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Abstract

Since the description in 1976 of the beautiful butterfly by the
physicist Hofstadter interpreted as the spectra of a family of
operators (called almost Mathieu or Harper’s operator)
parametrized by some flux, a huge literature has been written for
understanding the properties of these spectra. After a presentation
of the subject, these lectures will be devoted to the description of
the results of Helffer-Sjöstrand (at the end of the eighties) based
on an illuminating strategy proposed by the physicist M. Wilkinson
in 1985. This leads to the proof of the Cantor structure of the
spectrum for the Harper model for a some specific family of
irrational fluxes (characterized on its expansion in continuous
fractions). This was a very particular case of the ten Martinis
conjecture of M. Kac popularized by B. Simon and which was
finally proved in (2009) by A. Avila, S. Jitomirskaya and coauthors
for any irrational.



The goal is to explain how semi-classical analysis appears in the
analysis of this problem. The analysis of the spectrum of the
Harper’s model can indeed be done for some fluxes by
semi-classical analysis and in this case can give a more precise
information on the spectrum than simply its Cantor structure. If it
seems to be impossible in these lectures to give a complete proof
of the results (the use of the FBI techniques mainly due to
J. Sjöstrand is omitted here), we hope to give a flavor of the tools
used in this context permitting an easier access to the research
papers (which are sometimes written in french). Complementary
material can be found in our Lecture Note in Sonderborg or in the
CIME course of J. Sjöstrand in 1989.



The lectures will present various connected points and the maximal
program is the following:

I Recognize the Harper operator as a pseudo-differential
operator.

I Give some introduction to h-pseudodifferential calculus and
show how one gets the spectrum modulo O(h∞).

I Describe the first step of a renormalization procedure leading
to two new semi-classical models. This corresponds to a
precise analysis of the tunneling effect and will actually be the
main subject developed in these lectures.

I Give some hints for the complete renormalization procedure in
the irrational case leading to the proof of the Cantor structure.

I Discuss other applications around the length of the spectrum
in the rational case.



Introduction

The spectral properties of a charged particle in a two-dimensional
system submitted to a periodic electric potential and a uniform
magnetic field crucially depend on the arithmetic properties of the
number α representing the magnetic flux quanta through the
elementary cell of periods, see e.g. Bellissard [Be1991] for a
description of various models.
Since the works by Azbel [Az1964] and Hofstadter [Hof] it is
generally believed that for irrational α the spectrum is a Cantor
set, that is a nowhere dense (the interior of the closure is empty)
and perfect set (closed + no isolated point), and the graphical
presentation of the dependence of the spectrum on α shows a
fractal behavior known as the Hofstadter butterfly.



The Hofstadter’s butterfly is obtained in the following way. We
put on the vertical axis the parameter proportional to the flux
α = h

2π ∈ [0, 1] and on the horizontal line y = α the union over θ
of the spectra of the family Hα(θ). The picture results of
computations for rational α’s.



Let us consider more generally (introduction of λ > 0) the family
of operators on `2(Z)

(Hλ,α,θu)n =
1

2
(un+1 + un−1) + λ cos 2π(θ + nα)un .

Different names for this operator are given including Harper or
Almost-Mathieu.
If α = p

q is rational the spectrum consists of the union of q
intervals possibly touching at the end point. If α is irrational the
spectrum is independent of θ and:

Ten Martini Theorem

The spectrum of the almost Mathieu operator Hλ,α is a Cantor set
for all irrational α and for all λ 6= 0.

The Ten Martini conjectures was popularized by B. Simon in
reference to some offer of M. Kac.
Computations for λ 6= 1 are proposed in a ”numerical” paper of
Guillement-Helffer-Treton [GHT].



After intensive efforts (we can mention Azbel (1964),
Bellissard-Simon (1982), Van Mouche (1989), Helffer-Sjöstrand
(1989), Puig (2004), Avila-Krikorian (2008)) this Cantor set
structure was rigorously proved in 2009 by Avila-Jitomirskaya for
all irrational values of α (see [AvJi] and references therein) for the
models

u 7→ (Hλ,α,θ u)n =
1

2
(un+1 + un−1) + λ cos(2π(αn + θ))un .

with λ > 0.
Unfortunately Mark Kac died before to know that he has to buy
these ten Martini. Fortunately M. Aizenman organized later some
fest in Montreal (if I well remember) for all the contributors.



Coming back to mathematics, a more detailed analysis (Helffer and
Sjöstrand – HSHarper1,HSHarper2,HSHarper3–in the years
1988-1990) shows that the study of some parts of the spectrum for
the Schrödinger operator with a magnetic field and a periodic
electric potentials reduces to the spectral problem for an operator
pencil of one-dimensional quasiperiodic pseudodifferential
operators.

Under some symmetry conditions for the electric potentials, the
operator pencil reduces to the study of small perturbation of the
continuous analog of the almost-Mathieu (=Harper) operator,
which allowed one to carry out a rather detailed iterative analysis
for special values of α.
In particular, in several asymptotic regimes a Cantor structure of
the spectrum was proved.
This involved a semi-classical pseudo-differential calculus, whose
relevance in this context was predicted by the physicist Wilkinson
(from United Kingdom) in the middle of the eighties.
End of Introduction



Preliminary properties and first meeting with the
pseudo-differential calculus

We are interested in ∪θσ(H(θ)). We observe that (with h = 2πα)

H(θ) = H(θ + 1) and H(θ + h) is unitary equivalent to H(θ) .

This implies that if α 6∈ Q, then the spectrum is independent of θ
and secondly that

∪θ σ(H(θ)) = σ(H̃) ,

where H̃ : L2(Z× [0, h)) 7→ L2(Z× [0, h)) is defined by(
H̃u
)

(·, θ) = H(θ)u(·, θ) .



If we identify L2(Z× [0, h)) with L2(R) by

u(k , θ) = ũ(θ + hk)

the operator H̃ becomes

H̃ =
1

2
(τh + τ−h) + λ cos x

where τh is the translation operator:

τhv(x) = v(x − h) .

If we observe that τh = exp ihDx , we can rewrite H̃ as a
h-pseudodifferential operator

cos hDx + λ cos x

whose h-symbol is cos ξ + λ cos x .



In this last formalism, the Aubry duality is obtained by using a
h-Fourier transform.

Fhu(ξ) = (2πh)−
1
2

∫
e−ixξ/hu(x) dx .

By conjugation, the operator becomes

λ cos(hDξ) + cos ξ = λ(cos(hDξ) +
1

λ
cos ξ) .



The h-quantization of a symbol p(x , ξ, h) with values in Mn(C) is
the pseudo-differential operator defined over L2(R;Cn) by

((Opw
h p)u) (x) =

1

2πh

∫∫
R2

e i
(x−y)ξ

h p

(
x + y

2
, ξ, h

)
u(y) dy dξ .

(1)
We will come back to this definition later.



One remark on renormalization

If τ = τ2π and τ̂ is the multiplication operator by e2πix/h, then H̃
commutes with τ and τ̂ .
An important point is that τ and τ̂ do not necessarily commute.

τ τ̂ = exp(−i(2π)2/h) τ̂ τ = exp−i h̃ τ̂ τ ,

with
(2π)/h = k + h̃/(2π) .

The map h→ h̃ plays a key role in the renormalization procedure.



The rational case

In order to compute the spectrum of H̃γ , we can start with the
case when γ/(2π) is a rational number. This is obtained by using
the Floquet theory.
For p, q ∈ N∗ we define the matrices Jp,q,Kq ∈Mq(C) by

Jp,q = diag(exp (2iπ(j − 1)p/q))

(Kq)ij =

{
1 if j = i + 1 (mod q)
0 if not

.
(2)

Note that
Jp,q = Jp1,q .



Theorem

Let γ = 2πp/q with p, q ∈ N∗ relatively primes, λ = 1, and denote
by σγ the spectrum of H̃γ . We have

σγ =
⋃

θ1,θ2∈[0,1]

σ(Mp,q,θ1,θ2) , (3)

where Mp,q,θ1,θ2 is given by

Mp,q,θ1,θ2 = e iθ2J∗p,q + e−iθ2Jp,q + e iθ1Kq + e−iθ1K ∗q . (4)



Chambers formula

The Chambers formula gives a very elegant formula for this
determinant:

det(Mp,q(θ1, θ2)− λ) = fp,q(λ) + (−1)q+12 (cos qθ1 + cos qθ2) ,
(5)

where fp,q is a polynomial of degree q. Each band I` is described by
a solution λ`(θ1, θ2) of the Chambers equation which has the form

λ`(θ1, θ2) = ϕ`,p,q(2 (cos qθ1 + cos qθ2)) . (6)

These bands do not overlap and do not touch except possibly at
the center (Van Mouche).
Hence it remains to consider the irrational case.



Introduction to semi-classical analysis

The aim is to present the basic mathematical techniques in
semi-classical analysis involving the theory of h-pseudodifferential
operators and to illustrate how they permit to solve natural
questions about spectral distribution and localization of
eigenfunctions. More details are given in [He]. See also, the books
of D. Robert (in french), Dimassi-Sjöstrand, A. Martinez, and the
recent book of M. Zworski.



From classical mechanics to quantum mechanics

The initial goal of semi-classical mechanics is to explore the
correspondence principle, due to Bohr in 1923 [Bo], which states
that one should recover as the Planck constant h tends to zero the
classical mechanics from the quantum mechanics. So we start with
a very short presentation of these two theories.



Classical mechanics

We start (we present the Hamiltonian formalism) from a C∞

function on R2n : (x , ξ) 7→ p(x , ξ) which will permit to describe
the motion of the system in consideration and is called the
Hamiltonian. The variable x corresponds in the simplest case to
the position and ξ to the impulsion of one particle. The evolution
is then described, starting of a given point (y , η), by the so called
Hamiltonian equations

dxj/dt = (∂p/∂ξj)(x(t), ξ(t)) , for j = 1, · · · , n ;
dξj/dt = −(∂p/∂xj)(x(t), ξ(t)) , for j = 1, · · · , n . (7)



The classical trajectories are then defined as the integral curves of
a vector field defined on R2n called the hamiltonian vector field
associated with p and defined by Hp = ((∂p/∂ξ),−(∂p/∂x)) . All
these definitions are more generally relevant in the framework of
symplectic geometry on a symplectic manifold M, but we choose
for simplicity to explain the theory on R2n, which can be seen the
cotangent vector bundle T ∗Rn, and is the “local” model of the
general situation. This space is equipped naturally with a
symplectic structure defined by giving at each point a non
degenerate 2-form, which is here σ :=

∑
j dξj ∧ dxj . This 2- form

permits to associate canonically to a 1-form on T ∗Rn
x a vector field

on T ∗Rn
x . In this correspondence, if p is a function on T ∗Rn

x , Hp is
associated with the differential dp.



We keep in mind as first guiding example the example of the
Hamiltonian p(x , ξ) = ξ2 + V (x), also called the Schrödinger
Hamiltonian and more specifically the case of the harmonic
oscillator where V (x) =

∑n
j=1 µj x

2
j (with µj > 0), which is the

natural approximation of a potential near its minimum, when non
degenerate.
But our main interest will be in the Hamiltonian (n = 1)

(x , ξ) 7→ cos x + cos ξ.



In the framework of the classical mechanics the main questions
could be :

I Are the trajectories bounded ?

I Are there periodic trajectories ?

I Is one trajectory dense in its energy level ?

I Is the energy level compact ? or a disjoint union of compacts ?



The solution of these questions could be very difficult. Let us just
mention the trivial fact that, if p−1(λ) is compact for some λ, then
the conservation of energy law

p(x(t), y(t)) = p(y , η) . (8)

leads to the property that the trajectories starting of one point
(y , η) remain in the set {p(−1)(p(y , η)) in R2n and are hence
bounded. This is in particular the case for the harmonic oscillator.



Energy levels

We recall that for a given energy E and an Hamiltonian p, the
energy level is defined in T ∗Rn by

p−1(E ) = {(x , ξ) , p(x , ξ) = E} .

When n = 1 and if E is not a characteristic value of p, the level
set is a (1D)-manifold (i.e. consisting of curves) .
We are mostly interested in the Harper Hamiltonian, which is
defined for λ ∈ (0, 1] by

(x , ξ) 7→ pλ(x , ξ) = cos ξ + λ cos x .

and the analysis of the energy levels is easy.



Here are the pictures:



The pictures for λ ∈ (0, 1) and λ = 1 are quite different.
When λ = 1, we note that the picture is stable by perturbation if
we keep the periodicity and the symmetries (x , ξ) 7→ (x ,−ξ) and
(x , ξ) 7→ (ξ,−x). The critical points correspond indeed to a Morse
function.



Quantum mechanics

The quantum theory is born around 1920. It is structurally related
to the classical mechanics in a way that we shall describe very
briefly. In quantum mechanics, our basic object will be a (possibly
non-bounded) selfadjoint operator defined on a dense subspace of
an Hilbert space H. In order to simplify, we shall always take
H = L2(Rn).
This operator can be associated with p by different techniques
called quantizations. We choose here to present a procedure called
the Weyl-quantization procedure, which under suitable assumptions
on p and its derivatives will be defined for u ∈ S(Rn) by

pw (x , hDx , h)u(x) =

(2πh)−n
∫∫

exp( i
h (x − y) · ξ) p( x+y

2 , ξ, h) u(y) dy dξ .
(9)



The operator pw (x , hDx , h) is called an h-pseudodifferential
operator of Weyl-symbol p. One can also write Opwh (p) in order to
emphasize that it is the operator associated to p by the Weyl
quantization. Here h is a parameter which plays the role of the
Planck constant.
Of course, one has to give a sense to these integrals and this is the
object of the theory of the oscillatory integrals. If p = 1, we
observe that the associated operator is nothing else, by
Plancherel’s formula, than the identity :

u(x) = (2πh)−n ·
∫ ∫

exp(
i

h
(x − y) · ξ) u(y) dy dξ .



A way to rewrite any h-differential operator
∑
|α|≤m aα(x)(hDx)α

as an h-pseudodifferential operator is to apply it to the Plancherel
identity. In particular, we observe that if p(x , ξ) = ξ2 + V (x), then
the h-Weyl quantization associated with p is the Schrödinger
operator : −h2∆ + V . Other interesting examples appear naturally
in solid state physics. We recall that for example the Harper’s
operator H has symbol (x , ξ) 7→ cos ξ + cos x . and can also be
written, for u ∈ L2(Rn), by

(Hu)(x) =
1

2
(u(x + h) + u(x − h)) + cos x u(x) .

We shall later recall how to relate the properties of p and the
properties of the associated operator.



We simply recall the case of the Schrödinger operator :
Sh = −h2∆ + V (x). If V is -say continuous- bounded from below,
Sh, which is a priori defined on S(Rn) as a differential operator,
admits a unique selfadjoint extension on L2(Rn).
We are first interested in the nature of the spectrum. If V tends to
+∞ as |x | → ∞, one can show that Sh, more precisely its
selfadjoint realization, has compact resolvent and its spectrum
consists of a sequence of eigenvalues tending to ∞. We are next
interested in the asymptotic behavior of these eigenvalues.



In the case of the harmonic operator, corresponding to

V (x) =
n∑

j=1

µjx
2
j (with µj > 0) ,

the criterion of compact resolvent is satisfied and the spectrum is
described as the set of the

λα(h) =
n∑

j=1

√
µj(2αj + 1)h ,

for α ∈ Nn.
We have also in this case a complete description of the normalized
associated eigenfunctions which are constructed recursively starting
from the first eigenfunction corresponding to λ0(h) =

∑
j
√
µj h :

φ0(x ; h) = (
n∏

j=1

µ
1
8
j )(

2

π
)
n
2 · h−

n
4 · exp(−

∑
j

√
µjx

2
j /h) . (10)



The eigenfunction φ0 is strictly positive and decays exponentially.
Moreover, (and here we enter in the semi-classical world), the local
decay in a fixed closed set avoiding {0} (which is measured by its
L2 norm) is exponentially small as h→ 0. In particular, this says
that the eigenfunction lives asymptotically in the set V (x) ≤ λ(h)
which has to be understood as the projection by the map
(x , ξ) 7→ x of the energy level which is classically attached to the
eigenvalue λ(h), that is {(x , ξ), p(x , ξ) = λ(h)}.



From quantum mechanics to classical mechanics :
semi-classical mechanics

Let us describe a few results which are typical in the semi-classical
context. They concern Weyl’s asymptotics and the localization
of the eigenfunctions.
We start with the case of the Schrödinger operator Sh, but we
emphasize however that the h-pseudodifferential techniques are not
limited to this situation.
We assume that V is a C∞ function on Rn which is semi-bounded
and satisfies inf V < lim|x |→∞V (x) . The Weyl Theorem gives
that the essential spectrum is contained in

[ lim|x |→∞V (x) , +∞ [ .



It is also clear that the spectrum is contained in [inf V ,+∞[. In
the interval I = [inf V , lim|x |→∞V (x)[, the spectrum is discrete,
that is has only isolated eigenvalues with finite multiplicity. For
any E in I , it is consequently interesting to look at the counting
function of the eigenvalues contained in [inf V ,E ]

Nh(E ) = ]{λj(h) ; λj(h) ≤ E} . (11)



The main semi-classical result is then

Theorem : Weyl’s asymptotics

With the previous assumptions, we have :

lim
h→0

hnNh(E ) = Lcn

∫
V (x)≤E

(E − V (x))
n
2 dx .



Another way is to write

lim
h→0

hnNh(E ) = (2π)−n
∫
ξ2+V (x)≤E

dxdξ .

Under suitable assumptions, in particular

E < lim inf
|x |+|ξ|→+∞

p(x , ξ) ,

we get the following extension for the operator pW (x , hDx)

lim
h→0

hnNh(E ) = (2π)−n
∫
p(x ,ξ)≤E

dxdξ .

In dimension 1, we will have much more precise results (see later).



Semi-classical localization

Let us start with very weak notion of localization. For a family
h 7→ ψh of L2-normalized functions defined in Ω, we will say that
the family ψh lives (resp. fully lives) in a closed set U of Ω if for
any neighborhood V(U) of U,

lim
h→0

∫
V(U)∩Ω

|ψh|2dx > 0 ,

respectively

lim
h→0

∫
V(U)∩Ω

|ψh|2dx = 1 .



For example one expects that the groundstate of the Schrödinger
operator −h2∆ + V (x) fully lives in V−1(inf V ). Similarly, one
expects that, if limh→0λ(h) ≤ E < inf σess(Ph,V )− ε0 (for ε0 > 0
small enough) and ψh is an eigenvector associated to λ(h), then
ψh will fully live in V−1(]−∞,E ]).
Of course the above is very heuristic but there are more accurate
mathematical notions like the frequency set (see below or the book
of D. Robert) permitting to give a mathematical formulation to
the above vague statements.

Once we have determined a closed set U, where ψh fully lives (and
hopefully the smallest), it is interesting to discuss the behavior of
ψh outside U, and to measure how small ψh decays in this region.



To illustrate the discussion, one can start with the very explicit
example of the harmonic oscillator. The ground state

x 7→ ch−
1
4 exp− x2

h of −h2 d2

dx2 + x2 lives at 0 and is exponentially
decaying in any interval [a, b] such that 0 6∈ [a, b]. This is this type
of result that we want to recover but WITHOUT having an explicit
expression for ψh.



Localization of the eigenfunctions

The localization property was already observed on the specific case
of the harmonic oscillator. But this was a consequence of an
explicit description of the eigenfunctions. This is quite important
to have a good description of the decay of the eigenfunctions (as
h→ 0) outside the classically permitted region without to have to
know an explicit formula.
Various approachs can be used.
The first one fits very well in the case of the Schrödinger operator
(more generally to h-pseudodifferential operators with symbols
admitting holomorphic extensions in the ξ variable) and gives
exponential decay. This is based on the so-called Agmon estimates
(see Agmon [Ag], Helffer-Sjöstrand [?] or Simon [Si]). This is the
starting point of the analysis of the tunneling (see [Hel], [DiSj] and
[Mar]).



The second one is an elementary application of the
h-pseudodifferential formalism which will be described later and
leads for example to the following statement.

Proposition: localization of the eigenfunctions

Let E in I and let (λ(hj), φ(hj )(x)) a sequence in I × L2(Rn) where
λ(hj)→ E and hj → 0 as j →∞, x 7→ φ(hj )(x) is an

L2-normalized eigenfunction associated with λ(hj) with norm 1.
Let Ω be a relatively compact set in Rn such that

V−1(]−∞,E ]) ∩ Ω̄ = ∅ .

Then,
||φ(hj )||L2(Ω) = O(h+∞

j ) .



Short introduction to the h-pseudodifferential calculus

Basic calculus : the class S0 We shall mainly discuss the most
simple called the S0 calculus. Let us simply say here that the S0

calculus is sufficient once we have suitably (micro)-localized the
problem (for example by the functional calculus).
This class of symbols p is simply defined by

|∂αx ∂
β
ξ p(x , ξ)| ≤ Cα,β ,

for all (α, β) ∈ Nn × Nn .
The symbols can be h dependent.
More generally we can introduce, for j ∈ R, the class S j by the
condition

|∂αx ∂
β
ξ p(x , ξ, h)| ≤ Cα,β h

−j .



With a symbol, one can associate an h-pseudodifferential operator
by (9). This operator is a continuous operator on S(Rn) but can
also be defined by duality on S ′(Rn).
The first basic analytical result is the Calderon-Vaillancourt (see
for example the book by Hörmander [Ho]) theorem establishing the
L2 continuity.



The second important property is the existence of a calculus.
If a is in S0 and b is in S0 then the composition
aw (x , hDx)◦bw (x , hDx) of the two operators is a pseudodifferential
operator associated with an h-dependent symbol c in S0:

aw (x , hDx) ◦ bw (x , hDx) = cw (x , hDx ; h) .

We immediately meet symbols admitting expansions in powers of
h, called regular symbols, i.e. admitting expansions of the type

a(x , ξ; h) ∼
∑
j

aj(x , ξ)hj , b(x , ξ; h) ∼
∑
j

bj(x , ξ)hj .



In this case c has a similar expansion :

c(x , ξ; h)

∼ [exp
(
ih
2 (Dx · Dη − Dy · Dξ)

)
(a(x , ξ; h) · b(y , η; h))]x=y ; ξ=η .

Note that, modulo O(h∞), the computation of c at (x , ξ) only
depends on the germs of a and b at (x , ξ).
Hence if a and b (say independent of h) have disjoint support then
aw (x , hD) ◦ bw (x , hDx) has an L(L2)-norm which is O(h∞).



The symbol a0 is called the principal symbol. At the level of
principal symbols, the rule is that

c0 = a0 · b0 .

Another important property is the correspondence between
commutator of two operators and Poisson brackets. The principal
symbol of the commutator 1

h (aw ◦ bw − bw ◦ aw ) is 1
i {a0, b0},

where {f , g} is the Poisson bracket of f and g :

{f , g}(x , ξ) = Hf g =
∑
j

(
∂ξj f · ∂xjg − ∂xj f · ∂ξjg

)
.



Elliptic theory

Once one has a pseudo-differential calculus, the main point is to
have a class of invertible operators, such that the inverse is also in
the class. This is what we call an elliptic theory and the typical
statement is:

Theorem: construction of the inverse

Let P be an h-pseudodifferential operator associated to a symbol p
in S0. (We write in this case P ∈ Opwh (S0)). We assume that it is
elliptic in the sense that p 6= 0 and 1

p belongs to S reg . Then there
exists an h-pseudodifferential operator Q with symbol in S reg such
that

Q · P = I + R ; P · Q = I + S .

The remainders R and S are operators with symbols in O(h∞).



The proof is rather easy, once the formalism of composition and
the notion of principal symbol have been understood. One can
indeed start from the operator Q0 of symbol 1

p and observe that

Q0P = I + R1

with
R1 ∈ O(h) .

The operator

(I + R1)−1Q0 ∼

∑
j≥0

(−1)jR j
1

Q0

gives essentially the solution.
Note that for h small enough we get the inversibilty and using
Beals’s theorem we can show that the inverse belongs to Opwh (S0).

Very often, p is not elliptic everywhere and we will be obliged to
use ”microlocal” inverses (see later).



The functional calculus

It is well known by the spectral theorem for a selfadjoint operator
P that a functional calculus exists for Borel functions. What is
important here is to find a class of functions (actually essentially
C∞0 ) such that f (P) is a nice pseudodifferential operator in the
same class as P with simple rules of computation for the principal
symbol.
We are starting from the general formula (see [DiSj])

f (P) = −π−1 lim
ε→0+

∫ ∫
|=z|≥ε

∂ f̃

∂z̄
(x , y) (z − P)−1dx dy

which is true for any selfadjoint operator and any f in C∞0 (R).



Here (x , y) 7→ f̃ (x , y) is a compactly supported, almost analytic
extension of f in C. This means that f̃ = f on R and that for any

N ∈ N there exists a constant CN such that |∂ f̃ (z)
∂z̄ | ≤ CN |=z |N .

The main result due to Helffer-Robert [HelRob6 ] is that, for P an
h-regular pseudodifferential operator satisfying suitable conditions
and f in C∞0 (R), then f (P) is a pseudodifferential operator whose
Weyl’s symbol pf (x , ξ; h) admits a formal expansion in powers of h

pf (x , ξ; h) ∼ hjpf ,j(x , ξ) ,

with

pf ,0 = f (p0)
pf ,1 = p1 · f ′(p0)

pf ,j =
∑2j−1

k=1 (−1)k(k!)−1dj ,k f
(k)(p0) ∀j ≥ 2 ,

where the dj ,k are universal polynomial functions of the ∂αx ∂
β
ξ p`

with |α|+ |β|+ ` ≤ j .



The main point in the proof is that we can construct a parametrix
(= approximate inverse) for (P − z)−1 for =z 6= 0 with a nice
control as =z → 0. The constants controling the estimates on the
symbols are exploding as =z → 0 but the choice of the almost
analytic extension of f absorbs any negative power of |=z |.
As a consequence, we get that if in some interval I

(H) p−1
0 (I + [−ε0, ε0]) is compact,

for some ε0 > 0, then the spectrum is, for h small enough, discrete
in I .



In particular, we get that, if p(x , ξ)→ +∞ as |x |+ |ξ| → +∞,
then the spectrum of Ph is discrete (Ph has compact resolvent).

Another interest is that for suitable f (possibly h-dependent) the
operator f (P) could have better properties that the initial
operator. It appears in particular very powerful in dimension 1
where we can in some interval of energy find a function t 7→ f (t; h)
admitting an expansion in powers of h such that f (P; h) has the
spectrum of the harmonic oscillator. This is a way to get the
Bohr-Sommerfeld conditions (See Helffer-Robert [HelRob7 ], in
connexion with Maslov [Mas] or the work of Voros:

f (λn(h) ; h) ∼ (2n + 1)h ,

modulo O(h∞).



Semiclassical microlocalization

We already speak of a notion of semi-classical localization for a
family ψh. The notion of Frequency Set is more accurate (more
”microlocal”).

Definition

We say that (x0, ξ0) is NOT in the Frequency Set FS(ψh) of the
family ψh if there exists χ ∈ C∞0 (Rn) such that χ(x0) > 1 and a
neighborhood V(ξ0) of ξ0 such that

(Fhχψh)(ξ) = O(h∞) in V(ξ0) .

Another name (see in Zworski’s book) is ”semi-classical Wave
front Set”.



Examples

The Frequency Set of the family

R 3 x 7→ ψh(x) := h−
1
4 exp ibx/h exp−(x − a)2

h

is the point (a, b) in R2.
The Frequency Set of the family

Rn 3 x 7→ ψh(x) := a(x)h−
n
2 exp iφ(x)/h

is the set
Λφ := {(x ,∇φ(x)), x ∈ Rn} .



Other remarks

I See the books by A. Martinez and M. Zworski for more
information

I The parameter h can also be (instead of belonging to an
interval (0, h0]) a sequence hj tending to 0.

I This is a refinement of the semi-classical localization.

I An eigenfunction ψh of pw (x , hDx) associated with λ(h) (with
λ(h) close to E ), lives microlocally in its energy level
{p(x , ξ) = E} .

I There is a h-pseudodifferential characterization of the
Frequency Set.

I

FS(pw (x , hDx)ψh) ⊂ FS(ψh) .

I There is a characterization of the Frequency set using the FBI
transform (see the book of Martinez, p. 98).



More sophisticated properties based on Beals’s theorem
The Beals Theorem is a characterization of the
h-pseudodifferential operator by the properties of its commutators
in L(L2) with xj and ∂

∂xj
. We have already used the theorem when

inverting (I + R) in the elliptic theory. We omit the exact
statement but we need some consequences of this theorem.

Localization property

If q, χ1 and χ2 belong to a bounded set in S0 and if
dist(suppχ1, suppχ2) ≥ ε0 then for any N ∈ N, there exists
CN > 0 such that

||Oph(χ1)Oph(q)Oph(χ2)||L(L2) ≤ CNh
Ndist(suppχ1, suppχ2)−N .

This says that with h-pseudodifferential operators, we are not very
far of the properties of differential operators.



We should also recognize in this theory the negligeable operators.

Negligeable operators

An operator Kh from S(Rn) into S ′(Rn) can be written in the form
Oph(kh) for some kh ∈ ∩jS j iff for any bounded set B ⊂ S0 and
for any N ∈ N there exists C such that, ∀χ1, χ2 ,

||Oph(χ1)Oph(kh)Oph(χ2)||L(L2)

≤ CNh
N(1 + dist(suppχ1, suppχ2))−N .



Semi-classical analysis of the one-well problem

We assume that p(x , ξ) is elliptic at ∞. We introduce

U := p−1(0)

(0 could be replaced by E , in this case we replace p by p − E ).

Let Ih some compact interval tending to 0 with h and we want to
analyze the spectrum of P := pw (x , hDx) in h.
We assume some gap in the spectrum. More precisely, we assume
that there exists N0 and h0 > 0 such that

a(h) ≥ hN0 , ∀h ∈ (0, h0] ,

and that P has no spectrum in (Ih + [−2a(h), 2a(h)]) \ Ih , for h
small enough.
Note that we never try to control h0. Hence it can change from
line to line (but there is only a finite number of changes).



Properties of the projector

The spectral projector ΠI relative to Ih is defined by

ΠI = (2πi)−1

∫
∂Ωh

(z − P)−1 ,

where Ωh := {z ; dist (z , Ih) ≤ a(h)} .
It is an h-pseudodifferential operator with symbol in S0 and has
the property that there exists ε0 > 0 and for any N, CN such that

||Op(χ1)ΠOpwh (χ2)||
≤ CNh

N(dist (suppχ1,U) + dist (suppχ2,U))−N

if
dist (suppχ1,U) + dist (suppχ2,U) ≥ ε0 > 0



Proof
We introduce χ with compact support in a neighborhood of U
(arbitrarily small) and equal to 1 in a neighborhood of U. So
d((x , ξ),U) will be very close to d((x , ξ), suppχ).
As before in the elliptic situation we first construct Q0

z ∈ Op(S0)
(holomorphic in z ∈ Ωh) s.t.

(P − z)Q0
z = I −Op(χ)− Kz with Kz ∈ Op(S−1) .

With Qz = Q0
z (I − K 0

z )−1 we get

(P − z)Qz = I − Rz with Rz = Opwh (χ)(I − K 0
z )−1) .

Hence we have obtained a good approximate right inverse
”outside of U”.
Similarly, we construct an approximate left-inverse Q̃z :

Q̃z(P − z) = I − R̃z with R̃z = (I − K̃ 0
z )−1Opwh (χ) .



We now assume that z ∈ ∂Ωh. In this case (P − z) is invertible
and we have

||(P − z)−1||L(L2) ≤
1

a(h)
.

By algebraic manipulations, we get

(P − z)−1 = Q̃z + R̃zQz + R̃z(P − z)−1Rz .

The projector on the eigenspace of P attached to the interval Ih is
given by the Cauchy integral

ΠI = (2π)−1

∫
∂Ωh

(P − z)−1dz .

Using the above formula and the holomorphy, we obtain

ΠI = (2π)−1

∫
∂Ωh

R̃z(P − z)−1Rzdz .



To prove the statement, we now simply write

Op(χ1)ΠIOpwh (χ2) = (2π)−1

∫
∂Ωh

Op(χ1)R̃z(P−z)−1RzOp(χ2)dz ,

and get

||Op(χ1)ΠIOpwh (χ2)|| ≤ C

a(h)

(
sup
z∈Ωh

||Op(χ1)R̃z ||

)(
sup
z∈Ωh

||RzOp(χ2)||

)
.

For estimating the left hand side, we now observe that

Op(χ1)R̃z = Op(χ1)(I − K̃0)−1Op(χ) ,

and
RzOp(χ2) = Op(χ)(I − K0)−1Op(χ2) .

We finally use our lower bound of a(h) and a sufficiently good
choice of the support of χ to achieve the proof.



Multiple wells

We assume that p−1(0) is a union (finite or indexed by Z2) of
compact, disjoints sets.
We assume some uniformity for the family Uα:

I uniform bound on the diameter,

I

∃ε0 > 0 s.t. Uα + B(0, ε0) ∩ Uβ + B(0, ε0) = ∅ ,

if α 6= β ,

I

∀α,∃pα with pα = p in Uα + B(0, ε0) ,
uniformly bounded in S ′
and uniformly elliptic outside any neighborhood of Uα .

With Ih and a(h) as before we assume that the Pα admit the
conditions given for P uniformly.



Multiple wells resolvent and projectors

Proposition: Properties of the resolvent

There exists h0 such that for h ∈ (0, h0), ∂Ωh belongs to the
resolvent set of P. Moreover, there exists ε0 > 0 and for any N,
CN such that, ∀z ∈ ∂Ωh,

||Opwh (χ1)(P − z)−1Opwh (χ2)||
≤ CNh

N(d̃ist (suppχ1, suppχ2))−N

if
d̃ist (suppχ1, suppχ2) ≥ ε0 > 0.



Here

d̃ist (suppχ1, suppχ2)
:= inf (dist (suppχ1, suppχ2),

infα (dist (suppχ1,Uα) + dist (suppχ2,Uα)))

The proof of this proposition is only sketched. We first construct
an approximate resolvent by patching together microlocal resolvent
in the neighborhood of each Uα and some holomorphic
approximate resolvent outside of the wells. This will give the
existence of the resolvent for z ∈ ∂Ωh with the same structure as
the approximate resolvent and we can then analyze the
corresponding projector associated with the interval Ih. Anyway, I
will give a few more details below.



Less sketchy presentation of the proof

We introduce a partition of unity χα associated with the wells Uα
with uniformity properties and supported in small neighborhoods of
Uα and we first reproduce the previous one well construction with
χ replaced by

∑
α χα.

We get

(P − z)Qz = I − Rz with Rz =
∑
α

Opwh (χα)(I + Lz)) ,

with Lz ∈ Op(S−∞).
We note that, at the difference of the one well case, we have also
to show that (P − z) is (like the Pα’s) invertible for z ∈ ∂Ωh.



We construct an approximate right inverse by using the (Pα− z)−1:

R(z) = Qz +
∑
α

(Pα − z)−1Opwh (χα)(I + Lz) .

After some work, we obtain that

||R(z)|| ≤ C

a(h)
,

and like in the one well case

||Op(χ1)R(z)Opwh (χ2)|| ≤ CNh
N dist (suppχ1, suppχ2)−N , ∀N ,

under the conditions of the proposition.
We have now to verify that this is indeed a good right inverse !



We start from
(P − z)R(z) = I + Kz ,

with
Kz =

∑
α

(P − Pα)(Pα − z)−1Op(χα)(I + Lz) .

Here the support of (pα − p) is disjoint of the support of χα by
assumption and construction and we have (we should first treat
the case when the support of the χj are bounded) , for each α,

||Opwh (χ1)(P − Pα)(Pα − z)−1Op(χα)(I + Lz)Opwh (χ2)||
≤ CNh

N(1 + d(suppχ1,Uα) + d(Uα, suppχ2))−N

for any N with CN independent of α.
By summation over α, we get immediately by the criterion on
negligeable operators than Kz ∈ Op(S−∞). In particular (I + Kz)
is invertible for h small enough and we obtain that ∂Ωh is in the
resolvent set of P and that

(P − z)−1 = R(z)(I + Kz)−1 .



We then obtain easily that

||(P − z)−1|| ≤ C

a(h)
,

This is what was mainly missing to extend the techniques of the
one well problem to this more general situation.



Hence after some extrawork, we get as in the case of one well

Proposition: Properties of the projector

Let Π the projector associated with the spectum of P contained in
Ωh. Given a bounded set in S0, there exists ε0 > 0, h0 > 0 and for
any N, CN such that, for χ1, χ2 in this bounded set such that

inf
α
dist (suppχ1,Uα) + dist (suppχ2,Uα) ≥ ε0 > 0

and h ∈ (0, h0), we have

||Opwh (χ1)ΠOpwh (χ2)||
≤ CNh

N(infα dist (suppχ1,Uα) + dist (suppχ2,Uα))−N .



Construction of a wells-localized basis of the eigenspace
attached to Ωh ∩ R

To simplify, we assume that

σ(Pα) ∩ Ih = {µα}

where µα has multiplicity 1 for α ∈ Z2 and that

d(Uα,Uβ) ≈ |α− β| .



We consider the corresponding eigenfunction which satisfies

(Pα − µα)ϕα = 0 , ||ϕα|| = 1

and, observing that
ϕα = παIh ϕα

and having in mind the one-well proposition we have

||Opwh (χ)ϕα|| ≤ CNh
Nd(suppχ,Uα)−N , ∀N ,

if d(suppχ,Uα) ≥ ε0 > 0.



This implies that the ϕα are strongly (micro)-localized in Uα (in
particular FS(ϕα) ⊂ Uα) and that we get an almost orthogonal
basis

|〈ϕα |ϕβ〉| ≤ CNh
N |α− β|−N , if α 6= β .

We can now introduce

vα = Πϕα ,

and show that vα also satisfy (use the properties of the projector)

||Opwh (χ)vα|| ≤ CNh
Nd(suppχ,Uα)−N , ∀N ,

In addition, vα is very close to ϕα:

‖Opwh (χ)(vα − ϕα)|| ≤ CNh
N(1 + d(suppχ,Uα))−N .



The proof is based on the previously established properties of the
projector Π.
This implies that the distance between the space E generated by
the ϕα to the spectral space F (h) attached to Ωh is O(h∞).
Note that the proof is in two steps. First we show that the vα are
an orthonormal basis of a closed subspace in F (h) and then we
have to show that F ′(h) is actually F (h). For this, we observe
that, using our approximate formula for the resolvent,

(P − z)−1 = Qz +
∑
α

(Pα − z)−1Opwh (χα) +O(h∞) .

that if u = Πu then

u =
∑

α π
α
Ih

(χαu) +O(h∞)

=
∑

α cαϕα +O(h∞) .

Projecting again by Π, we get

u =
∑
α

cαvα +O(h∞) .



Finally, we can replaced the quasi-orthogonal basis vα, by the
Schmidt orthogonalization procedure, to get an orthonormal basis
of F with

eα = vα +
∑
β

aα,β(h)vβ .

with
|aα,β(h)| ≤ CN hN (1 + |α− β|)−N .



Exponential decay.

As in the case of the Schrödinger operator, where more
information was needed about the decay of eigenfunctions outside
the classical region, we have to improve the localization
information (and actually do it microlocally).
We start the spectral analysis with an operator in a more general
form that the Harper model:

P = (1− cos hD) + V (x) .

Hence, in comparison with Schrödinger, we have replaced −h2∆
by (1− cos hD).



In the case of Schrödinger, by playing with some easy energy
estimate, we had:

Proposition-Schrödinger

If φ is Lipschitz, with φ′ Lipschitz, z ∈ C and F± are non negative
bounded functions satisfying

V −<z − φ′2 = F 2
+ − F 2

− ,

we have

1
4 ||(F+ + F−)uφ||2

≤ || 1
F++F−

e
φ
h (P − z)u||2 + ||F−uφ||2

for any u ∈ C∞0 (R), where uφ := e
φ
h u .



If we consider an eigenfunction ψh and z = λ(h) we get

1

4
||(F+ + F−)uφ||2 ≤ ||F−uφ||2

where

V − λ(h)− φ′2 = F 2
+ − F 2

− and uφ := e
φ
h ψh .

This leads to a choice of an optimal φ close to the ”Agmon
distance” to the well

d(V−λ(h))+
(x , {V (x) ≤ λ(h)}) .

The Agmon distance d(V−E)+
is the distance associated (in the

forbidden region) with the degenerate metric (V − E )+g0 where g0

is the standard metric in R2. In the case of one dimension this is
immediate to compute.
By ”close” we more specifically mean that we can take

φ(x) = (1− ε)d(V−λ(h))+
(x , {V (x) ≤ λ(h)})

where ε > can be chosen arbitrarily small.



Agmon distance in (1D)

In (1D), one can actually be much more explicit. Hence the notion
of Agmon distance in a geometric manner is not necessary.
For a given energy E , we assume that UE := {V (x) ≤ E} is a a
finite (or infinite) disjoint closed bounded intervals Uj(E ) (the
wells). We then introduce Ψ = ΨE as the nondecreasing function
on the line such that

I Ψ(Uj0) = 0 ,

I Ψ is constant on each Uj(E ) ,

I Ψ′(x)2 + V (x) = E in R \ ∪Uj .

Hence, between two consecutive wells, Uj = [xj , yj ] and
Uj+1 = [xj+1, yj+1] we have simply

Ψ(x) = Ψ(yj) +

∫ x

yj

√
V (t)− Edt for x ∈ (yj , xj+1) .



The Agmon distance is then

d(V−E)+
(x , y) := |ΨE (x)−ΨE (y)| .

The Agmon distance between Uj and Uj+1 is

d(V−E)+
(Uj ,Uj+1) = d(V−E)+

(yj , xj+1) =

∫ xj+1

yj

√
V (x)− Edx .

We denote by S the minimal distance between Uj and U` for
j 6= ` .
We also observe that the distance is degenerate:

∀x ∈ Uj , ∀y ∈ Uj , d(V−E)+
(x , y) = 0 .



From Schrödinger to Harper
Playing with some more sophisticated energy estimate, we get for
our Harper like model the following result:

Proposition–Agmon estimates for the Harper like model

If φ is Lipschitz, with φ′ Lipschitz and φ” bounded, z ∈ C and F±
are non negative bounded functions satisfying

V −<z − 2 sinh(φ′/2)2 = F 2
+ − F 2

− ,

we have

1
4 ||(F+ + F−)uφ||2

≤ || 1
F++F−

e
φ
h (P − z)u||2 + ||F−uφ||2

for any u ∈ C∞0 (R), where

uφ := e
φ
h u .



Harper-Agmon distance

We only define it in the case when V (x) = cos x . For a given
energy E ∈ (−2, 2) \ {0}, we introduce ΦE as the nondecreasing
function such that

I Φ(0) = 0 ,

I Φ is constant on each Uj(E ) = π1Ujk(E ) ,

I cosh(Φ′) + cos x = E in R \ ∪Uj .

The associated distance is then

DE (x , y) := |ΦE (x)− ΦE (y)| .

We denote by S the minimal distance between Uj and U` for
j 6= ` ,

S := DE (0, 2π) = ΦE (2π)− ΦE (0) .



A similar definition should be done in the ξ variable. Due to the
symmetry of the symbol, we get a distance D̂E associated with Φ̂E

and we have
Φ̂E (ξ) = ΦE (ξ) .

We will start by a rather simple result.



Application

We fix ε0 > 0 and would like to analyze the spectrum of
P = cos(hDx) + cos x (we take λ = 1 but this is not necessary) in
the interval [ε0, 2 +O(h)].
Hence we avoid the critical value of p(x , ξ) = cos x + cos ξ.



Semi-classical elementary exercise
We just want to prove that the distance of σ(cos(hDx) + cos x) is
close to 2. More precisely

d(σ(cos(hDx) + cos x), 2) = O(h) .

One can be actually much more precise but to give an easy proof
is probably enlightning.

We will construct an approximate eigenfunction whose frequency
set is just the point (0, 0). If we think of the expansion of the
symbol around this point, we get

cos ξ + cos x = 2− 1

2
(ξ2 + x2) +O((|x |2 + |ξ|2)2) .

This suggests to consider the first eigenfunction of the Harmonic
oscillator

x 7→ uh(x) := c0h
− 1

4 exp−x2

h
,

where c0 6= 0 is such that ||uh|| = 1.



We have then to compute the L2 norm of
(cos(hDx) + cos x − 2)uh(x).
It is first clear that

||(1− cos x)uh||L2 = O(h) .

We have also to estimate the L2 norm of

1

2
(τh + τh)u − u .

The easiest way is to compute the h-Fourier transform and we
have to analyze the L2-norm of ||(1− cos ξ)Fhu||.
Hence

(cos(hDx) + cos x − 2)uh(x) = O(h) in L2(R) ,

and by the spectral theorem for selfadjoint operators, we obtain as
announced:

d(σ(cos(hDx) + cos x), 2) = O(h) .



Our choice for pα

For E = µ, we can define the wells Uα(µ) (α ∈ Z2) as the
connected components of p−1(µ).
We can now make explicit the choice of the pα. We introduce
0 ≤ χ0,0 ∈ C∞0 (∪0<µ≤2U0(µ)) sufficiently large and then the χα
by translation by 2πα. We then define

pα = p −
∑
β 6=α

χβ .

Hence pα is deduced from p0,0 by translation.
We choose χ0,0 such that

p−1
0,0(µ) = U(0,0)(µ) .



The quantum translations
We recall that we denote by τ = τ2π and τ̂ the multiplication
operator by e2πix/h, then these two operators have the following
property.

τ τ̂ = exp(−i(2π)2/h) τ̂ τ = exp−i h̃ τ̂ τ ,
with

(2π)/h = k + h̃/(2π) , k ∈ Z .
(in our renormalization procedure, we will later assume that h̃ is

small enough and this can be seen on the continuous fraction
expansion of h̃/2π.)
If p is a symbol, we have

τ Opwh (p) = Opwh (τ∗p) τ ,

and
τ̂ Opwh (p) = Opwh (τ̂∗p) τ̂ .

where, when acting on symbols,

τ∗p(x , ξ) = p(x − 2π, ξ) , τ̂∗p(x , ξ) = p(x , ξ − 2π) .



In particular, in the case when p is doubly 2π-periodic, which is the
case of Harper, then Opwh (p) commutes with τ and τ̂ .
More generally, we can introduce for α = (α1, α2) ∈ Z2

Tα = τα1 τ̂α2

and observe that we have the two relations

Tα Tβ = exp(iα2β1h̃) Tα+β

and
TαTβ = exp(iσ(α, β)h̃) TβTα ,

where
σ(α, β) = α2β1 − α1β2 .

Note also that

T−1
α = T ∗α = exp(iα1α2 h̃)T−α .



At the level of the operators, we have, with

Pα = Opwh (pα) = pwα (x , hDx)

the commutation relation

Pα = TαP0,0T
−1
α .

Hence Pα is unitary equivalent with P0,0 and it is enough to write
the spectral theory for P0,0 near the energy µ.



Commutation with Fourier

Fh Tα = exp(−i h̃α1α2)Fh Tκ(α)

where
κ(x , ξ) = (−ξ, x) .



Spectral theory for P0,0.

Although rather old in the case of Schrödinger, we can apply in
this h-pseudodifferential situation the following result due to
Helffer-Robert

Proposition

For h ∈ (0, h0] with h0 > 0 small enough, we have

σ(P0,0) ∩ [ε0, 2 + Ch] = ∪j=0,...,N(h){µj(h)} ,

where the µj(h) are simple and ordered as a decreasing sequence.
Moreover

µj(h)− µj+1(h) ≈ h , 2− µ0(h) ≈ h .

There are various way to prove the statement: WKB solution,
functional calculus, reduction to a model operator,...



Remarks

I N(h) ≈ C
h . The limit of hN(h) is indeed given by Weyl’s

formula:

lim
h→0

hN(h) =

∫
ε0≤p0(x ,ξ)

dxdξ .

I For µ0(h) (or a finite (independent of h) number of
eigenvalues, we can apply the Harmonic approximation).

I A good approximation of µj(h) is given by the
Bohr-Sommerfeld formula

µj(h) ∼ g((2j + 1)h, h)

where t → g0(t) is the inverse of E 7→ f0(E ) (so f0 ◦ g0 = Id)
defined

(ε0, 2] 3 E 7→ f0(E ) := (2π)−1

∫
p0,0(x ,ξ)≥E

dxdξ .



As E tends to 2, say for E = 2− ε we have

f0(2− ε) = (2π)−1
∫

cos x+cos ξ≥2−ε , (x ,ξ)∈(−π,π)2 dxdξ

∼ (2π)−1
∫

x2+ξ2

2
≤ε

dxdξ

∼ ε .

This gives

µ0(h)− 2 ∼ −h , µ1(h) ∼ −3h , . . .

as predicted by the harmonic approximation.
The reader can look at the Hofstadter butterfly near energy 2 to
observe to what it corrresponds.



About WKB solutions

This has a long story for the 1D-Schrödinger operator

−h2 d2

dx2
+ V (x) .

We assume that V (x) ≥ 0 = V (0). If for some E0 > 0,
V−1(−∞,E0) is connected, bounded and if ∇V is not critical
except at the minimum of V where V is assumed to be non
degenerate. Then the whole spectrum in (0,E0) can be obtained
modulo O(h∞) by the so-called generalized Bohr-Sommerfeld
condition which reads

f (λn(h), h) = (n +
1

2
)h .



The first step for getting this rule is to try to construct solution of
the type a(x , h) exp±i φh with energy E this is posssible except at
V−1({E}). We have first to solve in V−1(−∞,E ) the so called
equation

φ′(x)2 = E − V (x) .

This is when trying to match together these locally defined
solution that we get that this is only possible for some h-dependent
values of E .
In the case of the Harper model, if E ∈ (−2, 2), E 6= 0, we can
perform a similar analysis whose first step is to solve

cosφ′(x) + cos x = E .

One observes that there are many local solutions.



More detailed description in the well
If what preceeds is enough for the localization of the eigenvalue,
we need more on the eigenfunction u0 with energy E = E (h).

We assume in our talk that E (h) is far from the bottom (which
implies that our labelling j depends on h as h→ 0.)
Note that this simplifies the presentation but in the real life we will
also have to work in a transition region where we cannot be as
explicit (this explains why we have this indirect construction at the
beginning of Section 4, in HSHarper1).

Under this condition, the construction can be done by using the
analytic WKB method which describes more precisely the
eigenfunction u0 near one microlocal well. The projection of the
well is [−x0(E (h)), x0(E (h))]. We denote by φE (x) the solution of

cosφ′E (x) + cos x = E ,
φE (−x0(E )) = 0, φ′E (−x0(E )) = 0, φ′E > 0 in (−x0(E ), x0(E )) .



We note that there were various choices of φ′(−x0(E )) which
determine in which microlocal well (compute the frequency set of
the WKB solution) we want to stay. We have chosen to do the
construction in the microlocal well U0,0.

Then we have in (−x0(E ), x0(E )):

u0(x , h) = aE (x , h) sin(
φE (x)

h
+
π

4
) ,

modulo O(exp(−εK/h)) uniformly on any compact of
(−x0(E ), x0(E )) .
Here aE (x , h) is the realization of a formal analytic symbol

aE (x , h) ∼
∑
j

aE ,j(x)hj .



Note that the first Bohr-Sommerfeld relation reads:

φE (x0(E )) = (2j +
1

2
)h .

We refer to the Astérisque of J. Sjöstrand for the notion of
analytic symbol. We say only here that it means for suitable
complex neighborhoods ωK of compact intervals K in
(−x0(E ), x0(E )) the aj are holomorphic and satisfy

|aj(x)| ≤ C j+1j! , ∀j ,∀x ∈ ωK .

This permits to define the sum of the series modulo
O(exp(−ε/h)) for some ε > 0.



More on the eigenvalues

We also get from the ”analytic” approach, that E (h) admits the
following expansion:

E (h) ∼
∑
`

E`((j +
1

2
)h) h` modulo O(exp−ε0/h) ,

where j = j(h) is a suitable integer and

|E`(t)| ≤ C `+1`! .

E0 was obtained already. The new fact (in comparison with the
previous C∞-theory) are the ”analytic” estimates.



More detailed description outside the well
To compute later the tunneling effect, we need to know the
eigenfunction outside of the well. We already know that it is
O(h∞) but, much more precisely, we have,

u0(x , h) = bE (x , h) exp(−ϕE (x)/h) ,
in (−2π, 2π) \ [−x0(E (h)), x0(E (h))] ,

where the phase ϕE satisfies

I ϕE is the solution of the eikonal equation

coshϕ′E (x) + cos x = E in (x0(E ), 2π) ,

I ϕE (x0(E )) = 0 ,
I ϕE (x) ≥ 0 ,

and the (analytic) symbol bE satisfies

bE (x , h) ∼
∑
j

bj(x ,E )hj in (−x0(E ), x0(E )) .



Matching.

We have only described for simplicity the inside and the outside
expressions of the WKB–eigenfunction. We actually know more on
the solution and it implies

1

4
lim

x→x0(E)−
aE ,0(x)2 sinφ′E (x) = lim

x→x0(E)+
b0,E (x)2 sinhϕ′E (x) .

The proof involves Airy type integral.



Decay estimates for the resolvent
We are in the previously defined multiple-wells situation with
Ih = {µj(h)} (Ih is moving but this is not important) and a(h) ≈ h.
With ν(h) = 2− µ(h) we get:

Theorem

For any ε > 0 and C0 > 0, there exists Cε > 0 such that, ∀z ∈ Ωh,
h ∈ 1

Cε
, ϕ ∈ C 1,1 with |ϕ′′| ≤ C0 and

((1− cos x)− ν(h)− ε)+ − 2(sinh(ϕ′/2)2 ≥ 0 ,

the operator (P − z)−1 admits an extension from L2
comp to

L2
ϕ = {u ; eϕ/hu ∈ L2}

with norm ≤ Cε/h.

Here L2
comp is the space of the L2 functions with compact support.



Decay estimates for the projector ΠF

Corollary

For any ε > 0 and C0 > 0, there exists Cε > 0 such that

||ΠF ||L(L2
ϕ1
,L2
ϕ2

) ≤ C (ε) ,

for all ϕj as above such that

ϕ1 = ϕ2 on ∪α π1(Uα) = ∪α1π1(Uα1,0) .

Here π1(x , ξ) = x , π2(x , ξ) = ξ.
Note that the condition that ϕ1 = ϕ2 on each well means that we
can not expect any gain in the classical region.
Using Fh, one can get the same property for FhΠFFh where the
weight are the same but in the ξ variable.



Structure of the interaction matrix
Once constructed an orthonormal basis uα of F (h) such that

uα = Tαu0,0

for a suitably carefully chosen u0,0 (which is not exactly e0,0, or
the analytic WKB analytic solution, which in any case not defined
everywhere and should be projected on F (f )) but indeed very close
but with more information on his decay), we would like to write
the (infinite) matrix Mα,β of P/F (h) which is given by

Mα,β = 〈Puβ | uα〉 = µ(h)I + 〈(P − µ)uβ | uα〉 .

We now use the properties of the Tα.
We have

〈Puβ | uα〉 = 〈PTβu0 |Tαu0〉
= 〈u0 |T ∗βPTαu0〉
= 〈Pu0 |T ∗βTαu0〉
= exp(i h̃β2(α1 − β1))Mα−β,0 .



We also recall that the operator is selfadjoint:

Mα,β = Mβ,α .

At this stage, we have not used all the symmetries properties
inherited of the Harper model but note already that

Mα,α = M0,0 .

Moreover M0,0 equals the one well eigenvalue modulo O(h∞).



Fourier invariance

In the case of λ = 1 we can obtain the additional property that

Fhu0,0 = ω0(h)u0,0 ,

where |ω0(h)| = 1.
Using the commutation relation of Fh and Tα, and the
commutation of Fh with P, one then obtains

Mα,β = exp(i h̃(α1α2 − β1β2))Mκ(α),κ(β) .

In particular, we get

M(1,0),(0,0) = M(0,−1),(0,0)



At the end we get the following formulas

Interaction matrix–first part

Let M := µ̂I + W , W = Wα,β (α 6= β), Wα,α = 0 the matrix of
P/F (h) in the previously constructed basis uα, then

Wα,0 =

{
O(1) exp(−(S + ε0)/h) if ||α||∞ ≥ 2
O(1) exp(−S/h) if ||α||∞ = 1, α 6= (0, 0)

Here ε0 > 0, µ̂(h) = µ(h) +O(h∞).

Note that there is no need to localize µ(h) or µ̂(h) more precisely
(we just need to preserve the gap ! So this change by O(h∞) is
more than enough).
We also recall that once we know Wα,0 we know Wα,β.



The treatment of α|∞ ≥ 2 is done through the good knowledge of
the decay (Agmon-Harper estimates) of u0,0 and consequently of
the uα. We note that we have either |α1| ≥ 2 or |α2| ≥ 2. Using
the Fourier inverse, we can without loss of generality assume that
say |α1| ≥ 2 and play with the Agmon estimates in the x-variable.
We have to kind of estimates:

I A non optimal decay estimate with control with respect to
|α1|, giving the existence of κ > 0 such that

|Wα,0| ≤ C exp−κ |α1|
h

.

I Then a more precise analysis for |α1| smaller leading to the
statement above.

Hence it remains to look at the estimates with |α|∞ = 1.



For this case, we prove

Interaction matrix-continued

If ||α||∞ = 1

Wα,(0,0) = −〈u0,0 | [P, χ]uα〉+O(1) exp(−(S + ε)/h) .

(for some ε > 0). Here ε > 0, χ = 1(−∞,π] and S is the
Harper-Agmon distance between two nearest wells with distinct
space projection.

Note that if ||α||∞ = 1, one can using the various invariances (in
particular the Fourier invariance) reduce the computation to the
computation of W(1,0),(0,0) and W(1,1),(0,0).



To show these new claims, we observe that

Wα,(0,0) = 〈Pu0,0, uα〉

= 〈(P − µ)u0,0, uα〉
= −〈u0,0 | [P, χ]uα〉

+〈(P − µ)u0,0 |χuα)〉+ 〈(1− χ)u0,0, (P − µ)uα〉 .

We have then to show that for our choice of u0,0 the two last
terms are indeed O(1) exp(−(S + ε)/h), which is a non so easy
proof in general (easier if we are far from the critical points) but is
inspired by what was done for Schrödinger.



Main term

We have to show that 〈u0,0 | [P, χ]uα〉 for α = (±1, 0) has the
right order and also that the case α = (±1,±1) is relatively small.
Together with the previous results, this will imply that all the other
terms for α 6∈ {(±1, 0), (0,±1)} are relatively small. At least for
non critical energy, an explicit computation of the principal term
(including prefactor) can be done.
This is what we sketch now in the case α = (1, 0).



We observe that

[cos hD, χπ] =
1

2

(
[1[π,π+h]τh − 1[π,π−h]τ−h

)
.

Hence we get

I0(π, h) = −
∫ π+h

π
Φ0(x , h)dx ,

with

Φ0(x , h) =
1

2

(
u0,0(x)u1,0(x − h)− u0,0(x − h)u1,0(x)

)
.

One can verify (a kind of Wronskian argument) that Φ0(x , h) is
essentially constant (modulo an error of size exp−S

h × an
exponentially small term), hence we get

I0(π, h) = −hΦ0(Π, h) +O(exp−S + ε

h
)) , for some ε > 0 .



In the case where we are far of all the critical points we can get the
main term by using the analytic WKB approximation

I0(π, h) ∼ −h exp−S

h
b0,E (π)2 sinhϕ′(E ) .

b0,E (π) can be explicitly computed by solving a transport
equation. We findly get a nice explicit formula with a ”classical”
flavor

I0(π, h) ∼ − 1

T (E )
h exp−S

h
,

where T (E ) is the period of the motion on a connected
component of p(x , ξ) = E .
Such an explicit computation is not in all the cases possible but we
get in full generality the following weaker result.
For any ε > 0, there exists Cε > 0 such that

C−1
ε exp−S + ε

h
≤ |W±1,0| ≤ Cεexp −

S − ε
h

.



Coming back to h̃ -pseudo-differential operators

We consider a bounded linear operator C~ acting on `2(Z2) given
by an infinite matrix

(
C (α, β)

)
, α, β ∈ Z2, satisfying

C (α+ k , β + k, ~) = e−i~k2(α1−β1)C (α, β, ~), α, β, k ∈ Z2, (12)

for some ~ > 0.

Note that we meet these relations with ~ = h̃.



Proposition A

Let C~ be a bounded self-adjoint operator in `2(Z2) with the
property (12) and satisfying |C (α, β)| ≤ ae−b|α−β| for some
a, b > 0 and all α, β ∈ Z2. Then the spectrum of C~ coincides with
the spectrum of the Weyl ~-quantization of the symbol p given by

p(x , ξ) =
∑

m,n∈Z
c(m, n)e−imn~/2e i(mx+nξ), (13)

where c(m, n) = C
(
(0, 0), (m, n)

)
, m, n ∈ Z.



Renormalization

We have reduced the analysis of the spectrum in Ωh to the analysis
of an infinite matrix satisfying a lot of properties. The first step of
the renormalization will be achieved if we recognize that the
spectrum of this matrix W (divided by |W0,0|) is indeed the
spectrum of an exponentially small perturbation of the initial
Harper model but with a new semi-classical parameter h̃.



We actuall need more:

Defining suitably a neighborhood of the symbol
p(x , ξ) = cos x + cos ξ and h0 > 0, we have to show that, if we
start from a symbol in this neighborhood, with the same
symmetries, then we can arrive for h ∈ (0, h0) to an operator
relative to one eigenvalue µ(h) which, after division by an
exponetilly small constant is in the SAME neighborhood.
Assuming that h̃ ∈ (0, h0), we can then iterate the procedure.

This leads to more technical efforts. For example, we have used the
interpretation of cos hD as τh + τ∗h and this is no more possible.



The statement in Harper 1
This leads to the following theorem:

Theorem

For ε0 > 0, there exists C0 > 0 such that if h/(2π) ∈ (0, 1) \Q and

h/(2π) = 1/(q1 + 1/(q2 + 1/q3 + · · · ))))

with qj ∈ Z and |qj | ≥ C0, we have:

I The smallest closed interval J containing the spectrum σ(H)
has the form [−2 +O(1/|q1|), 2 +O(1/|q1|)] ,

I

σ(H) ⊂ ∪N−≤j≤N+Jj

where the Jj are closed intervals of positive length with
∂Jj ⊂ σ(H),

I Jj+1 is on the right of Jj at a distance of order 1/|q1|,



Theorem continued

I J0 has length 2ε0 +O(1/|q1|) and contains 0 at a distance
O(1/|q1|) of its center

I The other bands have width e−C(j)|q1| with C (j) of order 1

I For j 6= 0, if κj denotes the affine function sending Jj onto
[−2,+2], then

κj(Jj ∩ σ(P)) ⊂ ∪kJj ,k ,

where the Jj ,k have the same properties as the Jj with q1

replaced by q2 and so on.



Remarks

I This theorem is used 2 by Bourgain in order to give cases for
which the integrated density of states is not Hölder.

I For the bands, which are far from the energy 2, we can give
an asymptotic for C (j).

2Thanks to Q. Zhou for this remark.



For having the complete structure of the spectrum, it remains at
each step to treat the spectrum which is close to the critical value
0. In Harper I, we have avoided at each step a small zone.
The treatment of this critical zone was only obtained in [HS3]
about one year later and is much more difficult.

But first we speak of Harper II.



About Harper II

Harper II is devoted to the semi-classical analysis near a rational.
Only the two first steps are different.

After these two steps, we only are facing the same problems
devoted to the perturbation of the Harper’s model. Below, we
denote for some irrational α by [a1, a2, a3, · · · ] its expansion in
continuous fraction.

As continuation of Harper I, the following theorem is proved in
Harper II. It is based on the semi-classical analysis of Mw

p,q(x , hDx).



Harper II- Step 1

Theorem Harper II

Let m̂ ∈ N (m̂ ≥ 2) and M ≥ 2. There exists ε1 > 0 and, for
ε0 ∈ (0, ε1), a constant C = C (m̂,M, ε0) > 0 such that if
α = [a1, a2, . . . , ] is irrational and satisfies for some m ≤ m̂

1 ≤ |aj | ≤ M for 0 < j ≤ m
|aj | ≥ C for j ≥ m + 1 ,

(14)

then the spectrum Σα of the Harper model is contained in the
union of qm intervals I`(h) (` = 1, · · · , qm) in the form
[γ`(h), δ`(h)] with

γ`(h) , δ`(h) ∈ Σα ,
γ` < δ` ≤ γ`+1 < δ`+1 ,
γ`(h) ≥ γ` − C |h| and δ`(h) < δ` + C |h| ,
γ`(h) ≥ γ` + 1

C

√
h if δ`−1 = γ` ,

(15)



Theorem continued

where above
α(m) = [a1, . . . , am] =

pm
qm

, (16)

h = 2π(α− α(m)) , (17)

∪` [γ`, δ`] = Σα(m) , (18)

d(I`(h), I`+1(h)) ≥ 1

C
if δ` 6= γ`+1 and ≥ 1

C

√
|h| if δ` = γ`+1 .

(19)



Theorem (continued)

For each interval I`(h), Σα ∩ I`(h) can be described as living in a

union of N`,j closed intervals J
(`)
j (indexed by j ∈ (−m`,j , n`,j)) of

length 6= 0 with ∂J
(`)
j ⊂ Σα , J

(`)
j+1 on the right of J

(`)
j and

m`,j ≈ |am+1| and n`,j ≈ |am+1| , (20)

1

|am+1|
. d(J

(`)
j , J

(`)
j+1) .

1√
|am+1|

, (21)

J
(`)
0 has length 2ε0 +O(

1

|am+1|
) . (22)



Theorem (end)

The other bands have size

exp (−C (j)|am+1|) with C (j) ≈ 1 . (23)

For j 6= 0, if κ
(`)
j is the affine function sending J

(`)
j in [−2,+2],

then
κ

(`)
j (J

(`)
j ) ∩ Σα ⊂ ∪kJ

(`)
j ,k ,

where the J
(`)
j ,k have analogous properties to the J

(`)
j with am+1

replaced by am+2 and (21) can be improved in the form

d(J
(`)
j ,k , J

(`)
j ,k+1) ≈ 1

|am+2|
. (24)

One can then iterate indefinitely using for the second step a
generalization of Harper II and then starting from the third step
Harper I (or Harper III).



Here in the statements a . b means that a/b ≤ C where C
depends only on C0 and ε0. The same is true when we use the
notation O or ≈ .

I ε0 corresponds with the exclusion in each interval and at each
step of the renormalization of a small interval of size ≈ 2ε0 for
which another analysis has to be done and which was the
object of Harper III (see also Helffer-Kerdelhué) This
corresponds to the energy 0 for the map
(x , ξ) 7→ 2(cos x + cos ξ).

I This also gives an analysis for α = [a1, . . . , am, am+1] when
am+1 is large. We can stop the analysis after two steps.

I The possibility of having δ` = γ`+1 is due to the occurence of
touching bands. Van Mouche has proven that it occurs only
when qm is even and for ` = qm

2 . These two touching bands
lead to the lower bound (19) and the weaker estimate in (21).



A typical example is for q = 2, where we get the matrix

M1,2(θ1, θ2) =

(
cos θ1 cos θ2

cos θ2 − cos θ1

)
(25)

The eigenvalues are

λ±(θ1, θ2) = ±
√

cos2 θ1 + cos2 θ2

A semi-classical analysis of M1,2(hDx , x) is possible including at
the touching point. The harmonic approximation is replaced by a
Dirac approximation (

hDx x
x −hDx

)



Main theorem on the nested structure
Here is now the result of the infinitely many steps procedure (this
formulation is given in [HLQZ]):

Theorem

Fix m̂ ∈ N , and M ≥ 2. Then there exist ε1 > 0 and, for
0 < ε0 ≤ ε1, some constants
C1 > 0, b2 > b1 > 0 , c1 > 0, d2 > d1 > 0 such that if
α = [a1, a2, a3, · · · ] and for some 0 ≤ m ≤ m̂{

1 ≤ a` ≤ M , ` ≤ m
a` ≥ C1 , ` ≥ m + 1

, (26)

then there exists a sequence {(mθ, nθ) : θ ∈ Θ} with

b1 ak+m ≤ mθ ≤ b2 ak+m

and b1 ak+m ≤ nθ ≤ b2 ak+m , ∀k ≥ 1, ∀θ ∈ Θk−1 ,
(27)



Theorem (continued)

and a family of bands

{Jθ : θ ∈ Ω ∪Θ}

such that:

(i) For each k ≥ 0, {Jθ : θ ∈ Ωk ∪Θk} is a covering of Σα:

Σα ⊂
⋃

θ∈Ωk∪Θk

Jθ .

(ii) For each k ≥ 1 and θ ∈ Θk−1 ,

∂Jθ ⊂ Σα.



Theorem (end)

For each i ∈ Aθ ∪ {0},
Jθ·i ⊂ Jθ,

Jθ·(i+1) is on the right of Jθ·i . Moreover,

c1

ak+m
≤

d(Jθ·(i+1), Jθ·i )

|Jθ|
. (28)

(iii) For each k ≥ 1 and θ ∈ Θk−1,

|Jθ·0|
|Jθ|

≤ ε0 ; e−d2ak+m ≤ |Jθ·i |
|Jθ|

≤ e−d1ak+m , (i ∈ Aθ) .

This result permits to give an interesting result on the Hausdorff
measure of the spectrum (see Helffer-Liu-Qi-Zhou [HLQZ]).



Harper III
In [HSHarper3], in order to treat the Harper operator and
perturbations of it occuring in a renormalization procedure, the
following notion was introduced.

Definition

A symbol L(x , ξ;µ, h) will be called of strong type I if the following
conditions are satisfied for all h ∈ (0, h0) with some h0 > 0:

(a) L depends analytically on µ ∈ [−4, 4].

(b) There exists ε > 0 such that

(b1) L(x , ξ;µ, h) is holomorphic in

Dε =
{

(µ, x , ξ) ∈ C× C× C : |µ| ≤ 4, |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(b2) for (µ, x , ξ) ∈ Dε, there holds∣∣L(x , ξ;µ, h)− (cos x + cos ξ − µ)
∣∣ ≤ ε.



Continuation of the definition

(c) The following symmetry conditions hold:

L(x , ξ;µ, h) = L(ξ, x ;µ, h) = L(x ,−ξ;µ, h)
L(x , ξ;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ + 2π;µ, h).

By ε(L) we will denote the minimal value of ε for which the above
conditions hold.



In Harper I, this has the simpler form which permits to define the
”neighborhhod of the symbol cos x + cos ξ ” stable in the
renormalization procedure.

Definition

A symbol L(x , ξ; h) will be called of strong type I if the following
conditions are satisfied for all h ∈ (0, h0) with some h0 > 0: There
exists ε > 0 such that

(b1) L(x , ξ; h) is holomorphic in

Dε =
{

(x , ξ) ∈ C× C : |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(b2) for (x , ξ) ∈ Dε, there holds∣∣L(x , ξ; h)− (cos x + cos ξ)
∣∣ ≤ ε.



Continuation of the definition

(c) The following symmetry conditions hold:

L(x , ξ; h) = L(ξ, x ; h) = L(x ,−ξ; h)
L(x , ξ; h) = L(x + 2π, ξ; h) = L(x , ξ + 2π; h).

If one denotes by ε(L) the minimal value of ε for which the above
conditions hold, the neighborhoods in Harper 1 were parametrized
by η > 0 and defined by {L , ε(L) ≤ η}.



The final result reads

Theorem HS

Let L(µ, h) be a strong type I symbol. There exist ε0 , C s. t. if
ε(L) ≤ ε0 and if

h

2π
=

1

n1 +
1

n2 +
1

n3 + . . .

with nj ≥ C , then the µ-spectrum of the associated operators
Opwh (L(µ)) is a zero measure Cantor set.

In particular, this applies to the spectrum of the Harper’s model.
But the theorem says also that this is stable by perturbations
respecting all the symmetries.



Critical points

Having in mind what was done in Harper I, the analysis in the
interval J0 is more delicate. For E = 0, the wells are no more
compact and the previous construction does not work at all. The
renormalization is much more involved. We need in particular a
microlocal analysis of the model h2D2

x − x2 and the renormalized
operator is no more an Harper’s model but a 2× 2 system of
hnew -pseudodifferential operator whose principal symbol is

Q(x , ξ) =

(
b + āe−iξ b̄ + ae ix

b + āe−ix b + āe iξ

)
Fortunately, one can show that there are at the end four models

permitting to complete the analysis after the first normalization.



On the way of proving the Cantor structure, we can try to
understand other questions where the same analysis is relevant. I
will describe one case where the first step of the procedure is
enough.



Around some Thouless formula.

Y.Last get in the nineties that, for 0 ≤ λ ≤ 1, the Lebesgue
measure of the spectrum of Hα,λ is for a.e α equal to 2|1− |λ|| .
The case when λ = 1 appears as a very important case and in this
case Y.Last gets that the spectrum is a zero measure Cantor set
for a.e α. More precisely the theorem is the following:

Theorem

If α is an irrational, s.t. there is a sequence of rationals pn/qn
obeying:

lim
n→∞

q2
n|α−

pn
qn
| = 0 , (29)

then for every λ, θ ∈ R:

|σ(α, λ, θ)| = 2|1− |λ|| , (30)

where | . | denotes Lebesgue measure.



We now concentrate our study on the case when λ = 1 where the
measure of the spectrum is proved to be 0. The proof of the
theorem in this case is based on a careful study of the rational case
and in this case the basic lemma is:

Lemma

If p and q are mutually prime (we then write p ∧ q = 1)

(
√

5 + 1)

q
< |Σ(p/q, 1)| < 4e

q
, (31)

with e = exp 1.

A similar but weaker estimate of the lower bound was already
obtained in Last-Wilkinson (1992).



This lemma is strongly related to a conjecture due to Thouless
which says:

Thouless Conjecture

lim q →∞
p ∧ q = 1

q|Σ(p/q, 1)| = 16CCat/π (32)

where CCat is the so–called Catalan’s constant

Ccat =
∑
n∈N

(−1)n(2n + 1)−2.

which is approximately equal to:

CCat ≈ 0.9159... .



This conjecture has been studied numerically and theoretically in
[Th1983], [Th1990b], [TaTh1991a], [TaTh1991b]. We have not
followed if there is a more recent litterature.

Thouless (sometimes with collaborators) gives in particular
semi-classical arguments justifying the conjecture in the case p = 1
and in the case p = 2 ; q odd. The proof is based on an analysis of
the Green function but it is not completely clear to us if the proof
is totally rigorous in the analysis of the remainders. Although
complex WKB techniques are used in this approach, they are quite
different of the approach we present here
(see however Buslaev-Fedotov).
The point of view of Y.Last and M.Wilkinson (1992) is more in the
spirit of earlier works by M.Wilkinson (1984-1989) and uses
semiclassical analysis in a microlocal spirit.



We shall see later that the whole spectrum is concentrated as
q →∞ near 0. The reason is that outside a fixed interval
]− ε,+ε[ the spectrum is a union of bands which are exponentially
small. Consequently, for any ε0 > 0, the contribution in the total
bandwidth which is outside ]− ε0,+ε0[ is exponentially small.
Moreover, the proof gives a renormalization procedure. For j 6= 0,
the spectrum in each interval is given, after an affine
transformation, sending Jj on essentially [−2, 2], by the spectrum
of a suitable perturbation of the Harper’s operator to which the
preceding theorem can be again applied if |q2| ≥ C0. This
perturbed Harper’s operator is now an h̃-pseudodifferential
operator with

h̃

2π
=

1

q2 + 1
q3+ 1

q4+...



Hofstadter Butterfly realized by Avron et al

	  



In the rational case, the procedure stops after a finite number of
steps. Note that if h

2π = 1
q1

, we get h̃ = 0, and the convention is

that a (h̃ = 0)-pseudodifferential operator of symbol p is then
simply the operator of multiplication by p on L2

x ,ξ(R2), whose
spectrum is simply the set
{λ ∈ R s.t. ∃ (x , ξ) ∈ R2 withλ = p(x , ξ)}.
In particular this says that the contribution in the total width as
q → +∞ is exponentially small outside ]− ε0, ε0[.



Hence we can not avoid the study of the spectrum of the Harper’s
operator near 0 which is much more difficult because 0 is a saddle
point of the symbol of the operator:

(x , ξ)→ cos x + cos ξ .

It is consequently natural to think that one can also give a
rigorous approach for the a priori easier problem consisting in
measuring the total bandwidth. This problem is easier, in the sense
that it appears as a one step problem and we shall not need the
infinite sequence of approximate renormalizations used in
Harper1-Harper3 in order to prove the Cantor structure.



The main goal will be consequently to see what gives this strategy
and we shall prove that it works at least in the two cases where
reasonable mathematical arguments were already given. We ( i.e
Helffer-Kerdelhué) consequently rigorously prove the:

Theorem 1 (Helffer-Kerdelhué CMP 1995)

lim
q→∞

q|Σ(1/q, 1)| = (16/π)CCat (33)



Theorem 2 (Helffer-Kerdelhué)

lim
q→∞

(2q + 1)|Σ(
2

(2q + 1)
, 1)| = (16/π)CCat (34)

The second theorem will use also some techniques related to the
semi-classical study near a rational [HeSj1990].



We now state what we know from the general theory in order to
analyze our particular case and refer to [HeSj1989]. We only
collect all the statements permitting to start a rigorous proof for
the asymptotic behavior of the total bandwidth. This is also what
we need to localize in the irrational case the intervals appearing in
the first step near the critical value.



The main ”extracted from Harper 3” result is the following (this
gives a rigorous version of heuristic arguments due to Azbel
Az1964):

Theorem (Helffer-Sjöstrand–Harper 3)

There exists ε0 > 0, ε1 > 0 and h0 such that, in the interval
[−ε0, ε0] and for 0 < h < h0, µ is in the spectrum of the Harper’s
operator if and only if 0 is in the spectrum of a vector valued
h̃-pseudodifferential operator Q(x , h̃Dx , h, µ

′) on L2(R;C2).
Its symbol is a 2× 2 matrix depending on a parameter µ′ and
given by

Q(x , ξ) = Q0(x , ξ) +O (exp−ε1/h) (35)

with

Q0(x , ξ) =

 b + ā exp−iξ b̄ + a exp ix

b̄ + a exp−ix b + ā exp iξ

 . (36)



Theorem continued

The parameter h̃ is related to h by the relation

2π

h̃
=

h

2π
mod Z . (37)

The parameter µ′ is related to the spectral parameter µ by
µ′ = f (µ, h) where f is the realization of a formal real valued
symbol i.e. admits in [−2ε0, 2ε0] the following expansion

f (µ, h) ≡ f0(µ) + hf1(µ) + ..... (38)

f0(0) = 0 ; f ′0(0) = 1 (39)



Theorem (end)

The parameters a and b are given by

b = (2π)−1/2Γ(
1

2
− i

µ′

h
) exp

[
i
µ′

h
ln(

1

h
) + π

µ′

2h
+ i

g(µ′, h)

h

]
(40)

a = (2π)−1/2Γ(
1

2
− i

µ′

h
) exp

[
i
µ′

h
ln(

1

h
) − π µ

′

2h
+ i

g(µ′, h)

h
− i

π

2

]
(41)

where Γ is the standard gamma function, g is a real classical
analytic symbol of order ≤ 0.



Remark: Selfadjointization

The operator Q above is unfortunately not selfadjoint and it is
quite useful in order to use perturbation theory to come back to a
selfadjoint theory. That this is possible is of course not strange if
we recall that our initial problem was selfadjoint. The proof given
in Harper 3 keeps actually a ”memory” of this property by giving
an explicit way of selfadjointization.



More precisely, the proof gives also the existence of a family of
operators P1(x , h̃Dx , θ, h, µ

′) of the same type of Q such that:

P?1Q = Q?P1 (42)

and 3

P1(x , ξ, θ) = P1,0(x , ξ, θ) +O (exp−ε1/h)) (43)

with

P1,0(x , ξ, θ) =

 b′ + ā′ exp−iξ b̄′ + a′ exp ix

b̄′ + a′ exp−ix b + ā′ exp iξ

 , (44)

with
b′ = b exp iθ ; a′ = a exp iθ . (45)

We have some freedom in the choice of θ which will be determined
later.

3One can forget the green part at the first reading



Similarly, it is possible to define another family of operators P2 of
the same type such that:

QP?2 = P2Q
? (46)



Let us now establish useful relations. We get for µ′ ∈ R the
following relations:

|a|2 + |b|2 = 1 ,
arg(b)− arg(a) = π/2 ,
ab̄ = −āb = −i |a| . |b|

(47)

|b| = exp(π
µ′

2h
)

(
expπ

µ′

h
+ exp−πµ

′

h

)−1/2

, (48)

|a| = exp(−π µ
′

2h
)

(
expπ

µ′

h
+ exp−πµ

′

h

)−1/2

, (49)

|a| |b| = 1/(2 cosh(π
µ′

h
)) ; |a|2 − |b|2 = − tanh(π

µ′

h
) . (50)



The determinant of the matrix Q0 has the following form, as a
function of a, b satisfying the conditions (40), (41):

detQ0(x , ξ) = 2i [sin(2 arg b) + |a||b|(cos ξ + cos x)] . (51)

Similarly, the determinant of the matrix P1,0 is given by

detP1,0(x , ξ, θ) = 2i [sin(2 arg b + 2θ) + |a||b|(cos ξ + cos x)] .
(52)



Let us now discuss from where comes the function f .

It is important to remark that the above theorem is not only
proved for the Harper’s equation, but also for small perturbations
of this operator. This point is crucial in the renormalization
analysis. But for our lecture it is better to forget the remark and to
work on the unpertubed model.

The role of f will be clear if we recall the following theorem
(Theorem b.1. in HeSj1989-Harper3).



Theorem- Normal form near the saddle point

Let P(x , hDx , h) be a formal classical analytic pseudodifferential
operator, of order 0, formally selfadjoint, whose symbol is defined
in a neighborhood of (0, 0). Let p be the principal symbol, and
assume that p has a nondegenerate saddle point at (0, 0) with
critical value 0. Then there is a real-valued analytic symbol:
µ→ f (µ, h) defined for µ in a neighborhood of 0, and a formal
unitary analytic Fourier integral operator, whose associated
canonical transformation (in the classical sense) is defined in a
neighborhood of (0, 0), and maps this point onto itself, such that

U?f (P, h)U =
1

2
(x hDx + hDx x). (53)

A similar result exists in the case of a non-degenerate maxima. We
then get the Harmonic oscillator.



One can concretely find the first term f0 of f . The function
µ→ f0(µ) is determined by the condition that the complex period
T (µ) of the hamiltonian flow Hp0 on the energy level p0(x , ξ) = µ
becomes, by replacing p0 by f0(p0) and near the energy
corresponding to the saddle point, independent of the energy and
equal to T0 = 2iπ which is the complex period of the hamiltonian
flow attached to the model (x , ξ)→ x · ξ. In the case when
p0(x , ξ) = cos x + cos ξ, we observe that the Taylor expansion at
the order 2 is given for example the point (0, π) is given by
(−x2 + (ξ − π)2)/2 and this explains the conditions written for f0
in the case of the Harper operator.



More precisely, we have in this case the following formula:

f0(µ) =
1

π
sign(µ)S(µ) ,

where S(µ) is the tunneling parameter :

If µ ≥ 0 , S(µ) =
∫ 2π−a
a cosh−1(µ− cos x)dx ,

with µ = 1 + cos a , 0 ≤ a ≤ π ;

If µ ≤ 0 , S(µ) = S(−µ) =
∫ 4π−b
b cosh−1(−µ+ cos x)dx ,

with µ = −1 + cos b , π ≤ b ≤ 2π .

f0(µ) can also be interpreted as a quantity attached to the
Hamiltonian p̂0(x , ξ) = cosh ξ + cos x .

The asymptotic behavior of the total bandwidth depends actually
only on f through f ′0(0).



The function g contains a global information on the area of
domains delimited by the energy surfaces near the critical one but
this will not appear in the main term of our asymptotics.



We recall finally some properties of Q which are easily and directly
verified for Q0:

Q(−ξ, x) =

(
0 1
1 0

)
Q?( x , ξ) ,

Q̄( ξ, x) = Q( x , ξ)

(
0 1
1 0

)
,

Q(−x ,−ξ) =

(
0 1
1 0

)
Q( x , ξ)

(
0 1
1 0

)
.

(54)



If

α =
h

2π
= 1/q ,

then we get the special case

h̃ = 0

and one is reduced to the study of a family of 2× 2-matrices. In
the irrational case, we will assume h̃ small for continuing the
analysis but the band appearing in the analysis of h̃ = 0 give the
information on the localization of the spectrum at this first step.



The case α = 1/q

Here h̃ = 0 and, according to our conventions, the
h̃-pseudodifferential operators have to be considered as
multiplication operators defined on L2(R2

x ,ξ). So the theorem says
in our particular case that there exists ε0 > 0 and h0 > 0 such
that, in the interval [−ε0, ε0] and for 0 < h < h0, µ is in the
spectrum of the Harper’s operator if and only if there exists (x , ξ)
s.t Q(x , ξ, h, µ′) is not injective.



So we have the following

Proposition

There exists ε0 > 0 and h0 such that, in the interval [−ε0, ε0] and
for 0 < h < h0, µ is in the spectrum of the Harper’s operator
if and only if

there exists (x , ξ) s.t detQ(x , ξ, h, µ′) = 0 with µ′ = f (µ, h) .
(55)



Continued

Moreover we have

detQ = detQ0 +O(exp−ε1/h) (56)

with

detQ0(x , ξ) = (i/ cosh(πµ′/h))×
× [2 cosh(πµ′/h) sin(2 arg b) + cos ξ + cos x ] .

(57)



Let us denote by σ̃h the image by f of σh. This is not defined
outside [−ε0, ε0] but we have seen that [−ε0, ε0] is the interesting
region where the spectrum is concentrated as h→ 0.

We consider first

1

h
|σ̃h ∩ ([−c ,−ε2h] ∪ [ε2h, c])|

where

I c > 0 is fixed sufficiently small s.t.
f −1([−c,+c]) ⊂]− ε0, ε0[, πc ≤ ε1/2

I ε2 > 0 will be chosen later arbitrarily small.



We only sketch an heuristic proof, forgetting the remainder term in
(55) -(56) we get the condition

cosh(πµ′/h) sin(2 arg b) ∈ [−1,+1] (58)

In the interval I (ε2, h) the variation of arg b is much larger in

comparison with the variation of 1/ coshπ µ
′

h .
We have indeed

|∂µ′ arg b| = h−1 ln(1/(h + |µ′|)) +O(1/h) (59)

and

|∂µ′
(

1/ coshπ
µ′

h

)
| ≤ Ch−1(coshπ

µ′

h
)−1 .



In particular we observe that the quotient satisfies in the interval I

|∂µ′ arg b|/|∂µ′
(

1/ coshπ
µ′

h

)
| ≥ (1/C ) ln(1/h) .

We compute then approximately the length of the spectrum
contained in [µ1”h, µ2”h] by writing that

|σ̃h ∩ [µ1”h, µ2”h]|
h(µ2”− µ1”)

≈
arcsin

(
1/ coshπ

µ′0
h

)
π
2

,

for some µ′0 in the interval.
After summation (using the Riemann approximation of the
integral)

|σ̃h|[ε2h,c] =
4h

π

(∫ c/h

ε2

arcsin(1/ coshπs)ds

)
.



It remains now to come back to the µ variable. Using (39), we get
the existence of a constant C such that for any ε3 s.t. 0 < ε3 < c
and for any ε2 > 0:

|σ̃h ∩ [ε2h, ε3]|(1− C (h + ε3)|
≤ |f −1(σ̃h ∩ [ε2h, ε3])|
≤ |σ̃h ∩ [ε2h, ε3]|(1 + C (h + ε3)| ,

|f −1(σ̃h ∩ [−ε2h, ε2h])| ≤ Cε2h ,

and
|f −1(σ̃h ∩ [ε3, c])| ≤ C (ε3) exp−(C (ε3)/h) ,

with C (ε3) > 0.



Let us also recall that:

f −1(0) = O(h)

and
∂f /∂µ′ = 1 +O(h + c) on [−c, c] .

We then get by combining the different estimates:

|σh|
h
→h→0

4

π

∫ 0

−∞
arcsin(1/ coshπs)ds =

8

π2
Ccat . (60)



We now take h = 2πα = 2π/q we finally get:

q|σ2π/q| →
16

π
Ccat , (61)

which corresponds to the result of Thouless Th1990b.



On the size of the bands
Looking at p. 52-53 in Harper 3, one gets the following
information on the length of the gaps and bands.

I If |µ′| ≤ C0h, then the set of solution µ′ is a union of closed
intervals of length ∼ h/ log(1/h). All these intervals are
disjoint except possibly 2 (in the case of touching it is exactly
for µ′ = 0. In a region where |µ′|/h ≥ c0 > 0, the distance
between two consecutive intervals is of the same order of
magnitude as the length of these intervals. In the region where
|µ′|/h is small, the gap between two consecutive intervals is of
the order of magnitude (2h/ log(1/h))| sinh(πµ′/h)|. The
point µ′ = 0 always belong to one of the intervals.

I If |µ′| ≥ C0h (C0 large), then the separation is of order
h/ log(1/|µ′|) and the length of an interval of solution is
(2 + o(1))he−π|µ

′|/h(log(1/|µ′|)−1 as h→ 0 and |µ′| → 0.

To compare with the formulas written outside (−ε0, ε0) in
Harper 1.



The end

Of course, this is only step 1. We should then analyze
Qw (x , h̃Dx , µ

′) semi-classically in each of these bands. This leads
to two new models. The good point is that the further analysis in
the next steps does not introduce new models and we can then
show that the infinite renormalization procedure only involves these
four models.

THANK YOU.
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Astérisque 95.
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