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Abstract

In this paper we consider a punctured Riemann surface endowed with a Hermitian
metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle
that polarizes the metric. We show that the quotient of the Bergman kernel of high tensor
powers of the line bundle and of the Bergman kernel of the Poincaré model near the
singularity tends to one up to arbitrary negative powers of the tensor power.
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1 Introduction

In this paper we study the asymptotics of Bergman kernels of high tensor powers of a
singular Hermitian line bundle over a Riemann surface under the assumption that the
curvature has singularities of Poincaré type at a finite set. We show namely that the
quotient of these Bergman kernels and of the Bergman kernel of the Poincaré model near
the singularity tends to one up to arbitrary negative powers of the tensor power. In our
previous paper [5] (see also [4]) we obtained a weighted estimate in the Cm-norm near the
punctures for the difference of the global Bergman kernel and of the Bergman kernel of the
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Poincaré model near the singularity, uniformly in the tensor powers of the given bundle.
Our method is inspired by the analytic localization technique of Bismut-Lebeau [7].

There exists a well-known expansion of the Bergman kernel on general compact man-
ifolds [8, 11, 14, 20, 22, 23, 27, 28] with important applications to the existence and
uniqueness of constant scalar curvature Kähler metrics [17, 27] as part of the Tian-Yau-
Donaldson’s program. Coming to our context, a central problem is the relation between
the existence of special complete/singular metrics and the stability of the pair (X,D)
where D is a smooth divisor of a compact Kähler manifold X; see e.g. the suggestions
of [26, §3.1.2] for the case of “asymptotically hyperbolic Kähler metrics”, which naturally
generalize to higher dimensions the complete metrics ωΣ studied here. Moreover, the tech-
nique developed here can be extended to the higher dimensional situation in the case of
Poincaré type Kähler metrics with reasonably fine asymptotics on complement of divisors,
see the construction of [2, §1.1] and [3, Theorem 4].

The Bergman kernel function of a singular polarization is of particular interest in
arithmetic situations [9, 10, 6]. In [5] we applied the precise asymptotics of the Bergman
kernel near the punctures in order to obtain optimal uniform estimates for the supremum of
the Bergman kernel, relevant in arithmetic geometry [1, 21, 18]. There are also applications
to “partial Bergman kernels”, see [13].

We place ourselves in the setting of [5] which we describe now. Let Σ be a compact
Riemann surface and let D = {a1, . . . , aN} ⊂ Σ be a finite set. We consider the punctured
Riemann surface Σ = ΣrD and a Hermitian form ωΣ on Σ. Let L be a holomorphic line
bundle on Σ, and let h be a singular Hermitian metric on L such that:

(α) h is smooth over Σ, and for all j = 1, . . . , N , there is a trivialization of L in
the complex neighborhood Vj of aj in Σ, with associated coordinate zj such that
|1|2h(zj) =

∣∣log(|zj |2)
∣∣.

(β) There exists ε > 0 such that the (smooth) curvature RL of h satisfies iRL ≥ εωΣ

over Σ and moreover, iRL = ωΣ on Vj := Vj r {aj}; in particular, ωΣ = ωD∗ in the
local coordinate zj on Vj and (Σ, ωΣ) is complete.

Here ωD∗ denotes the Poincaré metric on the punctured unit disc D∗, normalized as follows:

(1.1) ωD∗ :=
idz ∧ dz

|z|2 log2(|z|2)
·

For p ≥ 1, let hp := h⊗p be the metric induced by h on Lp|Σ, where Lp := L⊗p. We denote
by H0

(2)(Σ, L
p) the space of L2-holomorphic sections of Lp relative to the metrics hp and

ωΣ,

(1.2) H0
(2)(Σ, L

p) =

{
S ∈ H0(Σ, Lp) : ‖S‖2

L2 :=

∫
Σ
|S|2hp ωΣ <∞

}
,

endowed with the obvious inner product. The sections from H0
(2)(Σ, L

p) extend to holo-
morphic sections of Lp over Σ, i. e., (see [22, (6.2.17)])

(1.3) H0
(2)(Σ, L

p) ⊂ H0
(
Σ, Lp

)
.

In particular, the dimension dp of H0
(2)(Σ, L

p) is finite.
We denote by Bp(·, ·) and by Bp(·) the (Schwartz-)Bergman kernel and the Bergman

kernel function of the orthogonal projection Bp from the space of L2-sections of Lp over
Σ onto H0

(2)(Σ, L
p). They are defined as follows: if {Sp` }

dp
`=1 is an orthonormal basis of

H0
(2)(Σ, L

p), then

(1.4) Bp(x, y) :=

dp∑
`=1

Sp` (x)⊗ (Sp` (y))∗ and Bp(x) :=

dp∑
`=1

|Sp` (x)|2hp .
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Note that these are independent of the choice of basis (see [22, (6.1.10)] or [12, Lemma
3.1]). Similarly, let BD∗

p (x, y) and BD∗
p (x) be the Bergman kernel and Bergman kernel

function of
(
D∗, ωD∗ ,C,

∣∣log(|z|2)
∣∣p h0) with h0 the flat Hermitian metric on the trivial line

bundle C.
Note that for k ∈ N, the Ck-norm at x ∈ Σ is defined for σ ∈ C∞(Σ, Lp) as

|σ|Ck(hp)(x) =
(
|σ|hp +

∣∣∇p,Σσ∣∣
hp,ωΣ

+ . . .+
∣∣(∇p,Σ)kσ

∣∣
hp,ωΣ

)
(x),(1.5)

where ∇p,Σ is the connection on (TΣ)⊗` ⊗ Lp induced by the Levi-Civita connection on
(TΣ, ωΣ) and the Chern connection on (Lp, hp), and the pointwise norm | · |hp,ωΣ

is induced
by ωΣ and hp. In the same way we define the Ck-norm |f |Ck(x) at x ∈ Σ of a smooth
function f ∈ C∞(Σ,C) by using the Levi-Civita connection on (TΣ, ωΣ).

We fix a point a ∈ D and work in coordinates centered at a. Let eL be the holomorphic
frame of L near a corresponding to the trivialization in the condition (α). By assumptions
(α) and (β) we have the following identification of the geometric data in the coordinate z
on the punctured disc D∗4r of radius 4r centered at a, via the trivialization eL of L,(

Σ, ωΣ, L, h
)∣∣

D∗4r
=
(
D∗, ωD∗ ,C, hD∗ =

∣∣log(|z|2)
∣∣ · h0

)∣∣
D∗4r

, with 0 < r < (4e)−1.(1.6)

In [5, Theorem 1.2] we proved the following weighted diagonal expansion of the Bergman
kernel:

Theorem 1.1. Assume that (Σ, ωΣ, L, h) fulfill conditions (α) and (β). Then the following
estimate holds: for any `, k ∈ N, and every δ > 0, there exists C = C(`, k, δ) > 0 such that
for all p ∈ N∗, and z ∈ V1 ∪ · · · ∪ VN with the local coordinate zj,

(1.7)
∣∣∣Bp −BD∗

p

∣∣∣
Ck

(zj) ≤ Cp−`
∣∣log(|zj |2)

∣∣−δ,
with norms computed with help of ωΣ and the associated Levi-Civita connection on D∗4r.

Note that in [5, Theorem 1.1] we also established the off-diagonal expansion of the Bergman
kernel Bp(·, ·). The main result of the present paper is the following estimate of the
quotient of the Bergman kernels from (1.7):

Theorem 1.2. If (Σ, ωΣ, L, h) fulfill conditions (α) and (β), then

(1.8) sup
z∈V1∪...∪VN

∣∣∣∣ BpBD∗
p

(z)− 1

∣∣∣∣ = O(p−∞) ,

i.e., for any ` > 0 there exists C > 0 such that for any p ∈ N∗ we have

(1.9) sup
z∈V1∪...∪VN

∣∣∣∣ BpBD∗
p

(z)− 1

∣∣∣∣ ≤ Cp−`.
Theorem 1.2 is related to estimates in exponentially small neighborhoods of the punc-

tures obtained in [24, Theorem 1.6] and [25, Lemma 3.3].
For each p ≥ 2 fixed (|z|2

∣∣log(|z|2)
∣∣p)−1BD∗

p (z) is smooth and strictly positive on D4r,
as follows from (2.7). By [5, Remark 3.2], any holomorphic L2-section of Lp over Σ extends
to a homomorphic section on Σ (see the inclusion (1.3)) vanishing at 0 in D4r. Thus by
the formula (1.4) for Bp we see that the quotient

Bp
BD∗
p

is a smooth function on D4r for each
p ≥ 2.

Theorem 1.3. For all k ≥ 1 and D1, . . . , Dk ∈
{
∂
∂z ,

∂
∂z

}
we have

(1.10) sup
z∈V1∪...∪VN

∣∣∣(D1 · · ·Dk)
Bp
BD∗
p

(z)
∣∣∣ = O(p−∞).
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Remark 1.4. Theorem 1.1 admits a generalization to orbifold Riemann surfaces. Indeed,
assume that Σ is a compact orbifold Riemann surface such that the finite set D ⊂ Σ does
not meet the (orbifold) singular set of Σ. Then by the same argument as in [5, Remark
1.3] (using [14, 15]) we see that Theorems 1.2 and 1.3 still hold in this context.

Note that the Ck-norm used in (1.7) is induced by ωD∗ , roughly the sup-norm with
respect to the derivatives defined by the vector fields z log(|z|2) ∂∂z and z log(|z|2) ∂∂z , which
vanish at z = 0. Hence the norm in (1.10) is stronger than the Ck-norm used in (1.7),
because the norm in (1.10) is defined by using derivatives along the vector fields ∂

∂z and
∂
∂z .

Let us mention at this stage that even if the results above follow from our work [5], re-
lying more precisely on [5, Theorem 1.2], the proofs are by no means an obvious rewriting
of [5, Theorem 1.2] (for instance), since BD∗

p (·) takes extremely small values arbitrarily
near the origin. This can be seen in [5, §3.2] and it is specific to the non-compact frame-
work. What estimate (1.8) says is that Bp(·) follows such a behaviour very closely in the
corresponding regions of Σ via the chosen coordinates.

Here is a general strategy of our approach for Theorems 1.2 and 1.3. We choose a
special orthonormal basis {σ(p)

` }
dp
`=1 of H0

(2)(Σ, L
p) starting from zl on D∗4r for 1 ≤ l ≤ δp

with 0 < α < δp/p < α1 < 1. Our choice of σ(p)
` implies that the coefficients of the

expansion

σ
(p)
` (z) =

∞∑
j=1

a
(p)
j` z

j

of σ(p)
` on D∗4r satisfy a(p)

j` = 0 if j < δp and j < l ≤ dp (cf. (2.32)). Now we separate

the contribution of σ(p)
` , c(p)

` (cf. (2.6)), a(p)
j` in Bp, B

D∗
p in two groups: 1 ≤ j, ` ≤ δp;

max{j, `} ≥ δp + 1. The contribution corresponding to 1 ≤ j, ` ≤ δp, will be controlled by
using Lemma 2.1 (or 3.1). The contribution corresponding to max{j, `} ≥ δp + 1 will be
handled by a direct application of Cauchy inequalities (2.23). It turns out that by suitably
choosing c, A > 0 this contribution has uniformly the relative size 2−αp compared to BD∗

p

on |z| ≤ cp−A.
This paper is organized as follows. In Section 2, we establish Theorem 1.2 based on the

off-diagonal expansion of Bergman kernel from [5, §6]. In Section 3, we establish Theorem
1.3 by refining the argument from Section 2. In Section 4 we give some applications of the
main results.

Notation: We denote bxc as the integer part of x ∈ R.
Acknowledgments. We would like to thank Professor Jean-Michel Bismut for helpful
discussions. In particular, Theorem 1.3 answers a question raised by him at CIRM in
October 2018.

2 C0-estimate for the quotient of Bergman kernels

This section is organized as follows. In Section 2.1, we obtain the C0-estimate for the
quotient of Bergman kernels, Theorem 1.2, admitting first an integral estimate, Lemma
2.1. In Section 2.2, we deduce Lemma 2.1 from the two-variable Poincaré type Bergman
kernel estimate of [5, Theorem 1.1 and Corollary 6.1].

2.1 Proof of Theorem 1.2

We recall first some basic facts. For σ ∈ C∞0 (Σ, Lp), the space of smooth and compactly
supported sections of Lp over Σ, set

‖σ‖2
L2
p(Σ)

:=

∫
Σ
|σ|2hp ωΣ.(2.1)
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Let L2
p(Σ) be the ‖ · ‖L2

p(Σ)-completion of C∞0 (Σ, Lp).
By [5, Remark 3.2] the inclusion (1.3) identifies the spaceH0

(2)(Σ, L
p) ofL2-holomorphic

sections of Lp over Σ to the subspace of H0(Σ, Lp) consisting of sections vanishing at the
punctures, so it induces an isomorphism of vector spaces

(2.2) H0
(2)(Σ, L

p) ∼= H0(Σ, Lp ⊗ OΣ(−D)),

where OΣ(−D) is the holomorphic line bundle on Σ defined by the divisor −D. By the
Riemann-Roch theorem we have for all p with pdeg(L)−N > 2g − 2,

dp := dimH0
(2)(Σ, L

p) = dimH0(Σ, Lp ⊗ OΣ(−D)) = deg(L) p+ 1− g −N,(2.3)

where deg(L) is the degree of L over Σ, and g is the genus of Σ.
The Bergman kernel function (1.4) satisfies the following variational characterization,

see e.g. [12, Lemma 3.1],

Bp(z) = sup
06=σ∈H0

(2)
(Σ,Lp)

|σ(z)|2hp
‖σ‖2

L2
p(Σ)

, for z ∈ Σ.(2.4)

By the expansion of the Bergman kernel on a complete manifold [22, Theorem 6.1.1] (cf.
also [5, Theorem 2.1, Corollary 2.4]), there exist coefficients bi ∈ C∞(Σ), i ∈ N, such that
for any k,m ∈ N, any compact set K ⊂ Σ, we have in the Cm-topology on K,

Bp(x) =
k∑
i=0

bi(x)p1−i +O(p−k) , as p→∞,(2.5)

with b0 = −b1 = 1
2π on each Vj .

Consider now for p ≥ 2 the space Hp
(2)(D

∗) of holomorphic L2-functions on D∗ with
respect to the weight ‖1‖2(z) =

∣∣log(|z|2)
∣∣p (corresponding to a metric on the trivial line

bundle C) and volume form ωD∗ on D∗. An orthonormal basis of Hp
(2)(D

∗) is given by (cf.
[5, Theorem 3.1]),

(2.6) c
(p)
` z` with ` ∈ N, ` ≥ 1 and c(p)

` =

(
`p−1

2π(p− 2)!

)1/2

= ‖z`‖−1
L2
p(D∗) ,

and hence

(2.7) BD∗
p (z) =

∣∣log(|z|2)
∣∣p ∞∑
`=1

(c
(p)
` )2|z|2` , for z ∈ D∗.

For anym ∈ N, 0 < b < 1 and 0 < γ < 1
2 there exists by [5, Proposition 3.3] ε = ε(b, γ) > 0

such that ∥∥∥BD∗
p (z)− p− 1

2π

∥∥∥
Cm({be−pγ≤|z|<1},ωD∗ )

= O
(
e−εp

1−2γ)
as p→ +∞ .(2.8)

Taking into account Theorem 1.1 and (2.8) we see that in order to prove Theorem 1.2 it
suffices, after reducing to some Vj and identifying the geometric data on D∗4r and Σ via
(1.6), to show that for some (small) c > 0 and (large) A > 0, and for all l ≥ 0 there exists
C = C(c, A, l) > 0 such that for all p ≥ 2,

(2.9) sup
0<|z|≤cp−A

∣∣∣∣ BpBD∗
p

(z)− 1

∣∣∣∣ ≤ Cp−l.
5



We now start to establish (2.9). In the whole paper we use the following conventions.

We fix 0 < r < (4e)−1 as in (1.6), and 0 < β < 1 such that rβ < 2r.
We fix a (non-increasing) smooth cut-off function χ : [0, 1]→ R,
satisfying χ(u) = 1 if u ≤ rβ and χ(u) = 0 if u ≥ 2r.

We set δp =

⌊
p− 2

2| log r|

⌋
for p ∈ N, p ≥ 2.

(2.10)

The choice of δp will become clear in (2.19), (2.27) and (2.41), for example. By (2.10)
there exist α > 0 such that

(2.11) αp ≤ δp and δp + 1 ≤ 1

2
p for p ≥ 2 + 2| log r|.

To establish (2.9) we proceed along the following lines:

1. For ` ∈ {1, . . . , δp}, we set

(2.12) φ
(p)
`,0 = c

(p)
` χ(|z|)z`.

2. Using the trivialization, that is, identifying φ(p)
`,0 with φ(p)

`,0e
p
L when we work on Σ, we

see the φ(p)
`,0 as (smooth) L2 sections of Lp over Σ, that we correct into holomorphic

L2 sections φ(p)
` of Lp, by orthogonal L2

p(Σ)-projection.

3. Next we correct the family (φ
(p)
` )1≤`≤δp into an orthonormal family (σ

(p)
` )1≤`≤δp by

the Gram-Schmidt procedure, and we further complete (σ
(p)
` )1≤`≤δp into an orthonor-

mal basis (σ
(p)
` )1≤`≤dp of H0

(2)(Σ, L
p). In particular, for any 1 ≤ j ≤ δp,

(2.13) Span
{
φ

(p)
1,0, · · · , φ

(p)
j,0

}
= Span

{
φ

(p)
1 , · · · , φ(p)

j

}
= Span

{
σ

(p)
1 , · · · , σ(p)

j

}
.

4. Finally, we carefully compareBD∗
p withBp using the three steps of the above construc-

tion to get estimate (2.9); of particular importance are the following intermediate
estimates which will be deduced from [5, §6]:

Lemma 2.1. With the notations above, for all m ∈ N, there exists C = C(m) > 0 such
that for all p ∈ N∗, p ≥ 2, and all j, ` ∈ {1, . . . , δp},

1− Cp−m ≤
∥∥φ(p)

`,0

∥∥2

L2
p(Σ)

=
(
c

(p)
`

)2 ∫
D∗2r

χ2(|z|)|z|2`
∣∣log(|z|2)

∣∣p ωD∗

≤
(
c

(p)
`

)2 ∫
D∗2r

χ(|z|)|z|2`
∣∣log(|z|2)

∣∣p ωD∗ ≤ 1 ,

(2.14)

and moreover, ∥∥σ(p)
` − φ

(p)
`,0

∥∥
L2
p(Σ)
≤ Cp−m,∣∣〈φ(p)

j , σ
(p)
`

〉
L2
p(Σ)
− δj`

∣∣ ≤ Cp−m.(2.15)

The proof of Lemma 2.1 is postponed to Section 2.2.
Notice that we take care of stating estimates uniform in j, ` ∈ {1, . . . , δp}. Observe

moreover that (2.14), (2.15) are integral estimates, whereas we want to establish pointwise
estimates in the end, hence we need an extra effort to convert these (among others) into
(2.9).

Let us see now how to build on (2.15) to get the desired (2.9).
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First, by (1.4), (2.7), (2.12), and the construction of φ(p)
`,0 and σ(p)

` we have for z ∈ D∗r ,

BD∗
p (z) =

δp∑
`=1

∣∣φ(p)
`,0

∣∣2
hp,z

+
∣∣log(|z|2)

∣∣p ∞∑
`=δp+1

(c
(p)
` )2|z|2`

= Bp(z)−
dp∑

`=δp+1

∣∣σ(p)
`

∣∣2
hp,z

+ 2Re
[ δp∑
`=1

〈
σ

(p)
` , φ

(p)
`,0 − σ

(p)
`

〉
hp,z

]

+

δp∑
`=1

∣∣φ(p)
`,0 − σ

(p)
`

∣∣2
hp,z

+
∣∣log(|z|2)

∣∣p ∞∑
`=δp+1

(c
(p)
` )2|z|2`.

(2.16)

We deal with the summands of the last three terms separately; we start by claiming that
up to a judicious choice of c > 0 and A > 0 we have for 0 < |z| ≤ cp−A:

(2.17)
∣∣log(|z|2)

∣∣p ∞∑
`=δp+1

(c
(p)
` )2|z|2` = O(p−∞) ·BD∗

p (z) , as p→∞,

that is,

sup
0<|z|≤cp−A

[
BD∗
p (z)−1|log(|z|2)|p

∞∑
`=δp+1

(c
(p)
` )2|z|2`

]
= O(p−∞).

Indeed, we have `+δp
` ≤ δp + 1 for all ` ≥ 1, so by (2.6) we have for z ∈ D∗,

∣∣log(|z|2)
∣∣p ∞∑
`=δp+1

(c
(p)
` )2|z|2` =

∣∣log(|z|2)
∣∣p |z|2δp

2π(p− 2)!

∞∑
`=1

(`+ δp
`

)p−1
`p−1|z|2`

≤ (δp + 1)p−1 |z|2δp
2π(p− 2)!

∣∣log(|z|2)
∣∣p ∞∑
`=1

`p−1|z|2`

= (δp + 1
)p−1|z|2δpBD∗

p (z).

(2.18)

From (2.11) follows

(2.19) (δp + 1)|z|2δp/(p−1) ≤ 1

2
p|z|2α ≤ 1

2
, for all |z| ≤ p−1/(2α).

From (2.18) and (2.19) we get (2.17) with c = r and A = 1
2α ·

In the similar vein we now show the following.

Lemma 2.2. For c = r and A = 1
2α , with α satisfying (2.11), we have uniformly in

z ∈ D∗
cp−A

,

(2.20)
dp∑

`=δp+1

∣∣σ(p)
`

∣∣2
hp,z

= O(p−∞) ·BD∗
p (z).

We have uniformly in z ∈ D∗
cp−A

, and ` ∈ {1, . . . , δp},

(2.21)
∣∣σ(p)
` − φ

(p)
`,0

∣∣
hp,z

= O(p−∞) ·BD∗
p (z)1/2.

Proof. Let p ≥ 2, ` ∈ {1, · · · , dp}. By [5, Remark 3.2] and (1.3) we know that σ(p)
` is a

holomorphic section of Lp over Σ vanishing at D. We use the trivialization (1.6) to set

σ
(p)
` =

( ∞∑
j=1

a
(p)
j` z

j
)
epL =: s

(p)
` epL on D∗4r.(2.22)
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We have for j ≥ 1 by (1.4), (1.6), (2.5), (2.22) and Cauchy inequalities,

|a(p)
j` | ≤ (2r)−j sup

|z|=2r

∣∣s(p)
` (z)

∣∣
= (2r)−j

∣∣log(|2r|2)
∣∣−p/2 sup

|z|=2r

∣∣σ(p)
` (z)

∣∣
hp

≤ (2r)−j
∣∣log(|2r|2)

∣∣−p/2 sup
|z|=2r

Bp(z)
1/2

≤ Cp1/2(2r)−j
∣∣log(|2r|2)

∣∣−p/2.
(2.23)

Thus by (1.6) and (2.23) we have for z ∈ D∗r ,∣∣∣ ∞∑
j=δp+1

a
(p)
j` z

j
∣∣∣
hp
≤ C

∣∣log(|z|2)
∣∣p/2 ∞∑

j=δp+1

p1/2
∣∣∣log(|2r|2)

∣∣∣−p/2( |z|
2r

)j

= Cp1/2

(
|log(|z|2)|
|log(|2r|2)|

)p/2(
1− |z|

2r

)−1( |z|
2r

)δp+1

.

(2.24)

By (2.6) and (2.7) we have∣∣log(|z|2)
∣∣p/2|z| = |z|hpD∗ ≤ ‖z‖L2

p(D∗)B
D∗
p (z)1/2 = (2π(p− 2)!)1/2BD∗

p (z)1/2.(2.25)

We deduce from (2.24) and (2.25) that there exists C > 0 such that the following estimate
holds uniformly in ` ∈ {1, . . . , dp}, |z| ∈ D∗r ,

(2.26)
∣∣∣ ∞∑
j=δp+1

a
(p)
j` z

j
∣∣∣
hp
≤ Cp−1/2

((
|z|
2r

)2δp/p (p!)1/p

|log(|2r|2)|

)p/2
BD∗
p (z)1/2.

By (2.11) we have for A = 1
2α , c0 = re1/(2α)|log(|2r|2)|1/(2α) > r, and p� 1,(

|z|
2r

)2δp/p 1

|log(|2r|2)|
≤
(
|z|
2r

)2α 1

|log(|2r|2)|
≤ 2−2α e

p
, for |z| ≤ c0p

−A.(2.27)

Recall that the Stirling formula states

pp

p!
= (2πp)−1/2ep

(
1 +O(p−1)

)
as p→ +∞.(2.28)

We infer from (2.26), (2.27) and (2.28), that there exists C > 0 such that the following
estimate holds uniformly in |z| ≤ r p−A and ` ∈ {1, . . . , dp},∣∣∣ ∞∑

j=δp+1

a
(p)
j` z

j
∣∣∣
hp
≤ C 2−pαBD∗

p (z)1/2.(2.29)

Note that φ(p)
j − φ

(p)
j,0 is orthogonal to H0

(2)(Σ, L
p). By (2.1), (2.12), (2.22), and since σ(p)

`

are holomorphic, we have for j ∈ {1, · · · , δp}, ` ∈ {1, · · · , dp},〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

=
〈
σ

(p)
` , φ

(p)
j,0

〉
L2
p(Σ)

= c
(p)
j a

(p)
j`

∫
D∗2r

χ(|z|)
∣∣zj∣∣2| log(|z|2)|p ωD∗ .(2.30)

By (2.13) we have 〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

= 0 for j ∈ {1, · · · , δp}, j < `.(2.31)
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From (2.30) and (2.31) we get

a
(p)
j` = 0 for j ∈ {1, · · · , δp}, ` ∈ {δp + 1, · · · , dp}.(2.32)

By (2.3), (2.29) and (2.32), we get (2.20).
Fixing ` ∈ {1, . . . , δp}, we have on D∗r by (2.10), (2.12), (2.22),

(2.33)
(
σ

(p)
` − φ

(p)
`,0e

p
L

)
(z) =

((
a

(p)
`` − c

(p)
`

)
z` +

∞∑
j=1
j 6=`

a
(p)
j` z

j
)
epL.

From Lemma 2.1 and (2.30) we have uniformly for j, ` ∈ {1, . . . , δp},

a
(p)
j` = c

(p)
j

(
(c

(p)
j )2

∫
D∗2r

χ(|z|)
∣∣zj∣∣2| log(|z|2)|p ωD∗

)−1〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

= (δj` +O(p−∞))c
(p)
j .

(2.34)

Thus from (2.7), (2.34) we have on D∗r uniformly in ` ∈ {1, . . . , δp},

(2.35)
∣∣∣∣((a(p)

`` − c
(p)
`

)
z` +

δp∑
j=1
j 6=`

a
(p)
j` z

j
)
epL

∣∣∣∣2
hp

=
∣∣log(|z|2)

∣∣p∣∣∣∣ δp∑
j=1

(
a

(p)
j` − δj`c

(p)
j

)
zj
∣∣∣∣2

≤ O(p−∞)
∣∣log(|z|2)

∣∣pδp δp∑
j=1

(c
(p)
j )2|z|2j ≤ δpO(p−∞)BD∗

p (z),

Now δp can be absorbed in the factor O(p−∞), since δp = O(p) by (2.10). Combining
(2.29) with (2.35) we conclude that (2.21) holds uniformly in ` ∈ {1, . . . , δp}.

Since δp = O(p) and |σ(p)
` |hp,z ≤ Bp(z)

1/2, (2.21) also yields

(2.36)
∣∣∣∣ δp∑
`=1

〈
σ

(p)
` , φ

(p)
`,0 − σ

(p)
`

〉
hp,z

∣∣∣∣ = O(p−∞) ·BD∗
p (z)1/2Bp(z)

1/2 on D∗cp−A .

This way, putting together (2.16), (2.17), (2.20), (2.21) and (2.36), we obtain

(2.37)
(
1 +O(p−∞)

)
·BD∗

p (z) = Bp(z) +O(p−∞) ·BD∗
p (z)1/2Bp(z)

1/2 on D∗cp−A ,

and this implies (2.9). The proof of Theorem 1.2 is completed.

2.2 Proof of Lemma 2.1

At first, as 0 ≤ χ ≤ 1 and supp(χ) ⊂ D∗2r, we get from (1.6), (2.6) and (2.10),

(2.38) ‖φ(p)
`,0‖

2
L2
p(Σ)

= ‖φ(p)
`,0‖

2
L2
p(D∗) ≤ (c

(p)
` )2

∫
D∗
χ(|z|)

∣∣log(|z|2)
∣∣p|z|2` ωD∗

≤ (c
(p)
` )2

∫
D∗

∣∣log(|z|2)
∣∣p|z|2` ωD∗ = ‖c(p)

` z`‖2
L2
p(D∗) = 1.

This implies the inequalities of the right-hand side of (2.14).
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We establish now the lower bound of (2.14). For ` ∈ {1, . . . , δp} we have by (1.1),
(2.6), (2.10) and (2.12),

(2.39)

1− ‖φ(p)
`,0‖

2
L2
p(D∗) =

(
c

(p)
`

)2 ∫
D∗

∣∣log(|z|2)
∣∣p{1− χ2(|z|)

}
|z|2` ωD∗

=
`p−1

(p− 2)!

∫ 1

rβ

∣∣log(t2)
∣∣pt2`(1− χ2(t))

2tdt

t2
∣∣log(t2)

∣∣2
u=−2` log t

=
1

(p− 2)!

∫ 2`β| log r|

0
up−2e−u

(
1− χ2(e−u/(2`))

)
du

≤ 1

(p− 2)!

∫ 2δpβ| log r|

0
up−2e−udu.

The function u 7→ log u− u is strictly increasing on (0, 1] and equals −1 at u = 1, hence

(2.40) log β − β < −1.

As up−2e−u is strictly increasing on [0, p− 2], and 2δp| log r| ≤ p− 2 (by (2.10)), so (2.28)
and (2.40) imply

1

(p− 2)!

∫ 2δpβ| log r|

0
up−2e−udu ≤ 1

(p− 2)!

∫ (p−2)β

0
up−2e−udu

≤ (p− 2)p−2

(p− 2)!
e(p−2)(log β−β)(p− 2)β

=
(p− 2

2π

)1/2
β
(

1 +O(p−1)
)
e(p−2)(log β−β+1)

= O(p−∞).

(2.41)

Combining (2.39) and (2.41) we obtain that the first inequality of (2.14) holds uniformly
in ` ∈ {1, . . . , δp}.

We move on to (2.15) and we first estimate ‖φ(p)
` −φ

(p)
`,0‖L2(D∗3r)

. Using the identification
(1.6) as in [5, (6.1)] we denote for x, y ∈ D∗4r,

Bp(x, y) =
∣∣log(|y|2)

∣∣pβΣ
p (x, y),

BD∗
p (x, y) =

∣∣log(|y|2)
∣∣pβD∗p (x, y) with βD

∗
p (x, y) =

1

2π(p− 2)!

∞∑
`=1

`p−1x`y`.
(2.42)

For ` ∈ {1, . . . , δp} set

I
(p)
1,` (x) =

∫
y∈D∗2r

∣∣log(|y|2)
∣∣p{βΣ

p (x, y)− βD∗p (x, y)
}
χ(|y|)y` ωD∗(y),

I
(p)
2,` (x) =

∫
y∈D∗

∣∣log(|y|2)
∣∣pβD∗p (x, y)

{
χ(|y|)− 1

}
y` ωD∗(y),

I
(p)
3,` (x) =

∫
y∈D∗

∣∣log(|y|2)
∣∣pβD∗p (x, y)y` ωD∗(y) = x`,

(2.43)

where the last equality is a consequence of the reproducing property of the Bergman kernel
BD∗
p (·, ·). By the construction of φ(p)

` , (2.10), and the reproducing property of Bp(·, ·) we
have for x ∈ D∗4r,

(2.44)

φ
(p)
` (x) = (Bpφ

(p)
`,0 )(x) =

∫
y∈Σ

Bp(x, y)φ
(p)
`,0 (y)ωΣ(y)

= c
(p)
`

∫
y∈D∗2r

∣∣log(|y|2)
∣∣pβΣ

p (x, y)χ(|y|)y` ωD∗(y)

= c
(p)
`

(
I

(p)
1,` (x) + I

(p)
2,` (x) + I

(p)
3,` (x)

)
.
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Now [5, Theorem 1.1 or (6.23)] and (2.6) yield for fixed ν > 0 and m > 0 and for any
x ∈ D∗4r, p ≥ 2,∣∣∣I(p)

1,` (x)
∣∣∣ ≤ C(m, ν)p−m

∣∣log(|x|2)
∣∣−ν−p/2 ∫

y∈D∗2r

∣∣log(|y|2)
∣∣−ν+p/2

χ(|y|)|y|` ωD∗(y)

≤ C(m, ν)p−m
∣∣log(|x|2)

∣∣−ν−p/2
·
(∫

D∗

∣∣log(|y|2)
∣∣p|y|2` ωD∗(y)

)1/2(∫
D∗

∣∣log(|y|2)
∣∣−2ν

χ2(|y|)ωD∗(y)
)1/2

= C ′(m, ν)p−m
∣∣log(|x|2)

∣∣−ν−p/2(c
(p)
` )−1.

(2.45)

Keeping ν fixed and varying m in (2.45) we obtain the following uniform estimate in
` ∈ {1, . . . , δp},

(2.46)
∥∥∥c(p)
` I

(p)
1,`

∥∥∥
L2
p(D∗3r)

= O(p−∞).

By circle symmetry first and (2.6), (2.14), (2.42) and (2.43) we obtain,

I
(p)
2,` (x) = (c

(p)
` )2

[ ∫
y∈D∗

∣∣log(|y|2)
∣∣p{χ(|y|)− 1

}
|y|2` ωD∗(y)

]
x` = O(p−∞) · x`,(2.47)

uniformly in ` ∈ {1, . . . , δp}. Since ‖c(p)
` x`‖L2

p(D∗3r)
≤ ‖c(p)

` x`‖L2
p(D∗) = 1, this tells us

already that

(2.48)
∥∥∥c(p)
` I

(p)
2,`

∥∥∥
L2
p(D∗3r)

= O(p−∞).

Since 0 ≤ 1− χ ≤ 1 and 1− χ(t) = 0 for t ≤ rβ , we get by (2.6), (2.41) and (2.43), as
in (2.39), that for ` ∈ {1, . . . , δp} the following holds,

(2.49)
∥∥∥c(p)
` I

(p)
3,` (x)− φ(p)

`,0 (x)
∥∥∥2

L2
p(D∗3r)

≤
∥∥∥c(p)
`

(
1− χ(|x|)

)
x`
∥∥∥2

L2
p(D∗)

=
`p−1

(p− 2)!

∫ 1

rβ

∣∣log(t2)
∣∣pt2`(1− χ(t))2 2tdt

t2
∣∣log(t2)

∣∣2
u=−2` log t

=
1

(p− 2)!

∫ 2`β| log r|

0
up−2e−u

(
1− χ(e−u/(2`))

)2
du

≤ 1

(p− 2)!

∫ 2δpβ| log r|

0
up−2e−udu = O(p−∞).

By (2.44), (2.46), (2.48) and (2.49) we get the following estimate uniformly in ` ∈ {1, . . . , δp},

(2.50) ‖φ(p)
`,0 − φ

(p)
` ‖L2

p(D∗3r)
= O(p−∞).

A weak form of [5, Corollary 6.1] tells us that for any k ∈ N, ε > 0, there exists C > 0
such that

|Bp(x, y)| ≤ Cp−k for d(x, y) > ε, p ≥ 2.(2.51)

By (2.38), (2.44) and (2.51),

(2.52)
∥∥φ(p)

`

∥∥2

L2
p(ΣrD∗3r)

≤ Cp−2k

∫
Σ\D∗3r

ωΣ

∫
D∗2r
|φp`,0(y)|2hpωΣ(y) ≤ Cp−2k

∫
Σ
ωΣ.

From (2.50) and (2.52) we have uniformly in ` ∈ {1, . . . , δp},

(2.53)
∥∥φ(p)

` − φ
(p)
`,0

∥∥2

L2
p(Σ)

= ‖φ(p)
` − φ

(p)
`,0‖

2
L2
p(D∗3r)

+
∥∥φ(p)

`

∥∥2

L2
p(ΣrD∗3r)

= O(p−∞).
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By (2.14) and (2.53), as φ(p)
j − φ

(p)
j,0 is orthogonal to H0

(2)(Σ, L
p), we have uniformly in

j, ` ∈ {1, . . . , δp},〈
φ

(p)
j , φ

(p)
`

〉
L2
p(Σ)

=
〈
φ

(p)
j,0 , φ

(p)
`

〉
L2
p(Σ)

=
〈
φ

(p)
j,0 , φ

(p)
`,0

〉
L2
p(D∗2r)

+
〈
φ

(p)
j,0 , φ

(p)
` − φ

(p)
`,0

〉
L2
p(Σ)

= δj` +O(p−∞).

(2.54)

Note that the circle symmetry and (2.12) imply that
〈
φ

(p)
j,0 , φ

(p)
`,0

〉
L2
p(D∗2r)

= 0 if j 6= `.

We now observe that the Gram-Schmidt orthonormalization (σ
(p)
` )1≤`≤δp of the “almost-

orthonormal” family (φ
(p)
` )1≤`≤δp is the normalization of

(2.55) σ′
(p)
` = φ

(p)
` −

`−1∑
k=1

〈
φ

(p)
` , φ

(p)
k

〉
L2
p(Σ)〈

φ
(p)
k , φ

(p)
k

〉
L2
p(Σ)

φ
(p)
k .

Now (2.11), (2.53), (2.54) and (2.55) yield (2.15). This completes the proof of Lemma 2.1.

3 Ck-estimate of the quotient of Bergman kernels

The proof of Theorem 1.3 follows the same strategy as in Section 2 (use of the orthonormal
basis (σ

(p)
j )1≤j≤dp), but with some play on the parameters (in particular, the truncation

floor δp of Step 1. in the outline of the proof of Theorem 1.2). Some precisions on this
basis are also needed: we’ll see more precisely that in some sense, and provided relevant
choices along the construction, the head terms σ(p)

` , 1 ≤ j ≤ δp are much closer to their
counterparts c(p)

` z` of D∗ than sketched above.
This section is organized as follows. In Section 3.1, we establish a refinement of the

integral estimate Lemma 2.1 which is again deduced from [5]. In Section 3.2, we establish
Theorem 1.3 by using Lemma 3.1.

3.1 A refined integral estimate

To establish Theorem 1.3, we follow Steps 1. to 4. in the outline of the proof of Theorem
1.2 by modifying δp, thus refining Lemma 2.1 to Lemma 3.1 below.

Let κ > 0 fixed. We start by choosing c(κ) ∈ (0, e−1) so that

(3.1) log(c(κ)) ≤ −1− 2κ.

Then we replace δp in (2.10) by

(3.2) δ′p = δ′p(κ) =
⌊(p− 2)c(κ)

2|log r|

⌋
− 2.

Lemma 3.1. There exists C = C(κ) > 0 such that for all p� 1 and ` ∈ {1, . . . , δ′p},

(3.3)
∥∥∥σ(p)

` − c
(p)
` χ(|z|)z`epL

∥∥∥
L2
p(Σ)
≤ Cp e−κp.

Moreover, (σ
(p)
` )1≤j≤dp is in echelon form up to rank δ′p, in the sense that if ` = 1, . . . , δ′p,

then σ(p)
` admits an expansion

(3.4) σ
(p)
` =

( ∞∑
q=`

a
(p)
q` z

q
)
epL on D∗4r,

12



and if ` = δ′p + 1, . . . , dp, then σ
(p)
` admits an expansion

(3.5) σ
(p)
` =

( ∞∑
q=δ′p+1

a
(p)
q` z

q
)
epL on D∗4r.

As will be seen, estimate (3.3) is directly related to the play on δ′p, whereas the echelon
property as such is not, and (3.4), (3.5) are a direct consequence of (2.30) and (2.31).
Moreover, no estimate is given on the σ(p)

` for ` ≥ δ′p + 1 in the above statement; as in the
proof of Theorem 1.2, it turns out that we content ourselves with rather rough estimates
on these tail sections.

Proof of Lemma 3.1. Let ∂L
p∗ be the formal adjoint of ∂L

p

on (C∞0 (Σ, Lp), ‖ ‖L2
p(Σ)).

Then �p = ∂
Lp∗

∂
Lp

: C∞0 (Σ, Lp)→ C∞0 (Σ, Lp) is the Kodaira Laplacian on Lp and

ker�p = H0
(2)(Σ, L

p).(3.6)

Observe that the construction of the φ(p)
` , ` = 1, . . . , δ′p, following Steps 1. to 4. of the

proof of Theorem 1.2 can be led alternatively by the following principle:

1’. with the cut-off function χ in (2.10), for ` = 1, . . . , δ′p, set

φ
(p)
0,` := φ

(p)
`,0 = c

(p)
` χ(|z|)z`epL.(3.7)

2’. give an explicit estimate of
∥∥�pφ(p)

0,`

∥∥
L2
p(Σ)

.

3’. we correct φ(p)
0,` into holomorphicL2-section φ(p)

` of Lp, by orthogonalL2
p(Σ)-projection.

we use the spectral gap property [5, Cor.5.2] (as a direct consequence of [22, Theorem
6.1.1]) together with the step 2’ to get (3.3).

Step 1’. We compute, by (2.6) and (2.10), as in (2.39), for ` = 1, . . . , δ′p,

(3.8)
0 ≤ 1−

∥∥c(p)
` z`χ(|z|)epL

∥∥2

L2
p(Σ)

=
1

(p− 2)!

∫ 2`β| log r|

0
up−2e−u

(
1− χ2(e−u/(2`))

)
du

≤ 1

(p− 2)!

∫ 2δ′pβ| log r|

0
up−2e−udu.

As up−2e−u is strictly increasing on [0, p−2] and log β < 0, and from (3.2), 2(δ′p+2)| log r| ≤
(p− 2)c(κ), by (2.28), (3.1), we get a refinement of (2.41),

1

(p− 2)!

∫ 2δ′pβ| log r|

0
up−2e−udu ≤ 1

(p− 2)!

∫ (p−2)c(κ)β

0
up−2e−udu

≤ (p− 2)p−2

(p− 2)!
e(p−2)(log(c(κ)β)−c(κ)β)(p− 2)c(κ)β

=
(p− 2

2π

)1/2
c(κ)β

(
1 +O(p−1)

)
e(p−2)(log(c(κ)β)−c(κ)β+1)

= O(e−2κ p).

(3.9)

From (3.8) and (3.9), uniformly in ` ∈ {1, . . . , δ′p},

(3.10)
∥∥φ(p)

0,`

∥∥2

L2
p(Σ)

=
∥∥c(p)
` z`χ(|z|)epL

∥∥2

L2
p(Σ)

= 1 +O(e−2κp).

Step 2’. Recall from [5, (4.14), (4.15) or (4.30)] that on D∗2r (seen in Σ),

(3.11) �p(· epL) =
(
− |z|2 log2(|z|2)

∂2·
∂z∂z̄

− pz̄ log(|z|2)
∂·
∂z̄

)
epL.
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Hence we obtain from (3.7) and (3.11), for ` = 1, . . . , δ′p,

(3.12) �pφ
(p)
0,` = c

(p)
`

(
− |z|2 log2(|z|2)

∂2

∂z∂z̄

(
χ(|z|)z`

)
− p z̄ log(|z|2)

∂

∂z̄

(
χ(|z|)z`

))
epL.

Since ∂
∂z̄ [χ(|z|)z`] =

(
∂
∂z̄χ(|z|)

)
z` = |z|

2z̄χ
′(|z|)z`, we have

(3.13)
∂2

∂z∂z̄

[
χ(|z|)z`

]
=

2`+ 1

4|z|
z`χ′(|z|) +

1

4
z`χ′′(|z|),

which yields

(3.14) �pφ
(p)
0,` = c

(p)
`

(
− 2`+ 1

4
|z|z` log2(|z|2)χ′(|z|)

− 1

4
|z|2z` log2(|z|2)χ′′(|z|)− p

2
|z|z` log(|z|2)χ′(|z|)

)
epL

on D∗2r, and this readily extends to the whole Σ. Therefore,

(3.15)

∥∥�pφ(p)
0,`

∥∥
L2
p(Σ)
≤ c(p)

`

(2`+ 1

4

∥∥|z|`+1 log2(|z|2)χ′(|z|)
∥∥
L2
p(D∗)

+
1

4

∥∥|z|`+2 log2(|z|2)χ′′(|z|)
∥∥
L2
p(D∗) +

p

2

∥∥|z|`+1 log(|z|2)χ′(|z|)
∥∥
L2
p(D∗)

)
.

Using nonetheless arguments similar to those of Step 1’. above, we claim that there exists
C > 0 such that for all p� 1 and ` = 1, . . . , δ′p,

(3.16)

∥∥|z|`+1 log2(|z|2)χ′(|z|)
∥∥
L2
p(D∗) ≤ C(c

(p+4)
`+1 )−1e−κp,∥∥|z|`+2 log2(|z|2)χ′′(|z|)

∥∥
L2
p(D∗) ≤ C(c

(p+4)
`+2 )−1e−κp,∥∥|z|`+1 log(|z|2)χ′(|z|)

∥∥
L2
p(D∗) ≤ C(c

(p+2)
`+1 )−1e−κp.

Indeed, from (3.2) and since 2(δ′p + 2)| log r| ≤ (p − 2)c(κ), applying (3.9) for p + 4 as in
(2.39), we get with C0 = sup[0,1] |χ′|,∥∥c(p+4)

`+1 |z|
`+1 log2(|z|2)χ′(|z|)

∥∥2

L2
p(D∗)

= (c
(p+4)
`+1 )2

∫ 1

rβ

∣∣log(t2)
∣∣p+4

t2`+2χ′(t)2 4πtdt

t2
∣∣log(t2)

∣∣2
u=−2(`+1) log t

==
1

(p+ 2)!

∫ 2(`+1)β| log r|

0
up+2e−u

(
χ′
(
e
− u

2(`+1)

))2
du

≤ C2
0

(p+ 2)!

∫ 2(δ′p+1)β| log r|

0
up+2e−udu

≤ C2
0

(p+ 2)!

∫ (p+2)c(κ)β

0
up+2e−udu = O(e−2κ p).

(3.17)

Consequently, by (3.15) and (3.16), there exists C > 0 such that for all p � 1 and
` = 1, . . . , δ′p,∥∥�pφ(p)

0,`

∥∥
L2
p
≤ Cc(p)`

(
`(c

(p+4)
`+1 )−1 + (c

(p+4)
`+2 )−1 + p(c

(p+2)
`+1 )−1

)
e−κp

= C

(
`p−1

(p− 2)!

)1
2

(
`

(
(p+ 2)!

(`+ 1)p+3

)1
2

+

(
(p+ 2)!

(`+ 2)p+3

)1
2

+ p

(
p!

(`+ 1)p+1

)1
2

)
e−κp

≤ Cp2e−κp.

(3.18)
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Step 3’. Recall that the spectral gap property [5, Corollary 5.2] tells us that there exists
C1 > 0 such that for all p� 1 we have

Spec(�p) ⊂ {0} ∪ [C1p,+∞).(3.19)

For ` ∈ {1, . . . , δ′p} let ψ(p)
0,` ∈ L2

p(Σ) such that ψ(p)
0,` ⊥ H0

(2)(Σ, L
p) and �pψ

(p)
0,` = �pφ

(p)
0,` .

Then by (3.6),

φ
(p)
` = φ

(p)
0,` − ψ

(p)
0,` .(3.20)

By (3.18), (3.19) and (3.20) we get

(3.21)
∥∥φ(p)

` − φ
(p)
0,`‖L2

p(Σ) =
∥∥ψ(p)

0,` ‖L2
p(Σ) ≤ (C1p)

−1‖�pφ(p)
0,`‖L2

p(Σ) ≤ CC
−1
1 p e−κp,

uniformly in ` = 1, . . . , δ′p. Note that (3.10) can be reformulated as

(3.22)
〈
φ

(p)
0,` , φ

(p)
0,j

〉
L2
p(Σ)

= δj`
(
1 +O(e−2κp)

)
,

(the case ` 6= j provides 0 by circle symmetry). Thus (3.20), (3.21) and (3.22) entail

(3.23)
〈
φ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

=
〈
φ

(p)
0,` , φ

(p)
0,j

〉
L2
p(Σ)
−
〈
ψ

(p)
0,` , ψ

(p)
0,j

〉
L2
p(Σ)

= δj` +O(p2e−2κp),

uniformly in `, j = 1, . . . , δ′p. Because (σ
(p)
` )1≤`≤δ′p is obtained by the Gram-Schmidt

orthonormalisation of (φ
(p)
` )1≤`≤δ′p (which is a δ′p = O(p) process) we infer from (2.55) and

(3.23) that

(3.24)
∥∥σ′(p)` − φ(p)

` ‖L2
p(Σ) = O(p3e−2κp),

∥∥σ′(p)` ‖L2
p(Σ) = 1 +O(p3e−2κp).

Since σ(p)
` = σ

′(p)
` /

∥∥σ′(p)` ‖L2
p(Σ), we conclude from (3.24) that there exists C > 0 such that

for p� 1,

(3.25)
∥∥σ(p)

` − φ
(p)
` ‖L2

p(Σ) ≤
∣∣∣∥∥σ′(p)` ‖L2

p(Σ) − 1
∣∣∣+
∥∥σ′(p)` − φ(p)

` ‖L2
p(Σ) ≤ Cp

3e−2κp,

hence, by (3.21) and (3.25) that we have uniformly in ` = 1, . . . , δ′p for p� 1,

(3.26)
∥∥σ(p)

` − c
(p)
` χ(|z|)z`epL

∥∥
L2
p(Σ)

=
∥∥σ(p)

` − φ
(p)
0,`‖L2

p(Σ) ≤ Cp e
−κp.

Echelon property. — We use the expansion (2.22) of σp` on D∗4r. By construction,
φ

(p)
j ∈ Span{σ(p)

1 , . . . , σ
(p)
j } for 1 ≤ j ≤ δ′p, so if j < `, then φ(p)

j ⊥L2
p(Σ) σ

(p)
` , as φ(p)

j is the

L2
p(Σ)-projection of φ(p)

0,j on holomorphic sections. Hence we have as in (2.31) that

(3.27)
〈
σ

(p)
` , φ

(p)
0,j

〉
L2
p(Σ)

=
〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

= 0 , if j < `.

Now (2.30) and (3.27) entail

(3.28) a
(p)
j` = 0 if j < `, j ∈ {1, . . . , δ′p}, ` ∈ {1, . . . , dp}.

From (2.22) and (3.28) we get (3.4) and (3.5). The proof of Lemma 3.1 is completed.

The following consequence of Lemma 3.1 that refines (2.34) is very useful in our com-
putations.
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Lemma 3.2. We have uniformly for j, ` ∈ {1, . . . , δ′p},

a
(p)
j` =

{
0 for j < `;

c
(p)
j

(
δj` +O(pe−κp)

)
for j ≥ `.

(3.29)

Proof. First note that by (3.7) we have

(3.30)
〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

=
〈
σ

(p)
` , φ

(p)
0,j

〉
L2
p(Σ)

=
〈
σ

(p)
` − φ

(p)
0,` , φ

(p)
0,j

〉
L2
p(Σ)

+
〈
φ

(p)
0,` , φ

(p)
0,j

〉
L2
p(Σ)

.

Further, (3.3), (3.22) and (3.30) imply

(3.31)
〈
σ

(p)
` , φ

(p)
j

〉
L2
p(Σ)

= O(pe−κp) + δj`
(
1 +O(e−2κp)

)
.

By (2.38) and (3.10) we have uniformly on j ∈ {1, . . . , δ′p},

(3.32) (c
(p)
j )2

∫
D∗2r

∣∣log(|z|2)
∣∣p|z|2jχ(|z|)ωD∗ = 1 +O(e−2κp).

The first equality of (2.34), (3.28), (3.31) and (3.32) entail (3.29).

3.2 Proof of Theorem 1.3

We show now how to establish Theorem 1.3 by using Lemma 3.1. It can be noticed here
that while estimate (3.3) is essential in establishing Theorem 1.3, the echelon property is
not, but helps nonetheless clarify some of the upcoming computations.

The proof goes as follows: we start by explicit computations, then use Lemma 3.1
to lead a precise analysis of head terms, i.e., all its indices ≤ δ′p; and recall some rough
estimates of tail terms, i.e., some of its indices ≥ δ′p + 1. On some shrinking disc family
{|z| ≤ c′p−A

′}, we will conclude from (2.23) that the tails terms can be controlled by
2−α

′pBD∗
p , hence on some fixed trivialization disc, as for Theorem 1.2.

From (2.42), for z ∈ D∗4r, set

(3.33) βΣ
p (z) = βΣ

p (z, z), βD
∗

p (z) = βD
∗

p (z, z).

By (2.42) and (3.33), we have

Bp(z)

BD∗
p (z)

=
βΣ
p (z)

βD∗p (z)
= 1 +

(
βΣ
p − βD

∗
p

)
(z)(βD

∗
p (z))−1.(3.34)

With the notations of Lemma 3.1 we compute explicitly on D∗4r. By (1.4), (2.7), (2.22),
(2.42) and (3.33), we have

βΣ
p (z) =

∞∑
q,s=1

( dp∑
`=1

a
(p)
q` a

(p)
s`

)
zq z̄s, βD

∗
p (z) =

∞∑
q=1

(c(p)
q )2|z|2q.(3.35)

For q, s ∈ N∗, set

εqs =

dp∑
`=1

a
(p)
q`

c
(p)
q

a
(p)
s`

c
(p)
s

− δqs.(3.36)

From (3.35) and (3.36), we get

d

dz

(
βΣ
p − βD

∗
p

)
(z) · βD∗p (z)

=

∞∑
q,s=1

q

( dp∑
`=1

a
(p)
q` a

(p)
s` z

q−1z̄s − δqs(c(p)
q )2zq−1z̄s

)
·
∞∑
m=1

(c(p)
m )2|z|2m

=

∞∑
q,s,m=1

q(c(p)
m )2c(p)

q c(p)
s εqsz

q+m−1z̄s+m,

(3.37)
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and similarly,

(
βΣ
p − βD

∗
p

)
(z) · d

dz
βD
∗

p (z) =
∞∑

q,s,m=1

m(c(p)
m )2c(p)

q c(p)
s εqsz

q+m−1z̄s+m.(3.38)

From (3.34), (3.37) and (3.38), we get

(3.39)
d

dz

Bp
BD∗
p

(z) = (βD
∗

p (z))−2
∞∑

q,s,m=1

[
(q −m)(c(p)

m )2c(p)
q c(p)

s εqs

]
zq+m−1z̄s+m.

Observe that the coefficient inside [. . .] in the above sum vanishes if q = m. This allows
to separate the above sum into ∑

q=1,s≥1,m≥2

and
∑

q≥2,s≥1,m≥1

.

We first tackle the sum over q = 1, s ≥ 1 and m ≥ 2, focusing on the cases s,m ≤ δ′p;
then we deal with the sum over q ≥ 2, s ≥ 1 and m ≥ 1, focusing on q, s,m ≤ δ′p, before
we also address the cases of “large indices” (max{q, s,m} ≥ δ′p + 1).

Head terms. — We look at first

(3.40) Ip,δ′p(z) =

δ′p∑
s=1

δ′p∑
m=2

[
(1−m)(c(p)

m )2c
(p)
1 c(p)

s ε1s

]
zmz̄s+m.

By (3.4), (3.5), (3.29) and (3.36), uniformly for q, s ∈ {1, . . . , δ′p},

(3.41) εqs =

min{q,s}∑
`=1

a
(p)
q`

c
(p)
q

a
(p)
s`

c
(p)
s

− δqs = O(δ′pp e
−κp).

For all t ∈ {2, . . . , δ′p}, j ∈ {1, . . . , δ′p}, by (2.6),

(3.42)
∣∣(t− j)c(p)

t

∣∣ ≤ δ′p( t

t− 1

)(p−1)/2
c

(p)
t−1 ≤ δ

′
p2

(p−1)/2c
(p)
t−1.

From (3.40), (3.41) and (3.42), we get

∣∣∣Ip,δ′p(z)∣∣∣ ≤ δ′p∑
s=1

δ′p∑
m=2

(m− 1)(c(p)
m )2c

(p)
1 c(p)

s |ε1s||z|s+2m

≤ O
(
(δ′p)

22p/2p e−κp
)
·
δ′p∑
s=1

δ′p∑
m=2

c(p)
m c

(p)
m−1c

(p)
1 c(p)

s |z|s+2m.

(3.43)

But

(3.44)
δ′p∑
s=1

δ′p∑
m=2

c(p)
m c

(p)
m−1c

(p)
1 c(p)

s |z|s+2m =

( δ′p∑
s=1

c
(p)
1 c(p)

s |z|1+s

)( δ′p∑
m=2

c(p)
m c

(p)
m−1|z|

2m−1

)

≤ 1

2

(
δ′p(c

(p)
1 )2|z|2 +

δ′p∑
s=1

(c(p)
s )2|z|2s

)( δ′p∑
m=2

(c(p)
m )2|z|2m

)1
2
( δ′p∑
m=2

(c
(p)
m−1)2|z|2(m−1)

)1
2

≤ (δ′p + 1)

( ∞∑
j=1

(c
(p)
j )2|z|2j

)2

= (δ′p + 1)(βD
∗

p (z))2.
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We proceed similarly with the sum

IIp,δ′p(z) =

δ′p∑
q=2

δ′p∑
s=1

δ′p∑
m=1

[
(q −m)(c(p)

m )2c(p)
q c(p)

s εqs

]
zq+m−1z̄s+m.(3.45)

We have analogously to (3.44),

δ′p∑
q=2

δ′p∑
s=1

δ′p∑
m=1

(c(p)
m )2c

(p)
q−1c

(p)
s |z|q+s+2m−1

=

( δ′p∑
q=2

c
(p)
q−1|z|

q−1

)( δ′p∑
s=1

c(p)
s |z|s

)( δ′p∑
m=1

(c(p)
m )2|z|2m

)

≤ δ′p
( δ′p∑
q=2

(c
(p)
q−1)2|z|2q−2

)1
2
( δ′p∑
s=1

(c(p)
s )2|z|2s

)1
2
( δ′p∑
m=1

(c(p)
m )2|z|2m

)
≤ δ′p(βD

∗
p (z))2.

(3.46)

From (3.41), (3.42), (3.45) and (3.46), we get

∣∣∣∣IIp,δ′p(z)∣∣∣∣ ≤ δ′p∑
q=2

δ′p∑
s=1

δ′p∑
m=1

(c(p)
m )2

∣∣(q −m)c(p)
q

∣∣c(p)
s |εqs||z|q+s+2m−1

≤ O
(
(δ′p)

22p/2p e−κp
)
·
δ′p∑
q=2

δ′p∑
s=1

δ′p∑
m=1

(c(p)
m )2c

(p)
q−1c

(p)
s |z|q+s+2m−1

≤ O
(
(δ′p)

32p/2p e−κp
)
· (βD∗p (z))2.

(3.47)

Tail terms. — Set

A1
p ={(q, s,m) ∈ (N∗)3 : q ≥ δ′p + 1; s,m ≤ δ′p},
A2
p ={(q, s,m) ∈ (N∗)3 : s ≥ δ′p + 1; m ≤ δ′p},
A3
p ={(q, s,m) ∈ (N∗)3 : m ≥ δ′p + 1}}.

(3.48)

For j = 1, 2, 3, set

(3.49) I(Ajp)(z) =
∑

(q,s,m)∈Ajp

(q −m)(c(p)
m )2c(p)

q c(p)
s εqsz

q+m−1z̄s+m.

By (3.39), (3.40), (3.45) and (3.49), we have

d

dz

Bp
BD∗
p

(z) = (βD
∗

p (z))−2
(
Ip,δ′p(z) + IIp,δ′p(z) + I(A1

p)(z) + I(A2
p)(z) + I(A3

p)(z)
)
.(3.50)

We now look at the remaining terms of the sum in (3.50), i.e., I(Ajp)(j = 1, 2, 3).
First, for all triple (q, s,m) of A1

p, as q ≥ δ′p + 1 > δ′p ≥ s, by (3.28), (3.36), one has:

c(p)
q c(p)

s εqs =

dp∑
`=1

a
(p)
q` a

(p)
s` =

δ′p∑
`=1

a
(p)
q` a

(p)
s` .(3.51)
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From (3.49) and (3.51), we have

(3.52) |I(A1
p)(z)| ≤ Cdp

∑
(q,s,m)∈A1

p

q
(

sup
1≤`≤dp

|a(p)
q` |
)(

sup
1≤`≤dp

|a(p)
s` |
)

(c(p)
m )2|z|q+s+2m−1

= Cdp

( ∞∑
q=δ′p+1

q
(

sup
1≤`≤dp

|a(p)
q` |
)
|z|q−1

)

×
( δ′p∑
s=1

(
sup

1≤`≤dp
|a(p)
s` |
)
|z|s
)( δ′p∑

m=1

(c(p)
m )2|z|2m

)
.

By (3.28) and (3.29) we get uniformly in j ∈ {1, · · · , δ′p},

sup
1≤`≤dp

|a(p)
j` | = sup

1≤`≤δ′p
|a(p)
j` | ≤ Cc

(p)
j .(3.53)

By (3.35) and (3.53), observe that for z ∈ D∗r ,

(3.54)
δ′p∑
s=1

(
sup

1≤`≤dp

∣∣a(p)
s`

∣∣)|z|s ≤ C δ′p∑
s=1

c(p)
s |z|s

≤ C(δ′p)
1/2

( δ′p∑
s=1

(c(p)
s )2|z|2s

)1/2

≤ C(δ′p)
1/2(βD

∗
p (z))1/2.

Now we give an estimate via βD∗p (z) for the sum
∑

q≥δ′p+1 in (3.52). Recall that for ξ ∈ [0, 1)

and N ≥ 0 we have that

(3.55)
∞∑

q=N+1

qξq−1 =
( ∞∑
q=N+1

ξq
)′

=
(N + 1)ξN −NξN+1

(1− ξ)2
≤ (N + 1)ξN

(1− ξ)2
,

thus, if |z| ≤ r,

(3.56)
∞∑

q=δ′p+1

q
( |z|

2r

)q−1
≤ (δ′p + 1)

( |z|
2r

)δ′p(
1− |z|

2r

)−2
≤ 4(δ′p + 1)

( |z|
2r

)δ′p
.

Taking now

(3.57) A′ =
1

2α′
, α′ =

c(κ)

4| log r|
and c′ = re1/2α′

∣∣log
(
|2r|2

)∣∣1/2α′ ,
we obtain from (3.2) that for any τ ∈ N fixed,

(3.58) α′p ≤ δ′p − τ for p� 1.

Thus, as in (2.27), we have by (3.57) and (3.58) for τ ∈ N fixed,

(3.59)
( |z|

2r

)2(δ′p−τ)/p 1

| log(|2r|2)|
≤
( |z|

2r

)2α′ 1

| log(|2r|2)|
≤ 2−2α′ e

p
,

for p � 1, |z| ≤ c′p−A
′ . To conclude, we estimate by (2.28), (3.35) and (3.59) for any

τ ∈ N fixed,

(3.60)
∣∣∣log

(
|2r|2

)∣∣∣−p/2( |z|
2r

)δ′p−τ+1

=
1

2r

((
|z|
2r

)2(δ′p−τ)/p 1

| log(|2r|2)|

)p/2(
2π(p− 2)!

)1/2
c

(p)
1 |z|

≤ Cp−1/22−α
′pβD

∗
p (z)1/2.
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for all p� 1 and |z| ≤ c′p−A′ , Thus by (2.23), (3.56) and (3.60) for τ = 1, we have for all
p� 1 and |z| ≤ c′p−A′ ,

(3.61)
∞∑

q=δ′p+1

q
(

sup
1≤`≤dp

|a(p)
q` |
)
|z|q−1 ≤ Cp1/2

2r

∣∣∣log(|2r|2)
∣∣∣−p/2 ∞∑

q=δ′p+1

q
( |z|

2r

)q−1

≤ Cδ′p2−α
′pβD

∗
p (z)1/2.

By (2.3), (3.52), (3.54) and (3.61) we have for all p� 1 and |z| ≤ c′p−A′ ,

|I(A1
p)(z)| ≤ C(δ′p)

3/2dp2
−α′p(βD

∗
p (z))2 ≤ Cp5/22−α

′p(βD
∗

p (z))2.(3.62)

Sums over A2
p and A3

p. — We continue to work on the estimates of the tail terms. We
first deal with the sum over A2

p. By (3.36) and (3.49), one has:

I(A2
p)(z) =

∑
(q,s,m)∈A2

p

(q −m)(c(p)
m )2

( dp∑
`=1

a
(p)
q` a

(p)
s`

)
zq+m−1z̄s+m

−
∞∑

s=δ′p+1

δ′p∑
m=1

(s−m)(c(p)
m )2(c(p)

s )2zs+m−1z̄s+m.

=: S1 − S2.

(3.63)

Now, since |q −m| ≤ qm for all (q, s,m) ∈ A2
p, we obtain,

(3.64) |S1| ≤ dp
∞∑
q=1

q
(

sup
1≤`≤dp

|a(p)
q` |
)
|z|q ·

∞∑
s=δ′p+1

(
sup

1≤`≤dp
|a(p)
s` |
)
|z|s−1 ·

δ′p∑
m=1

m(c(p)
m )2|z|2m.

By (3.53), (3.54) and (3.61) we get on |z| ≤ c′p−A′ ,

(3.65)
∞∑
q=1

q
(

sup
1≤`≤dp

|a(p)
q` |
)
|z|q ≤ Cδ′p

δ′p∑
q=1

c(p)
q |z|q + C|z|δ′p2−α

′pβD
∗

p (z)1/2

= O
(
(δ′p)

3/2 + δ′p2
−α′p

)
(βD

∗
p (z))1/2.

From (2.23) and (3.60) for τ = 1 we infer that we have for |z| ≤ c′p−A′ ,
∞∑

s=δ′p+1

(
sup

1≤`≤dp
|a(p)
s` |
)
|z|s−1 ≤ Cp1/2

∣∣∣log
(
|2r|2

)∣∣∣−p/2 ∞∑
s=δ′p+1

( 1

2r

)s
|z|s−1

=
C

2r
Cp1/2

∣∣∣log
(
|2r|2

)∣∣∣−p/2( |z|
2r

)δ′p 1

1− |z|/2r
≤ C2−α

′p(βD
∗

p (z))1/2.

(3.66)

Obviously,

δ′p∑
m=1

m(c(p)
m )2|z|2m ≤ δ′p

δ′p∑
m=1

(c(p)
m )2|z|2m ≤ δ′pβD

∗
p (z).(3.67)

Thus, using these three estimates (3.65)–(3.67) together with (2.3), (3.2), we see that
(3.64) yields:

(3.68) |S1| = O(p · p3/2 · p)2−α′pβD∗p (z)2 for |z| ≤ c′p−A′ .
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From (3.63),

|S2| ≤
∞∑

s=δ′p+1

δ′p∑
m=1

|s−m|(c(p)
m )2(c(p)

s )2|z|2s+2m−1

≤
( ∞∑
s=δ′p+1

s(c(p)
s )2|z|2s−1

)( δ′p∑
m=1

(c(p)
m )2|z|2m

)
.

(3.69)

Note that by the argument in (2.23) for D∗ (or directly from (2.7), (2.8)), there exists
C > 0 such that for any s ∈ N∗, p ≥ 2, we have

|c(p)
s | ≤ Cp1/2

(
2r
)−s|log(|2r|2)|−p/2.(3.70)

By (3.2), (3.55), (3.60) for τ = 1, and (3.70), we get as in (3.56) for all p � 1 and
|z| ≤ c′p−A′ ,

(3.71)
( ∞∑
s=δ′p+1

s(c(p)
s )2|z|2s−1

)
≤ C

∣∣∣log
(
|2r|2

)∣∣∣−p |z|
4r2

p

( ∞∑
s=δ′p+1

s
( |z|

2r

)2s−2
)

≤ Cp
∣∣∣log

(
|2r|2

)∣∣∣−p|z| (δ′p + 1)

(1− (|z|/2r)2)2

( |z|
2r

)2δ′p ≤ Cp2−2α′pβD
∗

p (z).

By (3.63), (3.68), (3.69) and (3.71) we obtain

(3.72) |I(A2
p)(z)| = O(p7/22−α

′p)βD
∗

p (z)2 on |z| ≤ c′p−A′ .

We finally deal with the sum over A3
p, using the same principles1. Write:

I(A3
p)(z) =

∑
(q,s,m)∈A3

p

(q −m)(c(p)
m )2

( dp∑
`=1

a
(p)
q` a

(p)
s`

)
zq+m−1z̄s+m

−
∞∑
s=1

∞∑
m=δ′p+1

(s−m)(c(p)
m )2(c(p)

s )2zs+m−1z̄s+m

=: S′1 − S′2.

(3.73)

On the one hand, rather similarly as for (3.64) (observe the precise exponents though),

(3.74) |S′1| ≤ dp

∞∑
q=1

q
(

sup
1≤`≤dp

|a(p)
q` |
)
|z|q

∞∑
s=1

(
sup

1≤`≤dp
|a(p)
s` |
)
|z|s

∞∑
m=δ′p+1

m(c(p)
m )2|z|2m−1.

Again, we deal separately with
∑δ′p

s=1 and
∑+∞

s=δ′p+1 from (3.54), (3.66). In conclusion, by

(2.3), (3.54), (3.65), (3.66), (3.71) and (3.74), we have on |z| ≤ c′p−A′ ,

(3.75) |S′1| ≤ O(p42−2α′p)βD
∗

p (z)2.

1 Fine uniform control for small indices, rough control via Cauchy formula for large indices, sacrifice of a few
powers of |z| and restriction to |z| ≤ cp−A for resulting sums.
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On the other hand, we have by (3.71) on the set |z| ≤ c′p−A′ ,

|S′2| ≤
∞∑
q=1

∞∑
m=δ′p+1

|q −m|(c(p)
m )2(c(p)

q )2|z|2q+2m−1

≤
( ∞∑
q=1

q(c(p)
q )2|z|2q

)( ∞∑
m=δ′p+1

m(c(p)
m )2|z|2m−1

)

≤ C
(
δ′p

δ′p∑
q=1

(c(p)
q )2|z|2q + p2−2α′pβD

∗
p (z)

)
p2−2α′pβD

∗
p (z)

≤ C2−2α′pp2 βD
∗

p (z)2.

(3.76)

By (3.73), (3.75) and (3.76) we have on the set |z| ≤ c′p−A′ ,

(3.77)
∣∣∣∣I(A3

p)(z)

∣∣∣∣ = O(p42−2α′p)βD
∗

p (z)2.

Conclusion. — We sum up the estimates above (head terms (3.43), (3.44), (3.47), and
tail terms (3.62), (3.72), (3.77)) in (3.50), with κ any fixed number larger than 1

2 log 2, and
obtain for some γ > 0,

(3.78) sup
|z|≤c′p−A′

∣∣∣∣ ddz
(
Bp
BD∗
p

)
(z)

∣∣∣∣ = O(e−γp).

Applying Theorem 1.1 for k = 1, δ = 0, we get

(3.79) sup
c′p−A′≤|z|≤r

|z|
∣∣log(|z|2)

∣∣ ∣∣∣∣ ddz (Bp −BD∗
p )(z)

∣∣∣∣ = O(p−∞),

which can be rephrased as follows:

(3.80) sup
c′p−A′≤|z|≤r

∣∣∣∣ ddz (Bp −BD∗
p )(z)

∣∣∣∣ = O(p−∞).

Estimates (2.8), (3.78), (3.80) yield (1.10) for k = 1.
Higher k-order estimates are established along the same lines: (1) the sum over the set

of indices in Ajp where one of indices satisfies ≥ δ′p + 1, will be controlled by a polynomial
in p times 2−α

′pβD
∗

p (z)k; (2) to handle the sum over the set of indices ≤ δ′p, we observe
first that the contribution from the terms with sum of indices < 2k + 2 is zero, so we will
increase κ to absorb the exponential factor in the estimates. Thus the analogue of (3.78)
holds for k > 1. We exemplify this for the second derivative d2

dz2 to show how the above
argument works. From (3.39), we get

(3.81)
d2

dz2

Bp
BD∗
p

(z) = (βD
∗

p (z))−3

×
∞∑

q,s,t,m=1

(q −m)(q +m− 1− 2t)(c(p)
m )2(c

(p)
t )2c(p)

q c(p)
s εqsz

q+m−2+tz̄s+m+t.

It is clear that the contribution of the indices with q+m+ t < 5 is zero, so the trick (3.42)
works even in the presence of a z−2-term in (3.81). �
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4 Applications

Theorem 1.3 can be interpreted in terms of Kodaira embeddings. Following the semi-
nal papers [8, 11, 14, 17, 23, 27, 28] one of the main applications of the expansion of
the Bergman kernel is the convergence of the induced Fubini-Study metrics by Kodaira
maps. Let us consider the Kodaira map at level p ≥ 2 induced by H0

(2)(Σ, L
p), which is a

meromorphic map defined by

(4.1) p,(2) : Σ 99K P(H0
(2)(Σ, L

p)∗) ∼= CPdp−1 , x 7−→
{
σ ∈ H0

(2)(Σ, L
p) : σ(x) = 0

}
.

Recall that by [5, Remark 3.2] the sections of H0
(2)(Σ, L

p) extend to holomorphic sections
of Lp over Σ that vanish at the punctures and this gives an identification

(4.2) H0
(2)(Σ, L

p) ∼= {σ ∈ H0(Σ, Lp) : σ|D = 0}.

Let σD be the canonical section of the bundle OΣ(D). The map

(4.3) H0(Σ, Lp ⊗ OΣ(−D))→ {σ ∈ H0(Σ, Lp) : σ|D = 0}, s 7→ s⊗ σD ,

is an isomorphism and we have an identificationH0(Σ, Lp⊗OΣ(−D))⊗σD ∼= H0
(2)(Σ, L

p) ⊂
H0(Σ, Lp). Since the zero divisor of σD is D we have for x ∈ Σ,

(4.4)
{
σ ∈ H0

(2)(Σ, L
p) : σ(x) = 0

}
=
{
s ∈ H0(Σ, Lp ⊗ OΣ(−D)) : s(x) = 0

}
⊗ σD.

Let p the Kodaira map defined by H0(Σ, Lp ⊗ OΣ(−D)). We have by (4.4) the commu-
tative diagram

(4.5) Σ
p,(2) //

� _

��

P(H0
(2)(Σ, L

p)∗)

Id
��

Σ p
// P(H0(Σ, Lp ⊗ OΣ(−D))∗)

It is well known that p is a holomorphic embedding for p large enough, namely for all p
satisfying p deg(L)−N > 2g (see [19, p. 215]). Thus p,(2) is also an embedding for p large
enough, as the restriction of an embedding of Σ.

The L2-metric (2.1) on H0
(2)(Σ, L

p) induces a Fubini-Study Kähler metric ωFS,p on
the projective space P(H0

(2)(Σ, L
p)∗) and a Fubini-Study Hermitian metric hFS,p on the

hyperplane line bundle O(1) → P(H0
(2)(Σ, L

p)∗). By [22, Theorem 5.1.6] p and p,(2)

induce canonical isomorphisms

(4.6) ∗pO(1) ' Lp ⊗ O(−D) , ∗p,(2)O(1) ' Lp
∣∣
Σ
.

Let ∗p,(2)hFS,p be the Hermitian metric induced by hFS,p via the isomorphism (4.6) on
Lp
∣∣
Σ
.

Theorem 4.1. Let (Σ, ωΣ, L, h) fulfill conditions (α) and (β). Then as p→∞,

∗p,(2)hFS,p =
(
1 +O(p−∞)

)
(BD∗

p )−1hp ,

1

p
∗p,(2)ωFS,p =

1

2π
ωΣ +

i

2πp
∂∂ log

(
BD∗
p

)
+O(p−∞) ,

(4.7)

uniformly on V1 ∪ V2 ∪ . . . ∪ VN .
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Proof. We have indeed by [22, Theorem 5.1.6],

(4.8) ∗p,(2)hFS,p = (Bp)
−1hp ,

1

p
∗p,(2)ωFS,p =

i

2π
RL +

i

2πp
∂∂ log(Bp) ,

so (4.7) follows from Theorems 1.2 and 1.3.

We compare next the induced Fubini-Study metrics by p,(2) on Σ and on D∗, and show
that they differ from each other (modulo the usual identification on D∗4r in (1.6) with the
neighbourhood of a singularity of Σ) by a sequence of (1, 1)-forms which is O(p−∞) (at
every order) with respect to any smooth reference metric on Dr: the situation is just as
good as in the smooth setting.

The infinite dimensional projective space CP∞ is a Hilbert manifold modeled on the
space `2 of square-summable sequences of complex numbers (aj)j∈N endowed with the
norm ‖(aj)‖ =

(∑
j≥0 |aj |2

)1/2. Then CP∞ = `2 \ {0}/C∗ and for a ∈ `2 we denote by
[a] its class in CP∞. The affine charts are defined as usual by Uj = {[a] : aj 6= 0}. The
Fubini-Study metric ωFS,∞ is defined by ωFS,∞ = i

2π∂∂ log ‖a‖2 to the effect that for a
holomorphic map F : M → CP∞ from a complex manifoldM to CP∞ we have F ∗ωFS,∞ =
i

2π∂∂ log ‖F‖2. We define the Kodaira map of level p associated with (D∗, ωD∗ ,C, hD∗) by
using the orthonormal basis (2.6) of Hp

(2)(D
∗),

(4.9) ıp : D∗ → CP∞ , ıp(z) = [c
(p)
1 z, c

(p)
2 z2, . . . , c

(p)
` z`, . . .] ∈ CP∞, z ∈ D∗.

Theorem 4.2. Suppose that D∗4r and V ⊂ Σ are identified as in (1.6). On D∗4r we set

(4.10) ı∗pωFS,∞ − ∗p,(2)ωFS,p = ηp idz ∧ dz̄.

Then ηp extends smoothly to Dr and one has, for all k ≥ 0, ` ≥ 0,

(4.11) ‖ηp‖Ck(Dr) ≤ Ck,` p
−` , as p→∞,

where ‖ · ‖Ck(Dr) is the usual Ck-norm on Dr.

Proof. We first observe that ıp is an embedding, since already z 7→ [c
(p)
1 z, c

(p)
2 z2] ∈ CP1 is

an embedding. We have

(4.12)
p

2π
ωD∗ = ı∗pωFS,∞ −

i

2π
∂∂ log

(
BD∗
p

)
,

and consequently on D∗r ,

(4.13) ı∗pωFS,∞ − ∗p,(2)ωFS,p =
i

2π
∂∂ log

(
BD∗
p /Bp

)
,

so the assertion follows from Theorem 1.3.

We finish with an application to random Kähler geometry, more precisely to the dis-
tribution of zeros of random holomorphic sections [12, 16].

Let us endow the space H0
(2)(Σ, L

p) with a Gaussian probability measure µp induced by

the unitary map H0
(2)(Σ, L

p) ∼= Cdp given by the choice of an orthonormal basis (Spj )
dp
j=1.

Given a section s ∈ H0
(2)(Σ, L

p) ⊂ H0(Σ, Lp) we denote by [s = 0] the zero distribution
on Σ defined by the zero divisor of s on Σ. If the zero divisor of s is given by

∑
mjPj ,

where mj ∈ N and Pj ∈ Σ, then [s = 0] =
∑
mjδPj , where δP is the delta distribution at

P ∈ Σ. We denote by 〈·, ·〉 the duality between distributions and test functions. For a
test function Φ ∈ C∞(Σ) and s as above we have 〈[s = 0],Φ〉 =

∑
mjΦ(Pj).
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The expectation distribution E[sp = 0] of the distribution-valued random variable
H0

(2)(Σ, L
p) 3 sp 7→ [sp = 0] is defined by

(4.14)
〈
E[sp = 0],Φ

〉
=

∫
H0

(2)
(Σ,Lp)

〈
[sp = 0],Φ

〉
dµp(sp),

where Φ is a test function on Σ. We consider the product probability space

(H, µ) =

 ∞∏
p=1

H0
(2)(Σ, L

p),

∞∏
p=1

µp

 .

Theorem 4.3. (i) The smooth (1, 1)-form ∗p,(2)ωFS,p extends to a closed positive (1, 1)-
current on Σ denoted γp (called Fubini-Study current) and we have E[sp = 0] = γp .
(ii) We have 1

pγp →
i

2πR
L as p → ∞, weakly in the sense of currents on Σ, where RL is

the curvature current of the singular holomorphic bundle (L, h) on Σ.
(iii) For almost all sequences (sp) ∈ (H, µ) we have 1

p [sp = 0]→ i
2πR

L as p→∞, weakly
in the sense of currents on Σ.

Proof. The convergence of the Fubini-Study currents γp follows from (4.7). The rest of the
assertions follow from the general arguments of [12, Theorems 1.1, 4.3]. The conditions
(A)-(C) in [12, Theorems 1.1, 4.3] are implied by our hypotheses (α), (β) and the required
local uniform convergence 1

p logBp → 0 as p→∞ on Σ is a consequence of [22, Theorem
6.1.1].
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