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Abstract:
If the first mathematical results were obtained more than 30 years
ago with the interpretation of the celebrated Hofstadter butterfly
proposed in 1976, more recent experiments in Bose-Einstein theory
suggest new questions.
I will present a survey on rather old results of Helffer-Sjöstrand (at
the end of the eighties) based on an illuminating strategy proposed
by the physicist M. Wilkinson in 1985. This leads to the proof of
the Cantor structure of the spectrum for the Harper model for a
some specific family of irrational fluxes (hence a very particular
case of the ten Martinis conjecture of M. Kac popularized by
B. Simon and proven recently (the proof was achieved in 2009) by
A. Avila, S. Jitomirskaya and coauthors) but also a detailed
presentation of the structure of the spectrum.



In these four lectures, we will present how semi-classical analysis
appears in the analysis of this problem. It appears actually in two
connected ways:

I First, when analyzing the bottom of the spectrum of a
Schrödinger operator with constant magnetic field and electric
periodic potential, the Harper’s model is, in various asymptotic
regimes, the right approximation of an effective Hamiltonian.

I Secondly, the analysis of the spectrum of the Harper’s model
can be done for some fluxes by semi-classical analysis.

We hope to give a flavor of the tools used in this context together
with precise references.
If time permits, we will discuss more recent results and still
remaining open problems.
End of Abstract



Introduction

The spectral properties of a charged particle in a two-dimensional
system submitted to a periodic electric potential and a uniform
magnetic field crucially depend on the arithmetic properties of the
number α representing the magnetic flux quanta through the
elementary cell of periods, see e.g. [Bel] for a description of various
models.
Since the works by Azbel [Az] and Hofstadter [Hof] it is generally
believed that for irrational α the spectrum is a Cantor set, that is a
nowhere dense (the interior of the closure is empty) and perfect set
(closed + no isolated point), and the graphical presentation of the
dependence of the spectrum on α shows a fractal behavior known
as the Hofstadter butterfly.



The Hofstadter’s butterfly is obtained in the following way. We
put on the vertical axis the parameter proportional to the flux
α = h

2π ∈ [0, 1] and on the horizontal line y = α the union over θ
of the spectra of the family Hα(θ). The picture results of
computations for rational α’s.



Let us consider more generally the family of operators on `2(Z)

(Hλ,αu)n =
1

2
(un+1 + un−1) + λ cos 2π(θ + nα)un .

Different names for this operator are given including Harper or
Almost-Mathieu.
If α = p

q is rational the spectrum consists of the union of q
intervals possibly touching at the end point. If α is irrational the
spectrum is independent of θ and:

Ten Martini Theorem

The spectrum of the almost Mathieu operator Hλ,α is a Cantor set
for all irrational α and for all λ 6= 0.

The Ten Martini conjectures was popularized by B. Simon in
reference to some offer of M. Kac.
Computations for λ 6= 1 are proposed in a ”numerical” paper of
Guillement-Helffer-Treton [GHT].



After intensive efforts (we can mention Azbel (1964),
Bellissard-Simon (1982), Van Mouche (1989), Helffer-Sjöstrand
(1989), Puig (2004), Avila-Krikorian (2008)) this Cantor set
structure was rigorously proved in 2009 by Avila-Jitomirskaya for
all irrational values of α (see [AvJi] and references therein) for the
models

u 7→ (Hα(λ, θ)u)n =
1

2
(un+1 + un−1) + λ cos(2π(αn + θ))un .

with λ > 0.
Unfortunately Mark Kac died before to know that he has to buy
these ten Martini.



Only few results are available for other models. Traditionally, a
couple of semiclassical methods plays an important role in the
analysis of the two-dimensional magnetic Schrödinger operators
with periodic potentials, see e.g. [BDP] for a review. In particular,
the bottom part of the spectrum for strong magnetic fields can be
described up to some extent using the tunnelling asymptotics. We
will discuss this point in the first part of our lectures.
But physicists have no problems to use these results without to
come back to the initial problem.



Coming back to mathematics, a more detailed analysis (Helffer and
Sjöstrand – HSHarper1,HSHarper2,HSHarper3–in the years
1988-1990) shows that the study of some parts of the spectrum for
the Schrödinger operator with a magnetic field and a periodic
electric potentials reduces to the spectral problem for an operator
pencil of one-dimensional quasiperiodic pseudodifferential
operators.

Under some symmetry conditions for the electric potentials, the
operator pencil reduces to the study of small perturbation of the
continuous analog of the almost-Mathieu (=Harper) operator,
which allowed one to carry out a rather detailed iterative analysis
for special values of α.
In particular, in several asymptotic regimes a Cantor structure of
the spectrum was proved.
This involved a pseudo-differential calculus, whose relevance in this
context was predicted by the physicist Wilkinson (from United
Kingdom) in the middle of the eighties.
End of Introduction



Preliminary properties and first meeting with the
pseudo-differential calculus

We are interested in ∪θσ(H(θ)).
We observe that (with h = 2πα)

H(θ) = H(θ + 1) and H(θ + h) is unitary equivalent to H(θ) .

This implies that if α 6∈ Q, then the spectrum is independent of θ
and secondly that

∪θσ(H(θ)) = σ(H̃) ,

where H̃ : L2(Z× [0, h)) 7→ L2(Z× [0, h)) is defined by(
H̃u
)

(·, θ) = H(θ)u(·, θ) .



If we identify L2(Z× [0, h)) with L2(R) by

u(k , θ) = ũ(θ + hk)

the operator H̃ becomes

H̃ =
1

2
(τh + τ−h) + λ cos x

where τh is the translation operator:

τhv(x) = v(x − h) .

If we observe that τh = exp ihDx , we can rewrite H̃ as a
h-pseudodifferential operator

cos hDx + λ cos x

whose h-symbol is cos ξ + λ cos x .



In this last formalism, the Aubry duality is obtained by using a
h-Fourier transform.

Fhu(ξ) = (2πh)−
1
2

∫
e−ixξ/hu(x) dx .

By conjugation, the operator becomes

λ cos(hDξ) + cos x = λ(cos(hDξ) +
1

λ
cos x) .



We recall that the h-quantization of a symbol p(x , ξ, h) with
values in Mn(C) is the pseudo-differential operator defined over
L2(R;Cn) by(

(OpW
h p)u

)
(x) =

1

2πh

∫∫
R2

e i
(x−y)ξ

h p

(
x + y

2
, ξ, h

)
u(y) dy dξ .

(1)



I One remark on renormalization. If τ = τ2π and τ̂ is the
multiplication operator by e2πix/h, then H̃ commutes with τ
and τ̂ .
An important point is that τ and τ̂ do not necessarily
commute.

τ τ̂ = exp(−i(2π)2/h) τ̂ τ = exp−i h̃ τ̂ τ ,

with
(2π)/h = k + h̃/(2π) .

I The analysis of the energy levels (see next slide) of the symbol
will play an important role.



Energy levels



The lectures will present four connected points (in an order not yet
decided)

I From Schrödinger equation to Harper’s model.

I The rational case for the Harper’s model. We will discuss
various aspects of the Hofstadter model for fluxes close to a
rational. The material comes from Wilkinson, Sokoloff,
Bellissard and HSHarper2.

I Some hints for the renormalization procedure1 in the irrational
case leading to the proof of the Cantor structure. The
material comes from HSHarper1 and HSHarper3.

I Discuss some conjectures around the wings. The material
comes from a paper of Helffer-Kerdelhué-Sjöstrand [HKS] but
used the semi-classical analysis near a rational developed in
HSHarper2.

1Note that there is another renormalization procedure proposed by V.
Buslaev and A. Fedotov which will not be discussed in these lectures



Semi-classical analysis of the Schrödinger operator.

Our semi-classical treatment of the Harper model was strongly
inspired by the techniques introduced in the semi-classical analysis
for Schrödinger: harmonic approximation, WKB construction,
Agmon estimates, formula for the splitting.
The theory in this case is easier to explain. So we will start with a
presentation of these techniques. This has also the advantage to
show how the Harper operator is a good approximation of the
problem of the Schrödinger operator with magnetic field and
electric potential at the bottom.



The magnetic Schrödinger Operator

Our main object of interest is the Schrödinger operator with
magnetic field and electric potential on a riemannian manifold, but
in this talk we will mainly consider, except for specific toy models,
a magnetic field

β = curlA

on a regular domain Ω ⊂ Rd (d = 2 or d = 3) associated with a
magnetic potential A (vector field on Ω), which (for normalization)
satisfies :

divA = 0 .

We start from the closed quadratic form Qh,A,V

W 1,2
0 (Ω) 3 u 7→ Qh,A,V (u) :=

∫
Ω
|(−ih∇+ A)u(x)|2 dx +

∫
V |u(x)|2 dx .

(2)



Let PD(h,A,V ,Ω) be the self-adjoint operator associated to
Qh,A,V and let λD1 (h,A,V ,Ω) be the corresponding groundstate
energy.

Motivated by various questions we consider the connected
problems in the asymptotic h→ +0.

Pb 1 Determine the structure of the bottom of the spectrum :
gaps, typically between the first and second eigenvalue.

Pb2 Find an effective Hamiltonian which through standard
semi-classical analysis can explain the complete spectral
picture including tunneling.



The case when the magnetic field is constant

The first results are known from Landau at the beginning of the
quantum Mechanics.

In the case in Rd (d = 2, 3), the models are more explicitly

h2D2
x + (hDy − x)2 ,

(β(x , y) = 1) and

h2D2
x + (hDy − x)2 + h2D2

z ,

(β(x , y , z) = (0, 0, 1)) and we have:

inf σ(H(A, h,Rd)) = h|β| .



The effect of an electric potential
2D with some electric one well potential (Helffer-Sjöstrand (1987) =[HSWell1]).

We add an electric potential.

h2D2
x + (hDy − bx)2 + V (x , y) .

V creating a well at a minimum of V : (0, 0). (V tending to +∞
at ∞).
When b = 0 , the analysis of the spectrum at the bottom is
performed at the beginning of the eighties independently by B.
Simon on one side and B. Helffer and J. Sjöstrand on the other
side. In a paper in the Annales Ecole Normale di Pisa
[HSWellmag], the authors show how to treat the case when b is
small.



Harmonic approximation in the non-degenerate case

h2D2
x + (hDy − bx)2 +

1

2
< (x , y)|HessV (0, 0)|(x , y)) .

λ1(h) ∼ αh .

The electric potential plays the dominant role and determines the
localization of the ground state. As mentioned to us by E. Lieb,
this computation is already done by Fock at the beginning of the
quantum mechanics.



Decay of the eigenfunctions and applications

As already seen when comparing the spectrum of the harmonic
oscillator and of the Schrödinger operator, it could be quite
important to know a priori how the eigenfunction attached to an
eigenvalue λ(h) decays in the classically forbidden region (that is
the set of the x ’s such that V (x) > λ(h)). The Agmon estimates
give a very efficient way to control such a decay. We refer to
Helffer-LNM or to the original papers in the beginning of the
eighties of Helffer-Sjöstrand or Simon for details and complements.



Let us start with very weak notion of localization. For a family
h 7→ ψh of L2-normalized functions defined in Ω, we will say that
the family ψh lives (resp. fully lives) in a closed set U of Ω if for
any neighborhood V(U) of U,

lim
h→0

∫
V(U)∩Ω

|ψh|2dx > 0 ,

respectively

lim
h→0

∫
V(U)∩Ω

|ψh|2dx = 1 .



For example one expects that the groundstate of the Schrödinger
operator −h2∆ + V (x) fully lives in V−1(inf V ). Similarly, one
expects that, if limh→0λ(h) ≤ E < inf σess(Ph,V )− ε0 (for ε0 > 0
small enough) and ψh is an eigenvector associated to λ(h), then
ψh will fully live in V−1(]−∞,E ]).
Of course the above is very heuristic but there are more accurate
mathematical notions like the frequency set (see the book of D.
Robert) permitting to give a mathematical formulation to the
above vague statements.

Once we have determined a closed set U, where ψh fully lives (and
hopefully the smallest), it is interesting to discuss the behavior of
ψh outside U, and to measure how small ψh decays in this region.



To illustrate the discussion, one can start with the very explicit
example of the harmonic oscillator. The ground state

x 7→ ch−
1
4 exp− x2

h of −h2 d2

dx2 + x2 lives at 0 and is exponentially
decaying in any interval [a, b] such that 0 6∈ [a, b]. This is this type
of result that we want to recover but WITHOUT having an explicit
expression for ψh.



Energy inequalities

The main but basic tool is a very simple identity attached to the
Schrödinger operator Ph,A,V .

Proposition: Energy identity

Let Ω be a bounded open domain in Rm with C 2 boundary. Let
V ∈ C 0(Ω̄;R), A ∈ C 0(Ω̄;Rm) and φ a real valued lipschitzian
function on Ω̄. Then, for any u ∈ C 2(Ω̄;C) with u/∂Ω = 0, we have∫

Ω |∇h,A(exp φ
h u)|2 dx +

∫
Ω(V − |∇φ|2) exp 2φ

h |u|
2 dx =

<
(∫

Ω exp 2φ
h (Ph,A,V u)(x) · u(x) dx

)
.

(3)



The Agmon distance

The Agmon metric attached to an energy E and a potential V is
defined as (V − E )+dx

2 where dx2 is the standard metric on Rn.
This metric is degenerate and is identically 0 at points living in the
”classical” region: {x | V (x) ≤ E}. Associated to the Agmon
metric, we define a natural distance

(x , y) 7→ d(V−E)+
(x , y)

by taking the infimum :

d(V−E)+
(x , y) = inf

γ∈C1,pw ([0,1];x ,y)

∫ 1

0
[(V (γ(t))− E )+]

1
2 |γ′(t)|dt ,

(4)
where C1,pw ([0, 1]; x , y) is the set of the piecewise (pw) C 1 paths
in Rn connecting x and y . When there is no ambiguity, we shall
write more simply d(V−E)+

= d .



Similarly to the Euclidean case, we obtain the following properties

I Triangular inequality

|d(x ′, y)− d(x , y)| ≤ d(x ′, x) , ∀x , x ′, y ∈ Rm . (5)

I

|∇xd(x , y)|2 ≤ (V − E )+(x) , (6)

almost everywhere.

We observe that the second inequality is satisfied for any derived
distance like

d(x ,U) = inf
y∈U

d(x , y) .

If U = {x | V (x) ≤ E}, d(x ,U) measures the distance to the
classical region.
All these notions being expressed in terms of metrics, they can be
easily extended on manifolds.



Decay of eigenfunctions for the Schrödinger operator.

When uh is a normalized eigenfunction of the Dirichlet realization
in Ω satisfying Ph,A,V uh = λhuh then the energy identity gives

roughly that exp φ
h uh is well controlled (in L2) in a region

Ω1(ε1, h) = {x | V (x)− |∇φ(x)|2 − λh > ε1 > 0} ,

by exp
(

supΩ\Ω1

φ(x)
h

)
. The choice of a suitable φ (possibly

depending on h) is related to the Agmon metric (V − E )+ dx2,
when λh → E as h→ 0. The typical choice is φ(x) = (1− ε)d(x)
where d(x) is the Agmon distance to the ”classical” region
{x | V (x) ≤ E} . In this case we get that the eigenfunction is
localized inside a small neighborhood of the classical region and we
can measure the decay of the eigenfunction outside the classical
region by

exp(1− ε)d(x)

h
uh = O(exp

ε

h
) , (7)

for any ε > 0.



More precisely we get for example the following theorem

Theorem: localization of eigenfunctions

Let us assume that V is C∞, semibounded and satisfies

lim inf
|x |→∞

V > inf V = 0 (8)

and
V (x) > 0 |x | 6= 0 . (9)

Let uh be a (family of L2-) normalized eigenfunctions such that

Ph,A,V uh = λhuh , (10)

with λh → 0 as h→ 0. Then for all ε and all compact K ⊂ Rm,
there exists a constant Cε,K such that for h small enough

||∇h,A(exp
d

h
· uh)||L2(K) + || exp

d

h
· uh||L2(K) ≤ Cε,K exp

ε

h
. (11)



Remarks

When V has a unique non degenerate minimum the estimate can
be improved when λh ∈ [0,C0h], by taking

φ = d − Ch inf(log(
d

h
), logC ) .

We observe indeed that V , d and |∇d |2 are equivalent in the
neighborhood of the well.
It is also possible to control the decay of the eigenfunction at ∞.
This was actually the initial goal of S. Agmon.



First application

We can compare different Dirichlet problems corresponding to
different open sets Ω1 and Ω2 containing a unique well U attached
to an energy E . If for example Ω1 ⊂ Ω2, one can prove the
existence of a bijection b between the spectrum of P(h,Ω1) in an
interval I (h) tending (as h→ 0) to E and the corresponding
spectrum of P(h,Ω2) such that |b(λ)− λ| = O(exp−S/h) (under a
weak assumption on the spectrum at ∂I (h)).
Here S is chosen such that

0 < S < d(V−E)+
(∂Ω1,U) .

This can actually be improved (using more sophisticated
perturbation theory) as O(exp−2S/h).



Second application: the symmetric double well problem

Once the harmonic approximation is done, it is possible to
construct an orthonormal basis of the spectral space attached to a
given interval I (h) := [inf V , inf V + Ch] (C avoiding the
eigenvalues of the approximating harmonic oscillators at each
minimum), each of the elements of the basis being exponentially
localized in one of the wells.
The computation of the matrix of the operator in this basis using
WKB approximation leads to the so-called “interaction matrix”
(See Dimassi-Sjöstrand or Helffer LNM).



We consider the case with two wells, say U1 and U2. We assume
that there is a symmetry2 g in Rm, such that g2 = Id , gU1 = U2,
and such that the corresponding action on L2(Rm) defined by
gu(x) = u(g−1x) commutes with the Laplacian. In addition
gV = V .
We now define reference one well problems by introducing :

M1 = Rm \ B(U2, η) , M2 = Rm \ B(U1, η) .

With this choice, we have gM1 = M2. The parameter η > 0 is
free but can always be chosen arbitrarily small. We denote by φj
the corresponding ground state of the Dirichlet realization of
−h2∆ + V in Mj and corresponding to the ground state energy
λM1 = λM2 . According to our result on the decay, these

eigenfunctions decay like Õ(exp−d(x ,Uj )
h ), where Õ(f ) roughly3

means exp ε
h · Oε(f ) for all ε > 0 as h→ 0. We can of course keep

the relation
gφ1 = φ2 .

2Typically, we take g = −I and m = 2
3More precisely, for any ε > 0, one can choose above η > 0 such that...



Let us now introduce θj , which is equal to 1 on B(Uj ,
3
2η) and with

support in B(Uj , 2η). We introduce

χ1 = 1− θ2 , χ2 = 1− θ1 ,

and we can also keep the symmetry condition :

gχ1 = χ2 .

Our approximate eigenspace will be generated by

ψj = χjφj , (j = 1, 2) ,

which satisfies
Shψj = λMψj + rj ,

with
rj = h2(∆χj)φj + 2h2(∇χj) · (∇φj) .

We note that the “smallness” of rj can be immediately controlled
using the decay estimates in B(Uj , 2η) \ B(Uj ,

3
2η).



In order to construct an orthonormal basis of the eigenspace F
corresponding to the two lowest eigenvalues near λM , we first
project our basis ψj which was not far to be orthogonal and
introduce:

vj = ΠFψj .

The resolvent formula shows that vj − ψj can be made very small
(at least exp−S

h with S < d(U1,U2) by chosing η > 0 small
enough). More precisely, we have the following comparison.

Lemma

(vj − ψj)(x) = Õ(exp−
δj(x)

h
) , (12)

in Rm \ B(U
ĵ
, 4η), where 1̂ = 2, 2̂ = 1 and

δj(x) = d(x ,Uĵ) + d(U1,U2) .



Proof

Our starting point is :

Ph,Mj
ψj = λMj

ψj + rj .

where
supp rj ⊂ B(U

ĵ
, 2η) ,

and

rj = Õ(exp−
d(x ,Uj)

h
) .



We have vj − ΠFψj ∈ F⊥ and the spectral theorem gives already
the estimate

||vj − πFψj || = Õ(exp−d(U1,U2)

h
) . (13)

For a suitable contour Γh in C containing the interval I (h) and
remaining at a suitable distance of the spectrum

d(Γh, σ(Ph)) ≥ 1

Cε
exp− ε

h
, ∀ε > 0 , (14)

we can write :

vj − ψj =
1

2π

∫
Γh

(λM − z)−1(Ph − z)−1rjdz .



We observe by a property of the resolvent deduced from Agmon
estimates that:

(Ph − z)−1rj = Õ(supy∈supprj exp− [d(x ,y)+d(y ,Uj )]
h )

= Õ(exp− δj (x)
h ) .

The separation assumption (14) permits to get the same property
for vj − ψj :

vj − ψj = Õ(exp−
δj(x)

h
) .



This is indeed an improvment of the control in L2.
We notice that :

δj(x) ≥ d(x ,Uj) ,

What we see here is that the improved estimate does not lead to
improvements near Uĵ , where we have modified φj into ψj by
introducing a cut-off function but that the improvement is quite
significative when keeping a large distance (in comparison with η)
with U

ĵ
.



We then orthonormalize by the Gram-Schmidt procedure.

ej =
∑
k

(V−
1
2 )jkvk ,

with
Vij = 〈vi | vj〉 .

We note that

Vij − δij = O(exp−S

h
) .



At each step, we control the difference ej − ψj , which satisfies also
(12).
The matrix we would like to analyze is then simply the two by two
matrix

Mij = 〈(Ph − λM)ei | ej〉 .

The eigenvalues of this matrix measure the dispersion of the two
eigenvalues around λM .

We observe that symmetry considerations lead to :

M12 = M21 and M11 = M22 .



So the eigenvalues are easy to compute and corresponding
eigenvectors are 1√

2
(1, 1) and 1√

2
(−1,+1). As soon as we have the

main behavior of M12, we can deduce that the eigenvalues are
simple and that the splitting between the two eigenvalues is given
by 2|M12|.
It remains to explain how one can compute M12. The analysis of
the decay permits to show that

M12 =
1

2
(〈r2 , ψ1〉+ 〈r1 , ψ2〉) +R12 , (15)

with

R12 = O(exp−2S

h
) , (16)

for a suitable choice of η > 0 small enough.



An integration by parts leads (observing that ∇χ1 · ∇χ2 ≡ 0 for
our choice of η) to the formula

M12 = h2

∫
χ1(φ2∇φ1 − φ1∇φ2)∇χ2 +R12 . (17)

A priori informations on the decay permit to restrict the
integration in the right hand side of (17) to the set
{d(x ,U1) + d(x ,U2) ≤ d(U1,U2) + a} for some a > 0.
A computation based on the Stokes Lemma gives then the
existence of ε0 > 0 such that:

M12 = h2

∫
Γ
[φ2∂nφ1 − φ1∂nφ2]dνΓ +O(exp−S12 + ε0

h
) . (18)



Here S12 = d(U1,U2) and Γ is an open piece of hypersurface
defined in the neighborhood of the minimal geodesic geod(U1,U2)
between the two points U1 and U2, that we assume for
simplification to be unique and ∂n denotes the normal derivative to
Γ, positively oriented from U1 to U2 .
The last step is to observe that in a neighborhhood of the
intersection γ12 of Γ with geod(U1,U2), one can replace the

function φj (or ψj) modulo O(h∞) exp−d(x ,Uj )
h by its WKB

approximation h−
m
4 aj(x , h) exp−d(x ,Uj )

h .



This leads finally to

M12 = h1−m
2 exp−d(U1,U2)

h ×
×
∫

Γ exp− (d(x ,U1)+d(x ,U2)−d(U1,U2))
h ×

× (a1(x , 0)a2(x , 0)(∂nd(x ,U1)− (∂nd(x ,U2)) +O(h)) dνΓ ,
(19)

where dνΓ is the induced measure on Γ.
With natural generic additional assumptions saying that the map

Γ 3 x 7→ (d(x ,U1) + d(x ,U2)− d(U1,U2))

vanishes exactly at order 2 at γ12, this finally leads to the formula
giving the splitting after use of the Laplace integral method.



Schrödinger operators with magnetic potentials and
periodic potential

For operators H =
∑2

j=1(hDxj − Aj)
2 + V with periodic potentials

V ,
V (x1 + 2π, x2) ≡ V (x1, x2 + 2π) ≡ V (x1, x2) ,

and constant (or periodic) magnetic fields

Curl ~A = B ,

it can be shown in several asymptotic regimes that the study of
some parts of the spectrum reduces to a non-linear spectral
problem of the above type.



This is for example the case (see LNP Sonderborg) when

I B is large. This is the so called strong magnetic field regime.
V appears then as a perturbation. One can ask about how V
perturbs the Landau spectrum.

I B is small. We can then consider the problem as a
perturbation of the case B = 0. One can discuss in this
context the so called Peierls substitution. see [HSHarper1],
[HSHarper3] and [HSHarper4] and HS-Sonderborg and earlier
contribution by physicists (see in [Bel] and references therein).



Semi-classical analysis together with weak magnetic field
regime

We study in a semi-classical regime the Schrödinger operator
Ph,A,V , defined as the self-adjoint extension in L2(R2) of the
operator given in C∞0 (R2) by

P0
h,A,V = (hDx1 − A1(x))2 + (hDx2 − A2(x))2 + V (x) , (20)

where Dxj = 1
i ∂xj . Our goal is to study the spectrum of Ph,A,V as

a function of A and the semi-classical parameter h > 0, when V
has its minima in the lattice and both V and B = ∇∧ A are
invariant by the symmetries of the lattice.



Let us explain the setting of our problem. A 2-dimensional Bravais
lattice is the set of points spanned over Z by the vectors of a basis
{ν1, ν2} of R2. A fundamental domain of the Bravais lattice can
be chosen in the form

V =
{
t1ν1 + t2ν2 ; (t1, t2) ∈ [0, 1]2

}
. (21)



We consider the square lattice (ν1 = (1, 0) and ν2 = (0, 1)) but
other lattices are interesting (triangular lattice, Kagome lattice ...).
For the square lattice, the map κ : R2 → R2 here below is given by

κ(x1, x2) = (−x2, x1) (22)

and note that κ(Γ) = Γ.
For j = 1, 2 consider the translations tj(x) = x − νj and define in
the affine group of the plane

G = the subgroup generated by κ, t1 and t2 . (23)

Setting (gu)(x) = u(g−1(x)) for g ∈ G, we define a group action
of G on C∞(R2) which can be extended as an unitary action on
L2(R2).



Hypothesis V1

The electric potential V is a real nonnegative C∞ function such
that

g V = V for all g ∈ G
V ≥ 0 and V (x) = 0 if and only if x ∈ Γ ,
HessV (x) > 0 ∀x ∈ Γ .

(24)

Hence, we have a unique minimum in each fundamental cell. The
case with more than one minimum is also interesting.



Alternative formalism

We associated with the magnetic vector potential A = (A1,A2) the
1-form

ωA = A1dx1 + A2dx2 . (25)

The magnetic field B is then associated with the 2-form obtained
by taking the exterior derivative of ωA:

σB := dωA = B(x)dx1 ∧ dx2 . (26)

In the case of R2, we identify this 2-form with B. The flux of B
through a fundamental domain V of Γ is then given by

η =

∫
V
dωA . (27)



Hypothesis B1

The magnetic potential A is a C∞ vector field such that the
corresponding magnetic 2-form σB satisfies

gσB = σB for all g ∈ G . (28)

This is automatically satisfied when B is constant. Note indeed
that the symplectic 2-form dx1 ∧ dx2 is preserved.



In the case when A = 0 (see for example Chapter XIII.16 in
Reed-Simon Vol. 4), the spectrum of Ph,A,V is continuous and
composed of bands. This is done by the so-called Floquet (Bloch)
theory. Each band is the image of a Floquet eigenvalue λj(θ1, θ2).
A semi-classical analysis is possible and one can in particular have
the asymptotics for the first eigenvalue and on the width of the
first band (Outassourt, Simon).
The general case, even when the magnetic field is constant, is very
delicate. The spectrum of Ph,A,V depends crucially on the
normalized flux of the magnetic field through a fundamental
domain of the lattice, given by

γ =
η

h
. (29)



Under the previous assumptions, we can define the magnetic
translations T1 and T2 associated with ν1 and ν2. They have the
form

(Tju)(x) = exp i
φj(x)

h
u(x − νj)

and commute with Ph,A,V .
φj is determined (modulo a constant) by

A(x − νj)− A(x) = −∇φj

We observe indeed that the left hand side has curl equal to zero
by the assumption of invariance of B.
What is quite important is that T1 and T2 do not necessarily
commute. We have actually

T1T2 = exp iγ T2 T1 .

Hence the Floquet theory (as explained for example in Reed-Simon
IV) cannot be done. Note however that if γ

2π = p
q , some Floquet

theory can be applied by using T1 and T q
2 which are commuting.



Depending on the arithmetic properties of γ/2π, the spectrum can
indeed become very singular (Cantor structure). To approach this
problem, we are often lead to the study of limiting models in
different asymptotic regimes, such as discrete operators defined
over `2(Z2,C), or equivalently, as we will see later,
pseudo-differential operators defined on L2(R,C).



The discrete magnetic translations τ1 and τ2 are defined on `2(Z2)
by

(τ1v)n,m = vn−1,m , (τ2v)n,m = e−iγnvn,m−1 . (30)

Following the ideas in HSHarper1, §9; we analyze the restriction of
Ph,A,V to a spectral space associated with the bottom of its
spectrum, and we show the existence of a matrix of this space that
keeps the symmetries of V and B with respect to G.



In order to state our first theorem, let us explain more in detail this
procedure. First of all, the harmonic approximation shows the
existence of an exponentially small (with respect to h) band in
which one part of the spectrum (including the bottom) is confined.
We name this part the low lying spectrum. The rest of the
spectrum is separated by a gap of size h/C .
Consider δ ∈ (0, 1/8) and a non negative radial smooth function χ,
such that χ = 1 in B(0, δ/2) and suppχ ⊂ B(0, δ). For any m ∈ Γ
define

Vm(·) =
∑

n∈Γ\{m}

χ(· − n) (31)

and
Pm = P + Vm . (32)



All the Pm are unitary equivalent and

v = lim inf
|x |→∞

Vm(x) (33)

does not depend on m. The spectrum of Pm is discrete in the
interval [0, v). The first eigenvalue of Pm is simple and we denote
it by λ(h). There exists then ε0 > 0 such that
σ(Pm) ∩ I (h) = {λ(h)}, where I (h) = [0, h(λhar ,1 + ε0)] and λhar ,1
is the first eigenvalue of the operator associated with Pm by the
harmonic approximation when h = 1. We define

Σ = the spectral space associated with I (h) . (34)



We denote by dV the Agmon distance associated with the metric
V dx2. We then have:

Theorem: Effective hamiltonian

Under above assumptions, there exists h0 > 0 such that for
h ∈ (0, h0) there exists a basis of Σ in which Ph,A,V

∣∣Σ has the
matrix

λ(h)I + Wγ ; (35)

where for all n,m ∈ Γ and β ∈ Z2, Wγ satisfies

(Wγ)n,m = (Wγ)m,n
(Wγ)n,m = e−i

γ
2

(m−n)∧β(Wγ)(n+β),(m+β)

(Wγ)n,m = (Wγ)κ(m,n) .

(36)

Moreover, there is C > 0 such that for every ε > 0 there exists
hε > 0, such that for h ∈ (0, hε)

|(Wγ)n,m| ≤ C exp

(
−(1− ε)dV (m, n)

h

)
. (37)



The coefficients of Wγ are related to the interaction between
different sites of the lattice. Our next result concerns the study of
this matrix, when we only keep the main terms for the Agmon
distance. In order to estimate these terms, we need additional
hypothesis. Here we assume (see HSHarper1 for more details):

Hypotheses

A. The nearest neighbors for the Agmon distance are the same of
those for the Euclidean distance.

B. Between two nearest neighbors m, n ∈ Γ there exists an
unique minimal geodesic ωm,n for the Agmon metric.

C. ωm,n in non degenerate in the sense that there is a point
x0 ∈ ωm,n \ {m, n} such that
x 7→ dV (x ,m) + dV (x , n)− dV (m, n) restricted to a transverse
line to ωm,n at x0 has a non degenerate local minimum at x0.



Under these hypotheses, we will estimate the main terms in the
case of a weak and constant magnetic field B = hB0, given by the
gauge

A(x1, x2) =
hB0

2
(−x2, x1) , B0 > 0 . (38)

Theorem

There exists C > 0, b0 > 0 and h0 > 0 such that for h ∈ (0, h0),

Wγ = ρ
(
Ŵγ + Rγ

)
(39)



theorem continued

with

ρ = h
1
2 b0 e

−
dV (m(0,0),m(0,1))

h (1 +O(h)) , (40)

Ŵγ = τ1 + τ∗1 + τ2 + τ∗2 , (41)

and Rγ a relatively small term (see what was done for the double
well problem).



The rational case

In order to compute the spectrum of Ŵγ , we can start with the
case when γ/(2π) is a rational number. This is obtained by using
the Floquet theory.
For p, q ∈ N∗ we define the matrices Jp,q,Kq ∈Mq(C) by

Jp,q = diag(exp (2iπ(j − 1)p/q))

(Kq)ij =

{
1 if j = i + 1 (mod q)
0 if not

.
(42)

Note that
Jp,q = Jp1,q .



Theorem

Let γ = 2πp/q with p, q ∈ N∗ relatively primes and denote by σγ
the spectrum of Ŵγ . We have

σγ =
⋃

θ1,θ2∈[0,1]

σ(Mp,q,θ1,θ2) , (43)

where Mp,q,θ1,θ2 is given by

Mp,q,θ1,θ2 = e iθ2Jp,q + e−iθ2Jp,q + e iθ1Kq + e−iθ1K ∗q . (44)

The bands are recovered by looking at the eigenvalues of
Mp,q,θ1,θ2 . These bands do not overlap and do not touch except
possibly at the center (Van Mouche). See below for complement.



Pseudo-differential operators and Harper’s equation

In –HSHarper1,HSHarper2,HSHarper3– (1988-1990) a machinery
was developed for an iterative semiclassical analysis of a special
class of pseudodifferential operators. One was concerned with the
non-linear spectral problem (or, in other words, with the spectral
problem for an operator pencil). Namely, for a family of
self-adjoint operators A(µ) depending µ ∈ R the µ-spectrum
µ-specA(µ) denotes the set of all µ such that 0 ∈ SpecA(µ).
The simplest case being the family A− µ.



Quantization

Let L : R2 → R be a periodic smooth function,
L(x , ξ + 2π;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ;µ, h). Here µ and h
are real parameters. By the Weyl quantization procedure one can
assign to L an operator L̂h(µ) in L2(R) by

L̂h(µ)f (x) =
1

2πh

∫
R

∫
R
e iξ(x−y)/hL

(x + y

2
, ξ;µ, h

)
f (y)dξ dy .

(45)
This operator belongs to L(L2(R)), is selfadjoint if the symbol is
real. There is for this class of operators a symbolic calculus, which
is quite simple if one admits errors in O(h) (more sophisticated if
one works modulo O(h∞)). See the books of Hörmander for the
basic notions or Dimassi-Sjöstrand and Zworski for the
semi-classical aspects.



The operator L̂h obtained is referred to as the Weyl h-quantization
of L, and quantum Hamiltonians resulting from periodic symbols
are often called Harper-like operators.

In particular, the symbol L(x , ξ) := cos x + cos ξ produces the
Harper operator on the real line,

L̂hf (x) =
f (x + h) + f (x − h)

2
+ cos x f (x). (46)



Symbols associated with some discrete operators

We consider a bounded linear operator Ch acting on `2(Z2) given
by an infinite matrix

(
C (p, q)

)
, p, q ∈ Z2, satisfying

C (p + k , q + k) = e−ihk2(p1−q1)C (p, q), p, q, k ∈ Z2, (47)

with some h > 0.



Proposition A

Let Ch be a bounded self-adjoint operator in `2(Z2) with the
property (47) and satisfying |C (p, q)| ≤ ae−b|p−q| for some
a, b > 0 and all p, q ∈ Z2. Then the spectrum of Ch coincides with
the spectrum of the Weyl h-quantization of the symbol T given by

T (x , ξ) =
∑

m,n∈Z
c(m, n)e−imnh/2e i(mx+nξ), (48)

where c(m, n) = C
(
(0, 0), (m, n)

)
, m, n ∈ Z.



A third point of view

We start with

Chf (m, n) = 1
2

(
e ihnf (m + 1, n) + e−ihnf (m − 1, n)

)
+ 1

2 (f (m, n − 1) + f (m, n + 1)) .

In this case, we can come back to the family of operators on
`2(Z) by introducing

u(m, θ) =
∑
n

e inθf (m, n) .

In this way we come back to Hθ.

The spectrum of Ch is the union over θ ∈ (0, 2π) of the spectra of
Hθ.



Consider now the general case. By assumption,
C (p, q) = exp

(
ihp2(q1 − p1)

)
c(q − p) for any p, q ∈ Z2, hence

Chf (p) =
∑

q∈Z2 e ihp2(q1−p1)c(q − p)f (q)

=
∑

q∈Z2 e ihp2q1c(q)f (p + q).

Therefore, Ch commutes with the shift f (p1, p2) 7→ f (p1 + 1, p2),
and the Floquet-Bloch theory is applicable.



Let us introduce the functions

R 3 ϕ 7→ bn(ϕ) =
∑
k∈Z

c(k , n)e ikϕ, n ∈ Z, ϕ ∈ R.

All these functions are 2π-periodic and analytic in a complex
neighborhood of R. Consider a family of operators acting in `2(Z),

Ch(θ)g(m) =
∑
n∈Z

bn(mh + θ)g(m + n), m ∈ Z, θ ∈ R ,

which satisfies
Ch(θ) = Ch(θ + 2π) .



Therefore, by the Floquet-Bloch theory, one has

SpecCh =
⋃

θ∈[0,2π)

SpecCh(θ) .

Furthermore, for any θ the operators Ch(θ) and Ch(θ + h) are
unitarily equivalent, Ch(θ + h) = SCh(θ)S−1, where S is the shift
in `2(Z), Sf (n) = f (n + 1), which implies
SpecCh =

⋃
θ∈[0,h) SpecCh(θ).

This coincides with the spectrum of the following operator Th

acting in L2
(
Z× [0, h)

)
Thu(m, θ) = Ch(θ)uθ(m), uθ(m) = u(m, θ), m ∈ Z.



Coming back to Harper
In the case of the symbol (x , ξ) 7→ cos x + cos ξ we get the
Hofstadter’s butterfly
On the vertical axis the parameter proportional to the flux
α = h

2π ∈ [0, 1]. On the horizontal line y = α the union over θ of
the spectra of the family Ch(θ). The picture results of
computations for rational α’s.

The hamiltonian point
of view permits to explain the behavior of the spectrum as α 7→ 0
or more generally as α→ p

q .



The first statement
The first statement was established in HSHarper1.

Theorem

For ε0 > 0, there exists C0 > 0 such that if h/(2π) ∈ (0, 1) \Q and

h/(2π) = 1/(q1 + 1/(q2 + 1/q3 + · · · ))))

with qj ∈ Z and |qj | ≥ C0, we have:

I The smallest closed interval J containing the spectrum σ(H)
has the form [−2 +O(1/|q1|), 2 +O(1/|q1|)] ,

I

σ(H) ⊂ ∪N−≤j≤N+Jj

where the Jj are closed intervals of positive length with
∂Jj ⊂ σ(H),

I Jj+1 is on the right of Jj at a distance of order 1/|q1|,



Theorem continued

I J0 has length 2ε0 +O(1/|q1|) and contains 0 at a distance
O(1/|q1|) of its center

I The other bands have width e−C(j)|q1| with C (j) of order 1

I For j 6= 0, if κj denotes the affine function sending Jj onto
[−2,+2], then

κj(Jj ∩ σ(P)) ⊂ ∪kJj ,k ,

where the Jj ,k have the same properties as the Jj with q1

replaced by q2 and so on.

Remark4

This theorem is used by Bourgain in order to give cases for which
the integrated density of states is not Hölder.

4Thanks to Q. Zhou for this remark.



Sketch of the proof of the renormalization theorem–step 1

The analysis proposed by Wilkinson is based on a WKB analysis.
As already mentioned the analysis of the spectrum of the Harper
model is equivalent (isospectrality) with the spectral analysis of the
pseudo-differential operator:

cos hDx + cos x

on L2(R).
The symbol is cos x + cos ξ. For a given energy E , the wells are
the connected components of p−1(E ).
For each of these components connected, we can construct some
quasimode states and the ”approximate” spectrum is correct
modulo O(h∞).



A few words on WKB solutions

This has a long story for the 1D-Schrödinger operator

−h2 d2

dx2
+ V (x) .

We assume that V (x) ≥ 0 = V (0). If for some E0 > 0,
V−1(−∞,E0) is connected, bounded and if ∇V is not critical
except at the minimum of V where V is assumed to be non
degenerate. Then the whole spectrum in (0,E0) can be obtained
modulo O(h∞) by the socalled generalized Bohr-Sommerfeld
condition which reads

f (λn(h), h) = (n +
1

2
)h .



The first step for getting this rule is to try to construct solution of
the type a(x , h) exp±i φh with energy E this is posssible except at
V−1({E}). We have first to solve in V−1(−∞,E ) the so called
equation

φ′(x)2 = E − V (x) .

This is when trying to match together these locally defined
solution that we get that this is only pssible for some h-dependent
values of E .
In the case of the Harper model, if E ∈ (−2, 2), E 6= 0, we can
perform a similar analysis whose first step is to solve

cosφ′(x) + cos x = E .

One observes that there are many local solutions (if φ(x) is a
solution φ(x) + 2πkx for k ∈ Z is another solution, φ(x + 2πm) for
m ∈ Z is another solution (in atranslated interval).



Near each of these values λn(h), we can construct a basis (close to
orthonormal) of the spectral space of the Harper equation
associated with the interval (λn(h)− Ch2, λn(h) + Ch2). This is
not too difficult for λn(h) avoiding the critical value E = 0 of the
symbol. The eigenvalues are indeed approximately given by a
Bohr-Sommerfeld formula (as done for −h2 d2

dx2 + V (x)) and the

eigenvalues are well separated λn+1 − λn(h) ≥ 1
C h.

This basis is obtained by functions which are well localized in each
of the wells, and are deduced from each other by translations
(commuting with the Harper equation) exchanging the different
wells.
This is quite similar with what we have done in the analysis of the
Schrödinger operator with electric potential but this time we are
dealing with ”microlocal” wells i.e. defined in T ∗R.



But these wells interact by the socalled tunneling effects and the
Harper model restricted to this spectral space is described in this
basis by an infinite matrix which is not diagonal. For h small,
Wilkinson gives how heuristically, by analyzing the interactions,
one gets an operator on `2(Z2), which can be identified as a
hnew -pseudodifferential operator (hence with a new semi-classical
parameter) which is quite close to a new Harper model.
For having the complete structure of the spectrum, we have just to
iterate the procedure.
One can hope that the procedure will work if the succession of h’s
which are obtained is sufficiently small. The sequence of h’s is
given by the expansion as a continuous fraction of α = h

2π .
This actually does not work so easily ! The construction of the
basis is difficult in the neighborhood of the critical point and this is
why in [HSHarper1] we get only a partial result, where we avoid at
each step a small zone. At this stage, we do not get the Cantor
structure of the spectrum.
The complete solution was only obtained in [HS3] about one year
later.



In [HSHarper3], in order to treat the Harper operator and
perturbations of it occuring in a renormalization procedure, the
following notion was introduced.

Definition

A symbol L(x , ξ;µ, h) will be called of strong type I if the following
conditions are satisfied for all h ∈ (0, h0) with some h0 > 0:

(a) L depends analytically on µ ∈ [−4, 4].

(b) There exists ε > 0 such that

(b1) L(x , ξ;µ, h) is holomorphic in

Dε =
{

(µ, x , ξ) ∈ C× C× C : |µ| ≤ 4, |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(b2) for (µ, x , ξ) ∈ Dε, there holds∣∣L(x , ξ;µ, h)− (cos x + cos ξ − µ)
∣∣ ≤ ε.



Continuation of the definition

(c) The following symmetry conditions hold:

L(x , ξ;µ, h) = L(ξ, x ;µ, h) = L(x ,−ξ;µ, h)
L(x , ξ;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ + 2π;µ, h).

By ε(L) we will denote the minimal value of ε for which the above
conditions hold.



The final result reads

Theorem HS

Let L(µ, h) be a strong type I symbol. There exist ε0 , C s. t. if
ε(L) ≤ ε0 and if

h

2π
=

1

n1 +
1

n2 +
1

n3 + . . .

with nj ≥ C , then the µ-spectrum of the associated operators

L̂h(µ) is a zero measure Cantor set.

In particular, this applies to the spectrum of the Harper’s model.
But the theorem says also that this is stable by perturbations
respecting all the symmetries.



Critical points

The analysis in the interval J0 is more delicate. For E = 0, the
wells are no more compact and the previous construction does not
work at all. The renormalization is much more involved. We need
a microlocal analysis of the model h2D2

x − x2 and the renormalized
operator is no more an Harper’s model but a 2× 2 system of
hnew -pseudodifferential operator whose principal symbol is

Q(x , ξ) =

(
b + āe−iξ b̄ + ae ix

b + āe−ix b + āe iξ

)
Fortunately, one can show that there are at the end four models

permitting to complete the analysis after the first normalization.



Analysis near a rational – continued

This was the object of [HS2] which is inspired by previous works of
Wilkinson, Sokoloff, Bellissard ... The main point is that the
analysis of the spectrum for α = p

q + h can be obtained by
analyzing a q × q-system of h-pseudodifferntial operators with
principal symbol Mp,q(x , ξ). Except at the energy 0 where two
bands may touch, the basic point is that we have the so-called
Chamber’s formula:

Det(Mp,q(θ1, θ2)− z) = fp,q(z) + 2(−1)q+1(cos qθ1 + cos qθ2) ,
(49)

where z 7→ fp,q(z) is a polynomial of degree q with nice properties
permitting for example to show that the bands do not overlap and
can only touch at their end. This is a result of Van Mouche that
they do not touch (except when q is even) at the center.



A typical example is for q = 2, where we get the matrix

M1,2(θ1, θ2) =

(
cos θ1 cos θ2

cos θ2 − cos θ1

)
(50)

The eigenvalues are

λ±(θ1, θ2) = ±
√

cos2 θ1 + cos2 θ2

A semi-classical analysis of M1,2(hDx , x) is possible including at
the touching point. The harmonic approximation is replaced by a
Dirac approximation (

hDx x
x −hDx

)



On the non-overlapping of the bands

In the case of the Harper model, the non overlapping of the bands
has been proved in Bellissard-Simon who refers for one part to a
general argument to Reed-Simon. The fact that except at the
center for q even, the bands do not touch has been proven by P.
Van Mouche. We show below that the non overlapping of the
bands is a general property each time that we have a Chamberss
formula but the ”non touching” property is specific of the Harper
model.

lemma

Let f (λ) be a real polynomial of degree q, such that, for any
µ ∈ I =]a, b[, f (λ) = µ has q real solutions. Then f ′(λ) 6= 0, for
any λ such that f (λ) = µ ∈ I .



About the paper ”The Hofstadter butterfly revisited” by
Helffer-Kerdelhué-Sjöstrand”

This is not a semi-classical analysis but an incomplete (based on
conjectures) description of the spectrum and of the density of
states in the gaps. Because the reference is in french, we give
below a translation of some of the statements.



The gaps in the spectrum.
This is the ”colored” butterfly realized in 2003 by Y. Avron and his
team.

	  



A perturbative theorem near λ = 0.
To follow [HKS] we consider instead

`2(Z) 3 u 7→
(
Ĥα(λ, θ)u

)
(n) := λ(∆disu)(n)+cos 2π(αn+θ)u(n) ,

(51)
where ∆dis is the discrete Laplacian.
Hence, one has to play with the Aubry duality to come back to the
model Hα(λ, θ).
For λ = 0 the spectrum of Ĥα(λ, θ) is of course the closure of the
set of eigenvalues (cos 2π(αn + θ)) with n ∈ Z. For λ 6= 0, we
would like to show the existence of gaps in the spectrum.
Given some positive integer `, we assume that the following
condition

α ∈ NR(`) := (0, 1) \ ∪2`
j=1N

1

j
. (52)

The first observation is that under this condition, if n ∈ Z, θ ∈ R
satisfy cos 2π(αn + θ) = cos 2π(α(n + `) + θ), then there exists
k ∈ Z such that

2π (α(n + `) + θ) = 2πk − 2π(αn + θ) . (53)



This implies
cos 2π(αn + θ) = (−1)k cosπα` . (54)

We now introduce
Eα,` = cos(πα`) (55)

and observe that under condition (52) we have

Eα,` 6∈ {0, 1,−1} , (56)

for `′ ∈ {1, 2, . . . , `− 1} , |Eα,`′ | 6= |Eα,`|. (57)

and
cos 2π(αn + θ) 6= cos 2π(α(n − `) + θ) . (58)



All the results below will hold for fixed ` and α in a compact
subset A of NR(`) uniformly for λ small enough and θ ∈ R. The
aim is to show the existence of a gap in the spectrum of Ĥλ

tending to Eα,` as λ→ 0.
For ε > 0, we introduce

Aε,θ,α = {n ∈ Z ; αn + θ ± α`

2
∈ Z + [−ε,+ε] for one sign } (59)

and we observe that Aε,θ,α is a union of pairs (nj , nj + `) with
nj ∈ Z.

Lemma

There exists ε(`,A) > 0 and C = C (`,A) > 0 such that, for
ε ∈ (0, ε(`,A)), either Aε,θ,α = ∅ or Aε,θ,α = ∪j∈Z(nj , nj + `) where
nj+1 ≥ nj + 2`+ 1 .
Moreover,

| cos(2π(α(n + θ))− Eα,`|
{
≥ ε

C , if n ∈ Z \ Aε,θ,α
≤ εC , if n ∈ Aε,θ,α

(60)



We now introduce what is called a Grushin problem (which is a
variant of a Schur complements method). For ε > 0 small enough,
we introduce Pλ(z) in L(`2(Z)× `2(Aε)) by

Pλ(z) =

(
Ĥλ − z i
π 0

)
, (61)

where π : `2(Z) 7→ `2(Aε) is the restriction operator and
i = π∗ : `2(Aε) 7→ `2(Z) is the natural injection given by

(iu)(n) =

{
u(n) if n ∈ Aε
0 if n 6∈ Aε



For λ = 0, one can see P0(z) as a direct sum parametrized by Z of
scalar operators (when n ∈ Z \ Aε) or 2× 2 matrices when
n, n + ` ∈ Aε. In the first case the scalar is cos 2π(αn + θ)− z and
when n, n + ` ∈ Aε the matrix is cos 2π(αn + θ)− z 1

1 cos 2π(α(n + `) + θ)− z

 .

If |z − Eα,`| ≤ 1
2C ε (with the C as in the previous lemma), P0 is

invertible and its inverse reads

P0(z)−1 :=

(
E0(z) E+

0

E−0 E−+
0

)
=

(
(1− π)

(
(H0 − z)Z\Aε

)−1
(1− π) i

π (z − H0)/Aε

)
.

(62)
We immediately get for a new constant Ĉ = Ĉ (`,A) ≥ C that

||P0(z)−1|| ≤ Ĉε−1 . (63)



With a new constant Č ≥ Ĉ , we immediately deduce that(
Pλ − z

)
is invertible for |λ| ≤ ε

Č
and |z − Eα,`| ≤ 1

Č
ε, with in

addition the control

||Pλ(z)−1|| ≤ Čε−1 . (64)

This inverse is indeed given by the Neumann series

Eλ(z) = Pλ(z)−1 =
∑
j≥0

(−λ)jP0(z)−1

((
∆ 0
0 0

)
P0(z)−1

)j

.

(65)
Writing Eλ(z) in the form

Eλ(z) =

(
Eλ(z) E+

λ (z)
E−λ (z) E−+

λ (z)

)
it is important to note (this is the interest of the Grushin method)

that for z and λ satisfying the above assumptions

z ∈ σ(Ĥλ) iff 0 ∈ σ(E−+
λ (z)) . (66)



We have for E−+
λ (z) the following expression

E−+
λ (z)

= (z − Ĥ0)/Aε

+
∑

j≥1(−λ)jπ

(
∆(1− π)

(
(z − Ĥ0)/Z\Aε

)−1
(1− π)

)j−1

∆i .

(67)
If (n,m) ∈ (Aε)

2 the element of the matrix of E−+
λ (z) is denoted

by E−+
λ (z)(n,m). We observe from the above expression that

|∂kz E−+
λ (z)(n,m)| ≤ Cε,kλ

|n−m| . (68)

Let n, n + ` ∈ Aε and consider the 2× 2 block matrix(
E−+
λ (z)(n, n) E−+

λ (z)(n, n + `)
E−+
λ (z)(n + `, n) E−+

λ (z)(n + `, n + `)

)
.

It has the form (
λ̂n,λ,z µn,λ,z
µn,λ,z λ̂n+`,λ,z

)
+Oε(λ`+1) , (69)

where the remainder corresponds to the contribution of

+
∑

j≥`+1(−λ)jπ

(
∆(1− π)

(
(z − Ĥ0)/Z\Aε

)−1
(1− π)

)j−1

∆i



in the above formula.
We first look at the two terms on the diagonal that we now write
λ̂n,λ,z(θ) and λ̂n+`,λ,z(θ) to recall now the dependence on θ which
will now play a role.
These elements are still well defined when we replace θ by a
variable θ̃ varying in the largest integral Jn containing θ with the
property that n, n + ` ∈ Aε0,θ̃

, where ε0 is fixed, small but
satisfying ε0 >> ε. More explicitly, if k ∈ Z is such that

nα + θ +
α`

2
∈ k ∈ [−ε,+ε] ,

then λ̂n,λ,z(θ̃) and λ̂n+`,λ,z(θ̃) are well defined for |θ̃ − θ0| ≤ ε0,
where θ0 is defined by

nα + θ0 +
α`

2
= k .



Let δ(θ̃) = θ̃ − θ0. Then |δ(θ)| ≤ ε. Note that θ0 depends on n
but all the estimates below will be uniform with respect to n. For
θ̃ = θ0, n and n + ` are in a symmetric situation for the map
ñ 7→ cos 2π(αñ + θ̃):

cos 2π(α(n + ν) + θ0) = cos 2πα(ν − `

2
) , ∀ν ∈ R , (70)

which implies

cos 2π(αn + θ0) = cos 2π(α(n + `) + θ0) . (71)

By symmetry arguments we get

λ̂n,λ,z(θ0) = λ̂n+`,λ,z(θ0) := z − Eα,`,λ,z , (72)

where {
Eα,`,λ,z = Eα,` +O(λ2) ,
∂pz Eα,`,λ,z = Op(λ2) ,

(73)

and Eα,`,λ,z is independent of n.



Let us also observe that the dependence on n in the expression of
λ̂n,λ,z(θ̃) and λ̂n+`,λ,z(θ̃) appears only through θ̃ − θ0.
From (69), we also get the information

∂θ̃λ̂n,θ,z(θ0) = q +O(λ2) , ∂θ̃λ̂n+`,θ,z(θ0) = −q +O(λ2) , (74)

where
q = 2π sin(πα`) 6= 0 . (75)

With δ = θ − θ0, we obtain by a Taylor expansion{
λ̂n,λ,z(θ) = z − Eα,`,λ,z + qδ +O(λ2|δ|+ |δ|2) ,

λ̂n+`,λ,z(θ) = z − Eα,`,λ,z − qδ +O(λ2|δ|+ |δ|2) .
(76)



We now introduce

w(z , λ) = z − Eα,`,λ,z , (77)

and we observe that

|w(z , λ)| ∼ |z − z(λ)| , (78)

where z(λ) = Eα,` +O(λ2) is independent of n.
For µn,λ, we have the explicit formula

µn,λ = (−λ/2)`/

`−1∏
j=1

( (cos(2π(n + j)α + θ)− z))

 , (79)

but we will only use
|µn,`| ∼ λ` . (80)



The eigenvalues of the first term of (69) are given by

λ̂± =
(
λ̂n + λ̂n+`

)
/2±

√
µ2 +

(
(λ̂n − λ̂n+`)/2

)2
. (81)

Hence we get

(λ̂+ + λ̂−)/2 = w(z , λ) +O(λ2|δ|+ |δ|2) , (82)

and

(λ̂+ − λ̂−)/2 =

√
µ2 +

(
(λ̂n − λ̂n+`)/2

)2

∼ λ` + |δ|+O(λ2|δ|+ |δ|2)
∼ λ` + |δ| if ε and λ are small enough .

(83)



If we impose the condition

|z − z(λ)| ≤ λ`/D (84)

with D > 0 large enough, we get

|w(z , λ)| ≤ λ`/D̃ ,

with D̃ as large as we want (through the choice of D).
Comparing (82) and (83), we see that, we can choose D̃ such that

λ̂+ − λ̂− >> (λ̂+ + λ̂−)/2 ,

hence we get

inf(|λ̂+|, |λ̂−|) ≥
1

C
(λ` + |δ|) , ∀z ∈ (z(λ)− 1

D
λ`, z(λ) +

1

D
λ`) .



The first block in (69) therefore admits an inverse of norm
O(1)) 1

λ`+|δ| . The interval (z(λ)− 1
Dλ

`, z(λ) + 1
Dλ

`) is

independent of n and the result is obtained for fixed ε small
enough. The perturbation term in (69) is controlled in L(`2(Aε))
as O(λ`+1). Hence we obtain the invertibility of E−+

λ (z) for
z ∈ (z(λ)− 1

Dλ
`, z(λ) + 1

Dλ
`) and λ small enough depending only

on ` and A.



We have finally obtained

Theorem (Helffer-Kerdelhué-Sjöstrand)

There exists λ0 = λ0(`,A) and C = C (`, α), s. t. for all
λ ∈ (0, λ0), there exists

z`(λ, α) = Eα,` + O(λ2)

such that for all θ ∈ R, we have

(z`(λ, α)− λ`

C
, z`(λ) +

λ`

C
) ∩ σ(Ĥα(λ, θ)) = ∅ , (85)

and the same result holds near −z`(λ, α).

This gives a lower bound for the gap which appears to be optimal
in the rational case due to some explicit computations given by P.
Van Mouche in his analysis of the spectrum of Harper in the
rational case (CMP 1989).



It is also proven under the same conditions as in the theorem:

Proposition

The value of the integrated density of states in the gap around
z`(λ, α) is given by

ρλ((−∞, z`(λ, α)]) = 1− dist(`α, 2Z) = |2{`α
2
} − 1| . (86)



Some conjectural analysis of the wings

We denote by Σλ
α the spectrum of 1

1+λ Ĥ
λ. We then consider in

Q = [0, 1]× [−1,+1] the set

Σλ := ∪α(α,Σλ
α) .

It is well known that Σλ is closed and we call wing (in [HKS] this
is called ”fuseau”) a connected component of the complementary
{Σλ of Σλ in Q. Hence by definition a wing is open.
The aim is to discuss the structure of the wings. We then observe
the following properties:

Property P1

(P1) For any α0 ∈ (0, 1), the line α = α0 cuts a wing Wλ on an
(possibly empty) open interval I (α0, λ) .



Property P2

For any wing W, there exists α±(W) such that

W ⊂ (α−, α+)× [−1,+1] , 0 ≤ α− < α+ ≤ 1 , α± ∈ π(W) ,

where π denotes the projection R2 3 (α,E ) 7→ α .

This is obtained immediately by connectedness.



For an interval J in R+ we introduce

Conjecture C3 (J )

For any λ ∈ J and for any wing Wλ, the points α± are rational.

This conjecture was open in the 90’s. It would be interesting to
know if it can be proved by more recent results (see below
Avila-You-Zhou).



Property P4 : Continuity

If, for J = (0, λ1), Conjecture C3(J) holds, then, for any λ ∈ I , the
boundary of the wing Wλ is continuous.

By continuity, we mean that if we write
I (α, λ) = (f−(α, λ), f+(α, λ)) the maps (α−, α+) 3 α 7→ f±(α, λ)
belong to C 0([α−, α+]) with f−(α±, λ) = f+(α±, λ). Note that

Elliott gets C
1
3
loc(α−, α+). What was not clearly established before

[HKS] is the continuity at the ends of the interval.
The proof in [HKS] (stated for J = (0,+∞)) is based on
Assumption C3(J) and a deformation argument in λ starting of
what we know by perturbation theory for λ = 0 (as explained in
Remark 3.5 in [HKS]) gives that f−(α±, λ) = f+(α±, λ) is at the
end of a band. The semiclassical proof ”near a rational” which is
also proposed gives a good hint for what is going on but is
unfortunately incomplete when 0 < λ < 1.



Property P5

If for J = (0, λ1), Conjecture C3(J) holds, for all α ∈ (0, 1),
I (α, λ) is either empty for all λ ∈ (0,+∞) or never closes for all
λ ∈ (0,+∞).

Property P6

If, for J = (0, λ1), Conjecture C3(J) holds, α±(Wλ) is
independent of λ for λ ∈ J.



The discussion can be summarized by the following statement:

Theorem

If for J = (0, λ1), Conjecture C3(J) holds, then for any
”continuous” family (Wλ)λ∈J , there exist two rationals α± (with
0 ≤ α− < α+ ≤ 1) such that

∀λ ∈ J , π(Wλ) = [α−, α+] ,

and two functions f± defined on (α−, α+)× (0, λ1) such that

I f±(α, λ) ∈ C 0([α−, α+]× [0, λ1)) ,

I |f±(α, λ)− f±(α, λ′)| ≤ 2|λ− λ′| ,
I f−(α, λ) < E < f+(α, λ), α ∈ [α−, α+) iff (α,E ) ∈ Wλ ,

I f−(α±, λ) = f+(α±, λ) belongs to the end of a band of Σλ
α± .



End of theorem

Moreover, if the integrated density of states in Wλ is given by
k(α, µ) = mα + n, then

1. α± ∈ ∪j≤2|m|N{1
j } ∪ (0, 1)

2. (α−, α+) ∩
(
∪j≤2|m|N{1

j } ∪ (0, 1)
)

= ∅



Remark

Conjecture C3(λ1) implies for λ ∈ (0, λ1) the ”dry” or ”strong”
form of the ten Martinis conjecture which was formulated by B.
Simon in the form

Conjecture

For all λ 6= 0, all α 6∈ Q and any integers m, n with
0 < mα + n < 1, there exists a gap for which the IDS in the gap
satisfies

k(α, ·) = mα + n .

Note that this conjecture is now proved for λ ∈ (0, 1) by
Avila-You-Zhou. Hence Conjecture C3(+∞) appears to be a
stronger form of the ”dry ten Martinis conjecture” (and probably
equivalent).



Other lattices

One can consider other lattices: the hexagonal Hofstadter butterfly
(after Kerdelhué, Kreft-Seiler, Claro,....)



Other examples

J. Royo-Letelier and P. Kerdelhué (see [Hou] ) have analyzed
rigorously the case of a Kagome lattice.



The Kagome butterfly
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B. Helffer and J. Sjöstrand: Analyse semi-classique pour l’équation
de Harper. II. Comportement semi-classique près d’un rationnel.
Mém. Soc. Math. France (N.S.) 40 (1990) 1–139.
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Two papers for the Hexagonal lattice.
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