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UMR 8628 du CNRS, Bat. 425,
F-91405 Orsay Cedex, FRANCE

January 29, 2010

Abstract

We intend to present in this course the basic tools in spectral analy-
sis and to illustrate the theory by presenting examples coming from the
Schrödinger operator theory and from various branches of physics : sta-
tistical mechanics, superconductivity, fluid mechanics. We also give some
introduction to non self-adjoint operators theory with emphasis on the
role of the pseudo-spectrum. Other examples are treated in the 2008-
2009 version.
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1 Introduction

Our starting point could be the theory of Hermitian matrices, that is of the
matrices satisfying : A? = A. If we look for eigenvectors and corresponding
eigenvalues of A, that is for pairs (u, λ) with u ∈ Ck, u 6= 0 and λ ∈ C such
that Au = λu, we know that the eigenvalues are real and that one can find an
orthonormal basis of eigenvectors associated with real eigenvalues.

In order to extend this theory to the case of spaces with infinite dimension
(that is replacing the space Cm by a general Hilbert space H), the first attempt
consists in developing the theory of compact selfadjoint operators. But it is far
to cover all the interesting cases that are present in Quantum Mechanics. So our
aim is to present a general theory but it is perhaps good to start by looking at
specific operators and to ask naive questions about the existence of pairs (u, λ)
with u in some suitable domain, u 6= 0 and λ ∈ C such that Au = λu. We shall
discover in particular that the answer at these questions may depend strongly
on the choice of the domain and on the precise definition of the operator.

1.1 The free Laplacian

The Laplacian −∆ has no eigenfunctions in L2, but it has for any λ ∈ R+ an
eigenfunction in S ′(Rm) (actually in L∞) and for any λ ∈ C an eigenfunction in
D′(Rm). So what is the right way to extend the theory of Hermitian matrices
on Ck ?
On the other hand, it is easy to produce (take for simplicity m = 1) approximate
eigenfunctions in the form un(x) = 1√

n
exp ix·ξ χ(x−n

2

n ), where χ is a compactly
supported function of L2-norm equal to 1.

1.2 The harmonic oscillator

As we shall see the harmonic oscillator

H = −d2/dx2 + x2

plays a central role in the theory of quantum mechanics. When looking for
eigenfunctions in S(R), we obtain that there is a sequence of eigenvalues λn
(n ∈ N)

λn = (2n− 1) .

In particular the fundamental level (in other words the lowest eigenvalue) is

λ1 = 1

and the splitting between the two first eigenvalues is 2.
The first eigenfunction is given by

φ1(x) = c1 exp−x
2

2
(1.2.1)
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and the other eigenfunctions are obtained by applying the creation operator

L+ = −d/dx+ x . (1.2.2)

We observe indeed that

H = L+ · L− + 1 , (1.2.3)

where
L− = d/dx+ x , (1.2.4)

and has the property
L−φ1 = 0. (1.2.5)

Note that if u ∈ L2 is a distributional solution of L+u = 0, then u = 0. Note
also that if u ∈ L2 is a distributional solution of L−u = 0, then u = µφ1 for
some µ ∈ R.
The nth-eigenfunction is then given by

φn = cn(L+)n−1φ1 .

This can be shown by recursion using the identity

L+(H + 2) = HL+ . (1.2.6)

It is easy to see that φn(x) = Pn(x) exp−x2

2 where Pn(x) is a polynomial of
order n − 1. One can also show that the φn are mutually orthogonal. The
proof of this point is identical to the finite dimensional case, if we observe the
following identity (expressing that H is symmetric) :

< Hu, v >L2=< u,Hv >L2 , ∀u ∈ S(R),∀v ∈ S(R) , (1.2.7)

which is obtained through an integration by parts.
Then it is a standard exercise to show that the family (φn)n∈N is total and that
we have obtained an orthonormal hilbertian basis of L2, which in some sense
permits to diagonalize the operator H.
Another way to understand the completeness is to show that starting of an eigen-
function u in S ′(R) associated with λ ∈ R solution (in the sense of distribution)
of

Hu = λu ,

then there exists k ∈ N and ck 6= 0 such that (L−)ku = ckφ1 and that the
corresponding λ is equal to (2k + 1).
For this proof, we admit that any eigenfunction can be shown to be in S(R) and
use the identity

L−(H − 2) = HL− , (1.2.8)

and the inequality
< Hu, u >≥ 0 , ∀u ∈ S(R) . (1.2.9)
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This property is called ”positivity” of the operator.
Actually one can show by various ways that

< Hu, u >≥ ||u||2 , ∀u ∈ S(R) . (1.2.10)

One way is to first establish the Heisenberg Principle1 :

||u||2L2(R) ≤ 2||xu||L2 ||u′||L2 , ∀u ∈ S(R) . (1.2.11)

The trick is to observe the identity

1 =
d

dx
· x− x · d

dx
. (1.2.12)

The inequality (1.2.10) is simply the consequence of the identity

< Hu, u >= ||u′||2 + ||xu||2 , (1.2.13)

which is proved through an integration by parts, and of the application in
(1.2.11) of Cauchy-Schwarz inequality.

Another way is to directly observe the identity

< Hu, u >= ||L−u||2 + ||u||2 , ∀u ∈ S . (1.2.14)

1.3 The problem of the boundary

We mainly consider the operator − d2

dx2 and look at various problems that can be
asked naively about the existence of eigenfunctions for the problem in L2(]0, 1[).

1.3.1 Ill-posed problems

Look first at pairs (u, λ) ∈ H1(]0, 1[)× C (u 6= 0) such that

−du/dx = λu , u(0) = 0 .

It is immediate to see that no such pairs exist. We will come back to this
example later when analyzing non self-adjoint problems.
Look now at pairs (u, λ) ∈ H2(]0, 1[)× C (u 6= 0) such that

−d2u/dx2 = λu .

We can find for any λ two linearly independent solutions.
1Here is a more “physical” version. If u is normalized by ||u||L2(R) = 1, |u|2 dx defines

a probability measure. One can define 〈x〉 =
R

x|u|2dx, mean value of the position and
the variance σx = 〈(x − 〈x〉)2〉. Similarly, we can consider: 〈Dx〉 :=

R
(Dxu) · ū(x)dx and

σDx := ||(Dx − 〈Dx〉)u||2. Then (1.2.11) can be extended in the form :

σx · σDx ≥
1

4
.
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1.3.2 The periodic problem

Here we consider pairs (u, λ) ∈ H2,per(]0, 1[)× C (u 6= 0) such that

−d2u/dx2 = λu .

Here

H2,per(]0, 1[) = {u ∈ H2(]0, 1[) , u(0) = u(1) and u′(0) = u′(1)} .

Here we recall that H2(]0, 1[) is included in C1([0, 1]) by the Sobolev injection
theorem. It is an easy exercise to show that the pairs are described by two
families

•
λ = 4π2n2 , un = µ cos 2πnx , for n ∈ N , µ ∈ R \ 0 ,

•
λ = 4π2n2 , vn = µ sin 2πnx , for n ∈ N∗, µ ∈ R \ 0 .

One observes that λ = 0 is the lowest eigenvalue and that its multiplicity is one.
This means that the corresponding eigenspace is of dimension one (the other
eigenspaces are of dimension 2). Moreover an eigenfunction in this subspace
never vanishes in ]0, 1[. This is quite evident because u0 = µ 6= 0.
One observes also that one can find an orthonormal basis in L2(]0, 1[) of eigen-
functions by normalizing the family (cos 2πnx (n ∈ N), sin 2πnx (n ∈ N∗)) or
the family exp 2πinx (n ∈ Z).
We are just recovering the L2-theory of the Fourier series.

1.3.3 The Dirichlet problem

Here we consider pairs (u, λ) ∈ H2,D(]0, 1[)× C (u 6= 0) such that −d2u/dx2 =
λu.
Here

H2,D(]0, 1[) = {u ∈ H2(]0, 1[) , u(0) = u(1) = 0} .

It is again an easy exercise to show that the pairs are described by

λ = π2n2 , vn = µ sinπnx , for n ∈ N∗, µ ∈ R \ 0 .

One observes that λ = π2 is the lowest eigenvalue, that its multiplicity is one
(Here all the eigenspaces are one-dimensional) and that an eigenfunction in this
subspace neither vanishes in ]0, 1[.

1.3.4 The Neumann problem

Here we consider pairs
(u, λ) ∈ H2,N (]0, 1[)× C (u 6= 0) such that

−d2u/dx2 = λu .
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Here
H2,N (]0, 1[) = {u ∈ H2(]0, 1[) , u′(0) = u′(1) = 0} .

It is again an easy exercise to show that the pairs are described by

λ = π2n2 , vn = µ cosπnx , for n ∈ N, µ ∈ R \ 0 .

One observes that λ = 0 is the lowest eigenvalue, that its multiplicity is one
(Here all the eigenspaces are one-dimensional) and that the corresponding eigenspace
is of dimension one and that an eigenfunction in this subspace neither vanishes
in ]0, 1[.

1.3.5 Conclusion

All these examples enter in the so called Sturm-Liouville theory. We have em-
phasized on one property which was always verified in each case: the eigenspace
corresponding to the lowest eigenvalue is one dimensional and one can find a
strictly positive (in ]0, 1[ or in ]−∞,+∞[ in the case of the harmonic oscillator)
corresponding eigenfunction. We suggest to the reader to come back at
this introduction after have read the course. He will surely realize
that the theory has permitted to clarify many sometimes badly posed
problems.

2 Unbounded operators, adjoints, Selfadjoint op-
erators

2.1 Unbounded operators

We consider an Hilbert space H. The scalar product will be denoted by :
〈u , v〉H or more simply by : 〈u , v〉 when no confusion is possible. We take
the convention that the scalar product is antilinear with respect to the second
argument.
A linear operator (or more simply an operator) T in H is a linear map u 7→ Tu
defined on a subspace H0 of H, denoted by D(T ) and which is called the domain
of T . We shall also denote by R(T ) (or Im T or Range(T )) the range of H0

by T. We shall say that T is bounded if it is continuous from D(T ) (with the
topology induced by the topology of H) into H. When D(T ) = H, we recover
the notion of linear continuous operators on H. We recall that with

||T ||L(H) = sup
u 6=0

||Tu||H
||u||H

, (2.1.1)

L(H) is a Banach space. When D(T ) is not equal to H, we shall always assume
that

D(T ) is dense in H. (2.1.2)

Note that, if T is bounded, then it admits a unique continuous extension to H.
In this case the generalized notion is not interesting.
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We are mainly interested in extensions of this theory and would like to consider
unbounded operators.
– When using this word, we mean more precisely “non necessarily bounded op-
erators”. –
The point is to find a natural notion replacing this notion of boundedness. This
is the object of the next definition.

The operator is called closed if the graph G(T ) of T is closed in H×H. We
recall that

G(T ) := {(x, y) ∈ H ×H , x ∈ D(T ) , y = Tx} . (2.1.3)

Equivalently, we can say

Definition 2.1.1. (Closed operators).
Let T be an operator on H with (dense) domain D(T ). We say that T is closed
if the conditions

• un ∈ D(T ),

• un → u in H,

• Tun → v in H

imply

• u ∈ D(T ),

• v = Tu.

Example 2.1.2.

1. T0 = −∆ with D(T0) = C∞0 (Rm) is not closed.
For this, it is enough to consider2 some u in H2(Rm) and not in C∞0 (Rn)
and to consider a sequence un ∈ C∞0 such that un → u in H2. The
sequence (un,−∆un) is contained in G(T0) and converges in L2 × L2 to
(u,−∆u) which does not belong to G(T0).

2. T1 = −∆ with D(T1) = H2(Rm) is closed.
We observe indeed that if un → u in L2 and (−∆un) → v in L2 then
−∆u = v ∈ L2. The last step is to observe that this implies that u ∈
H2(Rm) (take the Fourier transform) and (u,−∆u) ∈ G(T1).

2We recall that the Sobolev space Hs(Rm) is defined as the space

Hs(Rm) := {u ∈ S′(Rm) | (1 + |ξ|2)
s
2 û ∈ L2(Rm)} .

Here S′ is the set of tempered distributions. Hs(Rm) is equipped with the natural Hilbertian
norm :

||u||2Hs :=

Z
Rm

(1 + |ξ|2)s|û(ξ)|2dξ .

By Hilbertian norm, we mean that the norm is associated to a scalar product.
When s ∈ N, we can also describe Hs by

Hs(Rm) := {u ∈ L2(Rm) | Dα
x u ∈ L2 , ∀α s. t. |α| ≤ s} .

The natural norm associated with the second definition is equivalent to the first one.
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This example suggests another definition.

Definition 2.1.3.
The operator T is called closable if the closure of the graph of T is a graph.

We can then define the closure T of the operator by a limit procedure via
its graph. We observe indeed that we can consider

D(T ) := {x ∈ H | ∃y s. t. (x, y) ∈ G(T )}.

For any x ∈ D(T ), the assumption that G(T ) is a graph says that y is unique.
One can consequently define T by

Tx = y .

In a more explicit way, the domain of T is the set of the x ∈ H such that
xn → x ∈ H and Txn is a Cauchy sequence, and for such x we define Tx by

Tx = lim
n→+∞

Txn .

Example 2.1.4.
T0 = −∆ with D(T0) = C∞0 is closable and is closure is T1.

Let us prove it, as an exercise. Let T0 the closure of T0. Let u ∈ L2 such that
there exists un ∈ C∞0 such that un → u in L2 and −∆un → v in L2. We get
by distribution theory that u ∈ L2 satisfies −∆u = v ∈ L2. By the ellipticity
of the Laplacian (use the Fourier transform), we get that u ∈ H2. We have
consequently shown that D(T0) ⊂ H2. But C∞0 is dense in H2 and this gives
the inverse inclusion : H2 ⊂ D(T0). We have consequently,

H2 = D(T1) = D(T0) ,

and it is then easy to verify that T1 = T0.

These examples lead to a more general question.

Realization of differential operators as unbounded operators. Let
Ω ⊂ Rn and let P (x,Dx) be a partial differential operator with C∞ coefficients
in Ω. Then the operator PΩ defined by

D(PΩ) = C∞0 (Ω) , PΩu = P (x,Dx)u, ∀u ∈ C∞0 (Ω) ,

is closable. Here H = L2(Ω). We have indeed

G(PΩ) ⊂ G̃Ω := {(u, f) ∈ H ×H | P (x,Dx)u = f in D′(Ω)} .
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The proof is then actually a simple exercise in distribution theory. This inclusion
shows that G(PΩ) is a graph. Note that the corresponding operator is defined
as PΩ

min with domain

D(PΩ
min) ={
u ∈ L2(Ω) | ∃ a sequence un ∈ C∞0 (Ω) s.t

{
un → u in L2(Ω)
P (x,Dx)un converges in L2(Ω)

}
.

The operator PΩ
min is then defined for such u by

PΩ
minu = lim

n→+∞
P (x,Dx)un .

Using the theory of distributions, this gives :

PΩ
minu = P (x,Dx)u .

Note that there exists also a natural closed operator whose graph is G̃Ω and
extending PΩ : this is the operator P̃Ω, with domain

D̃Ω := {u ∈ L2(Ω) , P (x,Dx)u ∈ L2(Ω)} ,

and such that
P̃Ωu = P (x,Dx)u ,∀u ∈ D̃Ω ,

where the last equality is in the distributional sense. Note that P̃Ω is an exten-
sion of PΩ

min in the sense that :

P̃Ωu = PΩ
minu , ∀u ∈ D(PΩ

min) .

Conclusion.
We have associated with a differential operator P (x,Dx) in an open set Ω three
natural operators. It would be important to know better the connection between
these three operators.

Remark 2.1.5. (Link between continuity and closeness).
If H0 = H, the closed graph Theorem says that a closed operator T is continuous.

2.2 Adjoints.

When we have an operator T in L(H), it is easy to define the Hilbertian adjoint
T ? by the identity :

〈T ?u, v〉H = 〈u, Tv〉H ,∀u ∈ H,∀v ∈ H . (2.2.1)

The map v 7→ 〈u, Tv〉H defines a continuous antilinear map on H and can be
expressed, using Riesz’s Theorem, by the scalar product by an element which is
called T ∗u. The linearity and the continuity of T ∗ is then easily proved using
(2.2.1).

Let us now give the definition of the adjoint of an unbounded operator.
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Definition 2.2.1. (Adjoint )
If T is an unbounded operator on H whose domain D(T ) is dense in H, we first
define the domain of T ∗ by

D(T ∗) = {u ∈ H, D(T ) 3 v 7→ 〈u, Tv〉,
can be extended as an antilinear continuous form on H} .

Using the Riesz’s Theorem, there exists f ∈ H such that

(f, v) = (u, Tv) , ∀u ∈ D(T ∗),∀v ∈ D(T ) .

The uniqueness of f is a consequence of the density of D(T ) in H and we can
then define T ∗u by

T ∗u = f .

Remark 2.2.2.
When D(T ) = H and if T is bounded , then we recover as T ∗ the Hilbertian
adjoint.

Example 2.2.3.
T ∗0 = T1 .

Let us treat in detail this example. We get

D(T ∗0 ) = {u ∈ L2 | the map C∞0 3 v 7→ 〈u,−∆v〉,
can be extended as an antilinear continuous form on L2} .

We observe that

〈u,−∆v〉L2 =
∫

Rm

u(−∆v)dx = (−∆u)(v̄) .

The last equality just means that we are considering the distribution (−∆u) on
the test function v̄. The condition appearing in the definition is just that this
distribution is in L2(Rm). Coming back to the definition of D(T ∗0 ), we get

D(T ∗0 ) = {u ∈ L2 | −∆u ∈ L2} .

But as already seen, this gives

D(T ∗0 ) = H2 , T ∗0 u = −∆u , ∀u ∈ H2 .

Proposition 2.2.4. .
T ∗ is a closed operator.

Proof.
Let (vn) be a sequence in D(T ∗) such that vn → v in H and T ∗vn → w∗ in H
for some pair (v, w∗). We would like to show that (v, w∗) belongs to the graph
of T ∗.
For all u ∈ D(T ), we have :

〈Tu, v〉 = lim
n→+∞

〈Tu, vn〉 = lim
n→+∞

〈u, T ∗vn〉 = 〈u,w∗〉 . (2.2.2)

12



Coming back to the definition of D(T ∗), we get from (2.2.2) that v ∈ D(T ∗)
and T ∗v = w∗. This means that (v, w∗) belongs to the graph of T ∗.

Proposition 2.2.5. .
Let T be an operator in H with domain D(T ). Then the graph G(T ∗) of T ∗ can
be characterized by

G(T ∗) = {V (G(T ) )}⊥ , (2.2.3)

where V is the unitary operator defined on H×H by

V {u, v} = {v,−u} . (2.2.4)

Proof.
We just observe that for any u ∈ D(T ) and (v, w∗) ∈ H×H we have the identity

〈V (u, Tu) , (v, w∗)〉H×H = 〈Tu, v〉H − 〈u,w∗〉H .

The right hand side vanishes for all u ∈ D(T ) iff v ∈ D(T ∗) and w∗ = T ∗v, that
is if (v, w∗) belongs to G(T ∗). The left hand side vanishes for all u ∈ D(T ) iff
(v, w∗) belongs to V (G(T ))⊥.
Standard Hilbertian analysis, using the continuity of V and V −1 = −V , then
shows that

{V (G(T ))}⊥ = {V (G(T ))}⊥ = {V (G(T ))}⊥ .

End of proof We have not analyzed till now under which condition the do-
main of the adjoint is dense in H. This is one of the objects of the next theorem.

Theorem 2.2.6.
Let T be a closable operator. Then we have

1. D(T ∗) is dense in H,

2. T ∗∗ := (T ∗)∗ = T , where we have denoted by T the operator whose graph
is G(T ).

Proof.
For the first point, let us assume that D(T ∗) is not dense in H. Then there
exists w 6= 0 such that w is orthogonal to D(T ∗).
We consequently get that for any v ∈ D(T ∗), we have

〈(0, w) , (T ∗v,−v)〉H×H = 0 .

This shows that (0, w) is orthogonal to V (G(T ∗)).
But the previous proposition gives :

V (G(T )) = G(T ∗)⊥ .

We now apply V to this identity and get, using V 2 = −I,

V
(
G(T ∗)⊥

)
= G(T ) .
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But, for any closed subspace M⊂ H×H, we have

V (M⊥) = [V (M)]⊥ ,

as a consequence of the identity

〈V (u, v) , (x, y)〉H×H = 〈(u, v) , V (x, y)〉H×H .

We finally obtain that (0, w) belongs to the closure of the graph of T , that is
the graph of T because T is closable, and consequently that w = 0. This gives
the contradiction.
For the second point, we first observe that, D(T ∗) being dense in H, we can of
course define (T ∗)∗. Using again the proposition and the closeness of T ∗, we
obtain G(T ∗∗) = G(T ) and T ∗∗ = T .
This means more explicitly that

D(T ∗∗) = D(T ) , T ∗∗u = Tu , ∀u ∈ D(T ) .

End of the proof.

2.3 Symmetric and selfadjoint operators.

Definition 2.3.1. (symmetric operators).
We shall say that T : H0 7→ H is symmetric if it satisfies

〈Tu, v〉H = 〈u, Tv〉H ,∀u, v ∈ H0 .

Example 2.3.2. .
T = −∆ with D(T ) = C∞0 (Rm).

If T is symmetric it is easy to see that

D(T ) ⊂ D(T ∗) (2.3.1)

and that
Tu = T ∗u , ∀u ∈ D(T ) . (2.3.2)

The two conditions (2.3.1) and (2.3.2) express the property that (T ∗, D(T ∗))
is an extension of (T,D(T )).

Exercise 2.3.3.
Show that a symmetric operator is closable.

Hint :
Show that, if un is a sequence in D(T ) such that, for some ` ∈ H, we have
un → 0 and Tun → `, then ` = 0.

For a symmetric operator, we have consequently two natural closed exten-
sions:

14



• The minimal one denoted by Tmin (or previously T ), which is obtained
by taking the operator whose graph is the closure of the graph of T ,

• The maximal one denoted by Tmax the adjoint of T .

If T sa is a selfadjoint extension of T , then T sa is automatically an extension of
Tmin and admits3 as an extension Tmax.

Definition 2.3.4.
We shall say that T is selfadjoint if T ∗ = T , i. e.

D(T ) = D(T ∗) , and Tu = T ∗u , ∀u ∈ D(T ) .

Starting of a symmetric operator, it is a natural question to ask for the ex-
istence and the uniqueness of a selfadjoint extension. We shall see later that a
natural way is to prove the equality between Tmin and Tmax.

Exercise 2.3.5. Analysis of differential operators.
Give simple criteria in the case of operators with constant coefficients for ob-
taining symmetric operators on C∞0 (Rm). In particular, verify that the operator
Dxj = 1

i ∂xj is symmetric.

Proposition 2.3.6.
A selfadjoint operator is closed.

This is immediate because T ∗ is closed.

Proposition 2.3.7.
Let T be a selfadjoint operator which is invertible. Then T−1 is also selfadjoint.

By invertible, we mean here that T admits an inverse T−1 from R(T ) into
D(T ). Let us first show that R(T ) is dense in H. Let w ∈ H such that
< Tu,w >H= 0, ∀u ∈ D(T ).
Coming back to the definition of T ∗, this implies in particular that w ∈ D(T ∗)
and T ∗w = 0. But T is selfadjoint and injective and this implies that w = 0.
We consequently know that D(T−1) is dense in H.
Coming back to the analysis of the corresponding graphs it is now easy to show
the second assertion by coming back to the corresponding graphs and by using
Proposition 2.2.5.

Remark 2.3.8.
If T is selfadjoint T + λI is selfadjoint for any real λ.

3Use Proposition 2.2.5.
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3 Representation theorems

We assume that the reader knows about this material but recall it for complete-
ness4.

3.1 Riesz’s Theorem.

Theorem 3.1.1. (Riesz’s Theorem)
Let u 7→ F (u) a linear continuous form on H. Then there exists a unique w ∈ H
such that

F (u) = 〈u,w〉H , ∀u ∈ H . (3.1.1)

There is a similar version with antilinear maps :

Theorem 3.1.2.
Let u 7→ F (u) a antilinear continuous form on H. Then there exists a unique
w ∈ H such that

F (u) =< w, u >H , ∀u ∈ H . (3.1.2)

3.2 Lax-Milgram’s situation.

Let us now consider a continuous sesquilinear form a defined on V × V :

(u, v) 7→ a(u, v) .

We recall that, because of the sesquilinearity, the continuity can be expressed
by the existence of C such that

|a(u, v)| ≤ C ||u||V · ||v||V , ∀u, v ∈ V . (3.2.1)

It is immediate to associate, using the Riesz Theorem, a linear map A ∈ L(V )
such that

a(u, v) =< Au, v >V . (3.2.2)

Definition 3.2.1. (V -ellipticity)
We shall say that a is V -elliptic, if there exists α > 0, such that

|a(u, u)| ≥ α ||u||2V , ∀u ∈ V . (3.2.3)

Theorem 3.2.2. (Lax-Milgram’s Theorem)
Let a be a continuous sesquilinear form on V × V . If a is V -elliptic, then A is
an isomorphism from V onto V .

The proof is in three steps.

Step 1 :A is injective.
We get indeed from (3.2.3)

|〈Au, u〉V | ≥ α||u||2V , ∀u ∈ V . (3.2.4)
4Here we follow, almost verbatim, the book of D. Huet [Hu].
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Using Cauchy-Schwarz in the left hand side, we first get

||Au||V · ||u||V ≥ α||u||2V , ∀u ∈ V ,

and consequently
||Au||V ≥ α||u||V , ∀u ∈ V . (3.2.5)

This gives clearly the injectivity but actually more.

Step 2 : A(V ) is dense in V .
Let us consider u ∈ V such that < Av, u >V = O , ∀v ∈ V . In particular, we
can take v = u. This gives a(u, u) = 0 and u = 0 using (3.2.3).

Step 3 :R(A) := A(V ) is closed in V .
Let vn a Cauchy sequence in A(V ) and un the sequence such that Aun = vn.
But using (3.2.5), we get that un is a Cauchy sequence which is consequently
convergent to some u ∈ V . But the sequence Aun tends to Au by continuity
and this shows that vn → v = Au and v ∈ R(A).

Step 4 : A−1 is continuous.
The three previous steps show that A is bijective. The continuity of A−1 is a
consequence of (3.2.5) or of the Banach Theorem.

Remark 3.2.3. .
Let us suppose for simplicity that V is a real Hilbert space. Using the isomor-
phism I between V and V ′ given by the Riesz Theorem, one gets also a natural
operator A from V onto V ′ such that

a(u, v) = (Au)(v) , ∀v ∈ V . (3.2.6)

We have
A = I ◦A .

3.3 An alternative point of view: V,H, V ′.

We now consider two Hilbert spaces V and H such that

V ⊂ H . (3.3.1)

By this notation of inclusion, we mean also that the injection of V into H is
continuous or equivalently that there exists a constant C > 0 such that, for any
u ∈ V , we have

||u||H ≤ C ||u||V .

We also assume that
V is dense in H. (3.3.2)

In this case, there exists a natural injection from H into the space V ′ which is
defined as the space of continuous linear forms on V . We observe indeed that
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if h ∈ H then V 3 u 7→< u, h >H is continuous on V . So there exists `h ∈ V ′

such that
`h(u) =< u, h >H ,∀u ∈ V .

The injectivity is a consequence of the density of V in H.
We can also associate to the sesquilinear form a an unbounded operator S on
H in the following way.
We first define D(S) by

D(S) = {u ∈ V | v 7→ a(u, v) is continuous on V for the topology induced by H}.
(3.3.3)

Using again the Riesz Theorem and assumption (3.3.2), this defines Su in H by

a(u, v) =< Su, v >H , ∀v ∈ V . (3.3.4)

Theorem 3.2.2 is completed by

Theorem 3.3.1. .
Under the same assumptions, S is bijective from D(S) onto H and S−1 ∈ L(H).
Moreover D(S) is dense in H.

Proof.
We first show that S is injective. This is a consequence of

α||u||2H ≤ C α||u||2V ≤ C|a(u, u)| = C | < Su, u >H | ≤ C ||Su||H · ||u||H , ∀u ∈ D(S) ,

which leads to
α||u||H ≤ C ||Su||H , ∀u ∈ D(S) . (3.3.5)

We get directly the surjectivity in the following way. If h ∈ H and if w ∈ V is
chosen such that

〈h, v〉H = 〈w, v〉V ,∀v ∈ V ,

(which follows from Riesz’s Theorem), we can take u = A−1w in V , which is a
solution of

a(u, v) =< w, v >V .

We then show that u ∈ D(S), using the identity

a(u, v) = 〈h, v〉H , ∀v ∈ V ,

and get simultaneously
Su = h .

The continuity of S−1 is a consequence of (3.3.5).
Let us show the last statement of the theorem, i.e. the density of D(S) in H.
Let h ∈ H s. t.

〈u, h〉H = 0 , ∀u ∈ D(S) .

By the surjectivity of S, there exists v ∈ D(S) s. t. :

Sv = h .
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We get
< Sv, u >H= 0 , ∀u ∈ D(S)

Taking u = v and using the V − ellipticity, we get that v = 0 and consequently
h = 0.

The hermitian case.

We now consider an hermitian sesquilinear form, that is satisfying

a(u, v) = a(v, u) , ∀u, v ∈ V . (3.3.6)

This property is transmitted to S in the following way

Theorem 3.3.2.
If a is hermitian and V -elliptic, we have

1. S is closed;

2. S = S∗;

3. D(S) is dense in V .

Proof of 2.
We first observe that the assumption of Hermiticity gives

< Su, v >H=< u, Sv >H , ∀u ∈ D(S) , ∀v ∈ D(S) . (3.3.7)

In other words S is symmetric. This means in particular that

D(S) ⊂ D(S∗) . (3.3.8)

Let v ∈ D(S∗). Using the surjectivity of S, there exists v0 ∈ D(S) such that

Sv0 = S∗v .

For all u ∈ D(S), we get that

< Su, v0 >H=< u, Sv0 >H=< u, S∗v >H=< Su, v >H .

Using again the surjectivity of S, we get v = v0 ∈ D(S). This shows that
D(S) = D(S∗) and Sv = S∗v, ∀v ∈ D(S).

Proof of 1.
S is closed because S∗ is closed and S = S∗.

Proof of 3.
Let h ∈ V such that

< u, h >V = 0 , ∀u ∈ D(S) .

Let f ∈ V such that Af = h (A is an isomorphism from V onto V ).
We then have

0 =< u, h >V =< u,Af >V = < Af, u >V = a(f, u) = a(u, f) =< Su, f >H .

Using the surjectivity, we get f = 0 and consequently h = 0.
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Remark 3.3.3.
Theorem 3.3.2 gives us a rather easy way to construct selfadjoint operators.
This will be combined with some completion argument in the next Section to get
the Friedrichs extension.

4 Semi-bounded operators and Friedrichs exten-
sion.

4.1 Definition

Definition 4.1.1.
Let T0 be a symmetric unbounded operator of domain D(T0). We say that T0 is
semibounded (from below) if there exists a constant C such that

< T0u, u >H≥ −C ||u||2H , ∀u ∈ D(T0) . (4.1.1)

Example 4.1.2. (The Schrödinger operator).
We consider on Rm the operator

PV (x,Dx) := −∆ + V (x) , (4.1.2)

where V (x) is a continuous function on Rm (called the potential) such that there
exists C s.t. :

V (x) ≥ −C , ∀x ∈ Rm . (4.1.3)

Then the operator T0 defined by

D(T0) = C∞0 (Rm) and T0u = PV (x,Dx)u , ∀u ∈ D(T0) ,

is a symmetric, semibounded operator.
We have indeed, with H = L2(Rm),

< P (x,Dx)u, u >H =
∫

Rm(−∆u+ V u) · ū dx
=

∫
Rm |∇u(x)|2dx+

∫
Rm V (x)|u(x)|2 dx

≥ −C ||u||2H .
(4.1.4)

Exercise 4.1.3.
Let us consider on L2(R2; C2) the operator

∑2
j=1 αjDxj with domain S(R2; C2).

Here the αj are 2× 2 Hermitian matrices such that :

αj · αk + αk · αj = 2δjk .

Show that this operator symmetric but not semi-bounded. This operator is
called the Dirac operator. Its domain is H1(R2 , C2) and its square is the
Laplacian :

(
2∑
j=1

αjDxj
)2 = (−∆)⊗ IC2 .
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4.2 Analysis of the Coulomb case.

There are two important inequalities which are useful when considering the
Coulomb case which plays an important role in atomic Physics. By Coulomb
case, we mean the analysis on R3 of the operator

SZ := −∆− Z

r
,

or of the Klein-Gordon operator

KZ :=
√
−∆ + 1− Z

r
.

The operator
√
−∆ + 1 can easily defined on S(R3), using the Fourier trans-

form F , by
F(
√
−∆ + 1u)(p) =

√
p2 + 1(Fu)(p) .

The first one is the Hardy Inequality (which can be found for example in the
book of Kato ([Ka], p. 305-307)) :∫

R3
|x|−2|u(x)|2 dx ≤ 4

∫
R3
|p|2|û(p)|2 dp (4.2.1)

and the second one is due to Kato and says that∫
R3
|x|−1|u(x)|2 dx ≤ π

2

∫
R3
|p| |û(p)|2 dp . (4.2.2)

One proof of the Hardy inequality consists in writing that, for any γ ∈ R and
any u ∈ C∞0 (R3; R), we have :∫

R3
|∇u+ γ

x

|x|2
u|2 dx ≥ 0 . (4.2.3)

This leads to :∫
R3
|∇u|2 + γ2 1

|x|2
|u|2 dx ≥ −2γ

∫
R3
∇u · x

|x|2
u dx .

But an integration by part gives :

−2
∫

R3 ∇u · x
|x|2u dx =

∫
R3 |u(x)|2(div ( x

|x|2 )) dx
=

∫
R3 |u(x)|2( 1

|x|2 ) dx .

Optimizing over γ leads to γ = 1
2 and gives then the result.

Remark 4.2.1. .
The same idea works for N ≥ 3 but fails for N = 2. So a good exercise5 is to
look for substitutes in this case by starting from the inequality :∫

R3
|∇u− γ(x)

x

|x|2
u|2 dx ≥ 0 . (4.2.4)

5We thank M.J. Esteban for explaining to us the trick.
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The function γ(x) can be assumed radial : γ(x) = g(|x|) and the question is to
find a differential inequality on g leading at a weaker Hardy’s type inequality.
One can for example try g(r) = ln(r).

For the proof of Kato’s inequality, there is a another tricky nice estimate
which, as far as we know, goes back to Hardy and Littlewood. In the case of
the Coulomb potential, we can write, using the explicit computation for the
Fourier-transform of x 7→ 1

|x| :

∫
R3

∫
R3 û(p) 1

|p−p′|2 û(p
′)dp · dp′ =

∫
R3×R3 û(p)

h(p)
h(p′) ·

h(p′)
h(p)

1
|p−p′|2 û(p

′)dp · dp′

=
∫

R3×R3
1

|p−p′| û(p)
h(p)
h(p′) ·

h(p′)
h(p)

1
|p−p′| û(p

′)dp · dp′ ,

where h is a strictly positive measurable function to be determined later.
We then use Cauchy-Schwarz in the last equality in order to get

|
∫ ∫

û(p) 1
|p−p′|2 û(p

′)dp · dp′|

≤
(∫

|û(p)|2| h(p)h(p′) |
2 1
|p−p′|2 dp

′ dp
) 1

2 ×
(∫

|û(p′)|2|h(p
′)

h(p) |
2 1
|p−p′|2 dp

′ dp
) 1

2

=
∫
|û(p)|2(

∫
| h(p)h(p′) |

2 1
|p−p′|2 dp

′) dp
=

∫
h(p)2|û(p)|2(

∫
| 1
h(p′) |

2 1
|p−p′|2 dp

′) dp .

We now write p′ = ω′|p| in the integral
∫
| 1
h(p′) |

2 1
|p−p′|2 dp

′. We then take

h(p) = |p| .

The integral becomes∫
| 1
h(p′)

|2 1
|p− p′|2

dp′ = |p|−1

∫
1

|ω′|2|ω − ω′|2
dω′ ,

with p = ω|p|.
This is clearly a convergent integral. Moreover, observing the invariance by
rotation, one can show that the integral is independent of ω ∈ S2. Hence we
can compute it with ω = (1, 0, 0).
We finally obtain the existence of an explicit constant C such that

|
∫ ∫

û(p)
1

|p− p′|2
û(p′) dp.dp′| ≤ C

∫
R3
|p|||û(p)|2 dp .

The optimization of the trick leads to C = π
2 .

Let us now show how one can use these inequalities.
If we use (4.2.1), we get the semi-boundedness for any Z > 0 for the

Schrödinger Coulomb operator (using Cauchy-Schwarz Inequality).∫
R3

1
r
|u|2 dx ≤ (

∫
1
r2
|u|2dx) 1

2 · ||u|| .
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But we can rewrite the Hardy Inequality in the form∫
R3

1
r2
|u|2 dx ≤ 4 < −∆u, u >L2(R3) .

So we get, for any ε > 0,∫
R3

1
r
|u|2 dx ≤ ε < −∆u, u >L2 +

1
ε
||u||2 . (4.2.5)

This leads to :

< SZu, u >L2≥ (1− εZ) < −∆u, u > −Z
ε
||u||2 .

Taking ε = 1
Z , we have finally shown that

< SZu, u >L2≥ −Z2||u||2 . (4.2.6)

Here we are not optimal6

but there is another way to see that the behavior with respect to Z is correct.
We just observe some invariance of the model. Let us suppose that we have
proved the inequality for Z = 1. In order to treat the general case, we make a
change of variable x = ρy. The operator SZ becomes in the new coordinates :

S̃Z = ρ−2(−∆y)−
Z

ρy
.

Taking ρ = Z−1, we obtain

S̃Z = Z2

(
−∆y −

1
y

)
.

The other inequality (4.2.2) is with this respect much better and quite im-
portant for the analysis of the relativistic case. Let us see what we obtain in
the case of Klein-Gordon using Kato’s Inequality.
We have

< KZ u , u >L2≥ (1− Z
π

2
) <

√
−∆ + 1u , u >L2 .

Here the nature of the result is different. The proof gives only that KZ is
semibounded if Z ≤ 2

π . This is actually more than a technical problem !

6It can be proven (see any standard book in quantum mechanics) that the negative spec-
trum of this operator is discrete and is described by a sequence of eigenvalues tending to 0 :

− Z2

4n2 with n ∈ N∗. An eigenfunction related to the lowest eigenvalue − 1
4

(Z = 1) is given by

x 7→ exp− 1
2
|x|. To prove that, one can instead of using Hardy or Kato use the fact that

||∇u− ρ
x

|x|
u||2 ≥ 0 ,

and then optimize over ρ.
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4.3 Friedrichs’s extension

Theorem 4.3.1.
A symmetric semibounded operator T0 on H (with D(T0) dense in H) admits a
selfadjoint extension.

The extension constructed in the proof is the so-called Friedrichs extension.
The proof can be seen as a variant of Lax-Milgram’s Lemma. We can assume
indeed by possibly replacing T0 by T0 + λ0Id that T0 satisfies

< T0u, u >H≥ ||u||2H , ∀u ∈ D(T0) . (4.3.1)

Let us consider the associated form a priori defined on D(T0)×D(T0) :

(u, v) 7→ a0(u, v) := 〈T0u , v〉H . (4.3.2)

The inequality (4.3.1) says that

a0(u, u) ≥ ||u||2H , ∀u ∈ D(T0) . (4.3.3)

We introduce V as the completion in H of D(T0) for the norm

u 7→ p0(u) =
√
a0(u, u) .

More concretely u ∈ H belongs to V , if there exists un ∈ D(T0) such that
un → u in H and un is a Cauchy sequence for the norm p0.
As a natural norm for V , we get as a candidate :

||u||V = lim
n→+∞

p0(un) , (4.3.4)

where un is a Cauchy sequence for p0 tending to u in H.
Let us show that the definition does not depend on the Cauchy sequence. This
is the object of the

Lemma 4.3.2.
Let xn a Cauchy sequence in D(T0) for p0 such that xn → 0 in H. Then
p0(xn) → 0.

Proof of the lemma.
First observe that p0(xn) is a Cauchy sequence in R+ and consequently conver-
gent in R+.
Let us suppose by contradiction that

p0(xn) → α > 0 . (4.3.5)

We first observe that

a0(xn, xm) = a0(xn, xn) + a0(xn, xm − xn) , (4.3.6)

and that a Cauchy-Schwarz inequality is satisfied :

|a0(xn, xm − xn)| ≤
√
a0(xn, xn) ·

√
a0(xm − xn, xm − xn) . (4.3.7)
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Using also that xn is a Cauchy sequence for p0 and (4.3.6), we obtain that

∀ε > 0,∃N s. t. ∀n ≥ N, ∀m ≥ N, |a0(xn, xm)− α2| ≤ ε . (4.3.8)

We take ε = α2

2 and consider the corresponding N given by (4.3.8). Coming
back to the definition of a0 we obtain,

|a0(xn, xm)| = | < T0xn, xm > | ≥ 1
2
α2 , ∀n ≥ N,∀m ≥ N . (4.3.9)

But as m→ +∞, the left hand side in (4.3.9) tends to 0 because by assumption
xm → 0 and this gives a contradiction.
##.
We now observe that

||u||V ≥ ||u||H , (4.3.10)

as a consequence of (4.3.3) and (4.3.4).
This means that the injection of V in H is continuous. Note also that V , which
contains D(T0), is dense in H, by density of D(T0) in H. Moreover, we get a
natural scalar product on V by extension of a0 :

< u, v >V := lim
n→+∞

a0(un, vn) , (4.3.11)

where un and vn are Cauchy sequences for p0 tending respectively to u and v
in H.
By the second version of the Lax-Milgram Theorem (in the context V,H, V ′)
applied with

a(u, v) := < u, v >V ,

we get an unbounded selfadjoint operator S on H extending T0 whose domain
D(S) satisfies D(S) ⊂ V .

Remark 4.3.3. (Friedrichs extension starting from a sesquilinear form)
One can also start directly from a semi-bounded sesquilinear form a0 defined on
a dense subspace of H.
As we shall see below, this is actually the right way to proceed for the Neumann
realization of the Laplacian, where we consider on C∞(Ω) the sequilinear form

(u, v) 7→ 〈∇u , ∇v〉 .

4.4 Applications

The reader should have some minimal knowledge of Sobolev Spaces and traces
of distributions for reading this subsection (See for example Brézis [Br]).
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Application 1: The Dirichlet realization.
Let Ω be an open set in Rm such that Ω is compact and let T0 be the unbounded
operator defined by

D(T0) = C∞0 (Ω) , T0 = −∆ .

The involved Hilbert space is H = L2(Ω). It is clear that T0 is symmetric and
positive7 (hence semi-bounded). Following the previous general construction,
we prefer to consider : T̃0 := T0 + Id.
It is easy to see8 that V is the closure in H1(Ω) of C∞0 (Ω). This means, at least
if Ω is regular, the space H1

0 (Ω). The domain of S is then described as

D(S) := {u ∈ H1
0 (Ω) | −∆u ∈ L2(Ω)}.

S is then the operator (−∆ + 1) acting in the sense of distributions.
When Ω is regular, a standard regularity theorem (see [Lio2], [LiMa]) permits
to show that

D(S) = H2(Ω) ∩H1
0 (Ω) . (4.4.1)

So we have shown the following theorem

Theorem 4.4.1.
The operator T1 defined by

D(T1) = H2(Ω) ∩H1
0 (Ω) , T1 = −∆ ,

is selfadjoint and called the Dirichlet realization of −∆ in Ω.

We have just to observe that T1 = S − 1 and to use Remark 2.3.8.
Note that T1 is a selfadjoint extension of T0.
Note that by the technique developed in Subsection ??, we have also constructed
another selfadjoint extension of T0. So we have constructed, when Ω is relatively
compact, two different selfadjoint realizations of T0. We say in this case that T0

is not essentially selfadjoint.

Application 2: The harmonic oscillator.
We can start from

H0 = −∆ + |x|2 + 1 ,

with domain
D(H0) = C∞0 (Rm) .

7We shall in fact see later that it is strictly positive.
8We recall that there are two ways for describing H1

0 (Ω). In the first definition we just
take the closure of C∞0 (Ω) in H1(Ω).
In the second definition, we describe H1

0(Ω) as the subspace in H1(Ω) of the distributions
whose trace is zero at the boundary. This supposes that the boundary Γ = ∂Ω is regular. In

this case, there exists a unique application γ0 continuous from H1(Ω) onto H
1
2 (Γ) extending

the map C∞(Ω̄) 3 u 7→ uΓ. It is a standard result (cf Brézis [Br] or Lions-Magenes [LiMa])
that H1

0(Ω) = H1
0 (Ω), when the boundary is regular.
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Following the scheme of the construction of the Friedrichs extension, we first
get that

V = B1(Rm) := {u ∈ H1(Rm) | xju ∈ L2(Rm) , ∀j ∈ [1, · · · ,m]} .

One can indeed first show that V ⊂ B1(Rm) and then get the equality by proving
the property that C∞0 (Rm) is dense in B1(Rm). One can then determine the
domain of S as

D(S) = {u ∈ B1(Rm) | (−∆ + |x|2 + 1)u ∈ L2(Rm)} .

By a regularity theorem (differential quotients method [LiMa]), one can show
that

D(S) = B2(Rm) := {u ∈ H2(Rm) | xαu ∈ L2(Rm) , ∀α s. t. |α| ≤ 2}.

Application 3 : Schrödinger operator with Coulomb potential
We consequently start from

D(T0) = C∞0 (R3) , T0 = −∆− 1
r
. (4.4.2)

We have seen that T0 is semibounded and replacing T0 by T0+2, the assumptions
of the proof of Friedrich’s extension theorem are satisfied. We now claim that

V = H1(R3) .

Having in mind that C∞0 (R3) is dense in H1(R3), we have just to verify that
the norm p0 and the norm || · ||H1(R3) are equivalent on C∞0 (R3). This results
immediately of (4.2.5).
With a little more effort, one gets that D(S) = H2(R3).

Application 4 : Neumann problem.
Let Ω be a bounded domain with regular boundary in Rm. Take H = L2(Ω).
Let us consider the sesquilinear form :

a0(u, v) =
∫

Ω

〈∇u , ∇v〉Cmdx+
∫

Ω

uv̄dx ,

on C∞(Ω).
Using Remark 4.3.3 and the density of C∞(Ω) in H1(Ω), we can extend the
sesquilinear form to V = H1(Ω) According to the definition of the domain of S,
we observe that, for u ∈ D(S), then it should exist some f ∈ L2(Ω) such that,
for all v ∈ H1(Ω) :

a(u, v) =
∫

Ω

f(x)v(x)dx . (4.4.3)

Then, one can find first show (by taking in (4.4.3) v ∈ C∞0 (Ω)) that, in the
sense of distribution,

−∆u+ u = f , (4.4.4)

27



and consequently that :

D(S) ⊂W (Ω) := {u ∈ H1(Ω) | −∆u ∈ L2(Ω)} . (4.4.5)

But this is not enough for characterizing the domain.
We refer to [Lio1], [Lio2], [LiMa] or better [DaLi], Vol. 4 (p. 1222-1225)) for a
detailed explanation. We first recall the Green-Riemann Formula :∫

Ω

〈∇u | ∇v〉 =
∫

Ω

(−∆u) · v̄dx+
∫
∂Ω

(∂u/∂ν)v̄ dµ∂Ω , (4.4.6)

where dµ∂Ω is the induced measure on the boundary, which is clearly true for
u ∈ H2(Ω) (or for u ∈ C1(Ω)) and v ∈ H1(Ω). We unfortunately do not know
that W (Ω) ⊂ H2(Ω) and the inclusion in H1(Ω) is not sufficient for defining
the normal trace. But this formula can be extended in the following way.

We first observe that, for v ∈ H1
0 (Ω) and u ∈W , we have :∫

Ω

〈∇u | ∇v〉 =
∫

Ω

(−∆u) · v̄dx . (4.4.7)

This shows that the expression

Φu(v) :=
∫

Ω

〈∇u | ∇v〉 −
∫

Ω

(−∆u) · v̄dx ,

which is well defined for u ∈ W and v ∈ H1(Ω) depends only of the restriction
of v to ∂Ω.

If v0 ∈ C∞(∂Ω), we can then extend v0 inside Ω as a function v = Rv0 in
C∞(Ω) and the distribution 9 is defined as the map v0 7→ Φu(Rv0).

One observes also that, when u ∈ C1(Ω) or u ∈ H2(Ω), the Green-Riemann
formula shows that :

Φu(v0) =
∫
∂Ω

(∂u/∂ν)v̄0 dµ∂Ω .

So we have found a natural way to extend the notion of trace of the normal
derivative for u ∈W and we write :

γ1u = Φu .

We then conclude (using (4.4.4) and again (4.4.3) this time in full generality)
that :

D(S) = {u ∈W (Ω) | γ1u = 0} ,

and that
S = −∆ + 1 .

The operator S is called the Neumann realization of the Laplacian in L2(Ω).

9By chosing a more specific R continuous from H
1
2 (∂Ω) into H1(Ω), we get that Φu can

be extended as a linear form on H
1
2 (∂Ω).
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Remark 4.4.2.
Another “standard” regularity theorem shows that

D(S) = {u ∈ H2(Ω) | γ1u = 0} ,

and the notion of normal trace u 7→ γ1u for u ∈ H2(Ω) is more standard10.

10The trace is in H
1
2 (∂Ω).
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5 Compact operators : general properties and
examples.

5.1 Definition and properties.

We just recall here very briefly the basic properties of compact operators and
their spectral theory. We will emphasize on examples. We refer to the book by
H. Brézis [Br] (Chap. VI).
Let us recall that an operator T from a Banach E into a Banach F is compact
if the range of the unit ball in E by T is relatively compact in F . We denote by
K(E,F ) the space of compact operators which is a closed subspace in L(E,F ).
There is an alternative equivalent definition in the case when E and F are
Hilbert spaces by using sequences. The operator is compact if and only if, for
any sequence xn which converges weakly in E, Txn is a strongly convergent
sequence in F . Here we recall that a sequence is said to be weakly convergent in
H, if, for any y ∈ H, the sequence < xn, y >H is convergent. Such a sequence is
bounded (Banach-Steinhaus’s Theorem) and we recall that, in this case, there
exists a unique x ∈ H, such that < xn, y >H→< x, y >H for all y ∈ H. In this
case, we write : xn ⇀ y.

Let us recall that when one composes a continuous operator and a compact
operator (in any order) one gets a compact operator. This could be one way to
prove the compactness.
Another efficient way for proving compactness of an operator T is to show that
it is the limit (for the norm convergence) of a sequence of continuous operators
with finite rank (that is whose range is a finite dimensional space). We observe
indeed that a continuous operator with finite rank is clearly a compact operator
(in a finite dimensional space the closed bounded sets are compact).

5.2 Examples

Continuous kernels .
The first example of this type is the operator TK associated to the continuous
kernel K on [0, 1]× [0, 1].
By this we mean that the operator TK is defined by

E 3 u 7→ (TKu)(x) =
∫ 1

0

K(x, y)u(y)dy . (5.2.1)

Here E could be the Banach space C0([0, 1]) (with the Sup norm) or L2(]0, 1[).

Proposition 5.2.1.
If the kernel K is continuous, then the operator TK is compact from E into E.

There are two standard proofs for this proposition. The first one is based on
Ascoli’s Theorem giving a criterion relating equicontinuity of a subset of con-
tinuous functions on a compact and relatively compact sets in C0([0, 1]).
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The other one is based on the Stone-Weierstrass Theorem permitting to recover
the operator as the limit of a sequence of finite rank operators TKn

associated
to kernels Kn of the form Kn(x, y) =

∑jn
j=1 fj,n(x)gj,n(y).

Let us study three other examples.
The first example comes from statistical mechanics, the second one from the
spectral theory for the Dirichlet realization of the Laplacian and the third one
from Quantum Mechanics.

The transfer operator. The transfer operator is the operator associated
with the kernel

Kt(x, y) = exp−V (x)
2

exp−t|x− y|2 exp−V (y)
2

, (5.2.2)

where t > 0, and V is a C∞(R) function such that∫
R

exp−V (x)dx < +∞ .

The L2- boundedness of operators with integral kernel is proven very often
through the

Lemma 5.2.2. Schur’s Lemma
Let K an operator associated with an integral kernel K, that is a function
(x, y) 7→ K(x, y) on Rm × Rm, satisfying

M1 := supx∈Rm

∫
Rm |K(x, y)| dy < +∞ ,

M2 := supy∈Rm

∫
Rm |K(x, y)| dx < +∞ .

(5.2.3)

Then K, initially defined for u ∈ C∞0 (Rm) by

(Ku)(x) =
∫

Rm

K(x, y)u(y)dy ,

can be extended as a continuous linear operator in L(L2(Rm)) (still denoted by
K or TK), whose norm satisfies

||K|| ≤
√
M1M2 . (5.2.4)

Proof:
By the Cauchy-Schwarz inequality, we have

|Ku(x)|2 ≤
∫
|K(x, y)||u(y)|2dy

∫
|K(x, y)|dy ≤M1

∫
|K(x, y)||u(y)|2dy .

Integrating with respect to x and using Fubini’s Theorem, we then obtain the
result.
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In our case, the operator TK is actually an Hilbert-Schmidt operator, i.e.
an operator whose integral kernel is in L2(Rm × Rm) (with m = 1). One can
indeed prove, using Cauchy-Schwarz’s inequality, show that :

|Ku(x)|2 ≤
∫
|u(y)|2dy

∫
|K(x, y)|2dy ,

and one obtains :
||TK || ≤ ||K||L2(Rm×Rm) . (5.2.5)

It is then easy to show that TK is a compact operator. Its kernel K is indeed
the limit in L2 of a sequence Kn such that TKn is of finite rank. If φj is
an orthonormal basis in L2(Rm), one first shows that the basis φk ⊗ φ` is an
orthonormal basis in L2(Rm × Rm). Here we have by definition :

(φk ⊗ φ`)(x, y) := φk(x)φ`(y) .

We then obtain
K(x, y) =

∑
k,`

ck,`φk(x)φ`(y) .

We now introduce

Kn(x, y) :=
∑

k+`≤n

ck,`φk(x)φ`(y) .

It is then easy to see that TKn is of finite rank because its range is included in
the linear space generated by the φk’s (k = 1, · · · , n). Moreover, we have

lim
n→+∞

||K −Kn||L2(Rm×Rm) = 0 .

Coming back to the corresponding operators, we get

lim
n→+∞

||TK − TKn ||L(L2(Rm)) = 0 .

The inverse of the Dirichlet operator .

We come back to the operator S, which was introduced in the study of the
Dirichlet realization. One can show the following

Proposition 5.2.3.
The operator S−1 is compact.

Proof.
The operator S−1 can indeed be considered as the composition of a continuous
operator from L2 into V = H1

0 (Ω) and of the continuous injection of V into
L2(Ω). If Ω is relatively compact, we know (cf [Br]) that we have compact
injection from H1(Ω) into L2(Ω). Hence the injection of V into L2 is compact
and S−1 is compact. For the continuity result, we observe that, for all u ∈ D(S) :

||Su||H||u||H ≥ 〈Su | u〉 = a(u, u) ≥ α||u||2V ≥ α||u||V ||u||H .
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This gives, for all u ∈ D(S), the inequality :

||Su||H ≥ α||u||V . (5.2.6)

Using the surjectivity of S, we get :

||S−1||L(H,V ) ≤
1
α
. (5.2.7)

Note that in our example α = 1 but that this part of the proof is completely
general.

The inverse of the harmonic oscillator.

The analysis is analogous. We have seen that the Sobolev space H1
0 (R) has

to be replaced by the space

B1(R) := {u ∈ L2(R) , xu ∈ L2 and du/dx ∈ L2} .

We can then prove, using a standard precompactness criterion, that B1(R) has
compact injection in L2(R). One has in particular to use the inequality :∫

|x|≥R
|u(x)|2dx ≤ 1

R2
||u||2B1(R) . (5.2.8)

It is very important to realize that the space H1(R) is not compactly injected in
L2. To understand this point, it is enough to consider the sequence un = χ(x−n)
where χ is a function in C∞0 (R) with norm in L2 equal to 1. It is a bounded
sequence in H1, which converges weakly in H1 to 0 and is not convergent in
L2(R).

5.3 Adjoints and compact operators

We recall11 that the adjoint of a bounded operator in the Hilbertian case is
bounded. When E and F are different Hilbert spaces , the Hilbertian adjoint is
defined through the identity :

< Tx, y >F=< x, T ∗y >E , ∀x ∈ E , ∀y ∈ F . (5.3.1)

Example 5.3.1.
Let Ω be an open set in Rm and ΠΩ the operator of restriction to Ω: L2(Rm) 3
u 7→ u/Ω. Then Π?

Ω is the operator of extension by 0.

Exercise 5.3.2.
Let γ0 be the trace operator on xm = 0 defined from H1(Rm+ ) onto H

1
2 (Rm−1).

Determine the adjoint.
11We are mainly following Brézis’s exposition [Br].
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In an Hilbert space, we have

M⊥ = M
⊥
.

In particular, if M is a closed subspace, we have already used the property

(M⊥)⊥ = M . (5.3.2)

In the case of bounded operators (T ∈ L(E,F )), one gets easily the proper-
ties

N(T ∗) = R(T )⊥ , (5.3.3)

and
R(T ) = (N(T ∗))⊥ . (5.3.4)

Let us also recall the proposition

Proposition 5.3.3.
The adjoint of a compact operator is compact.

5.4 Precompactness

We assume that the reader is aware of the basic results concerning compact sets
in metric spaces. We in particular recall that in a complete metric space E, an
efficient way to show that a subset M is relatively compact is to show, that for
any ε > 0, one can recover M by a finite family of balls of radius ε in E.

The second standard point is to remember Ascoli’s Theorem, giving a crite-
rion for a bounded subset in C0(K) (K compact in Rm) to be relatively compact
in term of uniform equicontinuity. Ascoli’s Theorem gives in particular :

• the compact injection of C1(K) into C0(K)

• the compact injection of Hm(Ω) into C0(K), for m > n
2 and with K = Ω.

Let us recall finally a general proposition permitting to show that a subset
in L2 is relatively compact.

Proposition 5.4.1. Let A ⊂ L2(Rm). Let us assume that :

1. A is bounded in L2(Rm), that is there exists M > 0 such that :

||u||L2 ≤M , ∀u ∈ A .

2. The expression ε(u,R) :=
∫
|x|≥R |u(x)|

2dx tends to zero as R → +∞
uniformly with respect to u ∈ A.

3. For h ∈ Rm, let τh defined on L2 by : (τhu)(x) = u(x − h). Then the
expression δ(u, h) := ||τhu− u||L2 tends to zero as h→ 0, uniformly with
respect to A.

Then A is relatively compact in L2.
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This proposition can be applied for showing :

• the compact injection of H1
0 (Ω) in L2(Ω) when Ω is regular and bounded,

• the compact injection of H1(Ω) in L2(Ω) when Ω is regular and bounded,

• the compact injection of B1(Rm) in L2(Rm).
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6 Spectral theory for bounded operators.

6.1 Fredholm’s alternative

Let us first recall Riesz’s Theorem.

Theorem 6.1.1.
Let E be a normed linear space such that BE is compact then E is finite dimen-
sional.

Let us now describe Fredholm’s alternative.

Theorem 6.1.2.
Let T ∈ K(E). Then
(i) N(I − T ) is finite dimensional.
(ii) R(I − T ) is closed (of finite codimension).
(iii) R(I − T ) = E if and only if N(I − T ) = {0} .

We shall only use this theorem in the Hilbertian framework, so E = H, and
we shall prove it for simplicity under the additional assumption that T = T ∗.
Proof.
We divide the proof in successive steps.
Step 1.
(i) is a consequence of Riesz’s Theorem.
Step 2.
Let us show that R(I − T ) is closed.
Let yn a sequence in R(I − T ) such that yn → y in H. We would like to show
that y ∈ R(I − T ).
Let xn in N(I − T )⊥ such that yn = xn − Txn.

Step 2a. Let us first show the weaker property that the sequence xn is
bounded.
Let us indeed suppose that there exists a subsequence xnj such that ||xnj || →
+∞. Considering unj = xnj/||xnj ||, we observe that

(∗) unj − Tunj → 0 .

The sequence being bounded, we observe that (after possibly extracting a sub-
sequence) one can consider that the sequence unj is weakly convergent. This
implies that Tunj is convergent (T is compact). Using now (∗), we get the
convergence of unj to u :

unj → u , Tu = u , ||u|| = 1 .

But u ∈ N(I − T )⊥, hence we get u = 0 and a contradiction.

Step 2b. We have consequently obtained that the sequence xn is bounded.
One can consequently extract a subsequence xnj that weakly converges to x∞
in H. Using the compactness of T , we get Txnj converges strongly to Tx∞.
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Hence the sequence xnj tends strongly to y + Tx∞.
We have finally

y + Tx∞ = x∞ ,

and consequently proved that y = x∞ − Tx∞.

Step 3.
If N(I − T ) = {0}, then N(I − T ∗) = 0 (here we use for simplification our
additional assumption) and R(I − T ) being closed, we get

R(I − T ) = N(I − T ∗)⊥ = H .

The converse is also immediate as T = T ∗.

Step 4.
We have

R(I − T )⊥ = N(I − T ∗) = N(I − T ) .

This shows, according to (i) that R(I−T ) is of finite codimension (second state-
ment of (ii)).

This ends the proof of Fredholm’s alternative in the particular case that T
is selfadjoint.

Remark 6.1.3.
Under the same asumptions, it is possible to show that

dim N(I − T ) = dim N(I − T ∗) .

6.2 Resolvent set for bounded operators

In this subsection, E could be a Banach on R or C, but we will essentially need
the Hilbertian case in the applications treated here.

Definition 6.2.1. (Resolvent set)
For T ∈ L(E), the resolvent set is defined by

%(T ) = {λ ∈ C ; (T − λI) is bijective from E on E}. (6.2.1)

Note that in this case (T − λI)−1 is continuous (Banach’s Theorem). It is
easy to see that %(T ) is an open set in C. If λ0 ∈ %(T ), we oberve that

(T − λ) = (T − λ0)
(
Id+ (λ− λ0)(T − λ0)−1

)
Hence (T − λ) is invertible if |λ − λ0| < ||(T − λ0)−1||−1. We also get the
following identity for all λ, λ0 ∈ %(T ) :

(T − λ)−1 − (T − λ0)−1 = (λ− λ0)(T − λ)−1(T − λ0)−1 . (6.2.2)
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Definition 6.2.2. (Spectrum)
The spectrum of T , σ(T ), is the complementary set of %(T ) in C.

Note that σ(T ) is a closed set in C. This is typically the case when T is a
compact injective operator in a Banach space of infinite dimension.

We say that λ is an eigenvalue if N(T − λI) 6= 0. N(T − λI) is called the
eigenspace associated with λ.

Definition 6.2.3. (Point spectrum)
The point spectrum σp(T ) of T is defined as the set of the eigenvalues of T .

Example 6.2.4. (Basic example)
Let H = L2(]0, 1[) and f ∈ C0([0, 1]). Let Tf be the operator of multiplication
by f . Then one has :

σ(Tf ) = Im f =: {λ ∈ C | ∃x ∈ [0, 1] with f(x) = λ} .

σp(Tf ) = Sta(f) =: {λ ∈ C | meas(f−1(λ)) > 0} .
For the first assertion, it is first immediate to see that if λ 6∈ Im f , then
T(f−λ)−1 is a continuous inverse of Tf − λ. On the other side, if λ = f(x0) for
some x0 ∈]0, 1[ then we have (Tf−λ)un → 0 and ||un|| = 1 for un = 1√

n
χ(x−x0

n ),
where χ is a C∞0 function such that ||χ|| = 1. This shows that f(]0, 1[) ⊂ σ(Tf )
and we can conclude by considering the closure.

Note that the point spectrum is not necessarily closed. Note also that one
can have a strict inclusion of the point spectrum in the spectrum as can be
observed in the following example :

Example 6.2.5.
Let us consider E = `2(N) and let T be the shift operator defined by :

(Tu)0 = 0 , (Tu)n = un−1 , n > 0 ,

where u = (u0, · · · , un, · · · ) ∈ `2(N). Then it is easy to see that T est injective
(so 0 is not an eigenvalue) and is not surjective (so 0 is in the spectrum of T ).

As another interesting example, one can consider :

Example 6.2.6.
Let E = `2(Z,C) and let T be the operator defined by :

(Tu)n =
1
2

(un−1 + un+1) , n ∈ Z ,

for u ∈ `2(Z). Then it is easy to see (by using expansion in Fourier series 12 )
that T has no eigenvalues and its spectrum is [−1,+1].

12Using the isomorphism between `2(Z; C) and L2(S1 ; C), which associates to the sequence
(un)n∈Z the fonction

P
n∈Z un exp inθ, one has to analyze the operator of multiplication by

cos θ :
f 7→ T f = cos θf .

It is then analyzed as in example 6.2.4. One concludes that the spectrum of T is [−1, +1].
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Exercise 6.2.7.
Let α ∈ [0, 1]. Let p and q integers which are mutually prime. Analyze the
spectrum Σα of the operator Hα defined on `2(Z) by

(Hαu)n =
1
2

(un−1 + un+1) + cos 2π(
p

q
n+ α) un , n ∈ Z .

In order to make the analysis easier, one can admit (particular case of the so-
called Floquet theory), that one has Σ = ∩θ∈[0,1]Σθ, where Σθ is the spectrum
of Hα reduced to the space of the u’s in `∞ such that un+q = exp 2iπθ un, for
n ∈ Z.
This operator plays an important role in Solid State Physics and is called the
Harper’s operator.
We now replace the rational p

q by an irrational number β. So we consider the
operator Hβ,α := 1

2 (τ+1 + τ−1) + cos 2π(β · + α) on `2(Z,C), where τk (k ∈ Z)
is the operator defined on `2(Z,C) by (τku)n = un−k.
Show that, if β 6∈ Q, then the spectrum of Hβ,α is independent of α. For this,
one can first prove that Hβ,α is unitary equivalent with Hβ,α+kβ for any k ∈ Z.
Secondly, one can use the density of the set {α+βZ+Z} in R. Finally, one can
use the inequality

||Hβ,α −Hβ,α′ || ≤ 2π|α− α′| .

Proposition 6.2.8.
The spectrum σ(T ) is a compact set included in the ball B(0, ||T ||).

This proposition is immediate if we observe that (I − T
λ ) is invertible if

|λ| > ||T ||.

6.3 Spectral theory for compact operators

In the case of a compact operator, one has a more precise description of the
spectrum.

Theorem 6.3.1.
Let T ∈ K(E) where E is an infinite dimensional Banach space. Then

1.
0 ∈ σ(T ) .

2.
σ(T ) \ {0} = σp(T ) \ {0} .

3. We are in one (and only one) of the following cases

• either σ(T ) = {0},
• either σ(T ) \ {0} is finite,

• or σ(T )\{0} can be described as a sequence of distincts points tending
to 0.
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Proof.
a) If 0 6∈ σ(T ), then T admits a continuous inverse T−1 and the identity, which
can be considered as :

I = T ◦ T−1 ,

is a compact operator, as the composition of the compact operator T and the
continuous operator T−1. Using Riesz’s Theorem we get a contradiction in the
case E is supposed of infinite dimension.
b) The fact that, if λ 6= 0 and λ ∈ σ(T ), then λ is an eigenvalue, comes directly
from the Fredholm’s alternative applied to (I − T

λ ).
c) The last step comes essentially from the following lemma :

Lemma 6.3.2.
Let (λn)n≥1 a sequence of distincts points λn → λ and λn ∈ σ(T ) \ {0}, for all
n > 0.
Then λ = 0.

Proof.
We just give the proof in the Hilbertian case. For all n > 0, let en be a
normalized eigenfunction such that (T − λn)en = 0 and let En be the vectorial
space spanned by {e1, e2, · · · , en}. Let us show that we have a strict inclusion
of En in En+1.
We prove this point by recursion. Let us assume the result up to order n − 1
and let us show it at order n. If En+1 = En, then en+1 ∈ En and we can write

en+1 =
n∑
j=1

αjej .

Let us apply T to this relation. Using the property that en+1 is an eigenfunction,
we obtain

λn+1

 n∑
j=1

αjej

 =
n∑
j=1

αjλjej .

Using the recursion assumption, {e1, · · · , en} is a basis of En and the λj be-
ing distincts, we obtain αj = 0 for all j = 1, · · · , n and a contradiction with
||en+1|| = 1.
So we can find a sequence un such that un ∈ En ∩E⊥n−1 and ||un|| = 1. T being
compact, one would extract a convergent subsequence (still denoted by Tun)
from the sequence (Tun) and, if λn → λ 6= 0, one would also have the conver-
gence of this subsequence ( 1

λn
Tun) and consequently the Cauchy property.

Let us show that this leads to a contradiction. We remark that

(T − λn)En ⊂ En−1 .

Let n > m ≥ 2. We have

||Tun

λn
− Tum

λm
||2 = || (T−λn)un

λn
− (T−λm)um

λm
+ un − um||2

= || (T−λn)un

λn
− (T−λm)um

λm
− um||2 + ||un||2

≥ ||un||2 = 1 .
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We can consequently not extract a Cauchy subsequence from the sequence
1
λn
Tun. This is in contradiction with the assumption λ 6= 0.

This ends the proof of the lemma and of the theorem.

We shall now consider the Hilbertian case and see which new properties can
be obtained by using the additional assumption that T is selfadjoint.

6.4 Spectrum of selfadjoint operators.

As T = T ∗, the spectrum is real. If Im λ 6= 0, one immediately verifies that :

| Im λ| ||u||2 ≤ | Im 〈(T − λ)u, u〉 ≤ ||(T − λ)u|| · ||u|| .

This shows immediately that the map (T − λ) is injective and with close range.
But the orthogonal of the range of (T − λ) is the kernel of (T − λ̄) which is
reduced to 0. So (T − λ) is bijective.
This was actually, a consequence of the Lax-Milgram theorem (in the simple
case when V = H), once we have observed the inequality

|〈(T − λ)u, u〉| ≥ | Im λ|||u||2 .

Using again Lax-Milgram’s theorem, we can show

Theorem 6.4.1.
Let T ∈ L(H) be a selfadjoint operator. Then the spectrum of T is contained in
[m,M ] with m = inf〈Tu, u〉/||u||2 and M = sup〈Tu, u〉/||u||2. Moreover m and
M belong to the spectrum of T .

Proof:
We have already mentioned that the spectrum is real. Now if λ > M , we can
apply the Lax-Milgram to the sequilinear-form (u, v) 7→ λ〈u, v〉 − 〈Tu, v〉.
Let us now show that M ∈ σ(T ).

We observe that, by Cauchy-Schwarz applied to the scalar product (u, v) 7→
M〈u, v〉 − 〈Tu, v〉, we have :

|〈Mu− Tu, v〉| ≤ 〈Mu− Tu, u〉 1
2 〈Mv − Tv, v〉 1

2 .

In particular, we get :

||Mu− Tu||H ≤ ||M − T ||
1
2
L(H)〈Mu− Tu, u〉 1

2 . (6.4.1)

Let (un)n∈Z be a sequence such that ||un|| = 1 and 〈Tun, un〉 →M as n→ +∞.
By (6.4.1), we get that (T −M)un tends to 0 as n → +∞. This implies that
M ∈ σ(T ). If not, we would get that un = (M − T )−1((M − T )un) tends to 0
in contradiction with ||un|| = 1.

This theorem admits the following important corollary
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Corollary 6.4.2.
Let T ∈ L(H) be a selfadjoint operator such that σ(T ) = {0}. Then T = 0.

We first indeed show thatm = M = 0 and consequently that < Tu, u >H= 0
for all u ∈ H. But < Tu, v > can be written as a linear combination of terms
of the type < Tw,w >H and this gives the result by taking v = Tu.

Another connected property which is useful is the

Proposition 6.4.3.
If T is positive and selfadjoint then ||T || = M .

The proof is quite similar. We observe that :

|〈Tu, v〉| ≤ 〈Tu, u〉 1
2 〈Tv, v〉 1

2 .

This implies, using Riesz’s Theorem :

||Tu|| ≤ ||T || 12 (〈Tu, u〉) 1
2 .

Coming back to the definition of ||T ||, we obtain :

||T || ≤ ||T || 12M 1
2 ,

and the inequality :
||T || ≤M .

But it is immediate that :

〈Tu, u〉 ≤ ||T || ||u||2 .

This gives the converse inequality and the proposition.

6.5 Spectral theory for compact selfadjoint operators

We have a very precise description of the selfadjoint compact operators.

Theorem 6.5.1.
Let H be a separable Hilbert13 space and T a compact selfadjoint operator. Then
H admits an Hilbertian basis consisting of eigenfunctions of T .

Proof.
Let (λn)n≥1 be the sequence of disjoint eigenvalues of T , except 0. Their exis-
tence comes from Theorem 6.3.1 and we also observe that the eigenvalues are
real.
Let us define λ0 = 0.

13that is having a countable dense set.
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We define E0 = N(T ) and En = N(T −λnI); We know (from Riesz’s Theorem)
that

0 < dim En < +∞ .

Let us show that H is the Hilbertian sum of the (En)n≥0.

(i) The spaces (En) are mutually orthogonal. If u ∈ Em and v ∈ En with
m 6= n, we have

< Tu, v >H= λm < u, v >H=< u, Tv >H= λn < u, v >H ,

and consequently
< u, v >H= 0 .

(ii) Let F be the linear space spanned by the (En)n≥0. Let us verify that F
is dense in H. It is clear that TF ⊂ F and, using the selfadjoint character of
T , we have also TF⊥ ⊂ F⊥. The operator T̃ , obtained by restriction of T to
F⊥, is a compact selfadjoint operator. But one shows easily that σ(T̃ ) = {0}
and consequently T̃ = 0. But F⊥ ⊂ N(T ) ⊂ F and hence F⊥ = {0}. F is
consequently dense in H.

(iii) To end the proof, one chooses in each En an Hilbertian basis. Taking
the union of these bases, one obtains an Hilbertian basis of H effectively formed
with eigenfunctions of T .

Remark 6.5.2.
If T is a compact selfadjoint operator, we can write any u in the form

u =
+∞∑
n=0

un , with un ∈ En .

This permits to write

Tu =
+∞∑
n=1

λnun .

If, for k ∈ N∗, we define Tk by

Tku =
k∑

n=1

λnun ,

we easily see that Tk is of finite rank and that

||T − Tk|| ≤ sup
n≥k+1

|λn| .

Hence the operator T appears as the limit in L(H) of the sequence Tk as k →
+∞.
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7 Examples.

We go back to our previous examples and analyze their properties.

7.1 The transfer operator.

7.1.1 Compactness

The transfer operator (which was introduced in (5.2.2) ) is compact and admits
consequently a sequence of eigenvalues λn tending to 0 as n → +∞. Let us
show the

Lemma 7.1.1.
The transfer operator is positive and injective.

Proof of the lemma.
Let u ∈ L2(R). We can write14, with φ(x) = exp−V (x)

2 u(x)

< TKu, u >H=
∫

R2
exp−t|x− y|2φ(x)φ(y)dxdy .

Using the properties of the Fourier transform and of the convolution, we deduce

< TKu, u >H= ct

∫
R

exp−|ξ|
2

4t
|φ̂(ξ)|2dξ ,

where ct > 0 is a normalization constant.

The spectrum is consequently the union of a sequence of positive eigenvalues
and of its limit 0. TK can be diagonalized in an orthonormal basis of eigenfunc-
tions associated with strictly positive eigenvalues. We emphasize that 0 is in
the spectrum but not an eigenvalue.
Theorem 6.4.1 says also that ||TK || is the largest eigenvalue and is isolated. A
natural question is then to discuss the multiplicity of each eigenvalue, i. e. the
dimension of each associated eigenspace. We shall see later (Krein-Rutman’s
Theorem) that the largest eigenvalue is of multiplicity 1.

7.1.2 About the physical origin of the problem.

Our initial problem was to find a rather general approach for the estimate of
the decay of correlations attached to ”gaussian like” measures of the type

exp−Φ(X) dX (7.1.1)

on Rn with Φ. One proof of this estimate (in the case when Φ has a particular
structure) is based on the analysis of the transfer matrix method, originally

14If we make only the weak assumption that exp−V ∈ L1(R), it is better to start for the
proof of the positivity by considering u’s in C∞0 (R) and then to treat the general case by using
the density of C∞0 in L2.
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due to Kramers-Wannier, that we have already seen for the study of the Ising
model. We present here briefly the technique for our toy model. We shall only
consider the case when d = 1 and treat the periodic case, that is the case when
{1, · · · , n} is a representation of Λper = Z/nZ.

We consider the particular potential Φ

Φ(n)(X) ≡ Φ(X) ≡ 1
h

 n∑
j=1

V (xj) +
|xj − xj+1|2

4

 (7.1.2)

where we take the convention that xn+1 = x1 and where h is possibly a semiclas-
sical parameter which is sometimes chosen equal to one if we are not interested
in the “semiclassical” aspects. More generally, we could more generally consider
examples of the form:

Φh(X) =
1
h

 n∑
j=1

(V (xj) + I(xj , xj+1))

 (7.1.3)

where I is a symmetric ”interaction” potential on R× R. Let us mention how-
ever that the example (7.1.2) appears naturally in quantum field theory when
the so called ”lattice approximation” is introduced. For this special class of
potentials, we shall demonstrate that the informations given by the transfer
operator method are complementary to the other approachs we have explained
before. We shall present the ”dictionary” between the properties of the measure
h−

n
2 ·exp−Φh(X) dX on Rn and the spectral properties of the transfer operator

KV (which is also called Kac operator for some particular models introduced
by M. Kac) whose integral kernel is real and given on R× R by

KV (x, y) = h−
1
2 exp−V (x)

2h
· exp−|x− y|2

4h
· exp−V (y)

2h
. (7.1.4)

By integral kernel (or distribution kernel), we mean15 a distribution in D′(R2)
such that the operator is defined from C∞0 (R) into D′(R) by the formula∫

R
(KVu)(x)v(x) dx =

∫
R×R

KV (x, y)u(x) v(y) dx dy , ∀u , v ∈ C∞0 (R) .

(7.1.5)
This dictionary permits to obtain interesting connections between estimates

for the quotient µ2/µ1 of the two first largest eigenvalues of the transfer operator
and corresponding estimates controlling the speed of convergence of thermody-
namic quantities. In particular this speed of convergence is exponentially rapid
as n→ +∞.

We know that when the operator K is compact, symmetric and injective,
then there exists a decreasing (in modulus) sequence µj of eigenvalues tending

15Here we shall always consider much more regular kernels which are in particular continu-
ous. So the notation

R
can be interpreted in the usual sense. In general, this means that the

distribution kernel KV is applied to the test function (x, y) 7→ u(x) v(y).
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to 0 and a corresponding sequence of eigenfunctions uj which can be normalized
in order to get an orthonormal basis of L2(R). Moreover, the operator becomes
the limit in norm of the family of operators K(N) whose corresponding kernel
are defined by

K(N)(x, y) =
N∑
j=1

µjuj(x)uj(y) . (7.1.6)

We recall indeed that
||K−K(N)|| ≤ sup

j>N
|µj | . (7.1.7)

The symmetric operators16 are called trace class if we have in addition the
property that

||K||tr :=
∑
j

|µj | < +∞ (7.1.8)

In this case, we get that

||K−K(N)||tr ≤
∑
j>N

|µj | . (7.1.9)

For a trace class symmetric operator, we can in particular define the trace as

Tr K =
∑
j

µj , (7.1.10)

and this operation is continuous on the space of the trace class operators

| Tr K | ≤ ||K||tr . (7.1.11)

This of course extends the usual notion of trace for matrices. We can actually
compute directly the trace of a trace-class operator in the following way. We
first observe that

Tr K = lim
N→+∞

Tr K(N) . (7.1.12)

Then we observe that

Tr K(N) =
N∑
j=1

µj =
∫

R
K(N)(x, x)dx . (7.1.13)

We consequently obtain that

Tr K = lim
N→+∞

∫
R
K(N)(x, x)dx . (7.1.14)

16When K is not symmetric, trace class operators can still be defined by considering
√

K∗K.
Note that when K is trace class, one can compute the trace by considering any orthonormal
basis ei : Tr K =

P
i〈Kei, ei〉.
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If we observe that x 7→
∑
j |µj ||uj(x)|2 is in L1(R), then it is natural17 to hope

(but this is not trivial!) that x 7→ K(x, x) is in L1 and that

Tr K =
∫

R
K(x, x) dx . (7.1.15)

Note that it is only when K is positive that the finiteness of the right hand side
in (7.1.15) will imply the trace class property.
In the case the operator is Hilbert-Schmidt, that is with a kernel K in L2, then
the operator is also compact and we have the identity∑

j

µ2
j =

∫
R×R

|K(x, y)|2 dx dy . (7.1.16)

This gives an easy criterion for verifying the compactness of the operator. Let
us first look at the thermodynamic limit. This means that we are interested in
the limit limn→+∞

1
n ln

(∫
Rn exp−Φ(X) dX

)
. We start from the decomposition:

exp−Φ(X) = KV (x1, x2) ·KV (x2, x3) · · ·KV (xn−1, xn) ·KV (xn, x1) (7.1.17)

and we observe that∫
Rn

exp−Φ(X) dX =
∫

R
KV,n(y, y) dy (7.1.18)

where KV,n(x, y) is the distribution kernel of (KV)n. Our assumption on V
permits to see that (KV )n is trace class18 and we rewrite (7.1.18) in the form:∫

Rn

exp−Φ(X) dX = Tr [(KV)n] =
∑
j

µnj , (7.1.19)

where the µj are introduced in (7.1.24).
We note also for future use that

KV,n(x, y) =
∑
j

µnj uj(x)uj(y) . (7.1.20)

17Let us sketch a proof of (7.1.15) in our particular case. K being positive and with an

explicit kernel : exp−V (x)
2

exp−J |x − y|2 exp−V (y)
2

, one can find an Hilbert-Schmidt
operator L satisfying L?L = K. The kernel of L is given, for a suitable θ, by L(x, y) =

cθ exp−θ|x− y|2 exp−V (y)
2

. We note indeed that cθ exp−θ|x− y|2 is the distribution kernel
of exp tθ∆ for a suitable tθ > 0.
Then we observe that L is Hilbert-Schmidt and that ||L||2H.S =

P
j µj = Tr K. Using the

previously mentioned formula for the Hilbert-Schmidt norm and the property that

K(x, x) =

Z
L?(x, z) L(z, x) dz =

Z
L?(z, x) L(z, x) dz ,

one obtains (7.1.15).
18See for example [Ro].
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In particular we get for the thermodynamic limit:

lim
n→∞

ln
∫

Rn exp−Φ(X) dX
n

= lnµ1 . (7.1.21)

Moreover the speed of the convergence is easily estimated by:

− ln |
ln

∫
Rn exp−Φ(X) dX

n
− lnµ1| = −n ln(

µ2

µ1
)− ln k2 + lnn+O(exp−δ2n) ,

(7.1.22)
where k2 is the multiplicity of µ2.

7.1.3 Krein-Rutman’s Theorem.

We observe now that the kernel (x, y) 7→ KV (x, y) satisfies the condition

KV (x, y) > 0 , ∀x, y ∈ R . (7.1.23)

In particular it satisfies the assumptions of the extended Perron-Frobenius The-
orem also called Krein-Rutman’s Theorem and our positive operator KV admits
consequently a largest eigenvalue µ1 equal to ||KV || which is simple and corre-
sponds to a unique strictly positive normalized eigenfunction which we denote
by u1. Let µj the sequence of eigenvalues that we order as a decreasing sequence
tending to 0:

0 ≤ µj+1 ≤ µj ≤ .... ≤ µ2 < µ1. (7.1.24)

We shall denote by uj a corresponding orthonormal basis of eigenfunctions with

KV uj = µjuj , ||uj || = 1 . (7.1.25)

Let us present the statements:

Definition 7.1.2.
Let A be a bounded positive operator on a Hilbert space H = L2(X, dν) where
(X, ν) is a measured space. Then we say that A has a strictly positive kernel if,
for each choice of a non negative function θ ∈ H (||θ|| 6= 0), we have

0 < Aθ

almost everywhere.

It is immediate to see that the transfer operator satisfies this condition.
The theorem generalizing the Perron-Frobenius Theorem is then the following:

Theorem 7.1.3.
Let A be a bounded positive compact symmetric operator on H having a strictly
positive kernel and let19 ||A|| = λ be the largest eigenvalue of A. Then λ has
multiplicity 1 and the corresponding eigenfunction uλ can be chosen to be a
strictly positive function.

19See Proposition 6.4.3
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Proof:
Since A maps real functions into real functions, we may assume that uλ is real.
We now prove that

〈Auλ, uλ〉 ≤ 〈A|uλ|, |uλ|〉.
This is an immediate consequence of the strict positivity of the kernel. We just
write:

uλ = u+
λ − u−λ

and
|uλ| = u+

λ + u−λ

and the above inequality is then a consequence of

〈Au+
λ , u

−
λ 〉 ≥ 0 ,

and
〈u+
λ , Au

−
λ 〉 ≥ 0 .

We then obtain

λ||uλ||2 = 〈Auλ, uλ〉 ≤ 〈A|uλ|, |uλ|〉 ≤ ||A|| ||uλ||2 = λ||uλ||2 .

This implies
〈Auλ, uλ〉 = 〈A|uλ|, |uλ|〉 .

This equality means
〈u+
λ , Au

−
λ 〉+ 〈u−λ , Au

+
λ 〉 = 0 .

We then get a contradiction unless u+
λ = 0 or u−λ = 0. We can then assume

uλ ≥ 0 and the assumption gives again

0 < 〈θ,Auλ〉 = λ〈θ, uλ〉 ,

for any positive θ. This gives

uλ ≥ 0 a.e .

But
uλ = λ−1Auλ

and this gives
uλ > 0 a.e .

Finally if there are two linearly independent eigenfunctions vλ and uλ corre-
sponding to λ, we would obtain the same property for vλ by considering as
new Hilbert space the orthogonal of uλ in H. But it is impossible to have two
orthogonal vectors which are strictly positive.
q.e.d.

Remark 7.1.4.
In the case t = 0, we keep the positivity but lose the injectivity ! The spectrum is
easy to determine. We are indeed dealing with the orthonormal projector asso-
ciated to the function x 7→ exp−V (x)

2 . The real number 1 is a simple eigenvalue
and 0 is an eigenvalue whose corresponding eigenspace is infinite dimensional.
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7.2 The Dirichlet realization, a model of operator with
compact resolvent.

We can apply Theorem 6.5.1 to the operator (−∆D+ Id)−1. We have seen that
this operator is compact and it is clearly injective (by construction). It was also
seen as a selfadjoint and positive. Moreover, the norm of this operator is less or
equal to 1.
There exists consequently a sequence of distinct eigenvalues µn tending to 0
(with 0 < µn ≤ 1) and a corresponding orthonormal basis of eigenfunctions
such that (∆D + I)−1 is diagonalized. If φn,j (j = 1, . . . , kn) is a corresponding
basis of eigenfunctions associated with µn, that is, if

(−∆D + I)−1φn,j = µnφn,j ,

we first observe that φn,j ∈ D(−∆D + I); hence φn,j ∈ H1
0 (Ω) ∩H2(Ω) (if Ω is

relatively compact with regular boundary) and

−∆Dφn,j = (
1
µn

− 1)φn,j .

The function φn,j is consequently an eigenfunction of −∆D associated with the
eigenvalue λn = ( 1

µn
− 1).

Let us show, as one easily guesses, that this basis φn,j permits effectively the
diagonalization of −∆D.
Let us indeed consider u =

∑
n,j un,jφn,j in the domain of −∆D. Let us consider

the scalar product < −∆Du, φm,` >H. Using the selfadjoint character of −∆D,
we get

< −∆Du, φm,` >H=< u,−∆Dφm,` >H= λmum,` .

Observing, that D(∆D) = R(S−1), one obtains that the domain of −∆D is
characterized by

D(−∆D) = {u ∈ L2 |
∑
n,j

λ2
n|un,j |2 < +∞} .

Here we have used the property that for any N , we have the identity :∑
n≤N

un,jφn,j = S(
∑
n≤N

λnun,jφn,j) .

We have consequently given a meaning to the following diagonalization formula

−∆D =
∑
n

λnΠEn , (7.2.1)

where ΠEn is the orthogonal projector on the eigenspace En associated with the
eigenvalue λn.
Let us remark that it results from the property that the sequence µn tends to
0 the property that λn tend to +∞.
Let us also prove the
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Lemma 7.2.1.
The lowest eigenvalue of the Dirichlet realization of the Laplacian in a relatively
compact domain Ω is strictly positive :

λ1 > 0 . (7.2.2)

Proof.
We know that λ1 ≥ 0; the Dirichlet realization of the Laplacian is indeed posi-
tive. If λ1 = 0, a corresponding normalized eigenfunction φ1 would satisfy

< −∆φ1, φ1 >= 0 ,

and consequently
∇φ1 = 0 , dans Ω .

This leads first φ1 = Cste in each connected component of Ω but because the
trace of φ1 on ∂Ω vanishes (φ1 ∈ H1

0 (Ω)) implies that φ1 = 0. So we get a
contradiction.

Finally it results from standard regularity theorems (See [Br], [LiMa]) that
the eigenfunctions belong (if Ω is regular) to C∞(Ω).

We now show the

Proposition 7.2.2.
The lowest eigenvalue is simple and one can choose the first eigenfunction to be
strictly positive.

The natural idea is to apply Krein-Rutman’s Theorem to (−∆D+1)−1. One
has to show that this operator is positivity improving. This is indeed the case if
the domain is connected but the proof of this property will not be given.
We will only show that (−∆D + I)−1 is positivity preserving and observe that
this implies (following the proof of Krein-Rutman’s theorem) that if Ω is an
eigenfunction then |Ω| is an eigenfunction. Then the proof of Proposition 7.2.2
will be completed by using the properties of superharmonic functions.

Lemma 7.2.3.
The operator (−∆D + I)−1 is positivity preserving.

The proof is a consequence of the Maximum principle. It is enough to show
that

−∆u+ u = f , γ0u = 0 and f ≥ 0 a.e ,

implies that u ≥ 0 almost everywhere.
We introduce u+ = max(u, 0) and u− = − inf(u, 0). A standard proposition
(see below20 or the book of Lieb-Loss) shows that u+ and u− belong to H1

0 (Ω).
Multiplying by u−, we obtain∫

∇u+ · ∇u−dx− ||∇u−||2 − ||u−||2 =
∫

Ω

fu− dx ≥ 0 ,

20Recall that |u| = u+ + u− and u = u+ − u−.
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which implies, using the corollary of the next proposition u− = 0.

Proposition 7.2.4.
Suppose that f ∈ L1

loc(Rn) with ∇f ∈ L1
loc(Rn). Then also ∇|f | ∈ L1

loc(Rn) and
with the notation

sign z =

{
z
|z| , z 6= 0

0, z = 0,
(7.2.3)

we have

∇|f |(x) = Re{sign(f(x))∇f(x)} almost everywhere . (7.2.4)

In particular, ∣∣∇|f |∣∣ ≤ |∇f | ,

almost everywhere.

Corollary 7.2.5.
Under the assumptions of Proposition 7.2.4, we have if f is real

∇f+(x) =
1
2
(sign(f(x)) + 1)∇f(x)} almost everywhere , (7.2.5)

and

∇f−(x) =
1
2
(sign(f(x))− 1)∇f(x)} almost everywhere . (7.2.6)

Hence

∇f+(x)·∇f−(x) =
1
4
(sign(f(x))2−1)|∇f(x)|2 ≤ 0 almost everywhere . (7.2.7)

Proof of Proposition 7.2.4.
Suppose first that u ∈ C∞(Rn) and define |z|ε =

√
|z|2 + ε2 − ε, for z ∈ C and

ε > 0. We observe that

0 ≤ |z|ε ≤ |z[ and lim
ε→0

|z|ε = |z| .

Then |u|ε ∈ C∞(Rn) and

∇|u|ε =
Re (u∇u)√
|u|2 + ε2

. (7.2.8)

Let now f be as in the proposition and define fδ as the convolution

fδ = f ∗ ρδ
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with ρδ being a standard approximation of the unity for convolution. Explicitly,
we take a ρ ∈ C∞0 (Rn) with

ρ ≥ 0,
∫

Rn

ρ(x) dx = 1,

and define ρδ(x) := δ−nρ(x/δ), for x ∈ Rn and δ > 0.
Then fδ → f , |fδ| → |f | and ∇fδ → ∇f in L1

loc(Rn) as δ → 0.
Take a test function φ ∈ C∞0 (Rn). We may extract a subsequence {δk}k∈N

(with δk → 0 for k →∞) such that fδk
(x) → f(x) for almost every x ∈ suppφ.

We restrict our attention to this subsequence. For simplicity of notation we
omit the k from the notation and write limδ→0 instead of limk→∞.

We now calculate, using dominated convergence and (7.2.8),∫
(∇φ)|f | dx = lim

ε→0

∫
(∇φ)|f |ε dx

= lim
ε→0

lim
δ→0

∫
(∇φ)|fδ|ε dx

= − lim
ε→0

lim
δ→0

∫
φ

Re (fδ∇fδ)√
|fδ|2 + ε2

dx

Using the pointwise convergence of fδ(x) and ‖∇fδ−∇f‖L1(suppφ) → 0, we can
take the limit δ → 0 and get∫

(∇φ)|f | dx = − lim
ε→0

∫
φ

Re (f∇f)√
|f |2 + ε2

dx. (7.2.9)

Now, φ∇f ∈ L1(Rn) and f(x)√
|f |2+ε2

→ signf(x) as ε→ 0, so we get (7.2.4) from

(7.2.9) by dominated convergence.

We can now look directly (which is a consequence of this positivity improving
property, but we have not given the proof!) at the property that the first
eigenfunction does not vanish. The eigenfunction is positive, belongs to C∞(Ω)
by a regularity theorem and satisfies

−∆u = λu ≥ 0 .

Hence u is superharmonic and (see Lieb-Loss) satisfies the mean value property :
For all y ∈ Ω , for all R > 0 such that B(y,R) ∈ Ω, then

u(y) ≥ 1
vol(B(y,R))

∫
B(y,R)

u(z) dz .

Moreover, we know that inf u = 0. Applying this mean value property with y
(if any) such that u(y) = 0, we obtain that u = 0 in B(y,R). Using in addition
a connectedness argument, we obtain that in a connected open set u is either
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identically 0 or strictly positive.

Let us come back to what appears in the proof of Krein-Rutman’s theorem.
u+
λ and u−λ are either 0 or strictly positive eigenfunctions and we have also
〈u+
λ , u

−
λ 〉 = 0. Hence u+

λ or u−λ should vanish. We can then show the simplicity
of the first eigenvalue as in the proof of Krein-Rutman’s theorem. Hence we
have finally completed the proof of Proposition 7.2.2.

7.3 Extension to operators with compact resolvent

What we have done for the analysis of the Dirichlet realization is indeed quite
general. It can be applied to selfadjoint operators, which are bounded from
below and with compact resolvent.
We show that in this case, there exists an infinite sequence (if the Hilbert space
is infinite dimensional) of real eigenvalues λn tending to +∞ such that the cor-
responding eigenspaces are mutually orthogonal, of finite dimension and such
that their corresponding Hilbertian sum is equal to H.
Typically, one can apply the method to the Neumann realization of the Lapla-
cian in a relatively compact domain Ω or to the harmonic oscillator in Rm.

7.4 Operators with compact resolvent : the Schrödinger
operator in an unbounded domain.

We just recall some criteria of compactness for the resolvent of the Schrödinger
operator P = −∆ + V in Rm in connection with the precompactness criterion.
In the case of the Schrödinger equation on Rm and if V is C∞ and bounded
from below, the domain of the selfadjoint extension is always contained in

Q(P ) := H1
V (Rm) = {u ∈ H1(Rm)|(V + C)

1
2u ∈ L2(Rm)} .

Q(P ) is usually called the form domain of the form

u 7→
∫

Rm

|∇u|2dx+
∫

Rm

V (x)|u(x)|2 dx .

It is then easy to see that, if V tends to ∞, then the injection of H1
V in L2

is compact (using a criterion of precompactness). We then obtain, observing
that (P + 1)−1 is continuous from L2 into H1

V , that the resolvent (P + λ)−1 is
compact for λ 6∈ σ(P ).
In the case of a compact manifold M and if we consider the Laplace-Beltrami
operator on M , then the compactness of the resolvent is obtain without addi-
tional assumption on V . The domain of the operator is H2(M) and we have
compact injection from H2(M) into L2(M).
The condition that V → ∞ as |x| → ∞ is not a necessary condition. We can
indeed replace it by the weaker sufficient condition

Proposition 7.4.1.
Let us assume that the injection of H1

V (Rm) into L2(Rm) is compact then P is
with compact resolvent.
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More concretely, the way to verify this criterion is to show the existence of
a continuous function x 7→ ρ(x) tending to ∞ as |x| → +∞ such that

H1
V (Rm) ⊂ L2

ρ(Rm) . (7.4.1)

Of course, the preceding case corresponds to ρ = V , but, as typical example of
this strategy, we shall show in exercise 7.4.3 that the Schrödinger operator on
R2, −∆ + x2 · y2 + 1, is with compact inverse.
On the other hand, the criterion that V → +∞ as |x| → +∞ is not not too far
from optimality.
We can indeed prove

Lemma 7.4.2.
Suppose that V ≥ 0 and that there exists r > 0 and a sequence σn such that
|σn| → +∞ and such that

sup
n∈N

sup
x∈B(σn,r)

V (x) < +∞ . (7.4.2)

Then −∆ + V + 1 is not with compact inverse.

Proof.
Let us consider the sequence

φn(x) = ψ(x− σn) . (7.4.3)

Here ψ is a compactly supported function of L2 norm 1 and with support in
B(0, r).
We observe that the φn are an orthogonal sequence (after possibly extracting
a subsequence for obtaining that the supports of φn and φn′ are disjoint for
n 6= n′) which satisfies for some constant C

||φn||2H2 + ||V φn||2L2 ≤ C . (7.4.4)

In particular, there exists C such that :

||(−∆ + V + 1)φn||L2 ≤ C , ∀n ∈ N .

But we can not extract from this sequence a strongly convergent sequence in
L2, because φn is weakly convergent to 0 and ||φn|| = 1. So the operator
(−∆ + V + I)−1 can not be a compact operator.

Exercise 7.4.3.
Show that the unbounded operator on L2(R2)

P := − d2

dx2
− d2

dy2
+ x2y2 ,

is with compact resolvent.

55



Hint.
One can introduce

X1 =
1
i
∂x , X2 =

1
i
∂y , X3 = xy ,

and show, for j = 1, 2 and for a suitable constant C, the following inequality :

||(x2 + y2 + 1)−
1
4 [Xj , X3]u||2 ≤ C

(
< Pu, u >L2(R2) +||u||2

)
,

for all u ∈ C∞0 (R2).
One can also observe that

i[X1, X3] = y , i[X2, X3] = x ,

and then

||(x2 + y2 + 1)−
1
4 [X1, X3]u||2 + ||(x2 + y2 + 1)−

1
4 [X2, X3]u||2 + ||u||2

≥ ||(x2 + y2 + 1)
1
4u||2 .

For the control of ||(x2 + y2 + 1)−
1
4 [X1, X3]u||2, one can remark that

||(x2 + y2 + 1)−
1
4 [X1, X3]u||2 = 〈 y

(x2 + y2 + 1)
1
4
u | (X1X3 −X3X1)u〉 ,

perform an integration by parts, and control a commutator.

7.5 The Schrödinger operator with magnetic field

We can consider on Rm the so-called Schrödinger operator with magnetic field :

PA,V := −∆A + V , (7.5.1)

where

−∆A :=
m∑
j=1

(
1
i
∂xj −Aj(x))2 . (7.5.2)

Here x 7→ ~A = (A1(x), · · · , An(x)) is a vector field on Rm called the “magnetic
potential” and V is called the electric potential. It is easy to see that, when
V is semi-bounded, the operator is symmetric and semi-bounded on C∞0 (Rm).
We can therefore consider the Friedrichs extension and analyze the property of
this selfadjoint extension.
A general question arises if one can get operator of the type PA,V which are with
compact resolvent if V = 0. This is the problem which is called the problem of
the magnetic bottle.
The “heuristical” idea is that the module of the magnetic field can play in some
sense the role of the electric potential if it does not oscillate too rapidly (m ≥ 2).
For defining the magnetic field it is probably easier to consider the magnetic
potential as a one-form

σA =
n∑
j=1

Aj(x)dxj .
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The magnetic field is then defined as the two form

ωB = dσA =
∑
j<k

(∂xjAk − ∂xk
Aj)dxj ∧ dxk .

The case when m = 2 is particularly simple. In this case,

ωB = Bdx1 ∧ dx2 ,

and we can identify ωB with the function21 x 7→ B(x) = curl ( ~A)(x).
The proof is particularly simple in the case when B(x) has a constant sign (say
B(x) ≥ 0). In this case, we immediately have the inequality∫

R2
B(x)|u(x)|2dx ≤< −∆Au, u >L2 . (7.5.3)

We observe indeed the following identities between operators

B(x) =
1
i
[X1, X2] , −∆A = X2

1 +X2
2 . (7.5.4)

Here
X1 =

1
i
∂x1 −A1(x) , X2 =

1
i
∂x2 −A2(x) .

Note also that :
〈−∆Au , u〉 = ||X1u||2 + ||X2u||2 ,

for all u ∈ C∞0 (R2).
To obtain (7.5.3) is then easy through an integration by parts. One can also
use, introducing Z = X1 + iX2, the positivity of Z∗Z or ZZ∗.
We then easily obtain as in the previous example that the operator is with
compact resolvent if B(x) → +∞.
As a simple example, one can think of

~A = (−x2
1x2,+x1x

2
2) ,

which gives
B(x) = x2

1 + x2
2 .

Note that the case m = 2 is rather particular and it is more difficult to treat
m > 2. We have indeed to introduce partition of unity.

7.6 Laplace Beltrami operators on a Riemannian compact
manifold

If M is a compact riemannian manifold, it is well known that in this case one
can canonically define a measure dµM on M and consequently the Hilbertian
space L2(M). We have also a canonical definition of the gradient. At each

21Here, for french readers, curl denotes the rotational (in french “rotationnel”) rot .
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point x of M , we have indeed a scalar product on TxM giving an isomorphism
between TxM and T ∗xM . Using this family of isomorphisms we have a natural
identification between the C∞-vector fields on M and the 1-forms on M . In
this identification, the vector field gradu associated to a C∞ function on M
corresponds to the 1-form du.
Considering on C∞(M)× C∞(M) the sesquilinear form

(u, v) 7→ a0(u, v) :=
∫
M

< gradu(x) , grad v(x) >TxM dµM .

There is a natural differential operator −∆M called the Laplace-Beltrami oper-
ator on M such that

a0(u, v) =< −∆Mu , v >L2(M) .

In this context, it is not diffficult to define the Friedrichs extension and to get a
selfadjoint extension of −∆M as a selfadjoint operator on L2(M). The domain
is easily characterized as being H2(M), the Sobolev space naturally associated
to L2(M) and one can show that the injection of H2(M) into L2(M) is com-
pact because M is compact. The selfadjoint extension of −∆M is with compact
resolvent and the general theory can be applied to this example.

The case on the circle S1

The simplest model is the operator −d2/dθ2 on the circle of radius one whose
spectrum is {n2 , n ∈ N}. For n > 0 the multiplicity is 2. An orthonormal basis
is given by the functions θ 7→ (2π)−

1
2 exp inθ for n ∈ Z. Here the form domain of

the operator is H1,per(S1) and the domain of the operator is H2,per(S1). These
spaces have two descriptions. One is to describe these operators as H1,per :=
{u ∈ H1(]0, 2π[ | u(0) = u(2π)} and H2,per := {u ∈ H2(]0, 2π[ | u(0) =
u(2π) , u′(0) = u′(2π)}.
The other way is to consider the Fourier coefficients of u.
The Fourier coefficients of u ∈ Hk,per are in hk. Here

hk := {un ∈ `2(Z) | nkun ∈ `2(Z)}.

It is then easy to prove the compact injection from H1,per in L2(S1) or equiva-
lently from h1 into `2.
More generally, elliptic symmetric positive operators of order m > 0 admit a
selfadjoint extension with compact resolvent. We refer to the book by Berger-
Gauduchon-Mazet [BGM] for this central subject in Riemannian geometry.

The Laplacian on S2

One can also consider the Laplacian on S2. We describe as usual S2 by the
spherical coordinates, with

x = cosφ sin θ, y = sinφ sin θ, z = cos θ , with φ ∈ [−π, π[ , θ ∈]0, π[ , (7.6.1)
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and we add the two poles “North” and “South”, corresponding to the two points
(0, 0, 1) and (0, 0,−1).
We are looking for eigenfunctions of the Fiedrichs extension of

L2 = − 1
sin2 θ

∂2

∂φ2
− 1

sin θ
∂

∂θ
sin θ

∂

∂θ
(7.6.2)

in L2(sin θdθ dφ), satisfying

L2Y`m = `(`+ 1)Y`m . (7.6.3)

The standard spherical harmonics, corresponding to ` ≥ 0 and for an integer
m ∈ {−`, . . . , `}, are defined by

Y`m(θ, φ) = c`,m exp imφ
1

sinm θ
(− 1

sin θ
d

dθ
)`−m sin2` θ , (7.6.4)

where c`,m is an explicit normalization constant.
For future extensions, we prefer to take this as a definition for m ≥ 0 and then
to observe that

Y`,−m = ĉ`,mY`,m . (7.6.5)

For ` = 0, we get m = 0 and the constant. For ` = 1, we obtain, for m = 1,
the function (θ, φ) 7→ sin θ exp iφ and for m = −1, the function sin θ exp−iφ
and for m = 0 the function cos θ, which shows that the multiplicity is 3 for the
eigenvalue 2.

To show the completeness it is enough to show that, for given m ≥ 0, the
orthogonal family (indexed by ` ∈ {m + N}) of functions θ 7→ ψ`,m(θ) :=

1
sinm θ (−

1
sin θ

d
dθ )

`−m sin2` θ span all L2(]0, π[, sin θdθ).
For this, we consider χ ∈ C∞0 (]0, π[) and assume that∫ π

0

χ(θ)ψ`,m(θ) sin θdθ = 0 , ∀` ∈ {m+ N} .

We would like to deduce that this implies χ = 0. After a change of variable
t = cos θ and an integration by parts, we obtain that this problem is equivalent
to the problem to show that, if∫ 1

−1

ψ(t)((1− t2)`)(`−m)(t)dt = 0 , ∀` ∈ {m+ N} ,

then ψ = 0.
Observing that the space spanned by the functions (1 − t2)−m((1 − t2)`)(`−m)

(which are actually polynomials of exact order `) is the space of all polynomials
we can conclude the completeness.
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8 Selfadjoint unbounded operators and spectral
theory.

8.1 Introduction

We assume that H is an Hilbert space. Once we have a selfadjoint operator we
can apply the basic spectral decomposition, which we shall now describe without
to give complete proofs. Before to explain the general case, let us come back
to the spectral theorem for compact operators T or operators with compact
resolvent. This will permit us to introduce a new vocabulary.
We have seen that one can obtain a decomposition of H in the form

H = ⊕k∈NVk , (8.1.1)

such that
Tuk = λkuk , if uk ∈ Vk . (8.1.2)

Hence we have decomposed H into a direct sum of orthogonal subspaces Vk in
which the selfadjoint operator T is reduced to multiplication by λk.
If Pk denotes the orthogonal projection operator onto Vk, we can write

I =
∑
k

Pk , (8.1.3)

(the limit is in the strong-convergence sense) and

Tu =
∑
k

λkPku , ∀u ∈ D(T ) . (8.1.4)

Here we recall the definition :

Definition 8.1.1.
An operator P ∈ L(H) is called an orthogonal projection if P = P ∗ and P 2 = P .

If we assume that T is semibounded (with compact resolvent22), we can
introduce for any λ ∈ R

Gλ = ⊕λk≤λVk , (8.1.5)

and Eλ is the orthogonal projection onto Gλ :

Eλ =
∑
λk≤λ

Pk . (8.1.6)

It is easy to see that the function λ 7→ Eλ has values in L(H) and satisfy the
following properties :

• Eλ = E∗λ;

• Eλ · Eµ = Einf(λ,µ);

22Note that if (T − λ0)−1 is compact for some λ0 ∈ ρ(T ), then it is true for any λ ∈ ρ(T ).
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• for all λ, Eλ+0 = Eλ;

• limλ→−∞Eλ = 0 , limλ→+∞Eλ = Id .

• Eλ ≥ 0

All the limits above are in the sense of the strong convergence.
We also observe that

Eλk
− Eλk−0 = Pk .

Then in the sense of vectorvalued distributions, we have

dEλ =
∑
k

δλk
⊗ Pk , (8.1.7)

where δλk
is the Dirac measure at the point λk. Hence, in the sense of Stieltjes

integrals (this will be explained in more detail below), one can write

x =
∫ +∞

−∞
dEλ(x) ,

and

T =
∫ +∞

−∞
λdEλ .

This is in this form that we shall generalize the previous formulas to the case
of any selfadjoint operator T .

Functional calculus for operators with compact resolvent :
If f is a continuous (or piecewise continuous function) one can also define f(T )
as

f(T ) =
∑
k

f(λk) · Pk ,

as an unbounded operator whose domain is

D(f(T )) = {x ∈ H |
∑
k

|f(λk)|2||xk||2 < +∞} ,

where xk = Pkx.

We can also write f(T ) in the form :

< f(T )x, y >H=
∫

R
f(λ) d < Eλx, y > ,

where the domain of f(T ) is described as

D(f(T )) = {x ∈ H |
∫

R
|f(λ)|2 d < Eλx, x >H< +∞} .
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Remark 8.1.2.
There are, for semibounded operators with compact resolvent, two possible con-
ventions for the notation of the eigenvalues. The first one is to classify them
into an increasing sequence

µj ≤ µj+1

counting each eigenvalue according to its multiplicity. The second one is to
describe them as a strictly increasing sequence λk with λk eigenvalue of multi-
plicity mk.

We now present a list of properties which are easy to verify in this particular
case and which will be still true in the general case.

1. If f and g coincide on σ(T ), then f(T ) = g(T ). For any (x, y) ∈ H ×H,
the support of the measure d 〈Eλx, y〉 is contained23 in σ(T ).

2. If f and g are functions on R,

f(T )g(T ) = (f · g)(T ) .

In particular, if (T − z) is invertible, the inverse is given by f(T ) where f
is a continuous function such that f(λ) = (λ− z)−1 , ∀λ ∈ σ(T ).

3. If f is bounded, then f(T ) is bounded and we have

||f(T )|| ≤ sup
λ∈σ(T )

|f(λ)| . (8.1.8)

4. The function f may be complex. Note that, in this case, we get

f(T )? = f(T ) . (8.1.9)

An interesting case is, for z ∈ C \ R, the function λ 7→ (λ − z)−1. Then
we get from (8.1.8)

||(T − z)−1||L(H) ≤ | Im z|−1 . (8.1.10)

5. More generally, this works also for z ∈ R \ σ(T ). We then obtain in this
case the spectral theorem

||(T − z)−1||L(H) ≤ d(z, σ(T ))−1 . (8.1.11)

6. If f ∈ C∞0 (R), we have :

f(T ) =
1
π

lim
ε→0+

∫
|Imz|>ε

(
∂f̃

∂z̄
)(T − z)−1dx.dy . (8.1.12)

23At the moment, we have not defined σ(T ) when T is unbounded. Think in the case of
operators with compact resolvent of the set of the eigenvalues !
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Here f̃ is defined by :

f̃(x, y) = (f(x) + iyf ′(x))χ(y) ,

where χ(y) is equal to 1 in a neighborhood of 0 and with compact support.
This formula can be proven using the Green-Formula (first prove it with
T replaced by the scalar λ) or using that :

∂z̄
1

z − λ
= πδ(λ,0) ,

where δ(λ,0) is the Dirac measure at (λ, 0) ∈ R2 and ∂z̄ = 1
2 (∂x + i∂y) .

One should observe that f̃ is not holomorphic but “almost” holomorphic
in the sense that :

∂f̃/∂z̄ = O(y) ,

as y → 0.

Exercise 8.1.3.
Show that, one can also find, for any N ≥ 1, f̃ = f̃N such that in addition

∂f̃/∂z̄ = O(yN ) ,

as y → 0.

8.2 Spectrum.

We now come back to the notion of spectrum that we have only met for bounded
operators.

Definition 8.2.1.
The resolvent set of a closed operator T is the set of the λ in C such that the
range of (T−λ) is equal to H and such that (T−λ) admits a continuous operator
denoted by R(λ) whose range is included in D(T ) such that :

R(λ)(T − λ) = ID(T ) ,

and
(T − λ)R(λ) = IH .

As in the bounded case, we observe that the resolvent set is open. Note also
that the continuity of R(λ) is actually a consequence of the property that the
graph of R(λ) is closed (using that T is closed) and that R(λ) is defined on H.

Definition 8.2.2.
The spectrum of a closed operator T is defined as the complementary set in C
of the resolvent set.
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It is then rather easy to show that the spectrum σ(T ) is closed in C.
The proof of the fact that the spectrum is contained in R if T is selfadjoint is
very close to the bounded case.
The spectrum σ(T ) is not empty if T is selfadjoint.
The proof is by contradiction. If T has empty spectrum T−1 is a bounded
selfadjoint operator with spectrum equal to {0}. We observe indeed that, for
λ 6= 0, the inverse of T−1 − λ is given, if λ−1 ∈ ρ(T ), by λ−1T (T − λ−1)−1.
Hence T−1 should be the 0 operator24, which contradicts T ◦ T−1 = I . This is
no longer true in the non selfadjoint case. At the end of the chapter, we give
some example appearing naturally in various questions in Fluid Mechanics.

8.3 Spectral family and resolution of the identity.

Definition 8.3.1.
A family of orthogonal projectors E(λ) (or Eλ), −∞ < λ < ∞ in an Hilbert
space H is called a resolution of the identity (or spectral family) if it satisfies
the following conditions :

•
E(λ)E(µ) = E(min(λ, µ)) , (8.3.1)

•
E(−∞) = 0 , E(+∞) = I , (8.3.2)

where E(±∞) is defined 25 by

E(±∞)x = lim
λ→±∞

E(λ)x (8.3.3)

for all x in H,

•
E(λ+ 0) = E(λ) , (8.3.4)

where E(λ+ 0) is defined by

E(λ+ 0)x = lim
µ→λ , µ>λ

E(µ)x . (8.3.5)

Remark 8.3.2.
We have shown an example of such a family in the previous subsection.

Proposition 8.3.3.
Let E(λ) be a resolution of identity (=spectral family); then for all x, y ∈ H,
the function

λ 7→< E(λ)x, y > (8.3.6)

24Here we refer to our analysis of the spectrum of a bounded self-adjoint operator.
25(8.3.1) gives the existence of the limit (cf also Lemma 8.3.4). The limit in (8.3.3) is taken

in H. We observe indeed that λ 7→ 〈E(λ)x, x〉 = ||E(λ)x||2 is monotonically increasing.
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is a function of bounded variation whose total variation26 satisfies

V (x, y) ≤ ||x|| · ||y|| , ∀x, y ∈ H . (8.3.7)

Proof.
Let λ1 < λ2 < · · · < λn. We first get from the assumption (8.3.1) that

E]α,β] = Eβ − Eα

is an orthogonal projection. From the Cauchy-Schwarz inequality we have∑n
j=2 | < E]λj−1,λj ]x, y > | =

∑n
j=2 | < E]λj−1,λj ]x,E]λj−1,λj ]y > |

≤
∑n
j=2 ||E]λj−1,λj ]x|| ||E]λj−1,λj ]y]||

≤
(∑n

j=2 ||E]λj−1,λj ]x||2
) 1

2
(∑n

j=2 ||E]λj−1,λj ]y||2
) 1

2

=
(
||E]λ1,λn]x||2

) 1
2

(
||E]λ1,λn]y||2

) 1
2 .

But for m > n, we get

||x||2 ≥ ||E]λn,λm]x||2 =
m−1∑
i=n

||E]λi,λi+1]x||
2 . (8.3.8)

We finally obtain that, for any finite sequence λ1 < λ2 < · · · < λn, we have

n∑
j=2

| < E]λj−1,λj ]x, y > | ≤ ||x|| · ||y|| .

This shows the bounded variation and the estimate of the total variation defined
as

V (x, y) := sup
λ1,··· ,λn

n∑
j=2

| < E]λj−1,λj ]x, y > | . (8.3.9)

Hence we have shown that, for all x and y in H, the function λ 7→ 〈E(λ)x, y〉
is with bounded variation and we can then show the existence of E(λ+ 0) and
E(λ− 0). This is the object of

Lemma 8.3.4.
If E(λ) is a family of projectors satisfying (8.3.1) and (8.3.2), then, for all
λ ∈ R, the operators

Eλ+0 = lim
µ→λ µ>λ

E(µ) , Eλ−0 = lim
µ→λ µ<λ

E(µ) , (8.3.10)

are well defined when considering the limit for the strong convergence topology.
26See the definition in (8.3.9)
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Proof.
Let us show the existence of the left limit. From (8.3.8), we get that, for any
ε > 0, there exists λ0 < λ such that, ∀λ′, ∀λ′′ ∈ [λ0, λ[, such that λ′ < λ′′

||E]λ′,λ′′]x||2 ≤ ε .

It is then easy to show that Eλ− 1
n
x is a Cauchy sequence converging to a limit

and that this limit does not depend on the choice of the sequence tending to λ.
The proof of the existence of the limit from the right is the same. This ends the
proof of the lemma.

It is then classical (Stieltjes integrals) that one can define for any continuous
complex valued function λ 7→ f(λ) the integrals

∫ b
a
f(λ)d〈E(λ)x, y〉 as a limit27

of Riemann sums.

Proposition 8.3.5.
Let f be a continuous function on R with complex values and let x ∈ H. Then
it is possible to define for α < β, the integral∫ β

α

f(λ) dEλx

as the strong limit in H of the Riemann sum :∑
j

f(λ′j)(Eλj+1 − Eλj
)x , (8.3.11)

where
α = λ1 < λ2 < · · · < λn = β ,

and
λ′j ∈]λj , λj+1] ,

when maxj |λj+1 − λj | → 0.

The proof is easy using the uniform continuity of f . Note also that the no-
tation could be misleading. May be

∫
]α,β]

f(λ)dEλx is less ambiguous.

We now arrive like in the standard theory to the generalized integral.

Definition 8.3.6.
For any given x ∈ H and any continuous function f on R, the integral :∫ +∞

−∞
f(λ)dEλx

is defined as the strong limit in H, if it exists of
∫ β
α
f(λ)dEλx when α → −∞

and β → +∞.
27The best is to first consider the case when x = y and then use a depolarisation formula,

in the same way that, when we have an Hilbertian norm, we can recover the scalar product
from the norm.
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Remark 8.3.7.
The theory works more generally for any borelian function (cf Reed-Simon,
Vol. 1 [RS-I]). This can be important, because we are in particular interested
in the case when f(t) = 1]−∞,λ](t).
One possibility for the reader who wants to understand how this can be made is
to look at Rudin’s book [Ru1], which gives the following theorem (Theorem 8.14,
p. 173)

Theorem 8.3.8. .

1. If µ is a complex Borel measure on R and if

(?) f(x) = µ(]−∞, x]) , ∀x ∈ R ,

then f is a normalized function with bounded variation (NBV). By NBV
we mean, with bounded variation, but also continuous from the right and
such that limx→−∞ f(x) = 0.

2. Conversely, to every f ∈ NBV , there corresponds a unique complex Borel
measure µ such that (?) is satisfied.

Theorem 8.3.9.
For x given in H and if f is a complex valued continuous function on R, the
following conditions are equivalent

• ∫ +∞

−∞
f(λ)dEλx exists ; (8.3.12)

• ∫ +∞

−∞
|f(λ)|2d||Eλx||2 < +∞; (8.3.13)

•
y 7→

∫ +∞

−∞
f(λ)d(< Eλy, x >H) (8.3.14)

is a continuous linear form.

Hint for the proof.

a)
(8.3.12) implies (8.3.14) essentially by using repeatedly the Banach-Steinhaus
Theorem (also called Uniform Boundedness Theorem) and the definition of the
integral.

b)
Let us prove that (8.3.14) implies (8.3.13).
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Let F be the linear form appearing in (8.3.14). If we introduce

y =
∫ β

α

f(λ)dEλx ,

then we first observe (coming back to the Riemann integrals) that

y = E]α,β]y .

It is then not too difficult to show that

F (y) =
∫ +∞
−∞ f(λ)d < Eλx, y >

=
∫ +∞
−∞ f(λ)d < Eλx,E]α,β]y >∫ +∞

−∞ f(λ)d < E]α,β]Eλx, y >

=
∫ β
α
f(λ)d < Eλx, y >

= ||y||2 .

Using (8.3.14), we get ||y||2 ≤ ||F || · ||y|| and consequently

||y|| ≤ ||F || . (8.3.15)

Here we observe that the r.h.s. is independent of α and β.

On the other hand, coming back to Riemann sums, we get

||y||2 =
∫ β

α

|f(λ)|2d||Eλx||2 .

We finally obtain ∫ β

α

|f(λ)|2d||Eλx||2 ≤ ||F ||2 . (8.3.16)

Hence, taking the limits α→ −∞ and β → +∞, we obtain (8.3.13).

c)
For the last implication, it is enough to observe that, for α′ < α < β < β′, we
have

||
∫ β′

α′
f(λ)dEλx−

∫ β

α

f(λ)dEλx||2 =
∫ α

α′
|f(λ)|2d||Eλx||2+

∫ β′

β

|f(λ)|2d||Eλx||2 .

Theorem 8.3.10.
Let λ 7→ f(λ) be a real-valued continuous function. Let

Df := {x ∈ H,
∫ +∞

−∞
|f(λ)|2 d〈E(λ)x, x〉 < ∞ , }.

Then Df is dense in H and we can define Tf whose domain is defined by

D(Tf ) = Df ,
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and

〈Tfx, y〉 =
∫ +∞

−∞
f(λ)d〈E(λ)x, y〉

for all x in D(Tf ) and y in H.
The operator Tf is selfadjoint.
Finally, we have

TfEλ is an extension of EλTf . (8.3.17)

Proof of the theorem.
From property (8.3.2), we obtain that, for any y in H, there exists a sequence
(αn, βn) such that E]αn,βn]y → y as n→ +∞.
But E]α,β]y belongs to Df , for any α, β, and this shows the density of Df in H.
We now observe that f being real and Eλ being symmetric the symmetry is
clear. The selfadjointness is proven by using Theorem 8.3.9.

We observe that, for f0 = 1, we have Tf0 = I and for f1(λ) = λ, we obtain
a selfadjoint operator Tf1 := T .
In this case we say that

T =
∫ +∞

−∞
λ dE(λ)

is a spectral decomposition of T and we shall note that

||Tx||2 =
∫ +∞

−∞
λ2d 〈E(λ)x, x〉 =

∫ +∞

−∞
λ2d ||E(λ)x||2 ,

for x ∈ D(T ).
More generally

||Tfx||2 =
∫ +∞

−∞
|f(λ)|2d((E(λ)x, x)) =

∫ +∞

−∞
|f(λ)|2d(||E(λ)x||2)

for x ∈ D(Tf ).

Conclusion. We have consequently seen in this subsection how one can as-
sociate to a spectral family of projectors a selfadjoint operator. We have seen
in the introduction that the converse was true for a compact operator or an
operator with compact resolvent. It remains to prove that this is true in the
general case.

8.4 The spectral decomposition Theorem.

The spectral decomposition Theorem makes explicit that the preceding situation
is actually the general one.
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Theorem 8.4.1.
Any selfadjoint operator T in an Hilbert space H admits a spectral decomposition
such that

< Tx, y >=
∫

R λ d < Eλx, y >H ,
Tx =

∫
R λd(Eλx) .

(8.4.1)

”Proof”.
We shall only give the main points of the proof. We refer to [Hu], [Le-Br] or
[DaLi] for detailed proofs or to [RS-I] for another proof which we describe now
shortly. Another interesting proof is based on Formula 8.1.12 and presented in
the book of Davies [Da].

Step 1.
It is rather natural to imagine that it is essentially enough to treat the case when
T is a bounded selfadjoint operator (or at least a normal bounded operator, that
is satisfying T ∗T = TT ∗). If A is indeed a general semibounded selfadjoint op-
erator, one can come back to the bounded case by considering (A+λ0)−1, with
λ0 real, which is bounded and selfadjoint. In the general case28, one can con-
sider (A+ i)−1.

Step 2.
We analyze first the spectrum of P (T ) where P is a polynomial.

Lemma 8.4.2. .
If P is a polynomial, then

σ(P (T )) = {P (λ) | λ ∈ σ(T )} (8.4.2)

Proof.
We start from the identity P (x) − P (λ) = (x − λ)Qλ(x) and from the corre-
sponding identity between bounded operators P (T ) − P (λ) = (T − λ)Qλ(T ).
This permits to construct the inverse of (T − λ) if one knows the inverse of
P (T )− P (λ).

Conversely, we observe that, if z ∈ C and if λj(z) are the roots of λ 7→
(P (λ)− z), then we can write :

(P (T )− z) = c
∏
j

(T − λj(z)) .

This permits to construct the inverse of (P (T ) − z) if one has the inverses of
(T − λj(z)) (for all j).

Lemma 8.4.3.
Let T be a bounded self-adjoint operator. Then

||P (T )|| = sup
λ∈σ(T )

|P (λ)| . (8.4.3)

28Here we recall that an example of operator which is not semibounded is given in Exer-
cise 4.1.3
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We first observe that

||P (T )||2 = ||P (T )∗P (T )||

This is the consequence of the general property for bounded linear operators
that :

||A∗A|| = ||A||2 .
We recall that the proof is obtained by observing first that :

||A∗A|| = sup||x||≤1,||y||≤1 |〈A∗Ax, y〉|
= supx,y ||x||≤1,||y||≤1 |〈Ax,Ay〉
≤ ||A||2 ,

and secondly that :

||A||2 = sup
||x||≤1

〈Ax,Ax〉 = sup
||x||≤1

〈A∗Ax, x〉 ≤ ||A∗A|| .

We then observe that :

||P (T )||2 = ||(P̄P )(T )||
= supµ∈σ(P̄P )(T ) |µ| (using Theorem 6.4.1)
= supλ∈σ(T ) |(P̄P )(λ)| (using Lemma 8.4.2)

=
(
supλ∈σ(T ) |P (λ)|2

)
.

Step 3.
We have defined a map Φ from the set of polynomials into L(H) defined by

P 7→ Φ(P ) = P (T ) , (8.4.4)

which is continuous
||Φ(P )||L(H) = sup

λ∈σ(T )

|P (λ)| . (8.4.5)

The set σ(T ) is a compact in R and using the Stone-Weierstrass theorem (which
states the density of the polynomials in C0(σ(T ))), the map Φ can be uniquely
extended to C0(σ(T )). We still denote by Φ this extension. The properties of
Φ are described in the following theorem

Theorem 8.4.4.
Let T be as selfadjoint continuous operator on H. Then there exists a unique
map Φ from C0(σ(T )) into L(H) with the following properties :

1.
Φ(f + g) = Φ(f) + Φ(g) , Φ(λf) = λΦ(f) ;
Φ(1) = Id , Φ(f̄) = Φ(f)∗ ;
Φ(fg) = Φ(f) ◦ Φ(g) .

2.
||Φ(f)|| = sup

λ∈σ(T )

|f(λ)| .
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3. If f is defined by f(λ) = λ, then Φ(f) = T .

4.
σ(Φ(f)) = {f(λ) | λ ∈ σ(T )} .

5. If ψ satisfies Tψ = λψ, then Φ(f)ψ = f(λ)ψ.

6. If f ≥ 0, then Φ(f) ≥ 0.

All these properties are obtained by showing first the properties for polyno-
mials P and then extending the properties by continuity to continuous functions.
For the last item, note that :

Φ(f) = Φ(
√
f) · Φ(

√
f) = Φ(

√
f)∗ · Φ(

√
f) .

Step 4.
We are now ready to introduce the measures. Let ψ ∈ H. Then

f 7→< ψ, f(T )ψ >H=< ψ,Φ(f)ψ >H

is a positive linear functional on C0(σ(T )). By measure theory (Riesz Theorem)
(cf Rudin [Ru1]), there exists a unique measure µψ on σ(T ), such that

< ψ, f(T )ψ >H=
∫
σ(T )

f(λ)dµψ(λ) . (8.4.6)

This measure is called the spectral measure associated with the vector ψ ∈ H.
This measure is a Borel measure. This means that we can extend the map Φ
and (8.4.6) to Borelian functions.
Using the standard Hilbert calculus (that is the link between sesquilinear form
and quadratic forms) we can also construct for any x and y in H a complex
measure dµx,y such that

< x,Φ(f)y >H=
∫
σ(T )

f(λ)dµx,y(λ) . (8.4.7)

Using the Riesz representation Theorem (Theorem 3.1.1), this gives as, when f is
bounded, an operator f(T ). If f = 1]−∞,µ], we recover the operator Eµ = f(T )
which permits to construct indeed the spectral family announced in Theorem
8.4.1.

Remark 8.4.5.
Modulo some care concerning the domains of the operator, the properties men-
tioned at the first subsection of this section for operators with compact resolvent
are preserved in the case of an unbounded selfadjoint operator.
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8.5 Applications of the spectral theorem:

One of the first applications of the spectral theorem (Property 2.) is the follow-
ing property :

Proposition 8.5.1.

d(λ, σ(T ))||x|| ≤ ||(T − λ)x|| , (8.5.1)

for all x in D(T ).

This proposition is frequently used in the following context. Except very
special cases like the harmonic oscillator, it is usually difficult to get explicitely
the values of the eigenvalues of an operator. One consequently tries to localize
these eigenvalues by using approximations. Let us suppose for example that one
has found λ0 and y in D(L) such that

||(T − λ0)y|| ≤ ε (8.5.2)

and ||y|| = 1 then we deduce the existence of λ in the spectrum of L such that
|λ− λ0| ≤ ε.
Standard examples are the case of hermitian matrices or the case of the anhar-
monic oscillator T := −h2 d2

dx2 +x2+x4. In the second case the first eigenfunction
of the harmonic oscillator −h2 d2

dx2 + x2 can be used as approximate eigenfunc-
tion y in (8.5.2) with λ0 = h. We then find (8.5.2) with ε = O(h2).
Another application is, using the property that the spectrum is real, the follow-
ing inequality

| Im λ| ||x|| ≤ ||(T − λ)x|| (8.5.3)

and this gives an upper bound on the norm of (T − λ)−1 in L(H) by 1/| Im λ|.
One can also consider the operator Tε = −d2/dx2 + x2 + εx4. One can show
that near each eigenvalue of the harmonic oscillator (2n+ 1), then there exists,
when ε > 0 is small enough, an eigenvalue λn(ε) of Tε.
Another good example to analyze is the construction of a sequence of approxi-
mate eigenfunctions considered in Subsection 1.1. From the construction of un
such that, with T = −∆,

||(T − ξ2)un||L2(Rm) = O(
1
n

) ,

one obtains that
d(σ(T ), ξ2) ≤ C

n
, ∀n ∈ N .

As n→ +∞, we get ξ2 ∈ σ(T ).
It is then easy to show that

σ(P ) = [0,+∞[.

It is enough to prove indeed, using the Fourier transform, that, for any b > 0,
(−∆ + b) has an inverse (−∆ + b)−1 sending L2 onto H2.

Here we have followed in a particular case the proof of the following general
theorem
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Theorem 8.5.2.
Let T be a selfadjoint operator. Then λ ∈ σ(P ) if and only if there exists a
sequence (un)n∈N, un ∈ D(T ) such that ||un|| = 1 and ||(T − λ)un|| → 0 as
n→ +∞.

Exercise 8.5.3.
Show the “only if”, after reading of the proof of Proposition 8.5.4.

Note also the following characterization.

Proposition 8.5.4.

σ(T ) = {λ ∈ R, s.t. ∀ε > 0, E(]λ− ε, λ+ ε[) 6= 0} (8.5.4)

The proof uses in one direction the explicit construction of (T−λ)−1 through
Proposition 8.5.1. If λ and ε0 > 0 are such E]λ−ε0,λ+ε0[ = 0. Then there exists
a continuous function f on R, such that f(t) = (t− λ)−1 on the support of the
measure dEλ. This permits to construct the inverse and to show that λ is in
the resolvent set of T .
Conversely, let λ in the set defined by the r.h.s of (8.5.4) later denoted by σ̃(T ).
For any n ∈ N∗, let us take xn such that ||xn|| = 1 and E(]λ− 1

n , λ+ 1
n [)xn =

xn. Using property 2. of Theorem 8.4.4, with the function t 7→ fn(t) = (t −
λ)1]λ− 1

n ,λ+ 1
n [(t), we get :

||(T − λ)xn|| = ||(T − λ)E(]λ− 1
n
, λ+

1
n

[)xn|| ≤
1
n
||xn|| =

1
n
.

Applying Proposition 8.5.1, we obtain :

σ̃(T ) ⊂ σ(T ) .

8.6 Examples of functions of a selfadjoint operator

We shall for example meet usually in spectral theory the functions

1. f is the characteristic function of ]−∞, λ], Y]−∞,λ] ; Φ(f) = f(T ) is then
Φ(f) = E(λ).

2. f is the characteristic function of ]−∞, λ[, Y]−∞,λ[ ; f(T ) is then Φ(f) =
E(λ− 0).

3. f is a compactly supported continuous function. f(T ) will be an operator
whose spectrum is localized in the support of f .

4. ft(λ) = exp(itλ) with t real.
ft(T ) is then a solution of the functional equation

(∂t − iT )(f(t, T )) = 0
f(0, T ) = Id

We note here that, for all real t, ft(T ) = exp(itT ) is a bounded unitary
operator .
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5. gt(λ) = exp(−tλ) with t real positive. gt(T ) is then a solution of the
functional equation

(∂t + T )(g(t, T )) = 0 , for t ≥ 0
g(0, T ) = Id .

We have discussed in the introduction the case of an operator with compact
resolvent. The other case to understand for the beginner is of course the case
of the free Laplacian −∆ on Rn. Using the Fourier transform F , we get as
unbounded operator the operator of multiplication by ξ2. It is not difficult
to define directly the functional calculus which simply becomes for a borelian
function φ :

φ(−∆) = F−1φ(ξ2)F . (8.6.1)

One possibility is to start from (−∆ + 1)−1, for which this formula is true and
to then follow what was our construction of the functional calculus. Another
possibility is to use the Formula (8.1.12) and to use that (8.6.1) is satisfied for
(−∆ + z)−1, with z ∈ C \ R.

The spectral family is then defined by

< E(λ)f, g >L2(Rm)=
∫
ξ2≤λ

f̂(ξ) · ĝ(ξ) dξ .

8.7 Spectrum and spectral measures

Another interest of the spectral theorem is to permit the study of the different
properties of the spectrum according to the nature of the spectral measure and
this leads to the definition of the continuous spectrum and of the pure point
spectrum. Let us briefly discuss (without proof) these notions.
Starting of a selfadjoint operator T , one defines Hpp (pure point subspace) as
the set defined as

Hpp = {ψ ∈ H | f 7→< f(T )ψ,ψ >H is a pure point measure } (8.7.1)

We recall that a measure on X is pure point if

µ(X) =
∑
x∈X

µ({x}) . (8.7.2)

One can verify that Hpp is a closed subspace of H and that the corresponding
orthogonal projection ΠHpp satisfies

ΠHppD(T ) ⊂ D(T ) .

In this case T/Hpp
is naturally defined as unbounded operator on Hpp and one

defines the pure point spectrum of T by

σpp(T ) = σ(T/Hpp
) . (8.7.3)
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We can similarly define Hc (continuous subspace) as the set defined as

Hc = {ψ ∈ H | f 7→< f(T )ψ,ψ >H is a continuous measure } (8.7.4)

We recall that a measure on X is continuous if

µ({x})) = 0 , ∀x ∈ X . (8.7.5)

One can verify that Hc is a closed subspace of H and that the corresponding
orthogonal projection ΠHc satisfies

ΠHcD(T ) ⊂ D(T ) .

Moreover, it can be shown (See [RS-I]), that

H = Hpp ⊕Hc . (8.7.6)

In this case T/Hc
is naturally defined as unbounded operator on Hc and one

defines the continuous spectrum of T by

σc(T ) = σ(T/Hc
) . (8.7.7)

Example 8.7.1.
The spectrum of −∆ is continuous.

We observe indeed that

lim
ε→0 , ε>0

∫
||ξ|2−λ|≤ε

|f̂(ξ)|2dξ = 0 , ∀f ∈ L2(Rm) .

One can still refine this discussion by using the natural decomposition of the
measure given by the Radon-Nikodym Theorem. This leads to the notion of
absolutely continuous spectrum and of singularly continuous spectrum.
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9 Non-self adjoint operators and ε-pseudospectrum

When the operators are not selfadjoint, one should think that the spectrum is
not the right object because it becomes very unstable by perturbation. It has
been realized in the recent years that a family of sets (parametrized by ε > 0)
in C called the ε-pseudospectrum is the right object for getting this stability.

9.1 Main definitions and properties

Here we follow Chapter 4 in the book by L.N. Trefethen and M. Embree [TrEm].

Definition 9.1.1.
If A is a closed operator with dense domain D(A) in an Hilbert space H, the
ε-pseudospectrum σε(A) of A is defined by

σε(A) := {z ∈ C | ||(zI −A)−1|| > 1
ε
}.

Remark 9.1.2.
In one part of the literature, > is replaced by ≥ in the above definition. We
have chosen the definition which leads to the simplest equivalent definitions.
We will be interested in this notion in the limit ε→ 0.

We take the convention that ||(zI − A)−1|| = +∞ if z ∈ σ(A), where σ(A)
denotes the spectrum of A, so it is clear that we always have :

σ(A) ⊂ σε(A) .

When A is selfadjoint (or more generally normal), σε(A) is, by the Spectral
Theorem, given by,

σε(A) = {z ∈ C | d(z, σ(A)) < ε} .

So this is only in the case of non self-adjoint operators that this new concept (first
appearing in numerical analysis, see Trefethen [Tr1, Tr2]) becomes interesting.
Although formulated in a rather abstract way, the following (weak version of) a
result by Roch-Silbermann [RoSi] explains rather well to what corresponds the
ε-pseudospectrum :

Proposition 9.1.3.

σε(A) =
⋃

{δA∈L(H) s. t. ||δA||L(H)<ε}

σ(A+ δA) .

In other words, z is in the ε-pseudospectrum of A if z is in the spectrum of
some perturbation A+ δA of A with ||δA|| < ε. This is indeed a natural notion
thinking of the fact that the models we are analyzing are only approximations
of the real problem and of the fact that the numerical analysis of the model goes
through the analysis of explicitly computable approximated problems. Numer-
ical examples are treated in [Tr2].
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Proof
Let us first show the easy part of this characterization of the ε-pseudospectrum.
If ||(z−A)−1|| ≤ 1

ε , it is clear that for any δA such that ||δA|| < ε, (A+ δA− z)
is invertible. Its inverse is obtined by observing that

(z −A)−1(z −A− δA) = I − (z −A)−1δA .

But the left hand side is invertible because

||(z −A)−1δA|| ≤ ||(z −A)−1|| ||δA|| < 1 .

The inverse is consequently given by

(z −A− δA)−1 =

∑
j

((z −A)−1δA)j

 (z −A)−1 .

The converse is not very difficult. If ||(z − A)−1|| > 1
ε , by definition of the

norm, there exists u ∈ H such that ||u|| = 1 and

||(z −A)−1u|| = µ >
1
ε
.

Let v = (z −A)−1u. Let (δA) the linear bounded operator such that

(δA)x = µ−2u 〈v |x〉 , ∀x ∈ H .

It is clear that v is an eigenfunction of A+ δA associated to z and that ||δA|| =
1
µ < ε.
Hence we have found a perturbation A+ δA of A such that z ∈ σ(A+ δA) and
||δA|| < ε.

Another presentation for defining the ε-pseudospectrum is to say that z ∈
σε(A) if and only if :
either z ∈ σ(A) or if there exists an ε-pseudoeigenfunction that is an u ∈ D(A)
such that ||u|| = 1 and ||(z −A)u|| < ε.

Theorem 9.1.4 (ε-Pseudospectrum of the adjoint).
For any closed densely defined operator A and any ε > 0, we have

σε(A∗) = σε(A) ,

where for a subset Σ in C we denote by Σ the set

Σ = {z ∈ C | z̄ ∈ Σ} .

Proof
This is immediate using that, if z 6∈ σ(A),

‖(z −A)−1‖ = ‖(z̄ −A∗)−1‖ .
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9.2 ε-Pseudospectrum : complete analysis of the differen-
tiation operator.

We consider the operator A defined on L2(]0, 1[) by

D(A) = {u ∈ H1(]0, 1[) , u(1) = 0} ,

and
Au = u′ , ∀u ∈ D(A) .

This is clearly a closed operator with dense domain.
The adjoint of A is defined on L2(]0, 1[) by

D(A∗) = {u ∈ H1(]0, 1[) , u(0) = 0} ,

and
Au = −u′ , ∀u ∈ D(A∗) .

Lemma 9.2.1.
σ(A) = ∅ and A has compact resolvent.

First we can observe that (A− z) is injective on D(A) for any z ∈ C. Then
one easily verifies that for any z ∈ C, the inverse is given by

[(z −A)−1f ](x) =
∫ 1

x

exp z(x− s) f(s) ds .

It is also clear that this operator is compact.

To analyze the ε-pseudospectrum is more interesting. For this we need to
estimate

ψ(z) := ‖(z −A)−1‖ .

The first remark is that ψ depends only on Re z. For this we can observe that
the map u 7→ exp iαx u is a unitary transform on L2(]0, 1[), which maps D(A)
onto D(A).
The main result is the following

Theorem 9.2.2.
The function ψ is a subharmonic function which depends only of Re z and
satisfies

ψ(z) ≤ 1
Re z

, for Re z > 0 , (9.2.1)

and
ψ(z) = −exp− Re z

2 Re z
+O(

1
| Re z|

) , for Re z < 0 . (9.2.2)

This implies for the ε-pseudospectrum of A :
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Corollary 9.2.3.
For ε > 0, the ε-pseudospectrum of A is an hyperplane of the form

σε(A) = {z ∈ C |Rez < cε} (9.2.3)

with

cε ∼
{

(ln ε) as ε ,→ 0
ε as ε→ +∞ .

(9.2.4)

Rough estimate from below for Re z < 0
A first (non optimal) step is to think29 “semi-classical”. Let us take z real
and let us consider

x 7→ φz(x) := |2z| 12 exp zx .

This function is not in Ker (z − A) because it does not satisfies the boundary
condition. But when z → −∞, the boundary condition at x = 1 is “almost
satisfied”. Actually φz lives very close to 0. Moreover, for z < 0,

‖φz‖2 = 1− exp 2z

Hence the norm tends to 1 as z → −∞.
Let us indeed consider for η > 0 a cut-off function χη such that χη = 1 on
[0, 1− η] and χη = 0 on [1− η

2 , 1] and let us introduce

φz,η(x) = χηφz .

We now observe that φz,η ∈ D(A) and that

(z −A)φz,η(x) = −χ′ηφz .

The L2 norm of the right hand side is exponentially small like exp(1− η)z.
This shows that, for any η > 0 there exists zη < 0 such that

1
Cη

exp−(1− η)z ≤ ψ(z) , for z < zη . (9.2.5)

This is not as good as in the statement of the theorem but this suggests a rather
general point of view. We will complete later the analysis of the behavior of ψ
as Re z 7→ −∞.

Rough estimate from above for Re z > 0
Here we will try to estimate ψ(z) from above by using an a priori estimate for
(A− z) (with z real).
For u ∈ D(A), we have

〈(A− z)u |u〉 = −z||u||2 +
∫ 1

0

u′(t)ū(t)dt .

29The semi-classical parameter is h = 1
Re z

80



But by an integration by parts, we observe that∫ 1

0

u′(t)ū(t) dt = −
∫ 1

0

u(t)ū′(t)dt− |u(0)|2 .

Coming back to the previous equality and taking the real part, we obtain

− Re 〈(A− z)u |u〉 = z‖u‖2 +
1
2
|u(0)|2 ≥ z‖u‖2 .

Then we obtain

||(A− z)u|| ≥ z||u|| , ∀u ∈ D(A) , (9.2.6)

which implies (9.2.1).

Control of the resolvent using Schur’s Lemma
The operator (A− z)−1 being an operator associated to an integral kernel, one
can analyze what is given by Schur’s lemma or by the Hilbert-Schmidt criterion.
The kernel is defined by

K(x, s) =
{

0 for s < x
exp z(x− s) for x < s

According to Schur’s Lemma, we have to consider supx
∫
K(x, s)ds and sups

∫
K(x, s)dx.

If we are interested with the Hilbert-Schmidt norm, we have to compute
∫ ∫

K(x, s)2dxds.
All these computations can be done rather explicitely !
For z 6= 0, we have

sup
x

∫
K(x, s)ds =

1
z
(1− exp−z) ,

and
sup
s

∫
K(x, s)dx =

1
z
(1− exp−z)

This gives

ψ(z) ≤ 1
z
(1− exp−z) . (9.2.7)

This is actually an improved version of (9.2.1) for z > 0 and for z < 0, it is
better to write it in the form

ψ(z) ≤ −1
z

(exp−z − 1) , (9.2.8)

and to compare it to the lower bound obtained in (9.2.5).

81



A more accurate estimate for z < 0
We can rewrite (z −A)−1 in the form

(z −A)−1 = R1 −R2 ,

with

R1v(x) :=
∫ 1

0

exp z(x− s) v(s), ds

and
R2v(x) :=

∫ x

0

exp z(x− s) v(s), ds

Observing that R∗2 can be treated as for the proof of (9.2.7), we first obtain

||R2|| ≤ − 1
Re z

.

It remains to control ||R1||. This norm can be computed explicitly. We have
indeed

||R1v|| = || exp zx|| |
∫ 1

0

exp−zs v(s) ds|

Hence we have just to compute the norm of the linear form

v 7→
∫ 1

0

exp−zs v(s) ds

which is the L2-norm of s 7→ exp−zs.
This gives

||R1|| = || exp zx||·|| exp−zx|| = − 1
2z

√
(1− e2z)(e−2z − 1) = − 1

2z
e−z(1−e2z) .

Combining the estimates of ||R1|| and ||R2|| leads to (9.2.2).

Remark 9.2.4.
One can discretize the preceding problem by considering, for n ∈ N∗, the matrix
An = nA1 with A1 = I + J where J is the n× n matrix such that Ji,j = δi+1,j.
One can observe that the spectrum of An is −n. It is also interesting to analyze
the pseudospectrum.

Remark 9.2.5.
There is a semi-classical version of the pseudospectrum for families Ah. One
can then relate the ε appearing in the definition of the ε-pseudospectrum with the
parameter h (which could typically be in ]0, h0]). For example, we can consider
ε(h) = hN .

Exercise 9.2.6.
Analyze the pseudospectrum of d

dθ + λg(θ) on the circle.
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9.3 Another example of non selfadjoint operator without
spectrum

We consider the spectrum of the operator

A =
d

dx
+ x2 ,

on the line.
We can take as domain D(A) the space of the u ∈ L2(R) such that Au ∈ L2(R).
We note that C∞0 (R) is dense for the graph norm in D(A). Hence A is the
closed extension of the differential operator d

dx + x2 with domain C∞0 (R). We
note that the operator is not selfadjoint. The adjoint is − d

dx + x2.

The two following inequalities can be useful.

Re 〈Au |u〉 ≥ ||xu||2 ≥ 0 . (9.3.1)

This inequality is first proved for u ∈ C∞0 (R) and then extended to u ∈ D(A)
using the density of C∞0 (R). A first consequence is that

||xu||2 ≤ ||Au|| ||u|| ≤ 1
2

(
||Au||2 + ||u||2

)
. (9.3.2)

This implies that D(A) (with graph norm) has continuous injection in the
weighted space L2

ρ with ρ(x) = |x|. Together with the fact thatD(A) ⊂ H1
loc(R),

this implies that (A+ I) is invertible and that the inverse is compact.
The second inequality is

||x2u||2 + ||u′||2 ≤ C
(
||Au||2 + ||u||2

)
. (9.3.3)

To prove it, we observe that

||Au||2 = ||u′||2 + ||x2u||2 + 2 Re 〈u′ , x2u〉 .

Using an integration by parts, we get

−2 Re 〈u′ , x2u〉 = 2〈xu , u〉 .

Hence we get (using Cauchy-Schwarz)

||Au||2 ≥ ||u′||2 + ||x2u||2 − 2||xu|| ||u|| .

One can then use (9.3.2) to get the conclusion.
(9.3.3) permits to obtain that

D(A) = {u ∈ H1(R) , x2u ∈ L2(R)} , (9.3.4)

which is not obvious at all.
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Proposition 9.3.1.
A has an inverse, and the inverse is compact. Moreover its spectrum is empty.

We consider on R, the differential equation

u′ + x2u = f . (9.3.5)

For all f ∈ L2(R), let us show that there exists a unique solution in L2(R) de
(9.3.5). An elementary calculus gives

u(x) = exp−1
3
x3

∫ x

−∞
exp

1
3
y3f(y) dy .

One has to work a little for showing that u ∈ L2 (this is easier if f is compactly
supported). If we denote by K the operator which associates to f the solution
u, the distribution kernel of K is given by

K(x, y) =
{

0 if y ≥ x
exp 1

3 (y3 − x3) if y < x
.

We note that if there exists an eigenvalue of K λ 6= 0 and if uλ is a corresponding
eigenfunction, then uλ satisfies

u′λ + x2uλ =
1
λ
uλ . (9.3.6)

From this we deduce that K has no non zero eigenvalue. One can indeed solve
explicitly (9.3.6) :

uλ(x) = C exp−x
3

3
exp

1
λ
x .

It is then easy to see that no one can be in L2(R) when C 6= 0.
To show that K is compact, we can actually show that K is Hilbert-Schmidt.
That is, we will show that K(x, y) is in L2(R2). We have∫

y<x

exp
2
3
(y3 − x3) dxdy =

∫ +∞

−∞

(∫ x

−∞
exp

2
3
(y3 − x3) dy

)
dx .

Dividing the domain of integration in two parts, we first consider :∫ +1

−1

(∫ x

−∞
exp

2
3
(y3 − x3) dy

)
dx ,

which is bounded from above by

2e
∫ 1

−∞
exp

2
3
y3 dy .

Then we look at ∫
|x|>1

(∫ x

−∞
exp

2
3
(y3 − x3) dy

)
dx .
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Here we observe that

exp
2
3
(y3 − x3) = exp

2
3
(y − x)(y2 + yx+ x2) ,

and that
(y2 + yx+ x2) ≥ 1

2
(y2 + x2) ≥ 1

2
x2 .

This leads, as y ≤ x, to the upper bound la majoration

exp
2
3
(y3 − x3) ≤ exp

1
3
(y − x)x2 .

and to ∫
|x|>1

(∫ x

−∞
exp

2
3
(y3 − x3) dy

)
dx ≤ 3

∫
|x|>1

1
x2
dx < +∞.

This implies that the spectrum of K is 0.
Non self-adjoint effects.

We can also try to estimate the “solution” operator Kλ corresponding to the
equation

u′ + x2u = λf . (9.3.7)

It is easy, to see that we can reduce the computation to the case when λ réel.
We have indeed

Kλ = exp−i Im λx K Re λ exp i Im λx .

For λ < 0, we easily find, observing that u ∈ S(R) and

Re 〈u′ + x2u− λ |u〉L2 = 〈x2u− λ |u〉 ≥ −λ||u||2 ,

the estimate
||Kλ||L(L2) ≤ − 1

λ
.

The case λ = 0 has been treated before. Without to much effort, we get the
same result for | Re λ| ≤ 1.
So we have to consider the case when λ ≥ 1 and control the estimate as λ→ +∞.
Proceeding as in the case λ = 0, we first obtain

Kλ(x, y) =
{

0 si y ≥ x
exp

(
1
3 (y3 − x3)− λ(y − x)

)
si y < x

.

Again, we see that Kλ(x, y) is in L2(R2) :

||Kλ||2L2(R2) =
∫ +∞

−∞

(∫ x

−∞
exp

(
2
3
(y3 − x3)− 2λ(y − x)

)
dy

)
dx .
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The proof is similar to the case λ = 0. We cut the domain of integration.∫ −1

−1−4
√
λ

(∫ x

−∞
exp

(
2
3
(y3 − x3)− 2λ(y − x)

)
dy

)
dx ,

is bounded after a new partition of the domain of integration by

4
√
λe

2
3 (1+4λ

1
2 )3

∫ −1−4
√
λ

−∞
exp

(
2
3
y3 − 2λy

)
dy ≤ 3

√
λ e

2
3 (1+2λ

1
2 )3 ,

and by ∫ −1

−1−4
√
λ

(∫ x
−1−4

√
λ

exp
(

2
3 (y3 − x3)− 2λ(y − x)

)
dy

)
dx

≤ 4
√
λ supx∈]−1−4

√
λ,−1[

(∫ x
−1−4

√
λ

exp−2λ(y − x) dy
)

≤ 2λ−
1
2 e8λ

3
2 .

Then we consider∫ +1

−1

(∫ x

−∞
exp

(
2
3
(y3 − x3)− 2λ(y − x)

)
dy

)
dx ,

which is bounded by

2e
2
3+2λ

∫ −1−4
√
λ

−∞ exp( 2
3y

3 − 2λy) dy
≤ 2e

2
3+2λ

≤ Ce
2
3+2λ .

and by ∫ +1

−1

(∫ x
−1−4

√
λ

exp
(

2
3 (y3 − x3)− 2λ(y − x)

)
dy

)
dx∫ +1

−1

(∫ x
−1−4

√
λ

exp−2λ(y − x) dy
)
dx

≤ 1
λ exp(4λ(1 + 2

√
λ))

We look now at∫ 1+4
√
λ

1

(∫ x

−∞
exp

(
2
3
(y3 − x3)− 2λ(y − x)

)
dy

)
dx ,

which is similarly controlled by

4
√
λ exp 2λ(1 + 4

√
λ)

∫ −1−4
√
λ

−∞
exp

(
2
3
y3 − 2λy

)
dy

and by ∫ 1+4
√
λ

1

(∫ x

−1−4
√
λ

exp−2λ(y − x) dy
)
dx .
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Finally, we have to estimate∫
|x|≥1+4

√
λ

(∫ x

−∞
exp

(
2
3
(y3 − x3)− 2λ(y − x)

)
dy

)
dx ,

Here we observe that

exp
2
3
(y3 − x3) = exp

2
3
(y − x)(y2 + yx+ x2) ,

and that
(y2 + yx+ x2) ≥ 1

2
(y2 + x2) ≥ 1

2
x2 .

This leads to the upper bound

exp
2
3
(y3 − x3) exp−2λ(y − x) ≤ exp

1
3
(y − x)(x2 − 6λ) .

By simple integration, we get :∫
|x|>1+4

√
λ

(∫ x
−∞ exp

(
2
3 (y3 − x3)− 2λ(y − x)

)
dy

)
dx

≤ 3
∫
|x|>1+4

√
λ

1
x2−6λdx < +∞ .

The last bound can be controlled independently of Re λ. Hence, we have finally
proved the existence of C > 0 such that, for Re λ ≥ 1, we have

||Kλ||HS ≤ C|λ|C expC Re λ
3
2 .

Remark 9.3.2.
Using the Laplace integral method, one can get the asymptotics of ||Kλ||HS.
Note that ||Kλ||HS ≥ ||Kλ||L(L2).
One can also find a lower bound of ||Kλ||L(L2) using quasimodes.
Note that Kλ is the resolvent of the unbounded operator − d

dx+x2. This operator
is not selfadjoint. He is with compact resolvent and has empty spectrum.
Moreover, the norm of the resolvent depends only of Re λ.

Remark 9.3.3.
Using the Fourier transform, on can see that the operator is isospectral to the
complex Airy operator :

D2
x + ix , (9.3.8)

This will be analyzed in the next subsection.

9.4 The non selfadjoint harmonic oscillator

Other interesting example to analyze in the same spirit is the complex harmonic
oscillator

H1 := − d2

dx2
+ ix2
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(See Davies (1999), [Tr2], [Zw] and references therein). The spectrum can be
seen as the spectrum of − d2

dx2 + x2 rotated by π
4 in the complex plane.

Let us sketch how we can guess the result.
If we make a dilation x = ρy, the operator − d2

dx2 + ix2 becomes the operator
−ρ−2 d2

dy2 + iρy2 which is unitary equivalent.
We can now consider the family of operator

ρ 7→ Hρ := −ρ−2 d
2

dx2
+ iρ2x2 ,

for ρ in a sector in C.
It can be shown that for ρ in (an open neighborhood of) the sector arg ρ ∈ [−π

8 , 0]
the spectrum is discrete and independent of ρ (this is a mixture of Kato’s theory
and of the so called Combes-Thomas argument).

Taking ρ = exp−iπ8 , we get

H−π
8

= exp i
π

4
(− d2

dx2
+ x2) .

Hence :
σ(H1) = {exp i

π

4
(2n+ 1) , n ∈ N} . (9.4.1)

Let us give rigorously a part of an alternative proof. If we start from the
basis of eigenfunctions of the standard harmonic oscillator un. It is easy to
see that un(ρ−1 exp−iπ8 x) is an eigenfunction of Hρ in L2(R). Hence we have
proven one inclusion in (9.4.1).
What is less clear is to show that the family x 7→ un(ρ−1 exp−iπ8 x) which is no
more orthogonal generates a dense subspace in L2. This is discussed in Davies
paper.

Remark 9.4.1.
This example shows that when the operators are not selfadjoint many things can
occur. In particular the fact that if z ∈ ρ(T ), then ||(T − z)−1|| is controlled by

1
d(λ,σ(T ) becomes wrong.

9.5 The complex Airy operator in R
This operator can be defined as the closed extension A of the differential opera-
tor on C∞0 (R) A+

0 := D2
x+i x . We observe that A = (A−0 )∗ with A−0 := D2

x−i x
and that its domain is

D(A) = {u ∈ H2(R) , x u ∈ L2(R)} .

In particular A has compact resolvent.
It is also easy to see that

Re 〈Au |u〉 ≥ 0 . (9.5.1)
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Figure 1: Davies operator: pseudospectra
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Hence −A is the generator of a semi-group St of contraction,

St = exp−tA . (9.5.2)

Hence all the results of this theory can be applied.
In particular, we have, for Re λ < 0

||(A− λ)−1|| ≤ 1
| Re λ|

. (9.5.3)

One can also show that the operator is maximally accretive.
A very special property of this operator is that, for any a ∈ R,

TaA = (A− ia)Ta , (9.5.4)

where Ta is the translation operator (Tau)(x) = u(x− a) .
As immediate consequence, we obtain that the spectrum is empty and that the
resolvent of A, which is defined for any λ ∈ C satisfies

||(A− λ)−1|| = ||(A− Re λ)−1|| . (9.5.5)

The most interesting property is the control of the resolvent for Re λ ≥ 0.

Proposition 9.5.1.
There exist two positive constants C1 and C2, such that

C1 | Re λ|− 1
4 exp

4
3

Re λ
3
2 ≤ ||(A−λ)−1|| ≤ C2 | Re λ|− 1

4 exp
4
3

Re λ
3
2 , (9.5.6)
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The proof of the (rather standard) upper bound is based on the direct anal-
ysis of the semi-group in the Fourier representation. We note indeed that

F(D2
x + i x)F−1 = ξ2 +

d

dξ
. (9.5.7)

Then we have

FStF−1v = exp(−ξ2t+ ξt− t3

3
)v(ξ − t) , (9.5.8)

and this implies immediately

||St|| = expmax
ξ

(−ξ2t+ ξt− t3

3
) = exp(− t3

12
) . (9.5.9)

Then one can get an estimate of the resolvent by using, for λ ∈ C, the formula

(A− λ)−1 =
∫ +∞

0

exp−t(A− λ) dt . (9.5.10)

For a closed accretive operator, (9.5.10) is standard when Re λ < 0, but es-
timate (9.5.9) on St gives immediately an holomorphic extension of the right
hand side to the whole space giving for λ > 0 the estimate

||(A− λ)−1|| ≤
∫ +∞

0

exp(λt− t3

12
) dt . (9.5.11)

The asymptotic behavior as λ → +∞ of this integral is immediately obtained
by using the Laplace method and the dilation t = λ

1
2 s in the integral.

The proof of the lower bound is obtained by constructing quasimodes for the
operator (A − λ) in its Fourier representation. We observe (assuming λ > 0),
that

ξ 7→ u(ξ;λ) := exp
(
−ξ

3

3
+ λξ − 2

3
λ

3
2

)
(9.5.12)

is a solution of
(
d

dξ
+ ξ2 − λ)u(ξ;λ) = 0 . (9.5.13)

Multiplying u(·;λ) by a cut-off function χλ with support in ] −
√
λ,+∞[ and

χλ = 1 on ]−
√
λ+ 1,+∞[, we obtain a very good quasimode, concentrated as

λ→ +∞, around
√
λ, with an error term giving almost30 the announced lower

bound for the resolvent.
Of course this is a very special case of a result on the pseudo-spectra but this
leads to an almost optimal result.

30One should indeed improve the cut-off for getting an optimal result
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10 Essentially selfadjoint operators

10.1 Introduction

In most of the examples which were presented, the abstract operators are as-
sociated with differential operators. These differential operators are naturally
defined on C∞0 (Ω) or D′(Ω). Most of the time (for suitable potentials increas-
ing slowly at ∞) they are also defined (when Ω = Rm) on S(Rm) or S ′(Rm).
It is important to understand how the abstract point of view can be related
to the PDE point of view. The theory of the essential selfadjointness gives
a clear understanding of the problem. The question is to decide if, starting
from a symmetric operator T , whose domain D(T ) = H0 is dense in H, there
exists a unique selfadjoint extension T ext of T . We recall that it means that
D(T ) ⊂ D(T ext) and T extu = Tu , ∀u ∈ D(T ). This leads to

Definition 10.1.1.
A symmetric operator T with domain H0 is called essentially selfadjoint if its
closure is selfadjoint.

Proposition 10.1.2.
If T is essentially selfadjoint, then its selfadjoint extension31 is unique.

Indeed suppose that S is a selfadjoint extension of T . Then S is closed and
being an extension of T , is also an extension of its smallest extension T . We
recall from Theorem 2.2.6 that T = T ∗∗. Thus, S = S∗ ⊂ (T ∗∗)∗ = T ∗∗, and so
S = T ∗∗.

Example 10.1.3.
Here we give a list of examples and counter-examples which will be analyzed
later.

1. The differential operator −∆ with domain H0 = C∞0 (Rm) is essentially
selfadjoint (see later).

2. The differential operators −∆ + |x|2 with domain H0 = C∞0 (Rm) or
H1 = S(Rm) are essentially selfadjoint and admit consequently a unique
selfadjoint extension. This extension is the same for the two operators.
The domain can be explicitely described as

B2(Rm) =
{u ∈ L2(Rm) | xαDβ

xu ∈ L2(Rm) , ∀α, β ∈ Nm with |α|+ |β| ≤ 2} .

3. The differential operator −∆ with domain C∞0 (Ω) (where Ω is an open
bounded set with smooth boundary) is not essentially selfadjoint. There
exists a lot of selfadjoint extensions related to the choice of a boundary
problem. As we have seen before, we have already met two such exten-
sions :

31Although, it will not help in this course, note that the converse is true. See for example
the book [Ro], in which the essential selfadjointness is defined differently.
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• the Dirichlet realization whose domain is the set H1
0 (Ω) ∩H2(Ω),

• the Neumann realization whose domain is the set :
{u ∈ H2(Ω) | (∂u/∂ν)/∂Ω = 0}

4. The Laplace Beltrami operator on a compact manifold M with domain
C∞(M) is essentially selfadjoint on L2(M). The domain of the selfadjoint
extension can be described as H2(M) (which can be described using local
charts).

10.2 Basic criteria.

We now give some criteria in order to verify that an operator is essentially
selfadjoint. As already mentioned, one can prove essential selfadjointness by
proving that the minimal closed extension Tmin := T coincides with T ∗. One
easily verifies (see Proposition 2.2.5 in conjonction with the definition of T ) that
T ∗ = T

∗
and we recall that T ∗∗ = T .

We now observe the

Proposition 10.2.1.
Any closed symmetric extension of T is a restriction of T ∗.

Proof.
Let S is a closed symmetric extension of T .
We have indeed T ⊂ S ⊂ S∗ and, observing that S∗ ⊂ T ∗, we consequently get
S ⊂ T ∗.

In particular, if T is selfadjoint then T is the unique selfadjoint extension of
T .

We can characterize the selfadjointness through the following general crite-
rion

Theorem 10.2.2.
Let T be a closed symmetric operator. Then the following statements are equiv-
alent :

1. T is selfadjoint.

2. Ker (T ? ± i) = {0};

3. Range (T ± i) = H.

Proof.
1. implies 2.
This property was already observed (because T = T ∗ and ±i 6∈ σ(T )).
2. implies 3. .
We first observe that the property that ker (T ?+ i) = {0} implies that R(T − i)
is dense in H. Note that the converse is also true. For getting 3., it remains
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to show that R(T − i) is closed. But, for all φ in D(T ), we have (using the
symmetry of T )

||(T − i)φ||2 = ||Tφ||2 + ||φ||2 . (10.2.1)

If φn is a sequence in D(T ) such that (T + i)φn converges to some ψ∞, then the
previous identity shows that φn is a Cauchy sequence, so there exists φ∞ such
that φn → φ∞ in H. But Tφn = (T + i)φn − iφn is convergent and using that
the graph is closed, we obtain that φ∞ ∈ D(T ) and Tφ∞ = ψ∞ − iφ∞.
3. implies 1. .
Let φ ∈ D(T ∗). Let η ∈ D(T ) such that (T − i)η = (T ∗ − i)φ. T being
symmetric, we have also (T ∗ − i)(η − φ) = 0. But, if (T + i) is surjective, then
(T ∗ − i) is injective and we get φ = η. This proves that φ ∈ D(T ).

Remark 10.2.3.
Here we have used and proved during the proof of the assertion “2. implies 3.”
the following lemma

Lemma 10.2.4.
If T is closed and symmetric, then R(T ± i) is closed.

This theorem gives as a corollary a criterion for essential selfadjointness in
the form

Corollary 10.2.5.
Let A with domain D(A) be a symmetric operator. Then the following are
equivalent

1. A is essentially selfadjoint.

2. Ker(A∗ ± i) = {0}.

3. The two spaces R(A± i) are dense in H.

We have indeed essentially to apply the previous theorem to A, observing in
addition that A is symmetric and using Lemma 10.2.4.

Let us here emphasize that in this case, to specify the operator A, it is not
necessary to give the exact domain of A but a core for A that is a subspace D
such that the closure of A/D is A.

In the same spirit, we have in the semibounded case the following

Theorem 10.2.6.
Let T be a positive, symmetric operator. Then the following statements are
equivalent :

1. T is essentially selfadjoint.

2.
Ker (T ∗ + b) = {0} for some b > 0 .

3. Range (T + b) is dense for some b > 0.
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The proof essentially the same as for the previous corollary, if one observes
that if T is positive then the following trivial estimate is a good substitute for
(10.2.1) :

〈(T + b)u, u〉 ≥ b||u||2 .

Example 10.2.7. (The free Laplacian)
The operator −∆ with domain C∞0 is essentially selfadjoint. Its selfadjoint
extension is −∆ with domain H2.

10.3 The Kato -Rellich theorem

We would like to consider the case when P = −∆ + V when V is regular and
tends to 0 as |x| → +∞. Here V can be considered as a perturbation of the
Laplacian. One can then apply a general theorem due to Kato-Rellich.

Theorem 10.3.1.
Let A be a selfadjoint operator, B be a symmetric operator whose domain con-
tains D(A). Let us assume the existence of a and b such that 0 ≤ a < 1 and
b ≥ 0 such that

||Bu|| ≤ a ||Au||+ b ||u|| (10.3.1)

for all u ∈ D(A). Then A+B is selfadjoint on D(A).
If A is essentially selfadjoint on32 D ⊂ D(A), then A+B has the same property.

Proof.

Step 1.
We start from the following identity which only uses that (A+B) with domain
D(A) is symmetric.

||(A+B ± iλ)u||2 = ||(A+B)u||2 + λ2||u||2 , ∀u ∈ D(A) . (10.3.2)

By the triangle inequality and the symmetry of A + B, we get for a real
λ > 0, and for any u ∈ D(A) :

√
2||(A+B − iλ)u|| ≥ ||(A+B)u||+ λ||u||

≥ ||Au|| − ||Bu||+ λ||u||
≥ (1− a)||Au||+ (λ− b)||u||.

(10.3.3)

We now choose λ > b.

Step 2.
Let us show that (A+B) with domain D(A) is closed. If we start indeed from a
pair (un, fn) with un ∈ D(A) and fn = (A+B)un such that (un, fn) → (u, f) in
H. From (10.3.3), we get that Aun is a Cauchy sequence in H. A being closed,
we get u ∈ D(A) and the existence of g such that Aun → g = Au.
Now from (10.3.2) and (10.3.1), we get also that Bun is a Cauchy sequence and

32By this we mean that the closure of A/D is A.
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there exists v such that Bun → v in H.
We claim that Bu = v. We have indeed, for any h ∈ D(A),

< v, h >H= lim
n→+∞

< Bun, h >H= lim
n→+∞

< un, Bh >H=< u,Bh >H=< Bu, h >H .

Using the density of D(A), we get v = Bu. (We could have also used that B is
closable).
We conclude by observing that (A+B)u = f (with f = g + v) as expected.

Step 3.
In order to apply Theorem 10.2.2, we have to show that (A+B±iλ) is surjective.
The main element in the proof is the following

Lemma 10.3.2. .
For λ > 0 large enough, we have

||B(A± iλ)−1|| < 1 . (10.3.4)

Proof.
We observe that, for u ∈ D(A),

||(A± iλ)u||2 = ||Au||2 + λ2||u||2 . (10.3.5)

For u ∈ D(A), we have, using two times (10.3.5) and then (10.3.1)

||Bu|| ≤ a||Au||+ b||u||
≤ a||(A+ iλ)u||+ b

λ ||(A+ iλ)u||
≤ (a+ b

λ )||(A+ iλ)u|| .
(10.3.6)

It is then enough to choose λ > 0 large enough such that

(a+
b

λ
) < 1 .

Writing
A+B − iλ = [I +B(A− iλ)−1](A− iλ) , (10.3.7)

it is easy to deduce the surjectivity using the lemma and the surjectivity of
(A− iλ).

Application.

As an application, let us treat the case of the Schrödinger operator with
Coulomb potential.

Proposition 10.3.3.
The operator −∆− 1

|x| with domain C∞0 (R3) is essentially selfadjoint.

We recall that the operator is well defined because 1
r belongs to L2

loc(R3).
We first observe a Sobolev type inequality.
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Lemma 10.3.4. :
There exists a constant C such that for all u ∈ H2(R3), all a > 0 and all x ∈ R3,
we have

|u(x)| ≤ C(a||∆u||0 + a−3||u||0) .

(Prove first the inequality33 for all u with x = 0 and a = 1, then use
translation and dilation.)
In the second step, we show that the potential V = − 1

r is a perturbation of the
Laplacian.
There exists indeed a constant C such that for all u ∈ H2(R3) and all b > 0, we
have

||V u||0 ≤ C(b||∆u||0 + b−3||u||0) .

For this proof we observe that, for any R > 0,∫
V (x)2|u(x)|2dx =

∫
|x|≤R

V (x)2|u(x)|2dx+
∫
|x|≥R

V (x)2|u(x)|2dx ,

and treat the first term of the right hand side using the Sobolev’s type inequality
by ∫

|x|≤R
V (x)2|u(x)|2dx ≤ ( sup

|x|≤R
|u(x)|2 dx)

∫
|x|≤R

V (x)2 dx ,

and the second term by the trivial estimate∫
|x|≥R

V (x)2|u(x)|2dx ≤ ( sup
|x|≥R

|V (x)|)2
∫
|x|≥R

|u(x)|2 dx .

Using the Sobolev inequality (actually it is enough to take a = 1), we finally
obtain :

||V u||2 ≤ CR(||∆u||2 + ||u||2) +
1
R2
||u||2 . (10.3.8)

We obtained the expected estimate by considering R small enough.

Remark 10.3.5.
We note that the same proof shows that −∆+V is essentially selfadjoint starting
from C∞0 (Rm) if V ∈ L2+L∞, that is if V = V1+V2 with V1 ∈ L2 and V2 ∈ L∞.

10.4 Other criteria of selfadjointness for Schrödinger op-
erators

We present in this subsection two criteria which are specific of the Schrödinger
case. The first one seems due to Rellich (See [Sima]) and we present it in the
easy case when the potential is regular. The second one permits to treat singular
potentials and is due to Kato (cf [HiSi] or [Ro]).

The first theorem is adapted to operators which are already know to be
positive on C∞0 (Rm).

33In this case, this is just the Sobolev’s injection theorem of H2(R3) into C0
b (R3), where

C0
b (R3) is the space of the continuous bounded functions.
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Theorem 10.4.1.
A Schrödinger operator T = −∆ + V on Rn associated with a C0 potential V ,
which is semibounded on C∞0 (Rn), is essentially selfadjoint. In other words, the
Friedrichs extension is the unique selfadjoint extension starting from C∞0 (Rm).

This theorem is complementary to the second theorem (Theorem 10.4.4)
which will be stated at the end of this subsection because we do not have to
assume the positivity of the potential but only the semi-boundedness of the
operator T .

Proof.
Let T be our operator. Possibly by adding a constant, we can assume that

< Tu, u >H≥ ||u||2 , ∀u ∈ C∞0 (Rm) . (10.4.1)

Of course this inequality can be rewritten in the form :

||∇u||2 +
∫

Rm

V (x)|u(x)|2dx ≥ ||u||2 , ∀u ∈ C∞0 (Rm) .

In this form, the inequality can be extended to the elements of H1
comp(Rm),

corresponding to the distributions of H1(Rm) with compact support :

||∇u||2 +
∫

Rm

V (x)|u(x)|2dx ≥ ||u||2 , ∀u ∈ H1
comp(Rm) . (10.4.2)

According to the general criterion of essential selfadjointness (cf Theorem 10.2.6),
it is enough to verify that R(T ) is dense. Let us show this property.
Let f ∈ L2(Rm), such that

< f, Tu >H= 0 , ∀u ∈ C∞0 (Rm) . (10.4.3)

We have to show that f = 0.
Because T is real, one can assume that f is real.
We first observe that (10.4.3) implies that : (−∆ + V )f = 0 in D′(Rm). A
standard regularity theorem for the Laplacian34 implies that f ∈ H2

loc(Rm).
We now introduce a family of cutoff functions ζk by

ζk := ζ(x/k) , ∀k ∈ N , (10.4.4)

where ζ is a C∞ function satisfying 0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1) and supp ζ ⊂
B(0, 2).
For any u ∈ C∞ and any f ∈ H2

loc, we have the identity∫
∇(ζkf) · ∇(ζku)dx+

∫
ζk(x)2V (x)u(x) f(x) dx

=
∫
|(∇ζk)(x)|2u(x)f(x) dx+

∑m
i=1

∫
(f(∂iu)− u(∂if)) (x)ζk(x)(∂iζk)(x) dx

+〈f(x) , T ζ2
ku〉 .

(10.4.5)

34This is the property that f ∈ L2
loc(R

m), ∆f ∈ L2
loc(R

m) implies that f ∈ H2
loc(R

m).
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When f satisfies (10.4.3), we get :∫
Rm ∇(ζkf) · ∇(ζku)dx+

∫
ζk(x)2V (x)u(x) f(x) dx

=
∫
|(∇ζk)(x)|2u(x)f(x) dx+

∑m
i=1

∫
(f(∂iu)− u(∂if)) (x)ζk(x)(∂iζk)(x) dx ,

(10.4.6)
for all u ∈ C∞(Rm).
This formula can be extended to functions u ∈ H1

loc. In particular, we can take
u = f .
We obtain

< ∇(ζkf) , ∇(ζkf) > +
∫
ζ2
kV (x)|f(x)|2 dx =

∫
|∇ζk|2|f(x)|2dx . (10.4.7)

Using (10.4.1), (10.4.7) and taking the limit k → +∞, we get

||f ||2 = limk→+∞ ||ζkf ||2
≤ lim supk→+∞

(
< ∇(ζkf) , ∇(ζkf) > +

∫
ζ2
kV (x)|f(x)|2 dx

)
= lim supk→+∞

∫
f(x)2|(∇ζk)(x)|2 dx = 0 .

(10.4.8)
This proves the theorem.

Remark 10.4.2.
When V is C∞, we get, in the previous proof, that f ∈ C∞ and we immediately
can prove (10.4.7) without going through the previous discussion.

Example 10.4.3.

• If V ≥ 0 and C∞, then the Schrödinger operator −∆ + V with domain
C∞0 (Rm) is essentially selfadjoint. The operator −∆+V is indeed positive.

• If φ is C∞ on Rm, then the operators −∆ + |∇φ|2 ± ∆φ are essentially
selfadjoint. They are indeed positive on C∞0 (Rm). They can actually be
written in the form

∑
j Z

∗
jZj with Zj = ∂xj ∓ ∂xjφ. These operators

appear naturally in statistical mechanics.

Let us now mention, without proof, a quite general theorem due to Kato
(See for example [Ro]).

Theorem 10.4.4.
Let V in L2

loc(Rm) such that V ≥ 0 almost everywhere on Rm. Then −∆ + V
with domain C∞0 (Rm) is essentially selfadjoint.

This theorem is based on the so called Kato’s inequality.

Remark 10.4.5.
This last theorem may be extended to the case of the Schrödinger operator with
magnetic regular potential A (See Subsection 7.5).

98



11 Non-selfadjoint case : Maximal accretivity
and application to the Fokker-Planck opera-
tor

11.1 Accretive operators

We collect here some material on accretive operators. The references could be
the books by Dautray-Lions (Vol. 5, Chapter XVII), Reed-Simon or the book
of B. Davies. Let H be a complex (or real) Hilbert space.

Definition 11.1.1.
Let A be an unbounded operator in H with domain D(A). We say that A is
accretive if

Re 〈Ax | x〉H ≥ 0 , ∀x ∈ D(A) . (11.1.1)

Definition 11.1.2.
An accretive operator A is maximally accretive if it does not exist an accretive
extension Ã with strict inclusion of D(A) in D(Ã).

Proposition 11.1.3.
Let A be an accretive operator with domain D(A) dense in H. Then A is closable
and its closed extension A is accretive.

For the analysis of the Fokker-Planck operator, the following criterion, which
extends the standard criterion of essential self-adjointness, will be the most
suitable

Theorem 11.1.4.
For an accretive operator A, the following conditions are equivalent

1. A is maximally accretive.

2. There exists λ0 > 0 such that A∗ + λ0I is injective.

3. There exists λ1 > 0 such that the range of A+ λ1I is dense in H.

Note that in this case −A is the infinitesimal generator of a contraction
semi-group.

11.2 Application to the Fokker-Planck operator

We would like to show

Proposition 11.2.1.
Let V be a C∞ potential on Rn, then the closure K of the Fokker-Planck operator
defined on C∞0 (R2n) by

K := −∆v +
1
4
|v|2 − n

2
+X0 , (11.2.1)
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where
X0 := −∇V (x) · ∂v + v · ∂x (11.2.2)

is maximally accretive.
Moreover K∗ is also maximally accretive.

The idea is to adapt the proof that a semi-bounded Schrödinger operator
with regular potential is essentially self-adjoint on L2(Rn).

Proof:
We apply the abstract criterion taking H = L2(Rn × Rn) and A = K. The
operators being real, we can consider everywhere real functions. The accretivity
on C∞0 (R2n) is clear. We can then consider the closure K.

Changing K in T := K + (n2 + 1)I, we would like to show that its range is
dense.
Let f ∈ L2(Rm), with m = 2n, such that

< f | Tu >H= 0 , ∀u ∈ C∞0 (Rm) . (11.2.3)

We have to show that f = 0.
Because K is real, one can assume that f is real.
We first observe that (11.2.3) implies that :

(−∆v + v2/4 + 1−X0)f = 0 , in D′(Rm) .

The standard hypoellipticity theorem for the Hörmander operators35 of type 2
implies that f ∈ C∞(Rm).
We now introduce a family of cut-off functions ζk := ζk1,k2 by

ζk1,k2(x, v) := ζ(x/k1)ζ(v/k2) , ∀k ∈ N2 , (11.2.4)

where ζ is a C∞ function satisfying 0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1) and supp ζ ⊂
B(0, 2).
For any u ∈ C∞0 , we have the identity∫

∇v(ζkf) · ∇v(ζku) dxdv +
∫
ζk(x, v)2(v2/4 + 1)u(x, v) f(x, v) dx dv

+
∫
f(x, v)(X0(ζ2

ku))(x, v) dx dv
=

∫
|(∇vζk)(x, v)|2u(x, v)f(x, v) dx dv

+
∑m
i=1

∫
(f(∂viu)− u(∂vif)) (x, v)ζk(x, v)(∂viζk)(x, v) dx dv

+〈f(x, v) | Tζ2
ku〉 .

(11.2.5)
When f satisfies (11.2.3), we get :∫

Rm ∇v(ζkf) · ∇v(ζku) dxdv +
∫
ζ2
k(v

2/4 + 1)u(x, v) f(x, v) dx dv
+

∫
f(x, v)(X0(ζ2

ku))(x, v)dx dv
=

∫
|(∇yζk)(x)|2u(x)f(x, v) dx dv

+
∑m
i=1

∫
(f(∂viu)− u(∂vif)) (x, v)ζk(x, v)(∂viζk)(x, v) dx dv ,

(11.2.6)

35These operators are in the form P = −
Pk

j=1 X2
j + X0 + a(x), where the Xj are real

vectorfield. If the Xj together with the brackets [X`, Xm] span at each point x the whole
tangent space, then one can show that the corresponding operator is hypoelliptic. P is said
hypoelliptic if for any u ∈ D′ and any open set ω, Pu ∈ C∞(ω) implies that u ∈ C∞(ω).
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for all u ∈ C∞(Rm). In particular, we can take u = f .
We obtain

< ∇v(ζkf) | ∇v(ζkf) > +
∫
ζ2
k(v

2/4 + 1)|f(x, v)|2 dx dv
+

∫
f(x, v)(X0(ζ2

kf))(x, v) dx dv
=

∫
|∇vζk|2|f(x, v)|2 dx dv .

(11.2.7)

With an additional integration by part, we get

< ∇v(ζkf) | ∇v(ζkf) > +
∫
ζ2
k(v

2/4 + 1)|f(x, v)|2 dx dv
+

∫
ζkf(x, v)2(X0ζk)(x, v) dx dv

=
∫
|∇vζk|2|f(x, v)|2 dx dv .

(11.2.8)

This leads to the existence of a constant C such that, for all k,

||ζkf ||2 + 1
4 ||ζkvf ||

2

≤ C 1
k2
2
||f ||2 + C 1

k1
||vζkf || ||f ||+ C 1

k2
||∇V (x)ζkf || ||f || . (11.2.9)

(The constant C will possibly be changed from line to line). This leads to

||ζk f ||2 +
1
8
||ζk v f ||2 ≤ C(

1
k2
2

+
1
k2
1

)||f ||2 + C(k1)
1
k2
||ζkf || ||f || , (11.2.10)

where
C(k1) = sup

|x|≤2k1

|∇xV (x)|

This implies

||ζk f ||2 ≤ C(
C̃(k1)
k2
2

+
1
k2
1

)||f ||2 . (11.2.11)

This finally leads to f = 0. For example, one can take first the limit
k2 → +∞, which leads to

||ζ( x
k1

)f ||2 ≤ C

k2
1

||f ||2 ,

and then the limit k1 → +∞ .

11.3 Decay of the semi-group and ε-pseudospectra

We recall that for any ε > 0, we define the ε-pseudospectra by

Σε(AD) = {λ ∈ C | ||(AD − λ)−1|| > 1
ε
} , (11.3.1)

with the convention that ||(AD − λ)−1|| = +∞ if λ ∈ σ(AD).
We have

∩ε>0Σε(AD) = σ(AD) . (11.3.2)
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We define, for any accretive closed operator, for ε > 0,

α̂ε(A) = inf
z∈Σε(A)

Re z . (11.3.3)

We also define
ω̂0(A) = lim

t→+∞

1
t

log || exp−tA|| (11.3.4)

α̂ε(A) ≤ inf
z∈σ(A)

Re z . (11.3.5)

Theorem 11.3.1 (Gearhart-Prüss).
Let A be a densely defined closed operator in an Hilbert space X such that
−A generates a contraction semi-group and let α̂ε(A) and ω̂0(A) denote the
ε-pseudospectral abcissa and the growth bound of A respectively. Then

lim
ε→0

α̂ε(A) = −ω̂0(A) . (11.3.6)

We refer to Engel-Nagel for a proof.
This theorem is interesting because it reduces the question of the decay,

which is basic in the question of the stability to an analysis of the ε-spectra of
the operator.

11.4 Application : The complex Airy operator in R+

Here we mainly describe some results presented in Almog (article in Siam). We
can then associate the Dirichlet realization AD of the complex Airy operator
D2
x + ix on the half-line, whose domain is

D(AD) = {u ∈ H1
0 (R+), x

1
2u ∈ L2 , (D2

x + i x)u ∈ L2(R+)} , (11.4.1)

and which is defined (in the sense of distributions) by

ADu = (D2
x + i x)u . (11.4.2)

Moreover, by construction, we have

Re 〈ADu |u〉 ≥ 0 , ∀u ∈ D(AD) . (11.4.3)

Again we have an operator, which is the generator of a semi-group of contraction,
whose adjoint is described by replacing in the previous description (D2

x+ i x) by
(D2

x− i x), the operator is injective and as its spectrum contained in Re λ > 0.
Moreover, the operator has compact inverse, hence the spectrum (if any) is
discrete.

Using what is known on the usual Airy operator, Sibuya’s theory and a
complex rotation (see alternately what we said for the non self-adjoint harmonic
oscillator), we obtain that the spectrum of AD σ(AD) is given by that

σ(AD) = ∪+∞
j=1{λj} (11.4.4)

102



with
λj = exp i

π

3
µj , (11.4.5)

the µj ’s being real zeroes of the Airy function satisfying

0 < µ1 < · · · < µj < µj+1 < · · · . (11.4.6)

It is also shown in Almog that the vector space generated by the correspond-
ing eigenfunctions is dense in L2(R+).

We arrive now to the analysis of the properties of the semi-group and the
estimate of the resolvent.
As before, we have, for Re λ < 0,

||(AD − λ)−1|| ≤ 1
| Re λ|

, (11.4.7)

If Im λ < 0 one gets also a similar inequality, so the main remaining question is
the analysis of the resolvent in the set Re λ ≥ 0 , Im λ ≥ 0, which corresponds
to the numerical range of the symbol.

We recall that for any ε > 0, we define the ε-pseudospectra by

Σε(AD) = {λ ∈ C | ||(AD − λ)−1|| > 1
ε
} , (11.4.8)

with the convention that ||(AD − λ)−1|| = +∞ if λ ∈ σ(AD).
We have

∩ε>0Σε(AD) = σ(AD) . (11.4.9)

We define, for any accretive closed operator, for ε > 0,

α̂ε(A) = inf
z∈Σε(A)

Re z . (11.4.10)

We also define
ω̂0(A) = lim

t→+∞

1
t

log || exp−tA|| (11.4.11)

α̂ε(A) ≤ inf
z∈σ(A)

Re z . (11.4.12)

We apply Gearhart-Prüss theorem to our operatorAD and our main theorem
is

Theorem 11.4.1.
ω̂0(AD) = − Re λ1 . (11.4.13)

Using the first eigenfunction it is easy to see that

|| exp−tAD|| ≥ exp− Re λ1 t . (11.4.14)

Hence we have immediately

0 ≥ ω̂0(AD) ≥ − Re λ1 . (11.4.15)

To prove that − Re λ1 ≥ ω̂0(AD), it is enough to show the following lemma.
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Figure 2: Complex Airy operator on the halfline : pseudospectra

Lemma 11.4.2.
For any α < Re λ1 , there exists a constant C such that, for all λ s.t. Re λ ≤ α

||(AD − λ)−1|| ≤ C . (11.4.16)

Proof : We know that λ is not in the spectrum. Hence the problem is just
a control of the resolvent as | Im λ| → +∞. The case, when Im λ < 0 has
already be considered. Hence it remains to control the norm of the resolvent as
Im λ→ +∞ and Re λ ∈ [−α,+α].

This is indeed a semi-classical result ! The main idea is that when Im λ→
+∞, we have to inverse the operator

D2
x + i(x− Im λ)− Re λ .

If we consider the Dirichlet realization in the interval ]0, Im λ
2 [ of

D2
x + i(x − Im λ) − Re λ, it is easy to see that the operator is invertible

by considering the imaginary part of this operator and that this inverse R1(λ)
satisfies

||R1(λ)|| ≤ 2
Im λ

.

Far from the boundary, we can use the resolvent of the problem on the line for
which we have a uniform control of the norm for Re λ ∈ [−α,+α].
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12 Discrete spectrum, essential spectrum

12.1 Discrete spectrum

We have already recalled in Proposition 8.5.4 a characterization of the spectrum.
Let us now complete this characterization by introducing different spectra.

Definition 12.1.1.
If T is a selfadjoint operator, we shall call discrete spectrum of T the set

σdisc(T ) = {λ ∈ σ(T ) s. t. ∃ε > 0,dim range (E(]λ− ε, λ+ ε[)) < +∞} .

With this new definition, we can say that, for a selfadjoint operator with
compact resolvent, the spectrum is reduced to the discrete spectrum.
For a compact selfadjoint operator, the spectrum is discrete outside 0. We see
in this case that the discrete spectrum is not closed.
Equivalently, let us observe now give another characterization :

Proposition 12.1.2.
Let T be a selfadjoint operator. A real λ is in the discrete spectrum if and only
if :
λ is an isolated point in σ(T ) and if λ is an eigenvalue of finite multiplicity.

Proof.
If λ ∈ σdisc(T ), we immediately see that there exists ε0 such that, ∀ε such
that 0 < ε < ε0, E]λ−ε,λ+ε[ becomes a projector independent of ε with finite
range. This is actually the projector Πλ = 1{λ}(T ) and we observe moreover
E]λ,λ+ε[ = 0 and E]λ−ε,λ[ = 0. This shows that λ is an isolated point in σ(T ).
Using the spectral representation of T , one immediately get that, if x = Πλx
(x 6= 0), then x is an eigenfunction of T . Moreover, one easily obtains that
(T − λ) is invertible on R(I −Πλ). One can indeed find a continuous bounded
f such that f(T )(T − λ)(I −Πλ) = (I −Πλ).

Conversely, let λ be isolated. The previous proof as already shown that in
this case the range of Πλ is an eigenspace. The assumption of finite multiplicity
permits then to conclude.

Remark 12.1.3.
The discrete spectrum is not a closed set ! If we consider in R3, the Schrödinger
operator with coulomb potential, the discrete spectrum is a sequence of eigenval-
ues tending to 0 but 0 does not belong to the discrete spectrum.

12.2 Essential spectrum

Definition 12.2.1.
The essential spectrum is the complementary in the spectrum of the discrete
spectrum.

Intuitively, a point of the essential spectrum corresponds
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• either to a point in the continuous spectrum,

• or to a limit point of a sequence of eigenvalues with finite multiplicity,

• or to an eigenvalue of infinite multiplicity.

The discrete spectrum being composed of isolated points, we get

Proposition 12.2.2.
The essential spectrum of a selfadjoint operator T is closed in R.

12.3 Basic examples:

1. The essential spectrum of a compact selfadjoint operator is reduced to 0.

2. The essential spectrum of an operator with compact resolvent is empty.

3. The Laplacian on Rn −∆ is a selfadjoint operator on L2(Rn) whose domain
is the Sobolev space H2(Rn). The spectrum is continuous and equal to
R+. The essential spectrum is also R+ and the operator has no discrete
spectrum.

4. The Schrödinger operator with constant magnetic field (B 6= 0) in R2:

SB := (Dx1 −
Bx2

2
)2 + (Dx2 +

Bx1

2
)2 , (12.3.1)

with
Dxj :=

1
i
∂xj =

1
i

∂

∂xj
.

The spectrum is formed with eigenvalues (2k + 1)|B| but the spectrum is
not discrete because each eigenvalue is with infinite multiplicity.

12.4 Weyl’s criterion:

We have already mentioned that the essential spectrum is a closed set. In order
to determine the essential spectrum it is useful to have theorems proving the
invariance by perturbation. The following characterization is in this spirit quite
useful.

Theorem 12.4.1.
Let T be a selfadjoint operator. Then λ belongs to the essential spectrum if and
only if there exists a sequence un in D(T ) with ||un|| = 1 such that un tends
weakly36 to 0 and ||(T − λ)un|| → 0 as n→∞.

36We recall that we say that a sequence un in a separable Hilbert space H is weakly con-
vergent if, for any g in H, < un|g >H is convergent. In this case, there exists a unique f such
that < un|g >H→< f |g >H and ||un|| is a bounded sequence.
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Let us give a proof of the theorem (we also refer to [Ro], [HiSi] or [RS-IV]).
The sequence appearing in the theorem is called a Weyl sequence. A point λ
such that there exists an associated Weyl sequence is said to belong to the Weyl
spectrum W (T ). Let us show the inclusion

W (T ) ⊂ σess(T ) . (12.4.1)

We have already seen that
W (T ) ⊂ σ(T ) . (12.4.2)

Let us suppose by contradiction that λ ∈ σdisc(T ). Let Πλ := E{λ} be the
associated spectral projector. We first observe that, Πλ being finite range,
hence compact, we have :

Πλun → 0 ∈ H . (12.4.3)

Let us define
wn = (I −Πλ)un .

We get ||wn|| → +1 and (T − λ)wn = (I −Πλ)(T − λ)un → 0.
But (T −λ) is invertible on R(I−Πλ), so we get wn → 0 and the contradiction.
This shows the announced inclusion (12.4.1).
For the converse37, we observe that, if λ ∈ σess(T ) then, for any ε > 0,
dimR(E]λ−ε,λ+ε[) = +∞. Considering a sequence εn such that εn > 0 and
limn→+∞ εn = 0, it is easy to obtain an orthonormal system un such that
un ∈ R(E]λ−εn,λ+εn[). It just remains to verify that un is a Weyl sequence.

Corollary 12.4.2.
The operator −h2∆ + V with V a continuous function tending to 0 as |x| → ∞
(x ∈ RD) has R+ as essential spectrum.

For proving the inclusion of R+ in the essential spectrum, we can indeed
consider the sequence

un(x) = exp(ix · ξ)n−(D/2) · χ((x−Rn)/n)

with χ ≥ 0 and supported in the ball B(0, 1) and equal to one on say B(0, 1
2 ).

The sequence Rn is chosen such that |Rn| (for example |Rn| = n2) tends to ∞
and such that the support of the un are disjoints.
This is a particular case of a Weyl sequence (called in [HiSi] a Zhislin sequence).
The converse can be obtained by abstract analysis and the fact that we know
that the essential spectrum of −∆ is [0,+∞[. This idea is formalized through
the notion of relative compactness.

Definition 12.4.3.
If T is a closed operator with a dense domain DT , we shall say that the operator
V is relatively compact with respect to T or T -compact if DT ⊂ DV and if the
image by V of a closed ball in DT (for the graph-norm u 7→

√
||u||2 + ||Tu||2 )

is relatively compact in H.
37See also what we have done for the proof of Proposition 8.5.4.
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In other words, we shall say that V is T -compact, if, from each sequence un
in DT bounded in H and such that Tun is bounded in H, one can extract a
subsequence uni such that V uni is convergent in H. Here we recall (exercise)
that when T is closed, then D(T ) equipped with the graph norm is an Hilbert
space.

Example 12.4.4.
If V is the multiplication operator by a continuous function V tending to 0
then V is (−∆)-compact. This is a consequence of Proposition 5.4.1 and of the
uniform continuity of V on each compact.

Weyl’s Theorem says

Theorem 12.4.5. .
Let T be a selfadjoint operator, and V be symmetric and T -compact, then T +
V is selfadjoint and the essential spectrum of T + V is equal to the essential
spectrum of T .

The first part can be deduced from what was discussed in the previous
subsection (See Theorem 10.3.1). We observe indeed the following variant of
Lions’s Lemma :

Lemma 12.4.6.
If V is T -compact and closable, then, for any a > 0, there exists b > 0 such that

||V u|| ≤ a||Tu||+ b||u|| , ∀u ∈ D(T ) . (12.4.4)

Proof of the lemma.
The proof is by contradiction. If (12.4.4) is not true, then there exists a > 0
such that, ∀n ∈ N∗, there exists un ∈ D(T ) such that

a||Tun||+ n||un|| < ||V un|| . (12.4.5)

Observing that ||V un|| 6= 0 and that the inequation is homogeneous, we can in
addition assume that un satisfies the condition :

||V un|| = 1 . (12.4.6)

From these two properties we get that the sequence Tun is bounded and that
un → 0.
On the other hand, by T -compactness, we can extract a subsequence unk

such
that V unk

is convergent to v with ||v|| = 1. But (0, v) is in the closure of the
graph of V , hence in the graph of the closure of V and consequently v = 0
(contradiction).

For the second part we can use the Theorem 12.4.1. If we take a Weyl’s
sequence un such that un → 0 (weakly) and (T − λ)un → 0 strongly, let us
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consider (T + V − λ)un. We have simply to show that one can extract a subse-
quence unk

such that (T + V − λ)unk
→ 0.

But Tun is a bounded sequence. By the T -compactness, we can extract a sub-
sequence such that V unk

converges strongly to some v in H. It remains to show
that v = 0. But here we can observe that for any f ∈ D(T ), we have

< v, f >= lim
k→+∞

< V unk
, f >= lim

k→+∞
< unk

, V f >= 0 .

Here we have used the symmetry of V and the weak convergence of un to 0.
Using the density of D(T ) in H, we obtain v = 0.
This shows that a Weyl sequence for T is a Weyl sequence for T + V . For the
converse, one can intertwine the roles of T and T +V , once we have shown that
V is (T + V )-compact. For this, we can use Lemma 12.4.6, and observe that
the following inequality is true :

||Tu|| ≤ 1
1− a

(||(T + V )u||+ b||u||) . (12.4.7)

This shows that if un is a sequence such that (||un||+ ||(T + V )un||) is bounded,
then this sequence has also the property that (||un||+ ||Tun||) is bounded.
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13 The max-min principle

13.1 Introduction

The max-min principle is an alternative way for describing the lowest part of
the spectrum when it is discrete. It gives also an efficient way to localize these
eigenvalues or to follow their dependence on various parameters.

13.2 On positivity

We first recall the following definition

Definition 13.2.1.
Let A be a symmetric operator. We say that A is positive (and we write A ≥ 0),
if

< Au, u >≥ 0 , ∀u ∈ D(A) . (13.2.1)

The following proposition relates the positivity with the spectrum

Proposition 13.2.2.
Let A be a selfadjoint operator. Then A ≥ 0 if and only if σ(A) ⊂ [0,+∞[.

Proof.
It is clear that if the spectrum is in R+, then the operator is positive. This can
be seen for example through the spectral representation :

< Au, u >=
∫
λ∈σ(A)

λ d||Eλu||2 .

Now, if A ≥ 0, then, for any a > 0, A+ a is invertible. We have indeed

a||u||2 ≤< (A+ a)u, u >≤ ||(A+ a)u|| ||u|| ,

which leads to
a||u|| ≤ ||(A+ a)u|| , ∀u ∈ D(A) . (13.2.2)

This inequality gives the closed range and the injectivity. A being selfadjoint,
we get also from the injectivity, the density of the image of (A+ a). This shows
that −a is not in the spectrum of A.

Example 13.2.3.
Let us consider the Schrödinger operator P := −∆ + V , with V ∈ C∞ and
semi-bounded, then

σ(P ) ⊂ [inf V,+∞[ . (13.2.3)
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13.3 Variational characterization of the discrete spectrum

Theorem 13.3.1.
Let A be a selfadjoint semibounded operator. Let Σ := inf σess(A) and let us con-
sider σ(A)∩]−∞,Σ[, described as a sequence (finite or infinite) of eigenvalues
that we write in the form

λ1 < λ2 < · · · < λn · · · .

Then we have
λ1 = inf

φ∈D(A),φ 6=0
||φ||−2 < Aφ, φ > , (13.3.1)

λ2 = inf
φ∈D(A)∩K⊥1 ,φ 6=0

||φ||−2 < Aφ, φ > , (13.3.2)

and, for n ≥ 2,

λn = inf
φ∈D(A)∩K⊥n−1,φ 6=0

||φ||−2 < Aφ, φ > , (13.3.3)

where
Kj = ⊕i≤j Ker (A− λi) .

Proof.

Step 1. Let us start, with the lowest eigenvalue. Let us define µ1(A) by

µ1(A) := inf
φ∈D(A),φ 6=0

||φ||−2 < Aφ, φ > . (13.3.4)

If φ1 is an eigenfunction associated to λ1, we get immediately the inequality

µ1(A) ≤ λ1(A) . (13.3.5)

Let us prove the converse inequality. Using the spectral theorem, one get im-
mediately that A ≥ inf σ(A).
So we get

inf σ(A) ≤ µ1(A) . (13.3.6)

Now, if the spectrum below Σ is not empty, we get

λ1(A) ≤ µ1(A) .

We have consequently the equality. We have actually a little more.

We have indeed proved that, if µ1(A) < Σ, then, the spectrum
below Σ is not empty, and the lowest eigenvalue is µ1(A).
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Step 2. The proof is by recursion, applying Step 1 to A/D(A)∩K⊥n−1
.

This ends the proof of Theorem 13.3.1.

Example 13.3.2. (Payne-Polya-Weinberger Inequality.)
Let P = −∆ + V with V ∈ C∞ positive and V → +∞ as |x| → +∞.
Let us assume that V is even

V (x) = V (−x) . (13.3.7)

Then λ2 satisfies
λ2 ≤ inf

φ∈Q(P ),φ odd
< Pφ, φ > (13.3.8)

Let u1 be the first normalized eigenfunction. We admit that the lowest eigen-
value of the Schrödinger operator is simple (variant of the Krein-Rutman’s The-
orem) and that the first eigenfunction can be chosen strictly positive, with
exponential decay at ∞ together with ∇u1 (this is a consequence of Agmon’s
inequality [Ag]). Then it is not difficult to verify that u1 is even. Let us consider
vj := xju1. vj is in the form domain of P . We observe that

P (xju1) = λ1xju1 − 2∂ju1 .

Taking the scalar product with xju1, we then obtain

(λ2 − λ1)||xju1||2 ≤ −2 < ∂ju1, xju1 >
≤ ||u1||2
≤ 1 .

(13.3.9)

We now use the uncertainty principle (1.2.11) and get :

(λ2 − λ1) ≤ 4||∂ju1||2 . (13.3.10)

On the other hand,

||∇u1||2 +
∫

Rm

V (x)|u1(x)|2dx = λ1 , (13.3.11)

and this gives
||∇u1||2 ≤ λ1 . (13.3.12)

Putting the inequalities (13.3.9) and (13.3.12), we get, summing over j,

λ2 − λ1 ≤
4
m
λ1 . (13.3.13)

This inequality is not optimal, in the sense that for m = 1 and V (x) = x2, we
have λ2 − λ1 = 2λ1.
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Example 13.3.3.
Let us consider Sh := −h2∆ + V on Rm where V is a C∞ potential tending to
0 at ∞ and such that infx∈Rm V (x) < 0.
Then if h > 0 is small enough, there exists at least one eigenvalue for Sh. We
note that the essential spectrum is [0,+∞[. The proof of the existence of this
eigenvalue is elementary. If xmin is one point such that V (xmin) = infx V (x), it
is enough to show that, with φh(x) = exp−λ

h |x−xmin|
2, the quotient <Shφh,φh>

||φh||2

tends as h→ 0 to V (xmin) < 0.

13.4 Max-min principle

We now give a more flexible criterion for the determination of the bottom of
the spectrum and for the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need an explicit knowledge of the various
eigenspaces.

Theorem 13.4.1.
Let H an Hilbert space of infinite dimension38 and A be a selfadjoint semi-
bounded operator of domain D(A) ⊂ H. Let us introduce

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf8<: φ ∈ [span(ψ1, . . . , ψn−1)]⊥;
φ ∈ D(A) and ||φ|| = 1

9=;
〈Aφ | φ〉H . (13.4.1)

Then either
(a) µn(A) is the n-th eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has a discrete spectrum in
]−∞, µn(A)]
or
(b) µn(A) corresponds to the bottom of the essential spectrum. In this case, we
have µj(A) = µn(A) for all j ≥ n.

Remark 13.4.2.
In the case when the operator is with compact resolvent, case (b) does not
occur and the supremum in (13.4.1) is a maximum. Similarly the infimum is a
minimum. This explains the traditional terminology “ Max-Min principle” for
this theorem.

Proof.
If Ω is a borelian, let EΩ be the projection-valued measure for A (see Remark
8.3.7).
We first prove that

dim
(
RangeE]−∞,a[

)
< n if a < µn(A). (13.4.2)

dim
(
RangeE]−∞,a[

)
≥ n if a > µn(A) . (13.4.3)

38In the case of a finite dimensional Hilbert space of dimension d, the minimax principle
holds for n ≤ d.
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Notons que la conjonction de (13.4.2) et (13.4.3) montre que µn(A) est dans
le spectre de A.

Step 1: Proof of (13.4.2).
Let a and n be given such that a < µn(A). Let us prove (13.4.2) by contra-
diction. If it was false, then we would have dim

(
Range(E]−∞,a[)

)
≥ n and

we could find an n-dimensional space V ⊂ Range(E]−∞,a[). Note now, that A
being bounded from below, Range(E]−∞,a[) is included in D(A).
So we can find an n-dimensional space V ⊂ D(A), such that

∀φ ∈ V , < Aφ , φ >≤ a||φ||2 . (13.4.4)

But then given any ψ1, · · · , ψn−1 in H, we can find φ ∈ V ∩ {ψ1, · · · , ψn−1}⊥
such that ||φ|| = 1 and < Aφ , φ >≤ a. Coming back to the definition, this
shows that µn(A) ≤ a and a contradiction.

Note that we have proved in this step the following proposition

Proposition 13.4.3.
Suppose that there exists a and an n-dimensional subspace V ⊂ D(A) such that
(13.4.4) is satisfied. Then we have the inequality :

µn(A) ≤ a . (13.4.5)

Modulo the complete proof of the theorem, we obtain

Corollary 13.4.4.
Under the same assumption as in Proposition 13.4.3, if a is below the bottom
of the essential spectrum of A, then A has at least n eigenvalues (counted with
multiplicity).

Exercise 13.4.5.
In continuation of Example 13.3.3, show that for any ε > 0 and any N , there
exists h0 > 0 such that for h ∈]0, h0], Sh has at least N eigenvalues in
[inf V, inf V +ε]. One can treat first the case when V has a unique non degenerate
minimum at 0.

Step 2 : Proof of (13.4.3).
Suppose that (13.4.3) is false. Then dim ( Range (E]−∞,a[) ≤ n − 1, so we
can find (n − 1) generators ψ1, · · · , ψn−1 of this space. Then any φ ∈ D(A) ∩
span{ψ1, · · · , ψn−1}⊥ is in Range (E[a,+∞[), so

< Aφ , φ >≥ a||φ||2 .

Therefore, coming back to the definition of µn(A), we get µn(A) ≥ a in contra-
diction with our initial assumption.

Before to continue the proof, let us emphasize on one point.
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Remark 13.4.6.
In the definition of µn(A), ψ1, · · · , ψn−1 are only assumed to belong to the
Hilbert space H.

Step 3 : µn(A) < +∞.
First the semi-boundedness from below of A gives a uniform lower bound.
Secondly, if µn(A) = +∞, this would mean by (13.4.2) that :
dim(Range(E]−∞,a[)) < n for all a,
and consequently that H is finite dimensional. This is a contradiction, if H is
infinite dimensional. But the finite case is trivial, we have indeed µn(A) ≤ ||A||,
in this case.

As the statement of the theorem suggests, there are two cases to consider
and this will be the object of the two next steps.

Step 4.
Let us first assume (with µn = µn(A)) that

dim (Range(E]−∞,µn+ε[)) = +∞ , ∀ε > 0 . (13.4.6)

We claim that, in this case, we are in the second alternative in the theorem.
Using (13.4.2) and (13.4.6), we get indeed

dim (Range(E]µn−ε,µn+ε[)) = +∞ , ∀ε > 0 . (13.4.7)

This shows that µn(A) ∈ σess(A).
On the other hand, using again (13.4.2), we immediately get that ]−∞, µn(A)[
does not contain any point in the essential spectrum. Thus µn(A) = inf{λ | λ ∈
σess(A)}.

Let us show now that µn+1 = µn in this case. From the definition of the
µk(A), it is clear that µn+1 ≥ µn, since one can take ψn = ψn−1.
But if µn+1 > µn, (13.4.2) would also be satisfied for µn+1, and this is in
contradiction with (13.4.6).

Step 5.

Let us now assume that

dim (Range(E]−∞,µn+ε0[)) <∞ , for some ε0 > 0 . (13.4.8)

Then it is clear, that the spectrum is discrete in ]−∞, µn + ε0[. Therefore µn
is an eigenvalue. Then, for ε1 > 0 small enough,

Range(E]−∞,µn]) = Range(E]−∞,µn+ε1[) ,

and by (13.4.3)
dim (RangeE]−∞,µn]) ≥ n . (13.4.9)

So there are at least n eigenvalues E1 ≤ E2 ≤ · · · ≤ En ≤ µn for A. If En were
strictly less than µn, dim(RangeE]−∞,En]) would equal n in contradiction with
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(13.4.2).

This ends the proof of Theorem 13.4.1.

A first natural extension of Theorem 13.4.1 is obtained by

Theorem 13.4.7.
Let A be a selfadjoint semibounded operator and Q(A) its form domain 39 .
Then

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf8<: φ ∈ [span(ψ1, . . . , ψn−1)]⊥;
φ ∈ Q(A) and ||φ|| = 1

9=;
〈Aφ | φ〉H . (13.4.10)

Proof.
Let µ̃n be the right hand side of (13.4.10). By imitating the proof of the previous
theorem, we get that each µ̃n obeys one of the two conditions. These conditions
determine µn and consequently µn = µ̃n.
One can also note (see Subsection 3.3) that, when constructing the Friedrichs
extension, one has shown that the domain of the Friedrichs extension is dense
in the form domain.

Applications

• It is very often useful to apply the max-min principle by taking the mini-
mum over a dense set in Q(A).

• The max-min principle permits to control the continuity of the eigenvalues
with respect to parameters. For example the lowest eigenvalue λ1(ε) of
− d2

dx2 + x2 + εx4 increases with respect to ε. Show that ε 7→ λ1(ε) is right
continuous on [0,+∞[. (The reader can admit that the corresponding
eigenfunction is in S(R) for ε ≥ 0).

• The max-min principle permits to give an upperbound on the bottom of
the spectrum and the comparison between the spectrum of two operators.
If A ≤ B in the sense that, Q(B) ⊂ Q(A) and40

< Au, u >≤< Bu, u > , ∀u ∈ Q(B) ,

then
λn(A) ≤ λn(B) .

Similar conclusions occur if we have D(B) ⊂ D(A).

39associated by completion with the form u 7→ 〈u|Au〉H initially defined on D(A).
40It is enough to verify the inequality on a dense set in Q(B).
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Example 13.4.8. (Comparison between Dirichlet and Neumann)
Let Ω be a bounded regular connected open set in Rm. Then theN -th eigenvalue
of the Neumann realization of −∆ + V is less or equal to the N -th eigenvalue
of the Dirichlet realization. It is indeed enough to observe the inclusion of the
form domains.

Example 13.4.9. (monotonicity with respect to the domain)
Let Ω1 ⊂ Ω2 ⊂ Rm two bounded regular open sets. Then the n− th eigenvalue
of the Dirichlet realization of the Schrödinger operator in Ω2 is less or equal to
the n-th eigenvalue of the Dirichlet realization of the Schrödinger operator in
Ω1. We observe that we can indeed identify H1

0 (Ω1) with a subspace of H1
0 (Ω2)

by just an extension by 0 in Ω2 \ Ω1.
We then have

λn(Ω2) = sup{ψ1,··· ,ψn−1∈L2(Ω2)} inf8<: φ ∈ H1
0 (Ω2)

< φ,ψj >L2(Ω2) and ||φ||=1

9=;
||∇φ||2L2(Ω2)

≤ sup{ψ1,··· ,ψn−1∈L2(Ω2)} inf8<: φ ∈ H1
0 (Ω1)

< φ,ψj >L2(Ω2) and ||φ||=1

9=;
||∇φ||2L2(Ω2)

= sup{ψ1,··· ,ψn−1∈L2(Ω2)} inf8<: φ ∈ H1
0 (Ω1)

< φ,ψj >L2(Ω1) and ||φ||=1

9=;
||∇φ||2L2(Ω1)

= sup{ψ1,··· ,ψn−1∈L2(Ω1)} inf8<: φ ∈ H1
0 (Ω1)

< φ,ψj >L2(Ω1) and ||φ||=1

9=;
||∇φ||2L2(Ω1)

= λn(Ω1) .

Note that this argument is not valid for the Neumann realization.

13.5 CLR inequality

In order to complete the picture, let us mention (confer [RS-IV], p. 101) that,
if m ≥ 3, then the following theorem due to Cwickel-Lieb-Rozenbljum is true :

Theorem 13.5.1.
There exists a constant Lm, such that, for any V such that V− ∈ L

m
2 , and

if m ≥ 3, the number of strictly negative eigenvalues of S1 N− is finite and
bounded by

N− ≤ Lm

∫
V (x)≤0

(−V )
m
2 dx . (13.5.1)

This shows that when m ≥ 3, we could have examples of negative potentials
V (which are not identically zero) and such that the corresponding Schrödinger
operator S1 has no eigenvalues. A sufficient condition is indeed

Lm

∫
V≤0

(−V )
m
2 dx < 1 .

In the other direction, we have41 the following results.
41These counterexamples come back (when m = 1 to Avron-Herbst-Simon [AHS] and when

m = 2 to Blanchard-Stubbe [BS]).
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Proposition 13.5.2.
Let V be in L1(Rm) (m = 1, 2). Then S1 = −∆ + V has a negative eigenvalue
if the following condition holds :∫

Rm

V (x) dx < 0 . (13.5.2)

Proof.
We just treat the case when V ∈ C∞0 (Rm).
We first observe that the the essential spectrum is [0,+∞[. For the proof of the
proposition, it is then enough to find ψ ∈ D(S1) such that

< S1ψ,ψ >L2(Rm)< 0 .

When m = 1, taking ψa = exp−a|x|, a > 0, we find that∫
R
|ψ′a(x)|2 dx = a ,

and
lim
a→0

∫
R
V (x)|ψa(x)|2 dx =

∫
R
V (x) dx < 0 ,

by the dominated convergence Theorem.
When m = 2, we can take ψa(x) = exp− 1

2 |x|
a, a > 0, then∫

R2
||∇ψa(x)||2 dx =

π

2
a ,

and
lim
a→0

∫
R2
V (x)|ψa(x)|2 dx = e−

1
2

∫
R2
V (x) dx < 0 .

13.6 Essential spectrum and Persson’s Theorem

We refer to Agmon’s book [Ag] for details.

Theorem 13.6.1.
Let V be a real-valued potential in the Kato-Rellich class42, and let H = −∆+V
be the corresponding self-adjoint, semibounded Schrödinger operator with do-
main H2(Rm). Then, the bottom of the essential spectrum is given by

inf σess(H) = Σ(H) , (13.6.1)

where

Σ(H) := sup
K⊂Rm

[
inf

||φ||=1
{< φ,Hφ > | φ ∈ C∞0 (Rm \ K)}

]
, (13.6.2)

where the supremum is over all compact subset K ⊂ Rm.
42Cf Theorem 10.3.1.
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Essentially this is a corollary of Weyl’s Theorem 12.4.5. We will indeed play
with the fact that

Lemma 13.6.2.
σess(H) = σess(H +W ) ,

for any regular potential W with compact support.
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14 Exercises and Problems

We present in this section some exercises or problems proposed in the last years.
They sometimes strongly intersect with the course.

14.1 Exercises

Exercise 14.1.1 (a natural problem in Bose-Einstein theory).
Let ω > 0.
Discuss in function of Ω ∈ R the semi-boundedness of the operator defined on
S(R2) by

HΩ := −1
2
∆x,y +

1
2
ω2r2 − ΩLz , (14.1.1)

with
Lz = i(x∂y − y∂x) , (14.1.2)

The answer can be found by showing that

φj,k(x, y) = e
ω
2 (x2+y2) (∂x + i∂y)j (∂x − i∂y)k

(
e−ω(x2+y2)

)
(14.1.3)

where j and k are non-negative integers, is an eigenfunction of HΩ and of Lz.

Exercise 14.1.2. (After Effros, Avron-Seiler-Simon).
Let P and Q two selfadjoint projectors in a Hilbert space H. i) Let us assume
that A = P − Q is compact. Show that if λ 6= ±1 is in the spectrum, then −λ
is in the spectrum with the same multiplicity. For this, one can first show that
with B = I − P −Q,

A2 +B2 = I , AB +BA = 0 .

ii) Assume now that A is in addition trace class, that is that the series |µj |,
where µj are the non zero eigenvalues of A, counted with multiplicity. Compute
Tr A :=

∑
j µj and show that it is an integer.

Exercise 14.1.3. (Temple’s inequality).
Let A be a selfadjoint operator on an Hilbert space and ψ ∈ D(A) such that
||ψ|| = 1.
Suppose that in some interval ]α, β[, σ(A)∩]α, β[= {λ} and that η = 〈ψ | Aψ〉
belongs to the interval ]α, β[. Then show that :

η − ε2

β − η
≤ λ ≤ η +

ε2

η − α
.

with :
ε2 = ||(A− η)ψ||2 .

As a preliminary result, one can show that (A− α)(A− λ) and (A− β)(A− λ)
are positive operators. Then apply the inequalities with ψ.
Show that this inequality is an improvment if ε2 ≤ (β − η)(η − α).
Compare with what is given by the spectral theorem or the minmax principle.
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Exercise 14.1.4. .
Let A(x1, x2) = (A1(x1, x2) , A2(x1, x2)) be a C∞ vector field on R2. Let V be
a C∞ positive function on R2.
Let P := (Dx1 − A1(x1, x2))2 + (Dx2 − A2(x1, x2))2 + V (x) the differential
operator defined on C∞0 (R2).
a) Show that P admits a selfadjoint extension in L2(R2).
b) Show that P is essentially selfadjoint.

Exercise 14.1.5. .
We admit the results of Exercise 14.1.4. Show that the selfadjoint extension in
L2(R2) of

T := −(
d

dx1
− ix2x

2
1)

2 − d2

dx2
2

+ x2
2 ,

is with compact resolvent.

Exercise 14.1.6. .
Let V be a C∞ positive potential in R2. Let us consider, with B ∈ R \ {0}, the
operator

P = D2
x1

+ (Dx2 +B x1)2 + V (x) .

a) Recall briefly the spectrum of its selfadjoint extension in the case V = 0.
b) We assume that V tends to 0 as |x| → +∞. Determine the essential spectrum
of P̄ .

Exercise 14.1.7. .
Let K be a kernel in S(R2) which is strictly positive and symmetric.
a) Show that the associated operator K which is defined on S(R) by

(Ku)(x) =
∫

R
K(x, y)u(y)dy ,

can be extended as a compact operator on L2(R). b) Let I be an open interval
in R and let us denote by KI the operator on L2(I) defined by

(KIu)(x) =
∫
I

K(x, y)u(y)dy .

Let λ1
I be the largest eigenvalue of KI . Show that

λ1
I ≤ λ1

R .

Show that we have strict inequality when I is not R.
c) Let u1 be a normalized eigenfunction of K associated with λ1

R. Using its
restriction to I, show the inequality :

λ1
R ≤ λ1

I (1− ||u1||L2(IC))
−1 .

d) Let In = [−n, n]. Show that λ1
In

converges rapidly to λ1
R as n→ +∞. More

precisely, show that, for all j ∈ N, there exists a constant Cj such that :

|λ1
R − λ1

In
| ≤ Cj n

−j , ∀n ∈ N∗ .
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Exercise 14.1.8. .
Let us consider in Ω =]0, 1[×R, a positive C∞ function V and let S0 be the
Schrödinger operator S0 = −∆ + V defined on C∞0 (Ω).
(a) Show that S0 admits a selfadjoint extension on L2(Ω). Let S this extension.
(b) Determine if S is with compact resolvent in the following cases :

1. V (x) = 0,

2. V (x) = x2
1 + x2

2,

3. V (x) = x2
1,

4. V (x) = x2
2

5. V (x) = (x1 − x2)2.

Determine the spectrum in the cases (1) and (4). One can first determine the
spectrum of the Dirichlet realization (or of Neumann) of −d2/dx2 on ]0, 1[.

Exercise 14.1.9. .
We consider in R2 the operator defined on S(R2 ; C2) by

D0 = α1Dx1 + α2Dx2 + α3 .

Here the matrices αj are hermitian 2× 2 matrices such that :

αiαj + αjαi = 2δij ,

and we recall that Dxj
= 1

i
∂
∂xj

for j = 1, 2.

a) Is D0 symmetric? semi-bounded ? It is suggested to use the Fourier
transform.

b) Compute D2
0.

c) Show that D0 admits a selfadjoint extension D1 in L2(R2 ; C2), and de-
termine its domain.

d) Determine the spectrum of D1.
e) We suppose that, for all x ∈ R2, V (x) is a 2 × 2 hermitian matrix, with

bounded C∞ coefficients. Show that DV = D0+V admits a selfadjoint extension
and determine its domain.

Exercise 14.1.10. .
Let Ha be the Dirichlet realization of −d2/dx2 + x2 in ]− a,+a[. Show that the
lowest eigenvalue λ1(a) of Ha is strictly positive, monotonically decreasing as
a→ +∞ and tend exponentially fast to 1 as a→ +∞. Give an estimate as fine
as possible of |λ1(a)− 1|.

Exercise 14.1.11. .
We consider on C∞0 (R2), the operator

P0 := (Dx1 − x2)2 + (Dx2 − x1)2 .

We recall that Dxj
= 1

i ∂xj .
Show that its natural selfadjoint extension P is unitary equivalent to the op-

erator −∆ (of domain H2). Determine its spectrum and its essential spectrum.
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Exercise 14.1.12. .
Show that one can associate to the differential operator on C∞0 (R×]0, 1[) :

T0 := (Dx1 − x2x
2
1)

2 + (Dx2)
2 ,

an unbounded selfadjoint operator T on L2(R×]0, 1[) whose spectrum is with
compact resolvent.

Exercise 14.1.13. .
Let φ be a C2- function on Rm such that |∇φ(x)| → +∞ as |x| → +∞ and with
uniformly bounded second derivatives. Let us consider the differential operator
on C∞0 (R2) −∆+2∇φ ·∇. We consider this operator as an unbounded operator
on H = L2(Rm, exp−2φ dx). Show that it admits a selfadjoint extension and
that its spectrum is discrete.
We assume in addition that :

∫
Rm exp−2φdx < +∞. Show that its lowest

eigenvalue is simple and determine a corresponding eigenvector.

Exercise 14.1.14. .
We consider in R3 the differential operator S0 := −∆ − 1

r , a priori defined on
C∞0 (R3).
a) Show that the operator admits a selfadjoint extension S.
b) Show the continuous injection of H2(R3) into the space of the Hölder func-
tions Cs(R3), with s ∈]0, 1

2 [, and the compact injection for all compact K of
Cs(K) into C0(K).
c) Determine the essential spectrum of S. One possibility is to start with the
analysis of Sχ = −∆− χ

r where χ is C∞ with compact support.
d) Show using the minimax-principle that S has at least one eigenvalue. One
can try to minimize over a u 7→< S0u , u〉/||u||2 with u(x) = exp−ar.
e) Determine this lowest eigenvalue (using the property that the groundstate
should be radial).

Exercise 14.1.15. .
a) Let g be a continuous function on R such that g(0) = 0. Analyze the conver-
gence of the sequence (g(t)un(t))n≥1 in L2(R) where un(t) =

√
nχ(nt) and χ is

a C∞ function with compact support.
b) let f ∈ C0([0, 1]; R). Let Tf be the multiplication operator by f defined on
L2(]0, 1[): u 7→ Tfu = fu.
Determine the spectrum of Tf . Discuss in function of f the possible existence
of eigenvalues. Determine the essential spectrum of Tf .

Exercise 14.1.16. .
Discuss in function of α ≥ 0 the possibility of associating to the differential
operator define on C∞0 (R3)

−∆− r−α

a selfadjoint operator on L2(R3).

Exercise 14.1.17. .
Let Ω be a non empty open subset in Rd and let us consider the multiplication
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operator on L2(Rd) defined by the multiplication by χΩ where χΩ is equal to 1 in
Ω and 0 outside. Determine the spectrum, the essential spectrum, the discrete
spectrum.

Exercise 14.1.18. .
Show that the spectrum in R2 of P = D2

x + x2 +D2
y is [1,+∞[.

Exercise 14.1.19. .
Let V ∈ S(Rd) be positive and let us consider the operator :

T := (−∆ + 1)−
1
2V (−∆ + 1)−

1
2 .

a) Explain how to define (−∆ + 1)−
1
2 , as an operator on L2(Rd).

b) Show that T is a bounded, selfadjoint, positive, compact operator on L2(Rd).
c) Discuss the injectivity in function of V ?
d) Establish a link with the research of pairs (u, µ) in H2(Rd)×R+ such that :

(−∆ + 1− µV )u = 0 .

Exercise 14.1.20. .
Let δ ∈ R.
(a) Show that the operator Pδ defined on C∞0 (R2) by

Pδ := D2
x +D2

y + x2y4 + x4y2 + δ(x+ y)

is semibounded.
One can first show the inequality :

〈P0u , u〉 ≥ ||xu||2 + ||yu||2 .

(b) Show that there exists a natural selfadjoint extension of Pδ.
(c) What is the corresponding form domain ?
(d) Show that the selfadjoint extension is with compact resolvent.

Exercise 14.1.21. .
Let us consider in R+, the Neumann realization in R+ of P0(ξ) := D2

t +(t−ξ)2,
where ξ is a parameter in R. We would like to find an upper bound for Θ0 =
infξ µ(ξ) where µ(ξ) is the smallest eigenvalue of P0(ξ). Following the physicist
Kittel, one can proceed by minimizing 〈P0(ξ)φ(·; ρ) | φ(·; ρ)〉 over the normalized
functions φ(t; ρ) := cρ exp−ρt2 (ρ > 0). For which value of ξ is this quantity
minimal ?? Deduce the inequality :

Θ0 <

√
1− 2

π
.

Exercise 14.1.22. .
In the same spirit as in the previous exercise. Find an upper bound for the
quartic operator D2

t + 1
4 t

4.
Using the comparison with an harmonic oscillator D2

t +αt2 +β, find an optimal
(with respect to the method) lower bound.
Using the comparison with D2

t + Vα(t) where Vα(t) = 0 for |t| ≤ α and Vα(t) =
1
4α

4 for |t| ≥ α, and optimizing over α find an alternative lower bound (and
compute it with the help of a computer).
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14.2 Problems

Problem 14.2.1. .
Let us consider in the disk of R2 Ω := D(0, R) the Dirichlet realization of the
Schrödinger operator

S(h) := −∆ +
1
h2
V (x) , (14.2.1)

where V is a C∞ potential on Ω̄ satisfying :

V (x) ≥ 0 . (14.2.2)

Here h > 0 is a parameter.
a) Show that this operator is with compact resolvent.

b) Let λ1(h) be the lowest eigenvalue of S(h). We would like to analyze the
behavior of λ1(h) as h→ 0. Show that h→ λ1(h) is monotonically increasing.
c) Let us assume that V > 0 on Ω̄; show that there exists ε > 0 such that

h2λ1(h) ≥ ε . (14.2.3)

d) We assume now that V = 0 in an open set ω in Ω. Show that there exists a
constant C > 0 such that, for any h > 0,

λ1(h) ≤ C . (14.2.4)

One can use the study of the Dirichlet realization of −∆ in ω.
e) Let us assume that :

V > 0 almost everywhere in Ω . (14.2.5)

Show that, under this assumption :

lim
h→0

λ1(h) = +∞ . (14.2.6)

One could proceed by contradiction supposing that there exists C such that

λ1(h) ≤ C , ∀h such that 1 ≥ h > 0 . (14.2.7)

and establishing the following properties.

• For h > 0, let us denote by x 7→ u1(h)(x) an L2-normalized eigenfunction
associted with λ1(h). Show that the family u1(h) (0 < h ≤ 1) is bounded
in H1(Ω).

• Show the existence of a sequence hn (n ∈ N) tending to 0 as n→ +∞ and
u∞ ∈ L2(Ω) such that

lim
n→+∞

u1(hn) = u∞

in L2(Ω).
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• Deduce that : ∫
Ω

V (x) u∞(x)2 dx = 0 .

• Deduce that u∞ = 0 and make explicite the contradiction.

f) Let us assume that V (0) = 0; show that there exists a constant C, such
that :

λ1(h) ≤
C

h
.

g) Let us assume that V (x) = O(|x|4) près de 0. Show that in this case :

λ1(h) ≤
C

h
2
3
.

h) We assume that V (x) ∼ |x|2 near 0; discuss if one can hope a lower bound
in the form

λ1(h) ≥
1
C h

.

Justify the answer by illustrating the arguments by examples and counterexam-
ples.

Problem 14.2.2. .
We consider on R and for ε ∈ I := [− 1

4 ,+∞[ the operator Hε = −d2/dx2 +
x2 + ε|x|.
a) Determine the form domain of Hε and show that it is independent of ε.
b) What is the nature of the spectrum of the associated selfadjoint operator?
c) Let λ1(ε) the smallest eigenvalue. Give rough estimates permitting to estimate
from above or below λ1(ε) independently of ε on every compact interval of I.
d) Show that, for any compact sub-interval J of I, there exists a constant CJ
such that, for all ε ∈ J , any L2-normalized eigenfunction uε of Hε associated
with λ1(ε) satisfies :

||uε||B1(R) ≤ CJ .

For this, on can play with : 〈Hεuε, uε〉L2(R).
e) Show that the lowest eigenvalue is a monotonically increasing sequence of
ε ∈ I.
f) Show that the lowest eigenvalue is a locally Lipschitzian function of ε ∈ I.
One can use again the max-min principle.
g) Show that λ(ε) → +∞, as ε→ +∞ and estimate the asymptotic behavior.
h) Discuss the same questions for the case Hε = −d2/dx2+x2+εx4 (with ε ≥ 0).

Problem 14.2.3. .
The aim of this problem is to analyze the spectrum ΣD(P ) of the Dirichlet real-
ization of the operator P := (Dx1 − 1

2x2)2 + (Dx2 + 1
2x1)2 in R+ × R.

1. Show that one can a priori compare the infimum of the spectrum of P in
R2and the infimum of ΣD(P ).
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2. Compare ΣD(P ) with the spectrum ΣD(Q) of the Dirichlet realization of
Q := D2

y1 + (y1 − y2)2 in R+ × R.

3. We first consider the following family of Dirichlet problems associated with
the family of differential operators : α 7→ H(α) defined on ]0,+∞[ by :

H(α) = D2
t + (t− α)2 .

Compare with the Dirichlet realization of the harmonic oscillator in ] −
α,+∞[.

4. Show that the lowest eigenvalue λ(α) of H(α) is a monotonic function of
α ∈ R.

5. Show that α 7→ λ(α) is a continuous function on R.

6. Analyze the limit of λ(α) as α→ −∞.

7. Analyze the limit of λ(α) as α→ +∞.

8. Compute λ(0). For this, one can compare the spectrum of H(0) with the
spectrum of the harmonic oscillator restricted to the odd functions.

9. Let t 7→ u(t;α) the positive L2-normalized eigenfunction associated with
λ(α). Let us admit that this is the restriction to R+ of a function in S(R).
Let, for α ∈ R, Tα be the distribution in D′(R+ × R) défined by

φ 7→ Tα(φ) =
∫ +∞

0

φ(y1, α)uα(y1)dy1 .

Compute QTα.

10. By constructing starting from Tα a suitable sequence of L2-functions tend-
ing to Tα, show that λ(α) ∈ ΣD(Q).

11. Determine ΣD(P ).

Problem 14.2.4. .
Let Ha be the Dirichlet realization of −d2/dx2 + x2 in ]− a,+a[.
(a) Briefly recall the results concerning the case a = +∞.
(b) Show that the lowest eigenvalue λ1(a) of Ha is decreasing for a ∈]0,+∞[
and larger than 1.
(c) Show that λ1(a) tends exponentially fast to 1 as a → +∞. One can use a
suitable construction of approximate eigenvectors.
(d) What is the behavior of λ1(a) as a→ 0. One can use the change of variable
x = ay and analyze the limit lima→0 a

2λ1(a).
(e) Let µ1(a) be the smallest eigenvalue of the Neumann realization in ]−a,+a[.
Show that µ1(a) ≤ λ1(a).
(f) Show that, if ua is a normalized eigenfunction associated with µ1(a), then
there exists a constant C such that, for all a ≥ 1, we have :

||xua||L2(]−a,+a[) ≤ C .
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(g) Show that, for u in C2([−a,+a]) and χ in C2
0 (]− a,+a[), we have :

−
∫ +a

−a
χ2u′′(t)u(t)dt =

∫ +a

−a
|(χu)′(t)|2dt−

∫ +a

−a
χ′(t)2u(t)2dt .

(h) Using this identity with u = ua, a suitable χ which should be equal to 1 on
[−a + 1, a − 1] , the estimate obtained in (f) and the minimax principle, show
that there exists C such that, for a ≥ 1, we have :

λ1(a) ≤ µ1(a) + Ca−2 .

Deduce the limit of µ1(a) as a→ +∞.

Problem 14.2.5.

We consider, for c ∈ R, the differential operator which is defined on C∞0 (R2)
by

A0,c = D2
x + (Dy −

1
2
x2)2 + icy ,

and considered as an unbounded operator on L2(R2). We recall that Dx = −i∂x
et Dy = −i∂y. The problem consists in analyzing the spectral properties of A0,c

as a function of c ∈ R.

Part I
For η ∈ R, we consider the unbounded operator on L2(R) h0(η) with domain
C∞0 (R) associated with the differential operator

h0(η) := − d2

dx2
+ (η − x2

2
)2 .

Ia) Show that, for any η, one can construct a selfadjoint extension of h0(η) and
describe its domain.
Ib) Show that the operator has compact resolvent and deduce that the spectrum
consists in a sequence Montrer que l’opérateur e of eigenvalues λj(η) (j ∈ N∗)
tending to +∞.
Ic) Show that limη→−∞ λ1(η) = +∞.
Id) Show that λ1(η) > 0.
Ie) Show that η → λ1(η) is continuous.
If) Show that η 7→ λj(η) is monotonically decreasing for η < 0.
Ig) We admit that limη→+∞ λ1(η) = +∞. Show that η 7→ λ1(η) attains its
infimum λ∗ for (at least) one point.
Ih) We admit that η 7→ λ1(η) is of multiplicity 1, of class C1 and that one
can, for any η, associate with λ1(η) an eigenfunction u1(·, η) in S(R) with C1

dependence of η such that ||u1|| = 1 and u1 > 0.
Show that

λ′1(η) = 2
∫

R
(η − x2

2
) u1(x, η)2 dx .
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Deduce that the critical points ηc of λ1 satisfy ηc > 0.
Ii) Show that u1(·, η) is even.
Ij) Show that, if ηc is a critical point of λ1, then

I(ηc) :=
∫ +∞

0

x(
x2

2
− ηc) u1(x, ηc)2 dx ≥ 0 ,

Ik) Computing differently I(η), deduce that

η2
c ≤ λ1(ηc) .

Ik) Using Gaussian quasimodes for h1(0) determine an interval (as good as pos-
sible) in which λ1 should have its minimum.

Part II
Here we suppose that c = 0 and we write A0 for A0,0.
IIa) Show that the operator A0 is symmetric.
IIb) Show that one can construct its Friedrichs extension AFried0 , associated with
a sesquilinear form to be defined precisely.
Describe the form domain and the domain of the operator.
IIc) Show that the operator is essentially selfadjoint.
IId) Show that

σ(AFried0 ) ⊂ [λ∗,+∞[ .

It is suggested to use a partial Fourier transform with respect to y.
IIe) By constructing suitable families of approximate eigenfunctions, show that

σ(AFried0 ) = [λ∗,+∞[

IIf) Show that AFried0 is not with compact resolvent.

Part III
We now suppose that c 6= 0.
IIIa) Show that

Re 〈A0,cu , u〉 = 〈A0u , u〉 ,

and that
Im 〈A0,cu , u〉 = c〈yu , u〉 ,

for all u ∈ D(A0,c).
IIIb) Show that

Re 〈A0,cu , u〉 ≥ λ∗ ||u||2 ,

for all u ∈ D(A0,c).
IIIc) Show that A0,c is closable. We denote by A0,c its closure. Recall how this
operator is defined and describe its domain.
IIId) Show that, for λ > −λ∗, A0,c + λ is injective and with closed range.
IIIe) Show that for λ > −λ∗, A0,c+λ has dense range. It is suggest to adapt
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the proof of IIc.
IIIf) Show that

σ(Ao,c) ⊂ {λ ∈ C , Re λ ≥ λ∗} .

The aim of questions IIIg to IIIk is to show that Ao,c has, for c 6= 0,
a compact resolvent.
IIIg) Show that, for any compact set K ⊂ R2, there exists a constant CK such
that, for any u ∈ C∞0 (R2) with compact support in K, we have

||u||2H1(R2) ≤ CK
(

Re 〈A0,cu , u〉+ ||u||2L2

)
.

IIIh) Show that, for all u ∈ C∞0 (R2), with compact support in {y > 0} or in
{y < 0}, we have ∫

|y||u(x, y)|2 dxdy ≤ 1
|c|
| Im 〈A0,cu , u〉| .

By using a partition of unity, deduce that

|||y| 12u||2 ≤ C
(
||A0u||2L2 + ||u||2L2

)
.

IIIi) Show that, for all u ∈ C∞0 (R2), with compact support in {x > 0} or in
{x < 0}, we have ∫

|x||u(x, y)|2 dxdy ≤ Re 〈A0,cu , u〉| .

By using a partition of unity, deduce that there exists a constant C such that,
for all u ∈ C∞0 (R2), we have

|||x| 12u||2 ≤ C
(
||A0u||2L2 + ||u||2L2

)
.

IIIj) Deduce that A0,c has a compact resolvent.
IIIk) Show that if (u, λ) is a spectral pair for A0,c, then, for all a ∈ R, (ua, λ−
ica), where ua is defined by ua(x, y) = u(x, y + a), is a spectral pair.
IIIl) Deduce that the spectrum of A0,c is empty.
IIIm) Show that A0,c = A∗0,−c.
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mannienne, Springer Lecture Notes in Mathematics 194 (1971).
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