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Main goals

Using recent results by the authors on the
spectral asymptotics of the Neumann Laplacian
with magnetic field, we give precise estimates on
the critical field, HC3, describing the appearance
of superconductivity in superconductors of type II.
Furthermore, we prove that the local and global
definitions of this field coincide. Near HC3 only
a small part, near the boundary points where
the curvature is maximal, of the sample carries
superconductivity. We give precise estimates on
the size of this zone and decay estimates in both the
normal (to the boundary) and parallel variables.



Setup and results for general domains

Our main motivation comes from superconductivity.

As appeared from the works of Bernoff-
Sternberg [BeSt], Lu-Pan [LuPa1, LuPa2, LuPa3,
LuPa4], and Helffer-Pan [HePa], the determination
of the lowest eigenvalues of the magnetic Schrödinger
operator is crucial

• for a detailed description of the nucleation
of superconductivity (on the boundary) for
superconductors of Type II

• for accurate estimates of the critical field HC3.



The determination of the complete asymptotics of
the lowest eigenvalues of the Schrödinger operators
was essentially achieved (except for exponentially
small effects) in the two-dimensional case with the
works of [HeMo2] and [FoHe2]. See also Bonnaillie,
Bonnaillie-Dauge for the case with corner.

What remained to be determined was the
corresponding asymptotics for the critical field.

We will actually obtain much more and clarify the
links between the various definitions of critical fields
considered in the mathematical or physical literature
and supposed to define the right critical field.



Ginzburg-Landau functional

The Ginzburg-Landau functional is given by

Eκ,H[ψ, ~A] =∫
Ω

{
|pκH ~Aψ|

2 − κ2|ψ|2 + κ2

2 |ψ|
4

+κ2H2| curl ~A− 1|2
}
dx ,

with (ψ, ~A) ∈W 1,2(Ω; C)×W 1,2(Ω; R2) and where

p ~A = (−i∇− ~A).

We fix the choice of gauge by imposing that

Div ~A = 0 in Ω , ~A · ν = 0 on ∂Ω .



Minimizers (ψ, ~A) of the functional satisfy the
Ginzburg-Landau equations,

p2
κH ~A

ψ = κ2(1− |ψ|2)ψ
curl 2 ~A = − i

2κH(ψ∇ψ − ψ∇ψ)− |ψ|2 ~A

}
in Ω ;

(1a)

(pκH ~Aψ) · ν = 0
curl ~A− 1 = 0

}
on ∂Ω .

(1b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1,

curl 2 ~A = (∂x2( curl ~A),−∂x1( curl ~A)) .

Let ~F denote the vector potential generating the
constant exterior magnetic field

Div ~F = 0
curl ~F = 1

}
in Ω , ~F · ν = 0 on ∂Ω .



The pair (0, ~F ) is called the Normal State.

A minimizer (ψ,A) for which ψ never vanishes will
be called SuperConducting State = SCS.

In the other cases, one will speak about Mixed
State=MS.

The general question is to determine the topology
of the sets of (κ,H) corresponding to each of these
three situations. One will also have to distinguish
in the third case, between “surface” states =MSS
and “interior” states MIS, the “surface” states living
near the boundary.

The hope is to describe these a priori complicate sets
by defining suitable critical fields Hcj(κ) (j = 1, 2, 3)
describing for a given κ the transition from SCS to
MIS, then from MIS to MSS, and then from
MSS to NS.

This appears to correspond grossomodo to the
situation when κ is large. When κ is small, one
is waiting for a direct transition from SCS to NS.



Existence of the upper critical field HC3(κ)

It is known that, for given values of the parameters
κ,H, the functional E has minimizers.

However, after some analysis of the functional, one
finds (see [GiPh]) that given κ there exists H(κ) such

that if H > H(κ) then (0, ~F ) is the only minimizer
of Eκ,H (up to change of gauge).

Following Lu and Pan [LuPa1], we define

HC3(κ) = inf{H > 0 : (0, ~F ) minimizer of Eκ,H} .

In the physical interpretation of a minimizer (ψ, ~A),
|ψ(x)|2 is a density1 measuring the behavior of the
material near the point x. Therefore, HC3(κ) is the
value of the external magnetic field, H, at which the
material loses its superconductivity completely.

1Note that ψ is NOT L2-normalized



A central question in the mathematical treatment of
Type II superconductors is to establish the asymptotic
behavior of HC3(κ) for large κ.

We will also discuss the relevance of this definition
and describe how HC3(κ) can be determined by the
study of a linear problem.

Although not proved, this suggests that the transition
from Normal State to Mixed Surface State when the
external field is decreasing will occur by bifurcation.



Our first result is the following strengthening of a
result in [HePa].

Theorem A
Suppose Ω is a bounded simply-connected domain in
R2 with smooth boundary. Let kmax be the maximal
curvature of ∂Ω. Then

HC3(κ) =
κ

Θ0
+
C1

Θ
3
2
0

kmax +O(κ−
1
2) , (2)

where C1,Θ0 are universal constants.•

When Ω is a disc we get the improved estimate

HC3(κ) =
κ

Θ0
+
C1

Θ
3
2
0

kmax +O(κ−1) . (3)

Remark
The constants Θ0, C1 are defined in terms of auxiliary
spectral problems.



Remark
The improvement in (2) compared to He-Pan (which
uses He-Morame) is in the estimate on the remainder

(O(κ−
1
2) instead of O(κ−

1
3)). The new result is

optimal in the sense that the next term depends on
detailed geometric properties of the boundary.

In order to expand HC3 to higher orders we will
impose some geometric condition on Ω (see later).

Our second result is a precise estimate on the size of
the superconducting region in the case where H is
close to, but below, HC3.



Localization at the boundary
From the work of Helffer-Morame [HeMo2]
(improving Del Pino-Fellmer-Sternberg and Lu-
Pan) (see also Helffer-Pan [HePa] for the non-
linear case) we know that, when H is sufficiently
closed to HC3(κ), minimizers of the Ginzburg-
Landau functional are exponentially localized to a
region near the boundary. This is called Surface
Superconductivity.

Note that this localization leads to the proof of :

||ψ||L2(Ω) ≤ Cκ−
1
4||ψ||L4(Ω) , (4)

which is true for κ large enough.

Localization at the points of maximal curvature
The statement is that minimizers are also localized
in the tangential variable to a small zone around the
points of maximum curvature.



In order to give a precise statement let us first rapidly
recall some Notations concerning the boundary .
Let γ : R/|∂Ω| → R2 a parametrization of ∂Ω with
|γ′(s)| = 1. For s ∈ R/|∂Ω| k(s) is the curvature of
∂Ω at the point γ(s). Furthermore,

kmax := max
s∈R/|∂Ω|

k(s) , K(s) := kmax − k(s) . (5)

Furthermore, t = t(x) measures the distance to the
bndary

t(x) := dist (x, ∂Ω) .

Let ν(s) the interior normal vector to ∂Ω at γ(s)
and Φ : R/|∂Ω| × (0, t0) → Ω by

Φ(s, t) = γ(s) + tν(s) .

Then, for t0 sufficiently small, Φ is a diffeo.
with image {x ∈ Ω

∣∣ dist (x, ∂Ω) < t0} , and
t(Φ(s, t)) = t. Thus, in a neighborhood of the
boundary, the function s = s(x) is defined by
(s(x), t(x)) = Φ−1(x).



Our estimate is an improvement of a similar estimate
in [HePa] (see also [He-Mo]).

Theorem B : Tangential Agmon estimates (non-linear
case)
Let Ω be a bounded simply-connected domain in R2

with smooth boundary. Let (ψ, ~A) = (ψκ,H, ~Aκ,H)
be a family of minimizers of the Ginzburg-Landau
functional depending on κ,H. We suppose that
H = H(κ) in such a way that ρ := HC3(κ) − H
satisfies 0 < ρ = o(1) as κ → ∞. Then ∃α,C > 0
such that if κ > C, then∫

Ω

χ2
1(κ

1
4t)e2α

√
κK(s)|ψ(x)|2 dx ≤ CeCρ

√
κ

∫
Ω

|ψ(x)|2 dx .

(6)

Here K(s) is the function defined in (5):

K(s) := kmax − k(s) .



Discussion of critical fields
Actually, we should define more than one critical
field, instead of just HC3. We define an upper and a

lower critical field, HC3(κ) ≤ HC3(κ), by

HC3(κ)
= inf{H > 0 : ∀H ′ > H , (0, ~F )

unique minimizer of Eκ,H′} ,

HC3(κ) = HC3(κ) . (7)

The proof of Theorem A gives a lower bound to
HC3(κ) and an upper bound to HC3(κ), so the
expansion is valid for both fields.



The physical idea of a sharp value for the external
magnetic field strength at which superconductivity
disappears, requires the different definitions of the
critical field to coincide. A more precise result
will establish this identification under a (generically
satisfied) geometric assumption on ∂Ω.

Most works analyzing HC3 relate (more or less
implicitly) these global critical fields to local ones
given purely in terms of spectral data of a magnetic
Schrödinger operator, i.e. in terms of a linear
problem.

Let, for B ∈ R+, the magnetic Neumann Laplacian
H(B) be the self-adjoint operator (with Neumann
boundary conditions) associated to the quadratic
form

W 1,2(Ω) 3 u 7→
∫

Ω

|(−i∇−B ~F )u|2 dx ,

We define λ1(B) as the lowest eigenvalue of H(B).



The local upper critical fields can now be defined :

H loc
C3

(κ) = inf{H > 0 : ∀H ′ > H,λ1(κH ′) ≥ κ2} ,

H loc
C3

(κ) = inf{H > 0 : λ1(κH) ≥ κ2} .
(8)

The difference between H loc
C3

(κ) and H loc
C3

(κ)—and

also between HC3(κ) and HC3(κ)—can be retraced
to the general non-existence of an inverse to the
function B 7→ λ1(B), i.e. to lack of strict
monotonicity of λ1.



The case of the disk
The detailed spectral analysis in Bauman-Phillips-
Tang [BaPhTa] in the case where Ω is a disc does

not exclude that, in this case, H loc
C3

(κ) and H loc
C3

(κ)
differ even for large values of κ. They prove the
estimate,∣∣∣H loc

C3
(κ)−H loc

C3
(κ)

∣∣∣ ≤ C

κ
, in the case of the disc.

However, a more precise analysis (Fournais-He) in
this special case shows that actually (for the disc)

H loc
C3

(κ) = H loc
C3

(κ) for sufficiently large values of κ.



Comparison Theorem C
Let Ω be a bounded simply-connected domain in
R2 with smooth boundary and let κ > 0, then the
following general relations hold

HC3(κ) ≥ H loc
C3

(κ) , (9)

HC3(κ) ≥ H loc
C3

(κ) . (10)

OPEN QUESTION

For general domains we do not know that the local

fields H loc
C3

(κ) and H loc
C3

(κ) coincide.



The next theorem improves Theorem C and is typical
of type II materials.

Identification Theorem D
Let Ω be a bounded simply-connected domain in R2

with smooth boundary. Then ∃ κ0 > 0 such that,
for κ > κ0, we have

HC3(κ) = H loc
C3

(κ) .



Results for non-degenerate domains
In order to obtain more precise results, we need to
impose geometric conditions on Ω.

Generic Assumption
The domain Ω ⊂ R2 is bounded and simply-
connected and has smooth boundary. Furthermore,
∃ a finite number of points {s1, . . . , sN} ∈ R/|∂Ω|
of maximal curvature and these maxima are non-
degenerate.

Stronger Assumption
The domain Ω ⊂ R2 is bounded and simply-
connected and has smooth boundary. Furthermore,
∃ a unique point s0 ∈ R/|∂Ω| of maximal curvature
and this maximum is non-degenerate, in the sense
that k2 := −k′′(s0) 6= 0.



In Fournais-He [FoHe2] the asymptotics of λ1(B),
for large B, was calculated.

We can also prove that (under above Generic
Assumption) λ1 : [B0,∞) → [λ1(B0),∞) is bijective
for B0 sufficiently large.

THIS IS NOT A TRIVIAL RESULT OBTAINED BY
A SIMPLE MONOTONICITY ARGUMENT.

Proposition E
Suppose Ω satisfies Generic Assumption. Then ∃κ0

such that, if κ ≥ κ0, then the equation for H:

λ1(κH) = κ2 , (11)

has a unique solution H(κ).
So for large κ, the upper and lower local fields
coincide.



So for κ ≥ κ0, the local critical field H loc
C3

(κ) can be
defined as the solution of

λ1(κH loc
C3

(κ)) = κ2 . (12)

We can calculate the asymptotics of H loc
C3

(κ) (based
on the asymptotics of λ1(B) from [FoHe2]). The
result is that this solution H loc

C3
(κ) has the formal

asymptotic expansion

Hformal =
κ
Θ0

(
1 + C1kmax√

Θ0κ
− C1

√
3k2
2 κ

−3
2 + κ−

7
4
∑∞
j=0 ηjκ

−j
4

)
,

(13)

as κ→ +∞. Here k2 = max−k′′(sj).
The coefficients ηj ∈ R are computable recursively.
The expression for Hformal is to be understood as an
asymptotic series.



So we can identify the lower and upper local fields
and therefore find the following result.

Theorem F
Suppose Ω is either the disc or that it satisfies Generic
Assumption. Then ∃κ0 > 0 such that, when κ > κ0,
then

H loc
C3

(κ) = HC3(κ) = HC3(κ) . (14)

Proof
The case of the disc follows from Theorems C and
D. For the non-degenerate case—i.e. under Generic
Assumption— Theorem F follows from combining
Proposition E with Theorems C and D.



Remark
Under Generic Assumption, the known asymptotics
of H loc

C3
(κ) can, of course, be combined with

Theorem F to find the leading order terms of the
expansion of HC3(κ) for κ large.



Some walk inside the proofs

Another caracterization of the local critical fields

In addition to the (global) critical fields HC3(κ) and
HC3(κ), we have also defined local fields.

These local fields can also be obtained by considering
the values where the normal solution2 (0, ~F ) is a not
unstable local minimum of Eκ,H, i.e.

H loc
C3

(κ) = inf{H > 0 : ∀H ′ > H,HessEκ,H′
∣∣
(0, ~F )

≥ 0} ,

H loc
C3

(κ) = inf{H > 0 : HessEκ,H
∣∣
(0, ~F )

≥ 0} .

2Remember that (0, ~F ) is always a stationary point of the Ginzburg-
Landau functional Eκ,H .



This immediately results of the observation that the
Hessian, HessEκ,H, at the normal solution is given
by

HessEκ,H
∣∣
(0, ~F )

[φ,~a]

=
∫
Ω
|(−i∇− κH ~F )φ|2 − κ2|φ|2 + (κH)2| curl ~a|2 dx .



Let us sketch how we get the general comparison
between the local and global fields given in
Theorem C.

About the proof of Theorem C

We first prove (9). Suppose H > HC3(κ). Then

(0, ~F ) is the only minimizer of Eκ,H. In particular,

for all φ, ~A,

Eκ,H[φ, ~F + ~A] ≥ Eκ,H[0, ~F ] = 0

This implies that HessEκ,H
∣∣
(0, ~F )

≥ 0. Since H >

HC3(κ) was arbitrary, we get (9).



Next we prove (10). Suppose H < H loc
C3

(κ). Then

λ1(κH) < κ2. Let ψ be a ground state for H(κH).
We use, for η > 0, the pair (ηψ, ~F ) as a trial state
in Eκ,H,

Eκ,H[ηψ, ~F ] = (λ1(κH)− κ2)η2‖ψ‖2L2(Ω) +
κ2

2
η4‖ψ‖4L4(Ω) .

Since λ1(κH)− κ2 < 0, we get Eκ,H[ηψ, ~F ] < 0 for
η sufficiently small (using that W 1,2(Ω) ⊂ L4(Ω)).

Thus (0, ~F ) is not a minimizer for Eκ,H. Since
H < H loc

C3
(κ) was arbitrary, this proves (10) and

therefore finishes the proof of the lemma.



Around the proof of Theorem D
The proof is by contradiction.

If there exists a sequence κ = κn s.t. κn →
+∞ and HC3(κ) > H loc

C3(κ), we can find H in

]HC3(κ) , H loc
C3(κ)[ and a pair of minimizers (ψ, ~A)

with ψ non trivial,

λ1(κH ~F ) ≥ κ2 ,

and
E(ψ, ~A) ≤ 0 .

This leads to

0 < ∆ := κ2||ψ||22 −QκH ~A[ψ] = κ2||ψ||44 ,

where QκH ~A[ψ] is the energy of ψ.
The last equality is a consequence of the first G-L
equation.



Combining with (4), this gives

||ψ||2 ≤ Cκ−
3
4∆

1
4 .

By comparison of the quadratic forms Q respectively
associated with ~A et ~F , we get, with ~a = ~A− ~F :

∆ ≤
[
κ2 − (1− ρ)λ1(κH ~F )

]
‖ψ‖22 + ρ−1(κH)2

∫
Ω

|~aψ|2 dx ,

(15)

for all 0 < ρ < 1.

Note that by the regularity of the system Curl-Div,
combined with the Sobolev’s injection theorem, we
get

‖~a‖4 ≤ C1‖~a‖W 1,2 ≤ C2‖ curl ~a‖2 .



Now ∆ is also controlling ‖ curl ~a‖22, so we get :

(κH)2‖~a‖24 ≤ C∆ .

Combining all these inequalities leads to :

0 < ∆ ≤
≤

[
κ2 − (1− ρ)λ1(κH ~F )

]
‖ψ‖22 + ρ−1(κH)2‖~a‖24‖ψ‖24

≤
[
κ2 − λ1(κH ~F )

]
‖ψ‖22

+Cρλ1(κH)∆
1
2κ−

3
2 + Cρ−1∆

3
2κ−1 .

Chosing ρ =
√

∆κ−
3
4, and using the rough upper

bound λ1(κH ~F ) < Cκ2, we find

0 < ∆ ≤
[
κ2 − λ1(κH)

]
‖ψ‖22 + C∆κ−

1
4 .

This leads to a contradiction for κ = κn large enough



Perspectives

This is far to be the end of the story. Here are some
additional questions :

1. One can instead consider the more physical
functional :

Eκ,H[ψ, ~A] =∫
Ω

{
|pκH ~Aψ|

2 − κ2|ψ|2 + κ2

2 |ψ|
4

+κ2H2
∫

R2 | curl ~A− 1|2
}
dx ,

The difference is that the last integration is over
R2 ! This is particularly important if Ω is not
simply connected !

2. What is going on in Dimension 3 ?
Results by Pan, Helffer-Morame, Fournais-Helffer.



3. Is there a good definition of the Second Critical
Field ?

For an analysis near this field, see Pan, Almog
and Sandier-Serfaty.

Note that this is below the second critical field that
starts the beautiful analysis of E. Sandier and S.
Serfaty.

Note also that other conditions than Neumann could
be interesting.
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in the semiclassical limit I. Comm. Partial
Differential Equations 9 (4), p. 337-408 (1984).

[LuPa1] K. Lu and X-B. Pan : Estimates of the
upper critical field for the Ginzburg-Landau
equations of superconductivity. Physica D 127,
p. 73-104 (1999).

[LuPa2] K. Lu and X-B. Pan : Eigenvalue
problems of Ginzburg-Landau operator in
bounded domains. J. Math. Phys. 40 (6),
p. 2647-2670, June 1999.



[LuPa3] K. Lu and X-B. Pan : Gauge invariant
eigenvalue problems on R2 and R2

+. Trans.
Amer. Math. Soc. 352 (3), p. 1247-1276 (2000).

[LuPa4] K. Lu and X-B. Pan : Surface nucleation
of superconductivity in 3-dimension. J. of
Differential Equations 168 (2), p. 386-452
(2000).

[Pan] X-B. Pan : Surface superconductivity in
applied magnetic fields above HC3 Comm.
Math. Phys. 228, p. 327-370 (2002).

[PiFeSt] M. del Pino, P.L. Felmer, and P. Sternberg :
Boundary concentration for eigenvalue problems
related to the onset of superconductivity.
Comm. Math. Phys. 210, p. 413-446 (2000).

[SaSe] E. Sandier, S. Serfaty : Important series of
contributions....

[S-JSaTh] D. Saint-James, G. Sarma, E.J. Thomas :



Type II Superconductivity. Pergamon, Oxford
1969.

[St] P. Sternberg : On the Normal/Superconducting
Phase Transition in the Presence of Large
Magnetic Fields. In Connectivity and
Superconductivity, J. Berger and J. Rubinstein
Editors. Lect. Notes in Physics 63, p. 188-199
(1999).

[TiTi] D. R. Tilley and J. Tilley: Superfluidity
and superconductivity. 3rd edition. Institute
of Physics Publishing, Bristol and Philadelphia
1990.

[Ti] M. Tinkham, Introduction to
Superconductivity. McGraw-Hill Inc., New
York, 1975.


