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Abstract

A Poincaré type Kähler metric on the complement X\D of a simple
normal crossing divisor D, in a compact Kähler manifold X, is a Kähler
metric onX\D with cusp singularity alongD. We relate the Futaki character
for holomorphic vector fields parallel to the divisor, defined for any fixed
Poincaré type Kähler class, to the classical Futaki character for the relative
smooth class. As an application we express a numerical obstruction to the
existence of extremal Poincaré type Kähler metrics, in terms of mean scalar
curvatures and Futaki characters.

Introduction

A basic fact in Kähler geometry is the independence of the de Rham class of the
Ricci form from the background metric on a compact Kähler manifold: it is always
−2πc1(K), with c1(K) the first Chern class of the canonical line bundle. This
topological invariance constitutes the first obstacle for a compact Kähler manifold
to admit a Kähler-Einstein metric: the Chern class in question must then have
a sign, which, if definite, forces Kähler-Einstein metrics to lie in a consequently
fixed Kähler class.

When c1(K) > 0, a (unique) Kähler-Einstein metric was obtained by Aubin
and Yau, and Bochner’s technique then rules out the existence of non-trivial holo-
morphic vector fields . Conversely, in the opposite case c1(K) < 0, the so-called
“Fano case”, non-trivial holomorphic vector fields may exist, and the existence of
a Kähler-Einstein metric, which does not always hold, is noticeably more involved.
More precisely, in this case – and, respectively, on any compact Kähler manifold
– non-trivial holomorphic vector fields bring a constraint to the existence of a
Kähler-Einstein metric – respectively, of a constant scalar curvature metric Kähler
metric in a fixed Kähler class. If indeed such a canonical metric exists, a numerical
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function, the Futaki character [Fut88], defined on the Lie algebra of holomorphic
vector fields – and depending only on the Kähler class under study –, has to vanish
identically .

The Futaki character was later generalised by Donaldson to polarised mani-
folds, into an numerical function defined on test-configurations, which generalise
the concept of (the action of) holomorphic vector fields [Don02]. In the lines of
suggestions by Yau [Yau93], and after Tian’s special degenerations [Tia97], test-
configurations and their Donaldson-Futaki invariants are meant to reveal the link
between algebro-geometric stability of the manifold, and existence of a Kähler-
Einstein/constant scalar curvature Kähler metric:

Conjecture 1 (Yau-Tian-Donaldson) A polarised manifold (X,L) admits a
constant scalar Kähler curvature metric in 2πc1(L) if, and only if, (X,L) is “K-
stable”, that is: the Donaldson-Futaki invariant is nonpositive (negative) for any
(non-trivial) test-configuration.

The “only if” direction is now established [Mab04,Sto09]; the “if” direction is still
a very active area of research, and has recently been solved for Kähler-Einstein
metrics in the Fano case, i.e. when L = −KX is ample, see [CDS12b, CDS12c,
CDS13] and [Tia12].

In a related scope, the aim of this note is, after restriction to the relevant
set of holomorphic vector fields, to generalise the Futaki character to a certain
class of singular metrics on a compact manifold. Namely, fixing a simple normal
crossing divisorD in a compact Kähler manifold (X, J, ωX), we recall the definition
Poincaré type Kähler metrics on X\D, following [TY87,Wu08,Auv11]:

Definition 2 A smooth positive (1, 1)-form ω on X\D is called a Poincaré type
Kähler metric on X\D if: on every open subset U of coordinates (z1, . . . , zm)
in X, in which D is given by {z1 · · · zj = 0}, ω is mutually bounded with

ωmdl
U :=

idz1 ∧ dz1

|z1|2 log2(|z1|2)
+ · · ·+ idzj ∧ dzj

|zj|2 log2(|zj|2)
+ idzj+1∧ dzj+1 + · · ·+ idzm∧ dzm,

and has bounded derivatives at any order for this model metric.
We say moreover that ω is of class [ωX ] if ω = ωX + ddcϕ for some ϕ smooth

on X\D, with ϕ = O
(∑j

`=1 log[− log(|z`|2)]
)
in the above coordinates and dϕ

bounded at any order for ωmdl
U . We then set: ω ∈MD

[ωX ].

Metrics of MD
[ωX ] are complete, with finite volume (equal to that ofX for smooth

Kähler metrics of class [ωX ]); they also share a common mean scalar curvature,
which differs from that attached to smooth Kähler metrics of class [ωX ].

Restricting our attention to the set hD// of holomorphic vector fields with their
normal component vanishing along D – these are the holomorphic vector fields
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bounded (at any order) for any Poincaré type Kähler metric on X\D –, we define
in a way similar to the compact case a Poincaré type Futaki character FD

[ωX ],
computed with metrics of MD

[ωX ], and depending only on this Poincaré class.

Results. — This Poincaré type Futaki character differs generally from the restric-
tion of the usual smooth Futaki character F[ωX ] to hD// . More precisely, our first
main result is a formula giving the precise relation between these two invariants:

Theorem 3 Let Z ∈ hD// , with Riemannian gradient potential f for ωX(·, J ·).

Then FD
[ωX ](Z) = F[ωX ](Z) +

∑N
j=1

∫
Dj
f

(ωX |Dj )m−1

(m−1)!
.

The gradient potential refers to that of the Hodge decomposition of (the dual
1-form) of Z.

As an application of Poincaré type Futaki character, in the framework of finding
necessary conditions on canonical Kähler metrics, we provide the following numer-
ical constraint on the existence of extremal metrics of Poincaré type on X\D:

Theorem 4 Assume that there exists an extremal metric in MD
[ωX ], and denote by

K the Riemannian gradient of its scalar curvature. Then for all j ∈ {1, . . . , N}
indexing an irreducible component of D, one has:

(1) sD < sD
j

Dj
+

1

4πVol(Dj)

(
F

D−Dj
[ωX ] (K)−FD

[ωX ](K)
)
,

where F
D−Dj
[ωX ] (K) is the Futaki character for Poincaré type metrics on X\(D −

Dj) = X\
∑

` 6=j D` of class [ωX ], sD is the mean scalar curvature attached to
FD

[ωX ](K), and sD
j

Dj
that attached to FDj

[ωX ]|Dj
(K), the class of Poincaré type metrics

on Dj\(D −Dj)|Dj of class [ωX ]|Dj .

An extremal metrics is a Kähler metrics such that the Riemannian gradient
of its scalar curvature is holomorphic. Constraint (1) is a reformulation of that
of [Auv14, Prop.4.5], and as such, extends that on the existence of constant scalar
curvature metrics in MD

[ωX ] of [Auv13], which states as: sD < sD
j

Dj
for all j =

1, . . . , N . As in the compact case moreover, by construction and invariance on
MD

[ωX ], FD
[ωX ] vanishes identically if there exists a constant scalar curvature metric

in MD
[ωX ], and conversely, its vanishing forces possible extremal metrics of MD

[ωX ]

to have constant scalar curvature. By contrast, the interest of Theorem 4 is to
provide constraints on extremal metrics independently of such a vanishing.

Finally, Donaldson-Futaki invariants are already considered in [CDS12a] which
take into account the contribution of a divisor. These are used in the context of
Kähler metrics with conical singularities on polarised manifolds, and the divisor
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term of the invariant comes with coefficient (1 − β), with 2πβ the angle of the
cone singularity. In view of Theorem 3, the Poincaré type Futaki invariant might
thus be viewed – at the level of holomorphic vector fields rather than at that of
test-configurations – as the limit when the conical singularity angle goes to 0, that
is, roughly speaking, when cones become cusps.

Organisation of the article. — This note is divided into three parts. In the
first part, we analyse holomorphic vector fields parallel to a divisor, with respect
to Poincaré type Kähler metrics on the complement of this divisor. We see in
particular that a Hodge decomposition analogous to that of the compact case still
holds for such metrics and such vector fields. This allows us in Section 1.2 to
define the Poincaré type Futaki character, as an invariant of a given Poincaré
type Kähler class.

Theorem 3, under a slightly more general version, is stated in Section 2.1
(Proposition 2.1); it is proven in Section 2.2, and the final section 2.3 of Part 2 is
devoted to a key technical lemma (Lemma 2.2) used in Section 2.2.

In Part 3 we state and prove Theorem 4: a useful extension (Proposition 3.1)
of 3 (to asymptotically product Poincaré type metrics when the divisor is smooth)
is given in Section 3.1; Theorem 4 is then proven in Section 3.2 (Theorem 3.2),
first in the smooth divisor case using Proposition 3.1, then in the simple normal
crossing case. Notice that both steps use the asymptotic properties of extremal
Poincaré type metrics obtained in [Auv14].

Acknowledgements
I am very thankful to Vestislav Apostolov and Yann Rollin for the informal

discussions I had with them, which led me to the material and results presented
here.

In all this note, X is a compact Kähler manifold, and D ⊂ X a sim-
ple normal crossing divisor, the decomposition into irreducible smooth
components of which we write as

∑N
j=1Dj.

1 The Futaki character of a Poincaré class

1.1 Hodge decomposition of vector fields parallel to the di-
visor

Reminder: the compact case. — Fix a smooth Kähler form ωX on X, of associated
Riemannian metric gX . Given any real holomorphic vector field Z – “Z ∈ h” –,
it is well-known that its gX-dual 1-form ξZ, that is, Z]gX , enjoys the following
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decomposition:

(2) ξZ = ξZharm + dfZ
ωX

+ dchZωX ,

into harmonic, d- and dc-parts; these are uniquely determined, provided that fZ
ωX

and hZωX are taken with null mean against ωmX .
Decomposition (2) is called the (dual) Hodge decomposition of Z. Given more-

over any other smooth metric ω̃ = ωX +ddcϕ of M[ωX ], and setting ξ̃Z for the dual
1-form of Z with respect to ω̃(·, J ·), its Hodge decomposition is:

ξ̃Z = ξZharm + d
(
fZ
ωX

+ Z · ϕ
)

+ dc
(
hZωX − (JZ) · ϕ

)
see [Gau, Lemma 4.5.1]– notice in particular that the harmonic part remains un-
changed at the level of 1-forms; recall that on compact Kähler manifolds, the space
of harmonic 1-forms is independent of the Kähler metric.

Extension to Poincaré type Kähler metrics for vector fields parallel to a divisor.
— Consider now the simple normal crossing divisor D =

∑N
j=1Dj in X. The

normal crossing assumption can be expressed as follows: given any p ∈ (Dj1∩· · ·∩
Djk)\(D`1 ∪ · · · ∪D`N−k), with {j1, . . . , jk} t {`1 . . . , `N−k} = {1, . . . , N}, one can
find in X an open neighbourhood U of p, of holomorphic coordinates (z1, . . . , zm)
such that U ∩Djs = {zs = 0} for s = 1, . . . , k (in particular, k ≤ m).

We define a restricted class of holomorphic vector fields on X, the use of which
is natural when working with Poincaré type Kähler metrics on X\D:

Definition 1.1 Let Z ∈ h. We say that Z is parallel to D, denoted Z ∈ hD// , if:
writing Z as Re

(
f1

∂
∂z1

+ · · · + fm
∂

∂zm

)
in local holomorphic coordinates as above,

one has f1 ≡ · · · ≡ fs ≡ 0 on D.
Given j ∈ {1, . . . , N}, we then define the restriction Z|Dj of Z to Dj by

setting locally ZDj = Re
(
f2|Dj ∂

∂z2
+ · · ·+ fm|Dj ∂

∂zm

)
, whenever j1 = j in the above

coordinates.

One checks in particular that the definition of ZDj is independent of the choice
of holomorphic coordinates, as long as the first coordinate is a local equation of
Dj; one also checks easily that hD// is a Lie subalgebra of h.

Holomorphic vector fields parallel toD are relevant when working with Poincaré
type Kähler metrics on D for the following reason (see the proof of Lemma 5.2 in
[Auv11]): any holomorphic vector field on X\D which is bounded – or actually, L2

– with respect to a Poincaré type Kähler metric on X\D extends to a holomorphic
vector field on X, parallel to D. Conversely, any holomorphic vector field on X
parallel to D gives on X\D a vector field bounded at any order for any Poincaré
type metric on X\D.
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We now provide a Hodge decomposition of holomorphic vector fields parallel
to D with respect to Poincaré type Kähler metrics on X\D, analogous to the
decomposition of the compact setting:

Proposition 1.2 Let Z ∈ hD// , and let ω = ωX + ddcϕ ∈MD
[ωX ]. Let ξ

Z
ϕ be the dual

1-form of Z with respect to ω(·, J ·). Then

(3) ξZϕ = ξZharm + d
(
fZ
ωX

+ Z · ϕ
)

+ dc
(
hZωX − (JZ) · ϕ

)
on X\D, with the same harmonic part ξZharm as in the compact case, and this
decomposition is unique. Moreover,∫

X\D

(
fZ
ωX

+ Z · ϕ
)
ωm =

∫
X\D

(
hZωX − (JZ) · ϕ

)
ωm = 0.

The uniqueness we state here is understood as follows: if ξZϕ = α+dβ+dcγ with
α harmonic on X\D, and α, β, γ bounded for ω of Poincaré type, then α = ξZharm,
and β = fZ

ωX
+ Z · ϕ and γ = hZωX − (JZ) · ϕ up to a constant. This justifies:

Notation 1.3 With the notations of Proposition 1.2, we set

fZ
ω = fZ

ωX
+ Z · ϕ and hZω = hZωX − (JZ) · ϕ.

Proof of Proposition 1.2. — With the notations of the statement, we first prove
that equality (3) holds on X\D. This identity is purely local; it is thus sufficient
to establish it for any Kähler metric equal to ω in the neighbourhood of any given
point of X\D. More concretely, as ω = ωX + ddcϕ is of Poincaré type, local
analysis provides that ϕ → −∞ near D. Consider a convex function χ : R → R,
with χ(t) = 0 if t ≤ −1, χ(t) = t if t ≥ 1 – and thus 0 ≤ χ′(t) ≤ 1 for all t. Given
K ∈ R, one now easily checks that

ωK := ωX + ddc
(
χ ◦ (ϕ+K)

)
is a smooth metric on X, equal to ω on {ϕ ≥ 1−K} (compact in X\D), and to
ωX on {ϕ ≤ −(K + 1)}. Now (3) follows on {ϕ > 1 −K} by the smooth case of
Hodge decomposition applied to ωK , thus on all X\D by letting K →∞.

Observe that ξZharm is still harmonic with respect to ω; again, this condition
is local, implied, thanks to the Kähler identities, by the closedness and the dc-
closedness of ξZharm. These latter conditions are independent of the Kähler metric,
and indeed implied by the harmonicity of ξZharm for the smooth ωX , asX is compact.

As ξZharm is bounded for ωX , it is so for ω, which dominates ωX . Similarly, fZ
ωX

and hZωX are bounded at any order for ωX hence for ω, and as Z is parallel to D, it
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is bounded at any order for ω, as well as dϕ by definition; consequently, fZ
ω and hZω

are bounded at any order for ω. From this the uniqueness of Hodge decomposition
easily follows. Write ξZϕ = α+dβ+dcγ with α, β, γ as above. As dα = dcα = 0 (α is
bounded and harmonic for ω hence bounded at any order by uniform ellipticity in
quasi-coordinates, and one can thus integrate by parts without boundary terms),
one gets ddc(fZ

ω −β) = ddc(hZω− γ) = 0 on X\D. Therefore fZ
ω −β and hZω− γ are

constant (use e.g. Yau’s maximum principle [Wu08, p.406]) as wanted, and thus
α = ξZharm.

We are left with the mean assertion on fZ
ω and hZω. For t ∈ [0, 1], set ωt =

ωX + tddcϕ, ft = fZ
ωX

+ t(Z ·ϕ), and consider the function t 7→
∫
X\D ft ω

m
t . Thanks

to the growths near D, this function is smooth, with derivative
∫
X\D(Z · ϕ)ωmt +

m
∫
X\D ftdd

cϕ ∧ ωm−1
t . Now,

m

∫
X\D

ftdd
cϕ ∧ ωm−1

t = −m
∫
X\D

dft ∧ dcϕ ∧ ωm−1
t = −

∫
X\D
〈dft, dϕ〉ωt ωmt

(no boundary terms). On the other hand, we now know that for all t, ξZtϕ =

ξZharm +d
(
fZ
ωX

+ t(Z ·ϕ)
)

+dc
(
hZωX − t(JZ) ·ϕ

)
. Notice that

∫
X\D〈ξ

Z
harm, dϕ〉ωt ωmt =∫

X\D ϕ(δωtξ
Z
harm)ωmt = 0 (ξZharm is co-closed for ωt, as δωt = Λωtd

c on 1-forms),
and

∫
X\D〈d

c
(
hZωX − t(JZ) · ϕ

)
, dϕ〉ωt ωmt = −m

∫
X\D d

(
hZωX − t(JZ) · ϕ

)
∧ dϕ ∧

ωm−1
t = 0 (the integrand is closed, and there are no boundary terms). This way∫
X\D〈dft, dϕ〉ωt ω

m
t =

∫
X\D〈ξ

Z
tϕ, dϕ〉ωt ωmt =

∫
X\D(Z · ϕ)ωmt , hence:

∫
X\D ft ω

m
t is

constant, which gives (take t = 0, 1):
∫
X\D f

Z
ω ω

m =
∫
X\D f

Z
ωX
ωmX = 0. The mean

of hZω against ωm is seen to vanish likewise. �

1.2 The Poincaré type Futaki character

Definition. — We can now generalise to Poincaré type Kähler metrics/classes,
and holomorphic vector fields parallel to the divisor, a well-known invariant [Fut88]
of compact Kähler manifolds:

Definition 1.4 For Z ∈ hD// and ω ∈ MD
[ωX ], we call Poincaré type Futaki

character of Z with respect to D the quantity

(4) FD
[ωX ](Z) =

∫
X\D

s(ω)fZ
ω

ωm

m!
.

Here, s(ω) denotes the (Riemannian) scalar curvature of ω, that one can compute
for instance via: s(ω)ω

m

m!
= 2%(ω) ∧ ωm−1

(m−1)!
, with %(ω) the Ricci-form of ω.

7



Note on Poincaré type Kähler metrics and Futaki characters

Independence from the reference metric. — As terminology and notation suggest,
this Poincaré type Futaki character does not depend on ω of class [ωX ], provided
it is of Poincaré type:

Proposition 1.5 Let ω̃ be any Poincaré type metric in MD
[ωX ], and Z ∈ hD// . Then

FD
[ωX ](Z) =

∫
X\D s(ω̃)fZ

ω̃
ω̃m

m!
.

Observe nonetheless that we take ω̃ of Poincaré type in this proposition; the
relation between the usual smooth Futaki character, and our Poincaré type Futaki
character, is the purpose of next part. For now, let us address the proof.

Proof of Proposition 1.5. — Take Z ∈ hD// . Fix ω = ωX +ddcϕ and ω̃ = ωX +ddcϕ̃

in MD
[ωX ], and for t ∈ [0, 1], set ωt = (1− t)ω+ tω̃ = ωX +ddcϕt, ϕt = (1− t)ϕ+ tϕ̃;

the ωt are metrics of Poincaré type, uniformly bounded below by cω, say. As
a consequence, the s(ωt) are uniformly bounded, at any order for ω, and for all
t0 ∈ [0, 1], s(ωt) = s(ωt0) + (t− t0)ṡt0 + (t− t0)2wt0,t, with ṡt0 = −1

2
∆2
ωt0

(ϕ̃− ϕ)−
〈%(ωt), dd

c(ϕ̃−ϕ)〉t, and wt0,t (uniformly) bounded at any order. Uniform bounds
at any order hold as well for the fZ

ωt = fZ
ωX

+Z ·ϕt = fZ
ω + tZ · (ϕ̃−ϕ); these growth

conditions near D thus ensure us that

t 7−→ Ft :=

∫
X\D

s(ωt)f
Z
ωt

ωmt
m!

is a smooth function of t, with derivative

t 7−→ Ḟt =

∫
X\D

(
ṡtf

Z
ωt+s(ωt)

[
Z·(ϕ̃−ϕ)

])ωmt
m!

+

∫
X\D

s(ωt)f
Z
ωt dd

c(ϕ̃−ϕ)∧ ωm−1
t

(m− 1)!
,

just as in the compact case. And as in the compact case, integrations by parts
can be performed without boundary terms, again thanks to the bounds mentioned
above; one thus ends with Ḟt = 0 for all t ∈ [0, 1] (see e.g. [Gau, Prop. 4.12.1]),
hence the result. �

Remark 1.6 The word “character” for the function FD
[ωX ] : hD// → R might ap-

pear slightly abusive, as long as we have not checked that FD
[ωX ]([Z1,Z2]) = 0 for

all Z1,Z2 ∈ hD// . As in the compact case, this identity however follows at once
from the invariance of FD

[ωX ] along MD
[ωX ], and the stability of this class under

automorphisms of X parallel to D and homotopic to idX .
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2 Link between smooth and Poincaré type Futaki
characters

2.1 Statement

We keep the notations of the previous part; in particular, ωX is a smooth Kähler
metric on X compact, and FD

[ωX ] : hD// → R denotes the Futaki character associated
to the space MD

[ωX ] of Poincaré type Kähler metrics on X\D of class [ωX ].
Recall moreover that if Z ∈ h, we set fZ

ωX
for the normalised potential of its

(Riemannian) gradient part, relatively to ωX . The purpose of this part is to state
and prove an explicit relation between smooth and Poincaré type Futaki characters
on hD// ; this is the main result of this note. We use for this, as intermediates,
Futaki characters with respect to sub-divisors of D, e.g. D −Dj =

∑N
`=1,` 6=j D` if

D =
∑N

`=1D`; the Futaki character is denoted by F
D−Dj
[ωX ] in this case, and is still

defined on hD// . We denote by F[ωX ] the usual Futaki character on X:

Proposition 2.1 For all Z ∈ hD// and for all j = 1, . . . , N , one has:

(5) FD
[ωX ](Z) = F

D−Dj
[ωX ] (Z) + 4π

∫
Dj

fZ
ωX

(ωX |Dj)m−1

(m− 1)!
.

Consequently, for all Z ∈ hD// ,

(6) FD
[ωX ](Z) = F[ωX ](Z) + 4π

N∑
j=1

∫
Dj

fZ
ωX

(ωX |Dj)m−1

(m− 1)!
.

2.2 Proof of Proposition 2.1

Identity (6) clearly follows from an inductive use of identity (5), the proof of which
we focus on for the rest of this part.

Fix Z ∈ hD// . To compute FD
[ωX ](Z), we first fix a Poincaré type Kähler metric

ω ∈ MD
[ωX ] as follows. We take ω = ωX − ddc

∑N
j=1 log

(
− log(|σj|2j)

)
, with σj ∈

O([Dj]) such that Dj = {σj = 0}, and the | · |j smooth hermitian metrics on the
[Dj], chosen so that ω is indeed a (Poincaré type) metric on X\D – see [Auv11,
§1.1.1] for details.

Fix now j ∈ {1, . . . , N}, set ϕj = − log
(
− log(|σj|2j)

)
, ψj = −

∑
`6=j log

(
−

log(|σj|2j)
)
, and define ωt = ωX + ddc(ψj + tϕj) for t ∈ [0, 1]. Notice that these are

metrics of Poincaré type on X\D for t ∈ (0, 1] only, as ωt=0 = ωX−ddc
∑

`6=j log
(
−

log(|σj|2j)
)
is of Poincaré type on X\(D−Dj) – assuming a good choice of the | · |`
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for the positivity assertion. Now by Proposition 1.5,

(7) FD
[ωX ](Z) =

∫
X\D

s(ωt)f
Z
ωt

ωmt
m!

for all t ∈ (0, 1]. Observe however that the integrand tends uniformly to s(ω0)fZ
ω0

ωm0
m!

away from Dj, as t goes to 0. Our strategy is hence to show that, for the price of

the correction 4π
∫
Dj
fZ
ωX

(ωX |Dj )m−1

(m−1)!
, the formal limit

∫
X\(D−Dj) s(ω0)fZ

ω0

ωm0
m!

is the
limit of (7) as t goes to 0; in other words, we want to show that:

(8) lim
t↘0

∫
X\D

s(ωt)f
Z
ωt

ωmt
m!

=

∫
X\(D−Dj)

s(ω0)fZ
ω0

ωm0
m!

+ 4π

∫
Dj

fZ
ωX

(ωX |Dj)m−1

(m− 1)!
,

which provides (5), by definition of FD
[ωX ] – and its independence from t ∈ (0, 1]

in (7) –, and of F
D−Dj
[ωX ] .

Set Dj := (D −Dj)|Dj ; admitting momentarily that

(9)
∫
Dj

fZ
ωX

(ωX |Dj)m−1

(m− 1)!
=

∫
Dj\Dj

fZ
ω0

(ω0|Dj\Dj)m−1

(m− 1)!
,

our aim is to prove (8) with
∫
Dj\Dj f

Z
ω0

(ω0|Dj\Dj )m−1

(m−1)!
instead of

∫
Dj
fZ
ωX

(ωX |Dj )m−1

(m−1)!
.

The key point is the following technical lemma:

Lemma 2.2 Let f ∈ C∞
(
X\(D −Dj)

)
, and w ∈ C∞1 (X\Dj). Then

(10)

lim
t↘0

∫
X\D

s(ωt)(f+w)
ωmt
m!

=

∫
X\(D−Dj)

s(ω0)(f+w)
ωm0
m!

+4π

∫
Dj\Dj

f
(ω0|Dj\Dj)m−1

(m− 1)!
.

By “f ∈ C∞
(
X\(D−Dj)

)
”, we mean: f is smooth onX\(D−Dj), with derivatives

bounded at any order with respect to any Poincaré type metric on X\(D −Dj),
e.g. ω0; by “w ∈ C∞1 (X\Dj)”, we mean: w smooth on X\Dj, with derivatives at
any order O

(∣∣ log |σj|j
∣∣−1) with respect to any Poincaré type metric on X\Dj, e.g.

ωX + ddcϕj.
Lemma 2.2 is proven in next section. Let us see for now how it applies to our

situation. One has: fZ
ωt = fZ

ω0
+ t(Z ·ϕj); we already know that fZ

ω0
∈ C∞

(
X\(D−

Dj)
)
, and we check easily that (Z · ϕj) ∈ C∞−1(X\Dj) thanks to the assumption

that Z is parallel to Dj. This way, by Lemma 2.2,
∫
X\D s(ωt)f

Z
ω0
ωmt /m! tends

to
∫
X\D s(ω0)fZ

ω0
ωm0 /m! + 4π

∫
Dj\Dj f

Z
ω0

(ω0|Dj\Dj)m−1/(m−1)!, and
∫
X\D s(ωt)(Z ·

ϕj)ω
m
t /m! tends to

∫
X\D s(ω0)(Z ·ϕj)ωmt /m! as t goes to 0 – all that matters here

10
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is actually this limit existing and being finite. As a result,∫
X\D

s(ωt)f
Z
ωt

ωmt
m!

=

∫
X\D

s(ωt)f
Z
ω0

ωmt
m!

+ t

∫
X\D

s(ωt)(Z · ϕj)
ωmt
m!

t↘0−−−→
∫
X\(D−Dj)

s(ω0)fZ
ω0

ωm0
m!

+ 4π

∫
Dj\Dj

fZ
ω0

(ω0|Dj\Dj)m−1

(m− 1)!
,

as wanted.
Apart from the proof of Lemma 2.2, we are left with that of equality (9).

We work on Dj\Dj – recall the notation Dj = (D − Dj)|Dj –, where we set
$s = (1 − s)(ωX |Dj) + s(ω0|Dj\Dj); these are Poincaré type metrics for s > 0. In
the same fashion as in the proof of Proposition 1.2, growths near Dj allow us to
say that

s 7−→
∫
Dj\Dj

(
fZ
ωX

+ s(Z · ψj)
)
$m−1
s

is smooth, with derivative∫
Dj\Dj

(Z · ψj)$m−1
s + (m− 1)

∫
Dj\Dj

(
fZ
ωX

+ s(Z · ψj)
)
ddcψj ∧$m−2

s .

In order to conclude as in the proof of Proposition 1.2, since (Z · ψj)|Dj\Dj =
(Z|Dj\Dj) · (ψj|Dj\Dj) as Z is parallel to Dj, we check that the Hodge decompo-
sition out of Dj induces a Hodge decomposition on Dj, up to the mean of the
Riemannian/symplectic gradient potentials. Namely, we check that

(11) ξ
Z|Dj
ωX |Dj

:= (Z|Dj)
](gX |Dj ) = ξharm|Dj + d(fZ

ωX
|Dj) + dc(hZωX |Dj),

the extension to couples (Poincaré type metric $ on X\(D−Dj), restriction of $
on Dj\Dj) being dealt with as in Proposition 1.2. Now, as harmonic 1-forms are
exactly d− and dc−closed 1-forms on compact Kähler manifolds, (11) is immediate
from ξ

Z|Dj
ωX |Dj

= ξZωX |Dj , and this latter identity follows at once from the definition of
Z|Dj . Indeed, in local holomorphic coordinates (z1, . . . , zm) such that Dj is given
by z1 = 0, write Z = Zk ∂

∂zk
+ Zk ∂

∂zk
, and thus Z|Dj = Zα|Dj ∂

∂zα
+ Z

α|Dj ∂
∂zα

– we
implicitly sum on repeated Latin indices over {1, . . . ,m}, and on Greek indices
over {2, . . . ,m}. The dual 1-forms are given by:

ξZωX = Z`(gX)k ¯̀dzk+Z`(gX)`k̄dz
k, ξ

Z|Dj
ωX |Dj

= Zβ|Dj(gX |Dj)αβ̄dzα+Zβ|Dj(gX |Dj)βᾱdzα,

hence the result after restriction to Dj of ξZωX , as Z
1|Dj ≡ Z1|Dj ≡ 0. �

11
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2.3 Main technical argument: proof of Lemma 2.2

Localisation of the problem. Recall that ω0 = ωX + ddcψj is of Poincaré type on
X\(D−Dj), and that the ωt = ωX +ddc(tϕj +ψj), t ∈ (0, 1], are of Poincaré type
on X\D. Now for all t ∈ [0, 1], s(ωt)ωmt = 2m%(ω0)∧ ωmt −mddc log

(ωmt
ωm0

)
∧ ωm−1

t .
On the one hand, for f and w as in the statement, as (f+w)%(ω0)∧ωmt is uniformly
dominated by ωm,

2m

∫
X\D

(f +w)%(ω0)∧ωmt → 2m

∫
X\D

(f +w)%(ω0)∧ωm0 =

∫
X\D

s(ω0)(f +w)ωm0

as t tends to 0; one recognises the first term in the right-hand side of (10).
On the other hand, thanks to the uniform convergence of ddc log

(ωmt
ωm0

)
∧ ωm−1

t

to 0 far from Dj (for ω0, say), as t tends to 0, we can restrict to f and w with
compact supports in a neighbourhood U of holomorphic coordinates (z1, . . . , zm)
centred at any point of Dj; we also assume that |z`| ≤ e−1 on U for all `, that Dj ≤
U = {z1 = 0}, and that the possible other components of D intersecting U are
respectively given by {z2 = 0}, . . . , {zk = 0} for the appropriate k ∈ {2, . . . ,m}.

For fixed t > 0, we can write ωmt /ωm0 = vt/[|z1|2 log2(|z1|2)] on U\D, with vt
positively bounded below, and bounded up to order 2, for ω = ωt=1; these bounds
are not uniform in t though, as (ωmt /ω

m
0 )→ 1 far from Dj when t↘ 0. We rather

write | log(ωmt /ω
m
0 )| ≤ C + log

(
1 + t/[|z1|2 log2(|z1|2)]

)
for a control uniform in t,

with C > 0 independent of t.
Both controls come from the expansion ωt = ω0 + t idz1∧dz1

|z1|2 log2(|z1|2)
+ εt, with

|εt|ω, |∇ωεt|ω, |(∇ω)2εt|ω ≤ Ct
∣∣ log |z1|

∣∣−1, where C > 0 is independent of t.

Integration by parts. Now as ddc log(|z1|2) = 0 in U\Dj, for fixed t > 0,∫
U\D

(f + w)ddc log
(ωmt
ωm0

)
∧ ωm−1

t =

∫
U\D

(f + w)ddc log
( vt

log2(|z1|2)

)
∧ ωm−1

t

=

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ωm−1

t ;

we perform this integration by parts without boundary terms, as integrands are
L1 at every stage (including the intermediate step, where the integrand is d(f +
w) ∧ dc log

(
vt

log2(|z1|2)

)
∧ ωm−1

t ).

Expand now ωm−1
t as ωm−1 + (m − 1)t idz1∧dz1

|z1|2 log2(|z1|2)
∧ ωm−2

0 + ε̃t, with |ε̃t|ω ≤

12
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Ct
∣∣ log |z1|

∣∣−1; this way,

(12)

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ωm−1

t

=

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ωm−1

0

+ (m− 1)

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ t idz1 ∧ dz1

|z1|2 log2(|z1|2)
∧ ωm−2

0

+

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ε̃t.

We deal with the three summands of the right-hand side separately; the aim is to
show that when t goes to 0, the first summand provides the “

∫
Dj
-term” of (10),

whereas the other two tend to 0.

First summand. As w|Dj = 0, (an easy adaptation of) the classical Lelong
formula yields:

∫
U\D log(|z1|2)ddc(f +w)∧ωm−1

0 = −4π
∫
U∩(Dj\Dj) f(ω0|Dj\Dj)m−1.

Consequently, for t > 0, as ωmt /ωm0 = vt/[|z1|2 log2(|z1|2)],∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ωm−1

0

=

∫
U\D

log
(ωt
ω0

)
ddc(f + w) ∧ ωm−1

0 + 4π

∫
U∩(Dj\Dj)

f(ω0|Dj\Dj)
m−1.

The uniform controls | log(ωmt /ω
m
0 )| ≤ C + log

(
1 + 1/[|z1|2 log2(|z1|2)]

)
, |(ddcf ∧

ωm−1
0 )/ωm0 | ≤ C, |(ddcw ∧ ωm−1

0 )/ωm
∣∣ ≤ C

∣∣ log |z1|
∣∣−1 now allow us1 to argue by

dominated convergence on the first summand of the right-hand side in the latter
identity; since the integrand tends to 0 as t↘ 0, we get:

lim
t↘0

∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ωm−1

0 = 4π

∫
U∩(Dj\Dj)

f(ω0|Dj\Dj)
m−1.

Third summand of the right-hand side of (12). Use the control on ε̃t to write:∣∣∣∣ ∫
U\D

log
( vt

log2(|z1|2)

)
ddc(f + w) ∧ ε̃t

∣∣∣∣
≤Ct‖ddc(f + w)‖ω

∫
U\D

∣∣∣ log
(ωmt
ωm0

)
+ log(|z1|2)

∣∣∣ ωm

| log(|z1|2)|
;

1the worst term to deal with is
∫
U\D log

(
1+1/[|z1|2 log2(|z1|2]

)/∣∣ log |z1|∣∣ωm, which is finite,
as log

(
1 + 1/[|z1|2 log2(|z1|2]

)/∣∣ log |z1|∣∣ = 1 + o(1) for z1 small

13
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the integral of the right-hand side is indeed finite (same argument as in the footnote
above), and the left-hand side thus tends to 0 as t↘ 0.

Second summand of the right-hand side of (12). This is probably the most
delicate. We rewrite the integral in play as∫

0<|z1|≤1/e

t idz1 ∧ dz1

|z1|2 log2(|z1|2)

∫
Vz1

log
( vt

log2(|z1|2)

)(
ddc(f + w)

)
|Vz1 ∧ (ω0|Vz1 )m−2

where the Vz1 are the slices {z1 = constant} of U\D. On each such slice, (the
restriction of) f + w, d(f + w) and ddc(f + w) are bounded, with respect to (the
restriction of) ω0, hence

∫
Vz1

(
ddc(f +w)

)
|Vz1 ∧ (ω0|Vz1 )m−2 = 0 for all z1 6= 0. Our

integral can thus be rewritten as∫
0<|z1|≤1/e

t idz1 ∧ dz1

|z1|2 log2(|z1|2)

∫
Vz1

log(vt)
(
ddc(f + w)

)
|Vz1 ∧ (ω0|Vz1 )m−2,

that is:∫
0<|z1|≤1/e

idz1∧dz1

∫
Vz1

t log[|z1|2 log2(|z1|2) · ωmt /ωm0 ]

|z1|2 log2(|z1|2)

(
ddc(f+w)

)
|Vz1∧(ω0|Vz1 )m−2.

Now for all z1 6= 0, t ∈ (0, 1],∣∣∣ ∫
Vz1

t log[|z1|2 log2(|z1|2) · ωmt /ωm0 ]

|z1|2 log2(|z1|2)

(
ddc(f + w)

)
|Vz1 ∧ (ω0|Vz1 )m−2

∣∣∣
≤ C

∥∥(ddc(f + w)
)
|Vz1
∥∥
ω0|V

z1

Vol(Vz1)
t

|z1|2 log2(|z1|2)

[
1 +

∣∣ log[t+ |z1|2 log2(|z1|2)]
∣∣],

where Vol(Vz1) =
∫
Vz1

ωm−1
0 . This volume, as well as the supremums

∥∥(ddc(f +

w)
)
|Vz1
∥∥
ω0|V

z1

are bounded below independently of z1 (and of t!) – notice that we
restrict to directions parallel to Dj, along which ω0 and ω are comparable. Now,∫
{0<|z1|≤1/e}

t idz1 ∧ dz1

|z1|2 log2(|z1|2)

[
1 +

∣∣ log[t+ |z1|2 log2(|z1|2)]
∣∣]

=t

∫
{0<|z1|≤1/e}

idz1 ∧ dz1

|z1|2 log2(|z1|2)
+ t| log t|

∫
{0<|z1|≤1/e}

idz1 ∧ dz1

|z1|2 log2(|z1|2)

+

∫
{0<|z1|≤1/e}

t

|z1|2 log2(|z1|2)
log
(

1 +
|z1|2 log2(|z1|2)

t

)
idz1 ∧ dz1.

14
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As t ↘ 0, the first two summands of the right-hand side clearly tend to 0; as
for the integrand of the third summand, an elementary study of the function
x 7→ x log(1 + 1/x) on (0,∞) shows that it is bounded above by 1, and tends to 0
as t↘ 0. A last use of dominated convergence thus gives that this third summand,
hence the whole second summand of (12), tend to 0 as t↘ 0.

Summing up the above analysis of the three summands of the right-hand side
of (12), we get:∫

U\D
(f + w)ddc log

(ωmt
ωm0

)
∧ ωm−1

t

t↘0−−−→ 4π

∫
U∩(Dj\Dj)

f (ω0|(Dj\Dj))
m−1,

and we saw this is equivalent to Lemma 2.2 for our (localised) f and w. �

3 Application to extremal metrics of Poincaré type

3.1 Extension of Proposition 2.1 (smooth divisor)

Noticed that the integral term in (5) does not depend on the smooth metric ωX ∈
M[ωX ], as neither FD

[ωX ](Z) nor F
D−Dj
[ωX ] (Z) do. Considerations similar to those

invoked when proving (9) tell us moreover that for the price of replacing Dj by
Dj\Dj, one can replace ωX by any ω ∈ M

D−Dj
[ωX ] , ω|Dj\Dj being in that case an

element of MDj

[ωX ]|Dj
.

One can go a step further, at least when the divisor is smooth, and take an
ω ∈ MD

[ωX ] which is asymptotically a product near Dj, i.e. for which there exist
a > 0, ωj ∈ M[ωX ]|Dj and δ > 0 such that as soon as Dj = {z1 = 0} in local
holomorphic coordinates (z1, . . . , zm), then

ω =
a idz1 ∧ dz1

|z1|2 log2(|z1|2)
+ p∗ωj +O

(∣∣ log |z1|
∣∣−δ),

where p(z1, . . . , zm) = (z2, . . . zm), and with the O understood at any order for ω.
This way ω|Dj still makes sense as an element of M[ωX ]|Dj , as well as f

Z
ω |Dj , and:

Proposition 3.1 (D smooth) Let ω ∈MD
[ωX ], and assume that ω is asymptoti-

cally a product near Dj, for j ∈ {1, . . . , N}. Then for all Z ∈ hD// , one has:

(13) FD
[ωX ](Z) = F

D−Dj
[ωX ] (Z) + 4π

∫
Dj

fZ
ω

(ω|Dj)m−1

(m− 1)!
.

15
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Proof. — Assume that ω is asymptotically a product as above; then ω = ωX +
ddc
(
ϕ+ ψ̃

)
, with ϕ = −a log

(
− log(|z1|2)

)
, and in local holomorphic coordinates

(z1, . . . , zm) such that Dj = {z1 = 0}, ψ̃ = p∗ψ + O
(∣∣ log |z1|

∣∣−δ), where the O
is understood at any order for ω, and where ψ ∈ C∞(Dj) is such that ωψDj :=

ωX |Dj + ddcψ ∈M[ωX ], and ω|Dj = ωψDj .
Taking Z ∈ hD// , Z · ϕ = O

(∣∣ log |z1|
∣∣−1) in coordinates as above, so that fZ

ω =

fZ
ωX

+ Z ·
(
ϕ + ψ̃

)
, restricts to fZ

ω |Dj + (Z|Dj) · ψ on Dj. Now we know from the
treatment of equality (9) in the proof of Proposition 2.1 that d

(
fZ
ω |Dj + (Z|Dj) ·ψ

)
is the gradient part in the Hodge decomposition of the dual 1-form of (Z|Dj) for
ωψDj . The analogue moreover holds when replacing ψ by tψ for t ∈ [0, 1]; setting
ωtDj = ωX |Dj + tddcψ and ft = fZ

ω |Dj + t(Z|Dj) ·ψ, we thus see that the derivative of∫
Dj
ft (ωtDj)

m−1 vanishes thanks to the usual integration by parts, hence the result,
in view of (5). �

3.2 A numerical constraint on extremal metrics of Poincaré
type

We apply what precedes to reformulate the numerical obstruction of [Auv14,
§4.2.2], which is a constraint on extremal Poincaré type metrics of class [ωX ]:

Theorem 3.2 Assume that there exists an extremal metric of Poincaré type of
class [ωX ] on X\D, and let K ∈ hD// be the Riemannian gradient of its scalar
curvature. Then for all j = 1, . . . , N , setting Dj = (D −Dj)|Dj ,

(14) sD < sD
j

Dj
+

1

4πVol(Dj)

(
F

D−Dj
[ωX ] (K)−FD

[ωX ](K)
)
,

where sD (resp. sD
j

Dj
) denotes the mean scalar curvature attached to MD

[ωX ] (resp.
to MDj

[ωX ]|Dj
).

Proof. — Assume for a start that D is smooth. Let ω ∈ MD
[ωX ] be extremal,

and let K = ∇s(ω) ∈ hD// , where the (Riemannian) gradient ∇ is computed with
respect to (the Riemannian metric associated to) ω. According to [Auv14, Thm.
3], ω is asymptotically a product near the divisor, and induces an extremal metric
ωj ∈ M[ωX ]|Dj for all j = 1, . . . , N . We fix one of these j; as fK

ω = s(ω) − sD,

16
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Proposition 3.1 implies:

FD
[ωX ](K) =F

D−Dj
[ωX ] (K) + 4π

∫
Dj

(s(ω)− sD)
ωm−1
j

(m− 1)!

=F
D−Dj
[ωX ] (K)− 4πVol(Dj)s

D + 4π

∫
Dj

(
s(ωj)−

2

aj

) ωm−1
j

(m− 1)!

=F
D−Dj
[ωX ] (K)− 4πVol(Dj)

(
sD − sDj +

2

aj

)
,

where aj ∈ (0,∞) is such that: given a neighbourhood of holomorphic coordi-
nates (z1, . . . , zm) in X of any point of Dj such that Dj locally corresponds to
z1 = 0, then ω = aj

idz1∧dz1
|z1|2 log2(|z1|2)

+ p∗ωj + O
(

1
| log(|z1|)|δ

)
for some δ > 0, and with

p(z1, . . . , zm) = (z2, . . . , zm). As aj is positive, one gets:

F
D−Dj
[ωX ] (K) > FD

[ωX ](K) + 4πVol(Dj)(s
D − sDj),

of which (14) is simply a rewriting – as D is smooth, Dj = 0 on Dj.

The simple normal crossing case. The asymptotically product behaviour of the
extremal metric ω is not clear anymore when the divisor admits (simple normal)
crossings; we thus content ourselves with applying Proposition 2.1, with Z = K,
and ωX smooth, and adapt our argument as follows. Let ϕ so that ω = ωX +ddcϕ;
then fK

ω = fK
ωX

+ K · ϕ, that is, fK
ωX

= fK
ω − K · ϕ = s(ω)− sD − K · ϕ. Remember

that fK
ωX

is smooth on X, and set for the following lines ωDj = ωX |Dj ; To compute
fK
ωX
|Dj , notice that by Remarks 4.4 and 4.7 in [Auv14], one can find “tubes” around

Dj in X\D such that: s(ω) and K · ϕ tend uniformly on compact subsets of these
tubes, respectively to s(ωDj + ddcψ)− 2/aj and KDj · ψ, and where: ψ is smooth
on Dj\Dj, such that ωψDj := ωDj + ddcψ ∈MDj

[ωDj ], and aj > 0 is the inverse of the
left-hand side of inequality (35) in [Auv14, Prop. 4.5].

As a consequence, fK
ωX
|Dj\Dj = s(ωDj + ddcψ) − sD − 2/aj − KDj · ψ, and

Proposition 2.1 yields

(15) FD
[ωX ](K) = F

D−Dj
[ωX ] (K)− 4π

∫
Dj\Dj

(
s(ωψDj)− sD − 2

aj
− KDj · ψ

)(ωDj)
m−1

(m− 1)!
.

We can be more specific when analysing ω near Dj, and see that ωψDj is extremal,
with KDj = ∇s(ωψDj) and ∇ the Riemannian gradient with respect to ωψDj . In other

words, f
KDj

ωψDj

= s(ωψDj)− sD
j

Dj
, hence

(16) f
KDj
ωDj

= s(ωψDj)− sD
j

Dj
− KDj · ψ.

17
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As
∫
Dj
f
KDj
ωDj

ωm−1
Dj

= 0 by definition of the normalised holomorphic potential, using
(16), we can rewrite equation (15) as:

FD
[ωX ](K) = F

D−Dj
[ωX ] (K)− 4πVol(Dj)

(
sD

j

Dj
− sD − 2

aj

)
.

We now conclude as in the smooth divisor case, using the positivity of aj. �
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