paper [31] by Hans Lewy
(Theorems 1 and 2), without any reference to A. Stern.



Stern’s proofs are far from being complete, but she provides nice
geometric arguments and figures.

[I1] Legen wir die beiden Knotenliniensysteme
übereinander und schraffieren wir die Gebiete, in denen
beide Funktionen gleiches Verzeichen haben, so kann die
Knotenlinie der Kugelfunktion

P2r+1
2r+1 (cosϑ) cos(2r + 1)ϕ+ µP2r+1(cosϑ) , µ > 0

nur in der nichtschraffierten Gebieten verlaufen

[I3] und zwar für hinreichend kleine µ in beliebiger
Nachbarschaft der Knotenlinien von
P2r+1

2r+1 (cosϑ) cos(2r + 1)ϕ, d. h. der 2r + 1 Meridiane,

da sich bei stetiger Änderung von µ das
Knotenliniensystem stetig ändert . . . .

[I2] Da die Knotenlinie ferner durch die 2(2r + 1)2

Schnittpunkte der Nullinien der beiden obenstehenden
Kugelfunktionen gehen muß . . .



Figure: From Stern’s PHD.



We can now state the following quantitative version of A. Stern’s
first theorem.
Following Stern [20], we consider the one-parameter family of
spherical harmonics,

Hµ,` = W` + µZ` , (22)

which may be written in spherical coordinates as

hµ,`(ϑ, ϕ) = sin`(ϑ) sin(`ϕ) + µP`(cosϑ) . (23)



Together with P. Bérard, we have established:

Proposition

Assume that 0 < µ < µc(`).

1. When ` is odd, the nodal set N(Hµ,`) is a unique regular
simple closed curve and hence, the eigenfunction Hµ,` has
exactly two nodal domains.

2. When ` is even, the nodal set N(Hµ,`) is the union of `
regular disjoint simple closed curves and hence, the
eigenfunction Hµ,` has exactly (`+ 1) nodal domains.

Note that µc(`) is rather explicit and associated with the zeroes of
Legendre polynomials. The proof of H. Lewy was only perturbative.



Critical values
For µ > 0, the critical values of µ for which the zero set of Hµ,`

has critical points are:

µi (`) =
sin` (ϑi (`− 1))

|P` (cosϑi (`− 1)) |
, (24)

for 1 ≤ i ≤ `− 1.
They are well-defined because the denominators do not vanish,
since the zeros of the Legendre polynomials P` and P`−1 are
intertwined.
For the value µi , Hµi ,` has finitely many critical zeros. Note that
the values µi (`) are positive. Observing the parity of the P`, it
suffices to consider the values µi (`) for 1 ≤ i ≤ [ `2 ], where [ `2 ]

denotes the integer part of `
2 .

µc(`) > 0 is then defined by:

µc(`) = inf
1≤i≤[ `

2
]
µi (`) , (25)

where the positive values µi (`) are given by (24).



Bifurcations

Variation of µ when ` = 3.

Figure: From Bérard-Helffer.
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