Exercice 1. On considère dans $\mathbb{R}[X]$ le polynôme $P = X^3 + 3X - 6\sqrt{3}$.

- a) Montrer que $\sqrt{3}$ est racine de P et en déduire toutes les racines réelles de P.
- b) Montrer que $\sqrt[3]{2\sqrt{7}+3\sqrt{3}}-\sqrt[3]{2\sqrt{7}-3\sqrt{3}}$ est une racine de P, et conclure.

Exercice 2. Soit $n \in \mathbb{N}^*$. Montrer que $P_n = (X-2)^{2n} - (X-1)^n - 1$ est divisible par $X^2 - 3X + 2$.

Exercice 3. Soit $n \in \mathbb{N}^*$. Montrer que 1 est racine triple de $P_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$

Exercice 4. Pour quels entiers naturels n le polynôme $(X+1)^n - X^n - 1$ est-il divisible par $X^2 + X + 1$?

Exercice 5. On définit, pour tout entier naturel n, le polynôme

$$P_n(X) = \frac{1}{2i} ((X+i)^{n+1} - (X-i)^{n+1}).$$

- a) Déterminer le degré de P_n en fonction de n.
- b) Montrer que : $\forall k \in \mathbb{N}, P_{2k} = \sum_{p=0}^{k} {2k+1 \choose 2p+1} X^{2k-2p}$.
- c) Pour tout $n \in \mathbb{N}$, déterminer les racines de P_n et montrer qu'elles sont réelles. En déduire, pour tout $n \in \mathbb{N}$, la décomposition en facteurs irréductibles de P_n dans $\mathbb{R}[X]$.
- d) Montrer que : $\forall k \in \mathbb{N}, P_{2k} = (2k+1) \prod_{p=1}^k \left(X^2 \cot^2\left(\frac{p\pi}{2k+1}\right)\right)$.

Exercice 6. Déterminer le degré du polynôme $(X^2+1)^n-2X^{2n}+(X^2-1)^n \ (n\in\mathbb{N}).$

Exercice 7. Soit $n \in \mathbb{N}$. Montrer que le polynôme $P_n = 1 + X + \frac{X^2}{2!} + \cdots + \frac{X^n}{n!}$ n'admet pas de racine multiple.

Exercice 8. Résoudre

$$\begin{cases} x + y + z = 2 \\ xyz = -\frac{1}{2} \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}. \end{cases}$$

Exercice 9. Soit $P = X^4 + 12X - 5$. Factoriser P sur \mathbb{R} et sur \mathbb{C} sachant qu'il admet deux racines dont le produit vaut -1.

Exercice 10. Factoriser $(X^2 + 1)^2 + (X^2 - X - 1)^2$.

Exercice 11. Décomposer en éléments simples $F = \frac{X^4 + 5}{X^3 + 2X^2 - X - 2}$.

Exercice 12. Décomposer en éléments simples $F_1 = \frac{1}{X(X-1)^2}$, $F_2 = \frac{1}{X^5 + 2X^3 + X}$.

Exercice 13. Soient $P_1 = X^2 + 1$, $P_2 = X^2 + X - 1$ et $P_3 = X^2 + X$. Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.

Exercice 14. Soient $n \in \mathbb{N}^*$ et $\Delta : \mathbb{R}_{n+1}[X] \to \mathbb{R}_n[X]$ définie par $\Delta(P) = P(X+1) - P(X)$ pour tout P de degré $\leq n$.

- a) Montrer que Δ est bien définie et est linéaire.
- b) Déterminer le noyau de Δ .
- c) En déduire que Δ est surjective.

Exercice 15.

- a) Factoriser, dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$, les polynômes $X^4 1$, $X^5 1$ et $(X^2 X + 1)^2 1$.
- b) Soient $n \in \mathbb{N}^*$ et $a \in]0,\pi[$. Factoriser, dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$, le polynôme $X^{2n} 2(\cos a)X^n + 1$.
- c) Dans $\mathbb{R}[X]$, factoriser $X^4 + X^2 + 1$, $X^4 + X^2 6$ et $X^8 + X^4 + 1$.

Exercice 16. Pour tout $n \in \mathbb{N}$ on pose $L_n = \frac{n!}{(2n)!} ((X^2 - 1)^n)^{(n)}$.

- a) Montrer que pour tout n, L_n est unitaire de degré n.
- b) On fixe $n \in \mathbb{N}^*$. Montrer que pour tout $Q \in \mathbb{R}_{n-1}[X], \int_{-1}^1 L_n(t)Q(t) dt = 0$.
- c) En déduire que pour tout $n \in \mathbb{N}$, L_n possède n racines simples, toutes dans]-1,1[.

Exercice 17. Pour tout $n \in \mathbb{N}$ on définit $f_n : [-1,1] \to \mathbb{R}$ par

$$\forall x \in [-1, 1], f_n(x) = \cos(n \arccos x).$$

- a) Calculer f_0, \ldots, f_3 .
- b) Pour $n \ge 1$ et $x \in [-1, 1]$, exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$.
- c) Établir que pour tout $n \ge 0$, il existe un unique polynôme réel T_n , dont la fonction polynomiale associée sur [-1,1] est f_n .
- d) Pour $n \geq 0$, déterminer degré et coefficient dominant de T_n .
- e) Pour $n \geq 0$, observer que T_n possède n racines distinctes, que l'on exprimera, toutes dans dans]-1,1[.

Exercice 18. Soit $n \ge 1$. Décomposer en éléments simples $F_n = \frac{n!}{X(X+1)\cdots(X+n)}$.

Exercice 19. Décomposer en éléments simples dans $\mathbb{C}(X)$ puis $\mathbb{R}(X)$ la fraction rationnelle $F = \frac{X^{n-1}}{X^n - 1}$ $(n \ge 1)$.