
A new approach to de Rham-Witt complexes,
after Bhatt-Lurie-Mathew1

Luc Illusie

1. Historical background: décalage of filtrations, Ogus’ quasi-
isomorphism, ηp functor

Around 1965 Deligne considered the strange renumbering Ep,q
r 7→ E2p+q,−p

r+1

occurring in the spectral sequences of bicomplexes when one uses a naive
truncation instead of a canonical one. In order to explain it, he introduced
a new operation on filtrations of complexes, that he called the décalage. He
described it in handwritten notes he gave to Grothendieck at the time, but
it’s only a few years later that he discussed it at length, namely in [14], where
he makes a critical use of it. Let me briefly recall his construction.

Let A be an abelian category. Denote by C(A) the category of complexes
ofA, and by CF (A) the category of filtered complexes ofA, i.e., pairs (K,F ),
where K ∈ C(A) and F is a decreasing filtration on K, (K ⊃ · · ·F nK ⊃
F n+1K ⊃ · · · ). ForK = (K,F ) in CF (A), the “décalée” (= shifted) filtration
Dec(F ) is defined by

Dec(F )pKn = F p+nKn ∩ d−1(F p+n+1Kn+1).

The filtered complex (K,Dec(F )) is denoted Dec(K). By definition of Dec(F ),
there is a natural map

Dec(F )pKn → Hn(grp+nF Kn)(= Ep+n,−p
1 (K,F )),

which factors through grpDec(F )K
n = Ep,n−p

0 (Dec(K)), inducing a map of com-
plexes

(1.1) Ep,n−p
0 (Dec(K))→ Ep+n,−p

1 (K),

the left (resp. right) hand side being equipped with the usual differential d0

(induced by d) (resp. d1 (a boundary map of Bockstein type) induced by the
exact sequence of complexes

0→ grp+n+1
F K• → (F p+nK•/F p+n+2K•)→ grp+nF K• → 0.)

Deligne’s crucial observation is the following lemma:
1These notes are a slightly expanded version of a talk given at the Conference Thirty

years of Berkovich spaces, IHP, Paris, July 9, 2018.
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Lemma 1.2. ([14], 1.3.4). The morphism (1.1) is a quasi-isomorphism,
and it inductively induces isomorphisms

Ep,n−p
r (Dec(K))→ Ep+n,−p

r+1 (K)

for r > 1.
The renumbering mentioned at the beginning is explained by taking for

K the simple complex associated to a biregular bicomplex M , and observing
that, if F is the filtration onK induced by the naive filtration ofM by the first
degree, then Dec(F ) is the filtration induced by the canonical filtration on
M by the second degree. Lemma 1.2 plays a key role in the so-called “lemma
of two filtrations” ([14], 1.3.16), itself a basic ingredient in the construction
of mixed Hodge structures on the cohomology of complex algebraic varieties.

In the early 1970’s, a particular case of the construction Dec appeared in
a totally different context, in the work of Ogus ([2], §8) on the so-called Katz
inequality between Newton and Hodge polygons in crystalline cohomology.
Let k be a perfect field of characteristic p > 0, W = W (k) the Witt ring on
k, Wm = W/pmW , and X/k a proper and smooth variety. Let Hn(X/W )
denote the Berthelot-Grothendieck crystalline cohomology of X in degree n,
i.e. Hn(X/W ) := lim←−mH

n(X/Wm), where Hn(X/Wm) is the cohomology,
in degree n, of the crystalline site of X/Wm with value in the structural
sheaf OX/Wm . This group is an F -crystal (a finitely generated W -module
equipped with a σ-linear isogeny ϕ, σ being the automorphism of W defined
by the Frobenius), and as such, has a Newton polygon Nwtn(X), the convex
polygonal line starting at (0, 0) having slope λ ∈ Q>0 with horizontal length
equal to the rank of the summand of pure slope λ in the Dieudonné-Manin
decomposition of Hn(X/W ) ⊗W K, where K is the fraction field of W . On
the other hand, X has a Hodge polygon Hdgn(X), the convex polygonal line
starting at (0, 0) having slope i with multiplicity hi,n−i = dimHn−i(X,Ωi

X/k).
Then we have the following basic inequality, conjectured by Katz:

Theorem 1.3. (Mazur-Ogus) For all n, Nwtn(X) lies on or above
Hdgn(X).

This was first proved by Mazur [32] assuming that X has a smooth pro-
jective lifting Y over W , whose Hodge groups Hj(Y,Ωi

Y/W ) are torsion-free.
In a letter dated 9/21/1973, Deligne suggested to Mazur a way to use his
techniques of gauges to get rid of these restrictive hypotheses, via a local
form of the theorem. A copy of the letter was sent to Ogus, who worked out
the idea and proved 1.3 in full generality in ([2], §8).

The formulation of Ogus’ main local result uses a functor ηp, whose defi-
nition is based on the décalage described above. Let Ab denote the category
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of abelian groups. For K ∈ C(Ab), with Ki p-torsion-free for all i ∈ Z, so
that we have an inclusion K ⊂ K[1/p], one defines the subcomplex

ηpK ⊂ K[1/p]

by
(ηpK)i = piKi ∩ d−1(pi+1Ki+1).

In other words, if Fil denotes the p-adic filtration on K[1/p], i.e., Filn = pnK
(n ∈ Z), then

ηpK = Dec(Fil)0K.

A crucial special case of Ogus’ main theorem is the following. Suppose X/k
is smooth and admits a formal smooth lifting Z/W , equipped with a σ-linear
endomorphism F lifting the absolute Frobenius (i.e., Fa ≡ ap mod pOZ for
any local section a of OZ). Then the (p-completed) de Rham complex Ω•Z =
Ω•Z/W has p-torsion-free components, and F induces an endomorphism ϕ =

F ∗ of it which is divisible by pi in degree i, so that we get an endomorphism F
of the graded algebra Ω∗Z , with the property that it coincides with F in degree
zero, and satisfies dF = pFd. It follows that the morphism of complexes ϕ
factors uniquely as

Ω•Z
ϕ̃→ ηpΩ

•
Z ↪→ Ω•Z .

Ogus’ result is the following:

Lemma 1.4. ([2], 8.8). The morphism ϕ̃ is a quasi-isomorphism.

The morphism ϕ realizes the Frobenius endomorphism of the crystalline
cohomology complex Ru∗OX/W , and actually Ogus proves a more general
similar result ([2], 8.20), independent of any lifting, and involving certain
subsheaves of OX/W . Such generalization is needed to derive the global the-
orem 1.3.

Though it seems that both Deligne and Ogus were unaware of it, 1.2
yields, via the Cartier isomorphism, an immediate proof of 1.4. We will
return to this in 3.2.9.

Lemma 1.4 was a crucial ingredient in the reconstruction of the de Rham-
Witt complex WΩ•X of a smooth scheme X/k via its crystalline cohomology
groups Riu∗OX/Wn in ([25], III 1.5), as suggested by Katz. In the context of
logarithmic geometry, this reconstruction was used by Hyodo [22] to define
the de Rham-Witt complex of a log smooth log scheme X of Cartier type
over the standard logarithmic point over k. This de Rham-Witt complex was
a basic tool in the formulation by Hyodo-Kato [23] of the Fontaine-Jannsen
Cst conjecture, first proved by Tsuji [37], and later by several other authors.
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In 2016 variants and generalizations of the ηp functor (and its derived
version Lηp) appeared in the work of Bhatt-Morrow-Scholze [7] on integral
p-adic Hodge theory. This inspired Bhatt, Lurie, and Mathew in [8] to further
analyze the Lηp functor and the homological algebra behind Ogus’ lemma
1.4 and the reconstruction of WΩ•X alluded to above. This is wrapped up
in the form of a general fixed point theorem for the functor Lηp (see §3).
On the other hand, they propose a new, simple definition of de Rham-Witt
complexes for schemes X/k, which turn out to coincide with the classical
one when X/k is smooth, and is of interest for some singular X/k. It should
also be emphasized that, if one ignores the classical constructions ([24], [27]),
definitions in [8] give an alternate approach to them, and lead to simple proofs
of the main structure and comparison theorems of [24]. They also yield a
simplified proof of the crystalline comparison theorem for Bhatt-Morrow-
Scholze’s complex AΩ ([7], Th. 1.10 (i)). However, for lack of time, I will
not discuss this proof in the talk. See 5.3 (b) for a brief sketch. Let me also
mention quite recent developments closely related to [8], on which it is too
early to report:

(a) Using a logarithmic variant of the constructions in [8], given a log
scheme X over the standard log point k over k, one can hope to define a
de Rham-Witt complex Wω•X , which, for X/k log smooth of Cartier type
coincides with the Hyodo-Kato complex [23] and the one constructed by
Matsuue [31]. One can also hope that this approach will lead to simplified
proofs of results on Ainf-cohomology in the semistable case, proved earlier
by Čęsnavičius-Koshikawa [12]. There is work in progress on this by Z. Yao
([39], [40]).

(b) Liftings of Frobenius play a central role in [8]. In [10] they are used to
define a new site, the prismatic site, whose cohomology is linked to crystalline
cohomology, on the one hand, and to Ainf-cohomology, on the other hand.
However, it seems that the relation of this new theory with that of [8] (not
to speak of [39]) is not yet well understood.

2. Saturated de Rham-Witt complexes.

Let me start with some basic definitions from [8].
A Dieudonné complex (M,F ) is a complex

M = (· · · →M i d→M i+1 → · · · )

of abelian groups together with the datum of homomorphisms F : M i →M i

for all i ∈ Z, such that
dF = pFd.

Morphisms are defined in the obvious way. We thus get a category DC.
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Examples : (a) If R is an Fp-algebra, the de Rham-Witt complex WΩ•R of
[24], with the operator F of loc. cit., is a Dieudonné complex.

(b) If R is smooth over a perfect field k, and if A is a smooth formal
lifting of R overW = W (k), together with a σ-linear lifting F : A→ A of the
absolute Frobenius, then Ω•A/W together with the operator F : Ωi

A/W → Ωi
A/W

defined in 1.4 is a Dieudonné complex.
One says that a Dieudonné complex (M,F ) is saturated if: (i) M is p-

torsion-free (i.e., each M i is p-torsion-free), and (ii) F : M i → M i factors
as

M i ∼→M i ∩ d−1(pM i+1) ↪→M i.

In particular, if (M,F ) is saturated, F is injective.
If R is of positive dimension, the Dieudonné complex of Example (b) is

not saturated. When R is smooth over a perfect field k, that of Example (a)
is, by ([24], I 3.21.1.5).

Let (M,F ) be a Dieudonné complex, with M p-torsion-free. We have a
morphism of complexes ϕ : M →M , defined by piF in degree i. It uniquely
factors through a morphism

(2.0) αF : M → ηpM ⊂M.

For (M,F ) to be saturated, it is necessary and sufficient that αF be an
isomorphism. Note that ηpM (with the endomorphism of (ηpM)i induced by
F for each i), is itself a Dieudonné complex, and that αF is a morphism of
Dieudonné complexes.

If (M,F ) is a Dieudonné complex, one defines its saturation Sat(M) as

Sat(M) = lim−→
n≥0

ηnp (M/Mtors),

where M i
tors is the submodule of p-torsion in M i (sometimes called p∞-

torsion), ηnp = ηp ◦ · · · ◦ ηp (n times), and the transition maps are defined
inductively by αF . It follows from the above remark that Sat(M), with the
induced operator F is indeed saturated, and that the functor

Sat : DC→ DCsat

is left adjoint to the inclusion functor

DCsat ↪→ DC

of the full subcategory consisting of saturated complexes.
Example (c): On the polynomial algebra P = Zp[t] (t = (t1, · · · , tn),

n > 1) consider the lifting F of Frobenius sending ti to tpi . As in example (b)
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above, it induces an endomorphism ϕ of the de Rham complex Ω•P := Ω•P/Zp
,

such that ϕ|Ωi = piF , with F an endomorphism of the graded algebra Ω•P
satisfying dF = pFd. Then one can show ([8], 4.2.5) that

Sat(Ω•P )

is Deligne’s complex of integral forms E• of ([24]), I 2.1.3), which plays a
crucial role in the constructions of [24] (and, in a more general form, of [27]).

Let (M,F ) be a saturated Dieudonné complex. For any x ∈ M i, px can
be written (uniquely) Fy, for y ∈M i. Set y = V x. Then V : M i →M i is an
endomorphism satisfying FV = p, hence, by injectivity of F , V F = p, and

(∗) FdV = d.

This formula, first discovered to hold on de Rham-Witt complexes ([24],
I 2.18.3), was at the origin of the definition of the Raynaud ring and the
corresponding theory of coherent complexes over it [25], widely developed by
Ekedahl [18], [19], [20], (see [26] for a survey).

Let M be a saturated Dieudonné complex. Then, for any n > 1, V nM +
dV nM : i 7→ V nM i+dV nM i−1 is a subcomplex ofM , and we get a projective
system of quotients

W•M = (WnM := M/(V nM + dV nM)n>1).

It follows from (*) that F (resp. V ) induces maps F : Wn+1M → WnM
(resp. V : WnM → Wn+1M) satisfying again FV = V F = p and (*). One
checks that

WM := lim←−Mn,

equipped with the induced maps F is again a saturated Dieudonné complex.
One says that M is strict if the canonical map

M →WM

is an isomorphism. If DCstr denotes the full subcategory of DCsat consisting
of strict complexes, the functor M 7→ WM is left adjoint to the inclusion.

The construction of de Rham-Witt complexes requires additional multi-
plicative structures. A Dieudonné algebra is a strictly commutative differen-
tial graded algebra

A = (A0 d→ A1 d→ · · · )

concentrated in nonnegative degrees (“strictly commutative" meaning that
in addition to xy = (−1)ijyx for x (resp. y) homogeneous of degree i (resp.
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j), one has x2 = 0 for x homogeneous of odd degree), together with homo-
morphisms F : Ai → Ai satisfying dF = pFd, F (xy) = Fx.Fy for all x ∈ Ai,
y ∈ Aj, and Fx ≡ xp mod pA0 for x ∈ A0. In particular, the underlying
complex of abelian groups is a Dieudonné complex. One says that A is satu-
rated (resp. strict) if this underlying complex is. If A is saturated, then, in
addition to the formulas FV = V F = p and (*), we have

(∗∗) xV y = V (Fx.y)

for all x ∈ Ai, y ∈ Aj.
Dieudonné algebras form a category DA, whose full subcategory consist-

ing of saturated (resp. strict) algebras is denoted DAsat (resp. DAstr).
If A is a Dieudonné algebra, A/Ators, ηp(A/Ators), Sat(A), WSat(A) are
again Dieudonné algebras in a natural way, and one checks that the functor
A 7→ Sat(A) (resp. A 7→ W(A)) is left adjoint to the inclusion DAsat ↪→ DA
(resp. DAstr ↪→ DAsat).

The de Rham-Witt complex WΩ•R of a smooth algebra R over a perfect
field of characteristic p > 0 is a strict Dieudonné algebra (([24], I 3.21.1.5),
([25] II 1.3))2. The complex E• of integral forms of the example above is a
saturated Dieudonné algebra. It is not strict.

Note the following two important properties ([8], 3.6.1, 3.6.2):
(2.1) For A ∈ DAsat, the Fp-algebra A0/V A0 is reduced ;
(2.2) For A ∈ DAstr, the unique F -compatible lifting3

A0 → W (A0/V A0)

of the projection A0 → A0/V A0 is an isomorphism.
Let R be an Fp-algebra. One defines a strict Dieudonné algebra over R

as a pair (A, u), where A ∈ DAstr and u is a homomorphism (of Fp-algebras)
R → A0/V A0. Strict Dieudonné algebras over R form a category DAstr/R

in an obvious way. The first main result of [8] is the following theorem ([8],
4.1.1):

Theorem 2.3. The category DAstr/R admits an initial object, denoted
WΩ•R, e : R → W1Ω0

R(= WΩ0
R/VWΩ0

R), called the saturated de Rham-Witt
complex of R. In other words, for A ∈ DAstr/R, we have

Hom(R,A0/V A0) = HomDAstr/R
(WΩ•R, A).

2Note that if R is an arbitrary Fp-algebra, we have Fx ≡ xp mod pW (R) for any
x ∈W (R), so thatWΩ•

R is a Dieudonné algebra; saturation, however, requires smoothness
of R/k.

3This unique lifting comes from the so-called universal property of Witt vector rings,
taking into account that, by assumption, A0 is p-torsion-free.
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The proof is quite simple. It is based on the observation that if B is a
p-torsion-free ring, equipped with an endomorphism F satisfying Fx ≡ xp

mod pB for all x ∈ B, then there exists a unique endomorphism F of the
algebra Ω•B := Ω•B/Zp

which extends F , and satisfies dF = pFd, and Fdx =

xp−1dx+d((Fx−xp)/p) for x ∈ B, hence makes Ω•B into a Dieudonné algebra.
The ringW (Rred) is such a B, so that Ω•W (Rred) is a Dieudonné algebra. Then,
using (2.1), one checks that

WΩ•R :=WSat(Ω•W (Rred))

is the desired initial object, the map e : R → W1Ω0
R being the obvious one:

by definition,W1Sat(Ω•W (Rred))
0 = Sat(Ω•W (Rred))

0/V , and as the natural map
W (Rred) → Sat(Ω•W (Rred))

0 is compatible with F , hence with V , we have
a map Rred = W (Rred)/V → Sat(Ω•W (Rred))

0/V , whose composition with
R→ Rred is e.

If k is a perfect Fp-algebra, then WΩ•k = WΩ0
k = W (k), V = pF−1, and

e is the isomorphism k
∼→ W (k)/V . So, if R is an algebra over a perfect ring

k, then WΩ•R is a differential graded algebra over W (k).
The definition of saturated de Rham-Witt complexes is globalized on

schemes as follows. Let X be an Fp-scheme. If U is an open affine subscheme
of X, put O(U) := Γ(U,OX). It is shown in ([8], 5.2.2, 5.2.3) that, for each
n > 1, the presheaf

U 7→ WnΩ•O(U)

on the category Uaff(X) of open affine subschemes of X is a sheaf for the
Zariski topology, and that the corresponding sheaf on X

WnΩ•X

is quasi-coherent on the scheme Wn(X) having the same underlying space as
X and WnOX as structural sheaf, with

Γ(U,WnΩ•X) =WnΩ•O(U)

for U ∈ Uaff(X). The inverse limit

WΩ•X := lim←−
n>1

WnΩ•X

is called the saturated de Rham-Witt complex of X. We have

WnΩ•X :=WΩ•X/(V
nWΩ•X + dV nWΩ•X),

and for U ∈ Uaff(X),
Γ(U,WΩ•X) =WΩ•O(U).
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The notationW and the adjective “saturated” (sometimes dropped by Bhatt-
Lurie-Mathew) are meant to avoid confusion with the object WΩ•X defined
in [24] – which is also the same as the complex WΩ•X/Fp

of [27].
By (2.2) we haveWΩ0

X = W (W1Ω0
X), hence the structural map e : OX →

W1Ω0
X induces a map

W (e) : WOX →WΩ0
X ,

which is compatible with F and V , but is not an isomorphism in general
(already because W1Ω0

X has to be reduced).
The saturated de Rham-Witt complex WΩ•X is functorial in X, and sat-

isfies the same properties as WΩ•X with respect to étale localization. Let
X → Y be an étale morphism. Recall that WnX is étale over WnY ([24], 0
1.5.8). It is shown in ([8], 5.3.5) that, for all i, the map

WnOX ⊗WnOY
WnΩi

Y →WnΩi
X

is an isomorphism. In particular, WnΩ0
X is étale over WnΩ0

Y .

3. Main properties of saturated de Rham-Witt complexes

3.1. Comparison with previous constructions

Let X be an Fp-scheme. The projective system

W•Ω•X := (WnΩ•X)n>1,

together with the operators F : Wn+1Ω•X → WnΩ•X , V : WnΩ•X → Wn+1Ω•x,
and the homomorphismW•(e) : W•(OX)→W•Ω0

X , form an F -V -procomplex
over OX in the sense of ([27], Definition 1.4). Therefore, by the universal
property of the Langer-Zink de Rham-Witt complex, we have a canonical
map of F -V -procomplexes over OX :

(3.1.1) can• : W•Ω
•
X →W•Ω•X .

(Recall that, as X is an Fp-scheme, the left hand side coincides with the
object defined in [24].)

Theorem 3.1.2 ([8], Th. 4.4.12). If X is regular, then (3.1.1) is an
isomorphism. In particular,

can1 : Ω•X →W1Ω•X

is an isomorphism.

By Popescu’s theorem and étale localization, one is reduced to X =
Spec(Fp[t]), (t = (t1, · · · , tn)), as in (2, Example (c)). By ([24], I 2.5), we
have

W•Ω
•
Fp[t] =W•Sat(Ω•Zp[t]).
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However, it is formal (cf. ([8], 4.2.3)) that WSat(Ω•Zp[t]) (with the map
Fp[t]→W1Sat(Ω•Zp[t])

0 defined by the identity of Fp[t]) is an initial object of
DAstr/Fp[t].

One can show that for a cusp (R = Fp[x, y]/(x2 − y3)) or an ordinary
double point (R = Fp[x, y]/xy), can1 : Ω•R → W1Ω•R is not an isomorphism.
We will come back to this in 4.1, 4.2.

3.2. Comparison with crystalline cohomology

Let X be a scheme over a perfect field k of characteristic p > 0, and write
W for W (k). For n > 1, consider the crystalline topos (X/Wn)crys, with
its structural sheaf of rings OX/Wn , and the Berthelot canonical map to the
Zariski topos u : (X/Wn)crys → XZar. In ([24], II (1.1.1)), for X/k separated4

and of finite type, there is defined a canonical map

(3.2.1) Ru∗OX/Wn → WnΩ•X

of projective systems of objects of D+(X,Wn), compatible with the multi-
plicative structures, and the Frobenius endomorphism (defined by piF on
W•Ω

i
X). It is shown in ([24], II 1.4) that if X/k is smooth, (3.2.1) is an iso-

morphism (a more general comparison theorem is established in [27]). The
proof depends on what Bhatt, Lurie and Mathew rightly call “laborious” lo-
cal calculations. If one replaces the de Rham-Witt complex by the saturated
one, one can give an independent, much simpler proof of this last result.
This is indeed one of the main points of [8]. We recall the argument, which
is unfortunately scattered in various places of [8].5

First of all, for X/k separated and of finite type, we will define a map
similar to (3.2.1), with W•Ω

•
X replaced by W•Ω•X . The construction is es-

sentially the same as in ([24], II 1.1). As in loc. cit., choose an embedding
system

X
ε•← U•

i•→ Y•,

where ε• is a Zariski open affine hypercovering, and, for all n ≥ 0, i. a closed
immersion into a formal smooth simplicial scheme overW , where in addition,
Y• is equipped with a compatible system F• of liftings of Frobenius. Let

Ru∗OX/W := R lim←−Ru∗OX/Wn

(for an alternate definition in terms of a crystalline topos over W , see ([2],
§7)). Let D• be the PD-envelope of U• in Y•, D•n its reduction over Wn, and

4This assumption is missing in loc. cit.. It is implicitly used in the construction of an
embedding system. It is probable that it is superfluous, see ([23], p. 237).

5See Remark 3.2.9 (iii) for an update.
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let
Ω•D•/W,[] := lim←−

n≥1

Ω•D•n/Wn,[]

where Ω•D•n/Wn,[]
is the PD-de Rham complex of D•n. As recalled in ([24], II

1.1), we have a canonical isomorphism Ru∗OU•/Wn
∼→ Ω•D•n/Wn,[]

, hence, by
cohomological descent, and inverse limit, an isomorphism

(3.2.2a) Ru∗OX/W
∼→ Rε•∗Ω

•
D•/W,[].

On the other hand, consider the completed de Rham complex

Ω•WOY•/W
:= lim←−Ω•WnOY•/Wn

.

As explained in loc. cit., F• defines a composite homomorphism

(3.2.2b) OY• → WOY• → WOU• ,

hence a morphism of differential graded algebras

(3.2.2c) Ω•Y•/W → Ω•WOU•/W
.

AsWOU• is a λp-ring, there exists a unique structure of Dieudonné algebra on
Ω•WOU•/W

([8], 3.7.6). Consider the morphism of differential graded algebras

(3.2.2d) Ω•Y•/W →WΩ•U• ,

deduced from (3.2.2c) by composing with the canonical map to WSat, and
the canonical isomorphism (of Dieudonné algebras)

WSat(Ω•WOU•/W
)
∼→WΩ•U•

([8], 4.1.4). As (3.2.2b) sends the ideal I• of U• in Y• to VWOU• , (3.2.2d)
sends I• to the ideal VWΩ0

U• . As VWΩ0
U• has canonical divided powers

x 7→ x[m], and the relation dx[m] = x[m−1]dx holds, since WΩ•U• is p-torsion-
free. Therefore (3.2.2d) factors uniquely through a morphism of differential
graded algebras

(3.2.2e) Ω•D•/W,[] →WΩ•U• .

By cohomological descent, the canonical map ι : WΩ•X → Rε•∗WΩ•U• is an
isomorphism. Now apply Rε•∗ to (3.2.2e), and compose with the inverse of ι
and the isomorphism (3.2.2a): we get a morphism (in D(X,W ))

(3.2.2) Ru∗OX/W →WΩ•X .
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One checks as in ([24]) that (3.2.2) is independent of the choice of the em-
bedding system, and that it is compatible with the product structure and
Frobenius endomorphisms on both sides (given by piF in degree i on the
right hand side). Applying ⊗LZ/pnZ on both sides, and composing with the
canonical mapWΩ•X⊗Z/pnZ→WnΩ•X (a quasi-isomorphism by ([8], 2.7.3),
see (3.2.7) below), we get a projective system of morphisms in D(X,Wn)

(3.2.2n) Ru∗OX/Wn →WnΩ•X ,

(from which (3.2.2) can be recovered by applying R lim←−). This is the desired
analogue of (3.2.1).

Assume now X/k smooth. Then (3.2.2) (or, equivalently, (3.2.2n) for all
n > 1) is an isomorphism. To prove it, we may assume that X is affine,
X = Spec(R), and has a formal smooth lifting Z/W , Z = Spf(B), together
with a lifting F of Frobenius, as in 1.4. Then Ω•B, together with the operator
F deduced from F on B by functoriality and division by pi in degree i is a
p-torsion-free Dieudonné algebra, and we have a tautological map

(3.2.3) Ω•B →WSat(Ω•B).

As observed earlier (cf. ([8], 4.2.3)), we have

WΩ•R =WSat(Ω•B).

The composition

(3.2.4) Ω•B ⊗ Z/pn →WnSat(Ω•B)

of the reduction mod pn of (3.2.3)

(3.2.5) Ω•B ⊗ Z/pn →WSat(Ω•B)⊗ Z/pn

and the canonical projection

(3.2.6) WSat(Ω•B)⊗ Z/pn →WnSat(Ω•B)

realizes (3.2.2n). So it suffices to show that (3.2.5) and (3.2.6) are quasi-
isomorphisms. Deligne’s lemma 1.2 is used in both cases, but for (3.2.5) an
additional input is needed, namely, the Cartier isomorphism.

(i) (3.2.6) is a quasi-isomorphism. As observed above, this is a particular
case of the following lemma ([8], 2.7.3):

Lemma 3.2.7. Let M be a saturated Dieudonné complex. Then, for all
n > 1, the projection

M/pnM →WnM

12



is a quasi-isomorphism.
See loc. cit. for the proof. It relies on an easy lemma ([8], 2.7.1) (see

(5.1.1)), and Deligne’s lemma, which ensures that the map (of type (1.1))

ηpnM/pnηpnM → H•(M/pnM)

(where ηf is Dec0 applied to the f -adic filtration) is a quasi-isomorphism.

(ii) (3.2.5) is a quasi-isomorphism. By definition, the map F : Ωi
B → Ωi

B

lifts the Cartier isomorphism C−1 : Ωi
R
∼→ H i(Ω•R). In [8] one says that a

Dieudonné complex (M,F ) is of Cartier type if, for each i, M i is p-torsion-
free and the map M i/pM i → H i(M/pM) induced by F is an isomorphism.
Therefore, assertion (ii) is a particular case of the following lemma ([8], 2.8.5):

Lemma 3.2.8. Let M be a Dieudonné complex of Cartier type. Then:
(a) The map αF ⊗ Z/p : M/pM → ηpM/pηpM (cf. (2.0)) is a quasi-

isomorphism.
(b) The canonical mapM/pM → Sat(M)/pSat(M) is a quasi-isomorphism.
(c) Assume that, in addition, each M i is p-adically complete (which is

the case, for example, for M = Ω•B as above). Then the canonical map
M → WSat(M) is a quasi-isomorphism, and induces, for each n > 1, a
quasi-isomorphism M ⊗ Z/pn →WSat(M)⊗ Z/pn.

Assertions (b) and (c) are easy consequences of (a). For (c) one has to
observe that any strict Dieudonné complex is derived p-complete6 (as equal to
the limit of a strict inverse system of Z/pn-modules), hence its components,
which are p-torsion-free, are p-adically complete. The proof of (a) is simple
and beautiful. Consider the commutative diagram of complexes (where the
slanted arrow is the composition, the first horizontal arrow is αF ⊗ Z/p, the
map Del is Deligne’s quasi-isomorphism of Lemma 1.2, for r = 0, and the
vertical arrow is the trivial isomorphism):

Mn/pMn //

,,YYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYY (ηpM)n/p(ηpM)n Del // Hn(pnM/pn+1M)

p−n

��
Hn(M/pM).

The slanted arrow is nothing but the Cartier isomorphism C−1. Therefore
αF ⊗ Z/p is a quasi-isomorphism.

Remarks 3.2.9. (i) Assume that each M i is p-adically complete. Then
3.2.8 (a) implies that

αF : M → ηpM

6See 5.2.
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is a quasi-isomorphism. Indeed, by induction on n, αF ⊗ Z/pn : M/pnM →
ηpM/pnηpM is a quasi-isomorphism for all n > 1. As the components of
M are p-adically complete and torsion-free, M is derived p-complete, hence
ηpM is also derived p-complete ([7], Lemma 6.19), so its components are
p-complete, and αF = R lim←−αF ⊗

LZ/pn : M → ηpM is a quasi-isomorphism.
(ii) Remark (i) applied to ϕ̃ gives Ogus’ Lemma 1.4.

Remark 3.2.10.7 The proof given above for the construction of (3.2.1)
and the fact that it is an isomorphism for X/k smooth, though it simplifies
that of ([24], II 1.4), still proceeds along the same lines, using embeddings
into formally smooth schemes over W endowed with a lifting of Frobenius.
Another proof in the same vein is given by Ogus in ([35], §5). Quite recently,
Bhatt, Lurie, and Mathew found a totally new one, involving no embeddings
in schemes with a lifting of Frobenius ([8], 10.1.2). As a bonus, it gives a
uniqueness property for the comparison isomorphism. The only input from
the theory of the saturated de Rham-Witt complex they use is the following:

(a) For X/k smooth, the canonical map

(3.2.10.1) Ω•X/k →W1Ω•X

is an isomorphism.
(b) For X/k smooth, the canonical map

WΩ•X →W1Ω•X(
∼→ Ω•X/k)

induces a quasi-isomorphism

(3.2.10.2) WΩ•X/pWΩ•X → Ω•X/k.

Note that, by Popescu’s theorem, (a) and (b) extend to X being merely
assumed to be a regular Fp-scheme.

Both (a) and (b) follow easily from Lemmas 3.2.7 and 3.2.8. Indeed,
for (a), we may assume that X is lifted to Y formally smooth over W ,
with a lifting of Frobenius, so that, as observed above, we have WΩ•X =
WSat(Ω•Y/W ). Then we have quasi-isomorphisms

(∗) Ω•Y/W → lim←− Sat(Ω•Y/W )/pn → lim←−WnΩ•X =WΩ•X ,

the first one by (3.2.8 (b)), the second one by (3.2.7). Then the reduction
mod p of this composition is a quasi-isomorphism

Ω•Y /p→WΩ•X/p,

7added in February, 2020.
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and the isomorphism it induces on H i is the right vertical arrow of the com-
mutative square

Ωi
Y /p

C−1
//

��

H i(Ω•Y /p)

��
W1Ωi

X
F // H i(WΩ•X/p),

where the upper horizontal map is the Cartier isomorphism. As the bottom
horizontal arrow is an isomorphism (by ([8], 2.7.1) (see (5.1.1)), the left
vertical arrow, which is (3.2.10.1) is an isomorphism as well. For (b), we
may assume again that X has the lifting (Y, F ), and (3.2.10.2) is the inverse
of the reduction mod p of the composition of the quasi-isomorphisms (*).

The new result, mentioned above, is the following:

Theorem 3.2.11. ([8], 10.1.2) There exists a unique equivalence of
presheaves on the category of affine regular Fp-schemes X = Spec(R) with
values in the derived ∞-category D(Fp)

(3.2.11.1) RΓ(X/Zp)
∼→ RΓ(X,WΩ•X)(= WΩ•R),

which preserves the Fp-algebra structures on both sides, and lifts the isomor-
phism in D(Fp)

RΓ(X,Ω•X)(= Ω•R)
∼→ RΓ(X,WΩ•X)⊗L Fp

inverse to (3.2.10.2).
The isomorphism (3.2.2) is deduced from (3.2.11.1) by sheafification (and

passing to the homotopy category). One uses Lurie’s equivalence

D+(X,Fp)
∼→ Sh+(X,D(Fp))

given by [DAG VIII, Proposition 2.1.8], where the right hand side denotes
the full subcategory of the category of sheaves on X with values in D(Fp)
consisting of objects L such that Hi(L) = 0 for i << 0.

The proof of 2.11 makes heavy use of (quasi-)syntomic techniques devel-
oped in [9].

3.3. The Frobenius isogeny

Let k be a perfect field k (of characteristic p). If X/k is smooth of
dimension d, WΩi

X = 0 for i > d ([24], I 3.7 (a)). As WΩ•X is saturated,
it follows that F induces an automorphism of WΩd

X , so that we have an
endomorphism v of WΩ•X defined by pd−i−1V in degree i (with p−1V = F−1
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in degree d). If ϕ is the endomorphism of WΩ•X defined by piF in degree i,
then the endomorphisms ϕ and v satisfy

(3.3.1) vϕ = ϕv = pd.

This implies that, if in addition X/k is proper, then H∗(X/W )/tors is an
F -crystal of level 6 d (cf. ([24], II 2.8.3)). That had been known since the
early days of crystalline cohomology (as a consequence of Poincaré duality,
proved by Berthelot [1]). Refinements and generalizations were proved in
([2], 8.20) and ([3], 1.6).

A relation similar to (3.3.1) holds for saturated de Rham-Witt complexes
and possibly singular varieties. We have the following theorem ([8], 9.3.6):

Theorem 3.3.2. Let X/k be of finite type, and let N be an integer such
that the local embedding dimension8 of X/k is at most N . Then

WΩi
X = 0

for i > N .

As above, we get that F is bijective on WΩN
X , and:

Corollary 3.3.3. Let ϕ (resp. v) be the endomorphism ofWΩ•X defined
by piF (resp pN−i−1V ) in degree i. Then we have:

vϕ = ϕv = pN .

The proof of 3.3.2 is quite indirect. It relies on the theory of the derived
de Rham-Witt complex LWΩ•R for Fp-algebras R, and a rather surprising
theorem ([8], Th. 9.3.1) to the effect thatWΩ•R is the “saturation” of LWΩ•R
in a suitably derived sense. The assumption on X appears in the use of
Quillen’s standard décalage formula relating derived functors of

∧
and Γ.

Corollary 3.3.4. Let f : X → Y be a morphism of k-schemes of finite
type, and let K denote the fraction field of W .

(a) If f is a universal homeomorphism, then WΩ•Y ⊗K → f∗WΩ•X ⊗K
is an isomorphism.

(b) If f is a universal homeomorphism with trivial residue extensions,
then WΩ•Y → f∗WΩ•X is an isomorphism.

Proof. (a) ([8], 9.3.9) Applying 3.3.3 to the absolute Frobenius endo-
morphisms of X and Y , we get that WΩ•X ⊗ K → WΩ•

Xperf ⊗ K is an

8Recall that this is the minimum d such that X can be locally embedded in a smooth
scheme of dimension d over k, and is also the minimum d such that Ω1

X/k can be locally
generated by d elements.
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isomorphism, where Xperf → X is the perfection of X, and similarly for Y .
But fperf : Xperf → Y perf is again a universal homeomorphism, hence an
isomorphism ([6], Lemma 3.8), so WΩ•

Y perf →WΩ•
Xperf is an isomorphism.

(b) Let f sn : Xsn → Y sn be the seminormalization of f (cf. 4.2). Then
f sn is a universal homeomorphism with trivial residue extensions, hence an
isomorphism (cf. [The Stacks project, Tag 0EUK]). Hence the conclusion
follows from ([8], 6.5.2)) (cf. 4.2).

4. Examples

In the next sections, unless otherwise stated, k denotes a perfect field of
characteristic p > 0, and W = W (k) as usual.

4.1. Nodes

Let R = k[x, y]/(xy). Using the lifting W [x, y]/(xy), together with the
lifting of Frobenius given by x 7→ xp, y 7→ yp, one can show that one has a
Mayer-Vietoris-like short exact sequence

0→WΩ•R → WΩ•k[x] ⊕WΩ•k[y] → W → 0

(where (a, b) ∈ WΩi
k[x] ⊕WΩi

k[y] is sent to a− b, with a (resp. b) the image
of a (resp. b) in WΩi

k). It is F and V compatible, and remains exact if W
(resp. W ) is replaced by Wn (resp. Wn), n > 1. In particular, the map
Ω•R →W1Ω•R is bijective in degree 0 but not in degree 1.

More generally, assume thatX/k is a finite union of smooth schemesXi/k
(1 6 i 6 N) crossing transversally. For J ⊂ {1, · · · , N}, let XJ := ∩j∈JXj,
and let Xr :=

∐
]J=r+1XJ , and εr : Xr → X be the projection. Then one

can show that one has an exact sequence

0→WΩ•X → ε0∗WΩ•X0
→ ε1∗WΩ•X1

→ · · · → εr∗WΩ•Xr
→ · · · ,

compatible with F and V , and which remains exact when W (resp. W ) is
replaced by Wn (resp. Wn), n > 1. In a sense, WΩ•X plays the role of a
p-adic analogue of the du Bois complex [17]. See reference [35] in 4.3 for
generalizations.

4.2. Cusps.

Let R be the subring of k[t] generated ty t2 and t3 (R = k[x, y]/(x2−y3)).
Then, using the lifting W [t2, t3] ⊂ W [t], with the lifting of Frobenius t 7→ tp,
it is shown ([8], 6.2.1) that the inclusion R ⊂ k[t] induces an isomorphism

WΩ•R
∼→WΩ•k[t] (= WΩ•k[t]).

In particular the canonical map R (= WΩ0
R) → W1Ω0

R(= k[t]) is not an
isomorphism.
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This is generalized as follows. Recall that a (commutative) ring R is said
to be seminormal if R is reduced and, for any x, y in R such that x2 = y3,
there exists t ∈ R such that x = t3 and y = t2. It was proved by Swan ([36],
th. 4.1) that any ring R admits a universal map R → Rsn to a seminormal
ring, called the seminormalization of R. This map R → Rsn is a univer-
sal homeomorphism on spectra with trivial residue extensions, and is final
among such maps (see [The Stacks project, Tag 0EUK]). For Fp-algebras,
the theory of saturated de Rham-Witt complexes yields another description
of this seminormalization, namely ([8], 6.5.3), if R is an Fp-algebra, then

Rsn =W1Ω0
R.

Moreover, the canonical map R→ Rsn induces an isomorphism

WΩ•R
∼→WΩ•Rsn

([8], 6.5.2)).

4.3. Toric singularities.9

Let X be a log smooth scheme over k endowed with the trivial log struc-
ture, and let j : U ↪→ X be inclusion of the smooth locus of X. For example,
one can take X = Spec(k[P ]), with P a sharp, fine, and saturated monoid.
We have adjunction maps

(4.3.1) WΩ•X → j∗j
∗WΩ•X (= j∗WΩ•U),

(4.3.1− n) WnΩ•X → j∗j
∗WnΩ•X (= j∗WnΩ•U)

(n > 1).
We have the following questions:
(i) Are these maps isomorphisms?
(ii) Is W1Ω•X a complex of coherent sheaves?
The complex on the right hand side of (4.3.1-1), i.e., j∗Ω•U , is a complex

of reflexive, coherent sheaves on the (normal) scheme X. So the answer to
(ii) is yes if (4.3.1-1) is an isomorphism. It is asserted in ([11], 3.2) that this
complex, called the Zariski-de Rham complex, satisfies a Cartier isomorphism
j∗Ω

i
U
∼→ Hi(j∗Ω

•
U). However, according to Ogus (private communication),

this may fail in small characteristics, and, hence, by (5.1.3) below, (4.3.1-1)
fails to be an isomorphism in such cases. It would be interesting to compare

9(Added in July, 2020.) See [35] for a thorough discussion of the questions mentioned
below and several generalizations and complements.
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W1Ω•X with variants of the Zariski-de Rham complex considered by Ogus in
([34], V 2.2, 2.3).

In the case X = Spec(k[P ]) as above, X has the lifting Y = Spec(W [P ]),
with the lifting F of Frobenius given by multiplication by p on P , which
makes Ω•W [P ]/W into a Dieudonné algebra. Hence, by ([8], 4.2.3), we have the
simple description of WΩ•X :

WΩ•X =WSat(Ω̂•Y/W ).

(where Ω̂ means the p-completed de Rham complex, cf. the discussion after
(5.1.5) below).

5. Fixed points of Lηp: the fractal nature of strict Dieudonné
complexes

5.1. The saturated Cartier isomorphism

Saturated Dieudonné complexes are seldom of Cartier type (in the sense
of 3.2.8)10. However they give rise to the following analogue of the Cartier
isomorphism ([8], 2.7.1), whose proof is immediate from the definitions:

Lemma 5.1.1. Let (M,F ) be a saturated Dieudonné complex. Then,
for any n > 1 and i ∈ Z, F n induces an isomorphism

F n :WnM
i ∼→ H i(M/pnM).

This isomorphism is compatible with the differential of WnM and the Bock-
stein operator δ : H i(M/pnM) → H i+1(M/pnM) induced by the exact se-
quence of complexes 0 → M/pnM → M/p2nM → M/pnM → 0, i.e., the
square

WnM
i

Fn

��

d //WnM
i+1

Fn

��
H i(M/pnM) δ // H i+1(M/pnM)

is commutative.

Combining with the isomorphism H i(M/pnM)
∼→ H i(WnM) (3.2.7), we

get an isomorphism

(5.1.2) C−n :WnM
i ∼→ H i(WnM),

10It follows from (5.1.1), (5.1.2) that if a saturated Dieudonné complex (M,F ) is of
Cartier type, and its components are p-adically separated, then F is bijective and d = 0.
See 7.1.
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that I propose to call the saturated Cartier isomorphism. In particular, if X
is a k-scheme, the saturated Cartier isomorphism

(5.1.3) C−n :WnΩ•X → H•(WnΩ•X)

is a σn-linear isomorphism, and it is compatible with the multiplicative struc-
tures on both sides. In the caseX/k is smooth, (5.1.3) was discovered in ([25],
III 1.4).

Suppose that M is the saturation Sat(K) of a Dieudonné complex K.
Then the relation between Cartier and saturated Cartier isomorphisms is as
follows. We have a commutative diagram:

Ki/pKi C−1
//

��

H i(K/pK)

��
W1M

i C−1
// H i(W1M),

where the horizontal maps are induced by F and the vertical maps are the
canonical projections. The bottom horizontal map is the isomorphism (5.1.2)
for n = 1. The right vertical map is the composition of the canonical map
H i(K/pK)

∼→ H i(M/pM) (3.2.8 (b)) and the isomorphism (3.2.7) recalled
above. If K is if Cartier type, then (by 3.2.8 (b)) the right vertical map is
an isomorphism, and therefore so is the left one

(5.1.5) Ki/pKi →W1M
i.

Here is a typical example. Let R be a k-algebra of finite type admitting a
flat, formal lifting B over W , together with a lifting F : B → B of Frobe-
nius. Then the (p-completed) de Rham complex Ω•B of B/W is a Dieudonné
algebra (by a variant, for formal liftings, of the construction explained at the
beginning of the proof of 2.3). By ([8], 4.2.3) we have

WΩ•R =WSat(Ω•B).

The map (5.1.5) is the map can1 : Ω•R →W1Ω•R of (3.1.1). If R is smooth over
k, Ω•B is of Cartier type, and can1 is an isomorphism. In general, Ω•B is not
of Cartier type, and can1 is not an isomorphism (as observed in examples 4.1
and 4.2). However, we still have the saturated Cartier isomorphism (5.1.3).

Let now M be a saturated Dieudonné complex. Consider the family
of saturated Cartier isomorphisms (5.1.2) for n > 1. The left hand side
W•M• is endowed with various operators: d : WnM

i → WnM
i+1, pro-

jections R : Wn+1M
i → WnM

i, and operators F : Wn+1M
i → WnM

i,
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V : WnM
i → Wn+1M

i, satisfying various relations and properties making
W•M• a strict Dieudonné tower in the terminology of ([8], 2.6.1). The sat-
urated Cartier isomorphisms make an isomorphic image of this tower in its
cohomology. This is vaguely analogous to the fact that a Mandelbrot set
contains a nontrivial homeomorphic image of itself, and is an excuse for the
title of the section. It was a challenging problem, however, to concretely
describe the corresponding structure on the right hand side, especially in the
case where M is the saturation of a Dieudonné complex K of Cartier type,
as in the example K = Ω•B above, with R/k smooth. In this case, the natural
maps

H•(K/pnK)→ H•(M/pnM)→ H•(WnM)

are isomorphisms, and the sought for operators d, R, F , V on the left hand
side are mysterious. This is related to the reconstruction of the de Rham-
Witt complex WΩ•X of a smooth X/k in terms of the crystalline cohomology
of X/W , as mentioned after 1.4.

The solution, however, is simple. The differential d : H i(K/pnK) →
H i+1(K/pnK) is given by the Bockstein operator associated with the exact
sequence

0→ K/pnK
pn→ K/p2nK → K/pnK → 0.

The operator F : H i(K/pn+1K) → H i(K/pnK) (resp. V : H i(K/pnK) →
H i(K/pn+1K)) is induced by the projection (resp. multiplication by p). The
definition of the restriction R : H i(K/pn+1K)→ H i(K/pnK) is more subtle.
It relies on the Ogus-type isomorphism (3.2.8 (a)):

αF ⊗ Z/pn : H i(K/pnK)
∼→ H i(ηpK/p

nηpK).

Let x ∈ Ki such that pn+1 divides dx, with cohomology class [x] ∈ H i(K/pn+1K).
Then pix gives a cycle in (ηpK)i/pn(ηpK)i. Let [pix] denotes its cohomology
class in H i(ηpK/p

nηpK). Then

R[x] = (αF ⊗ Z/pn)−1[pix].

5.2. The fixed point theorem

The above reconstruction is generalized in [8] in the form of a fixed point
theorem for the functor Lηp. In order to state it, let me recall a few defini-
tions.

Let D(Z) denote the (unbounded) derived category of Z-modules. It is
obtained from the category C(Z) of complexes of Z-modules by formally in-
verting quasi-isomorphisms. It can also be obtained from the full subcategory
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C(Z)tf of torsion free complexes by formally inverting quasi-isomorphisms.
The functor ηp : C(Z)tf → C(Z)tf admits an essentially unique extension

Lηp : D(Z)→ D(Z).

This is a particular case of ([2], 8.19), but in the case of η = ηp, it just follows
from the fact (cf. [8], 7.2.1) that if K ∈ C(Z) is p-torsion free, then

H i(ηpK) = H i(K)/H i(K)[p]

(where [p] means the kernel of p). A caveat here: the image by Lηp of a
distinguished triangle is not necessarily a distinguished triangle. An object
K ∈ D(Z) is called derived p-complete if the natural map

K → R lim←−
n

K ⊗L Z/pnZ

is an isomorphism (see [7], 6.16). The full subcategory

D̂(Z)p ⊂ D(Z)

consisting of p-complete objects enjoys many nice properties (see loc. cit.).
In particular, it is stable under Lηp. Now, if T : C → C is an endofunctor of
a category C, the category

CT

of fixed points of T is defined as the category of pairs (K, u), where K is an
object of C and u is an isomorphism u : K

∼→ TK. As a strict complex K
is saturated, and derived p-complete, and LηpK = ηpK, K is via αF a fixed
point of Lηp. We thus have a tautological inclusion

(5.2.1) ι : DCstr ⊂ D̂(Z)p
Lηp
.

The main result of ([8], 7) is:

Theorem 5.2.2. The inclusion (5.2.1) is an equivalence.

A quasi-inverse ψ of ι is constructed as follows11. Let (K, u : K
∼→ LηpK)

be a fixed point of Lηp on D̂(Z)p. For n ≥ 1, i ∈ Z, let

Lin := H i(K ⊗L Z/pnZ).

11This construction was made in an earlier version of [8]. A different argument is given
in the last version.
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Define d : Lin → Li+1
n by the Bockstein operator associated with 0→ Z/pn →

Z/p2n → Z/pn → 0. Define

F : Lin+1 → Lin, V : Lin → Lin+1

respectively by the obvious projection and the map induced by multiplication
by p. Finally, define

R : Lin+1 → Lin

by the recipe described at the end of 5.1. We may assume that K is p-torsion
free, so that Lin = H i(K/pnK). Given x ∈ Ki such that pn+1 divides dx,
then pix gives a cocycle of degree i in ηpK/pnηpK. Let [pix] be its class in
H i(ηpK/p

nηpK). Now use the isomorphism

H i(u⊗L Z/pn) : H i(K/pnK)
∼→ H i(ηpK/p

nηpK),

(that we’ll still denote by u) and define

R[x] := u−1([pix])

(where [x] is the class of x in Lin+1). Then one checks that (L••, d, R, F, V )
is a strict Dieudonné tower ([8], 2.6.1), so that L := lim←−R Ln, equipped with
the operators d, F deduced from the tower is a saturated Dieudonné complex
([8], 2.6.5). It is in fact strict, as was shown in an earlier version of [8]). We
define

ψK := L.

One checks that ψ is indeed a functor from D̂(Z)p
Lηp

to DCstr, and that
it is quasi-inverse to ι. The isomorphism ψ ◦ ι ∼→ Id follows from the
saturated Cartier isomorphisms C−n (5.1.1, (5.1.2)). The construction of
an isomorphism Id

∼→ ι ◦ ψ uses Deligne’s lemma 1.2 for the f -adic fil-
tration with f = pn, i.e., the quasi-isomorphism (ηpnK

i/pnηpnK
i, d) →

(H i(pniK/pn(i+1)K), d1).

Remarks 5.2.3. (a) It is surprising that ι could be an equivalence,
considering that the left hand side is a category of complexes (where mor-
phisms are morphisms of complexes) while the right hand one is a full
subcategory of a derived category, where morphisms are not morphisms
of complexes, but classes of certain fractions fs−1 (or t−1g) with s (resp.
t) a quasi-isomorphism. This strange equivalence can even be enhanced
to an equivalence on the ∞-category level. Let D(Z) be the derived ∞-
category of Z-modules, i.e., the ∞-category obtained from the category of
complexes C(Z) by inverting the quasi-isomorphisms. Let D̂(Z)p be the in-

verse image of D̂(Z)p by the forgetful functor D(Z) → D(Z). The functor
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ηp : C(Z)tf → C(Z)tf extends uniquely to a functor Lηp : D(Z) → D(Z),
which preserves D̂(Z)p. Then we have the following striking refinement of
1.2.2 ([8], Th. 7.4.8): the forgetful functor

D̂(Z)
Lηp

p → D̂(Z)
Lηp

p

is an equivalence. In particular, the left hand side is equivalent to an ordinary

category, and the inclusion DCstr ↪→ D̂(Z)
Lηp

p is an equivalence. Here the
notation CT for an endofunctor of an ∞-category C means the homotopy
equalizer of the pair of endofunctors (Id, T ). This refinement is used in the
simplified proof of the crystalline comparison theorem for AΩ alluded to at
the end of 1, see 5.3 (b).

(b) Ogus’ globalization of 1.4 is the following. Let X/k be smooth, and
consider the map u : (X/W )crys → XZar defined in ([2], p. 7.27). Then, by
([2], 8.20) the σ-linear endomorphism ϕ of Ru∗OX/W factors as

(∗) Ru∗OX/W
ϕ̃→ LηpRu∗OX/W → Ru∗OX/W

where ϕ̃ is an isomorphism12. In particular, on each open subscheme U of
X, (*) exhibits RΓ(U/W ) = RΓ(U,Ru∗OU/W ) as a fixed point of Lηp.

As observed after 1.4, Ogus’s theorem is more general, involving sub-
sheaves of OX/W defined by certain gauges à la Mazur, needed for his proof
of 1.3. However, the factorization (*) – or even 1.4 – suffices to reconstruct
the de Rham-Witt complex WΩ•X (and prove its main properties), indepen-
dently of [24], see 5.3 (a) below. And once one has the machinery of de
Rham-Witt at one’s disposal, it is rather simple to prove 1.3. This is what
Nygaard did in [33]. He even proved generalizations of 1.3 for powers of
Frobenius. For this he introduces certain subcomplexes of WΩ•X , which pro-
vide a replacement for Mazur-Ogus’ gauges. They are now called Nygaard
complexes. They were used in [25] in the study of the conjugate spectral
sequence, and more recently by Langer-Zink [29] in their theory of displays.
These constructions are revisited in [8] in the framework of Dieudonné com-
plexes and the fixed point theorem 5.2.2. For r ∈ Z, the Nygaard subcomplex
N rM of a saturated Dieudonné complex M is the complex

N rM = (· · · →M r−2 d→M r−1 dV→M r d→M r+1 → · · · ),

where the differential d of M is unchanged except for d : M r−1 →M r, which
is replaced by dV . It is a subcomplex of M by the morphism N rM ↪→ M

12Note that, by ([2], 7.22.2), Ru∗OX/W = R lim←−Ru∗OX/Wn
so that in the situation of

1.4, Ru∗OX/W = Ω•
Z .
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equal to Id for i ≥ r and pr−1−iV for i < r. One of the main points in [8]
is that, if K is a Dieudonné complex of Cartier type, whose components are
p-adically complete, then the quasi-isomorphism (3.2.8 (c))

K →WSat(K)

can be enhanced into a filtered quasi-isomorphism, i.e., a map of filtered
complexes inducing quasi-isomorphisms on the associated graded objects,
when one puts the Nygaard filtration N on the right hand side, and the
filtration Nu on the left hand side defined by

N r
uK := (· · · → p3M r−3 → p2M r−2 → pM r−1 →M r →M r+1 → · · · )

(i.e., N rK is deduced from K by replacing d : Ki → Ki+1 by pd : Ki → Ki+1

for i < r (and letting it unchanged otherwise)). In the case M = Ω•B, with B
as in 3.2, so that the quasi-isomorphism (3.2.8 (c)) is (3.2.3), the left hand
side, for r < p, calculates Ru∗J

[r]
X/W , and the above filtered quasi-isomorphsim

is a particular case of ([29], Th. 4.6). No crystalline interpretation of the
Nygaard filtration is known for r > p. See ([16], 2.2 (iv))) for relations
between this and decompositions of the de Rham complex.

(c) For various applications, refinements of the fixed point theorem 5.2.2
involving multiplicative structures are needed. Though for strict Dieudonné
algebras there is no equivalence similar to (5.2.1), the category DAstr can
be embedded as a full subcategory of the commutative algebra objects of

D̂(Z)p
Lηp

([8], 7.6.7).
5.3. Applications

(a) Reconstruction of the de Rham-Witt complex. As suggested in ([25],
III 1.5), in the smooth, lifted situation (X = Spec(R), Z, F ) of (3.2), the
quasi-inverse ψ to the equivalence ι of (5.2.2) provides an alternate construc-
tion of the de Rham-Witt complex WΩ•R, which assumes no prior knowledge
of Witt vectors. Indeed, it suffices to apply ψ to Ω•B, which by Ogus’ lemma

(1.4, 3.2.9 (ii)) is an object of D̂(Z)p
Lηp

. The Dieudonné algebra structure
on A := lim←−H

•(Ω•B/p
n) (where the inverse limit is taken with respect to

the restriction maps described in the proof of 5.2.2) comes from the multi-
plicative refinements alluded to in (5.2.3 (c)). The map e : R → W1A

0 =
H0(Ω•B/p) = H0(Ω•R) is given by Frobenius, and the pair (A, e) possesses the
universal property that exhibits A as a saturated dRW complex of R in the
sense of th. 2.3 ([8], 4.1.1). Indeed, as WSat(Ω•B), together with the obvious
map R→W1Sat(Ω•B) is a saturated dRW complex of R ([8], 4.2.3), e extends
uniquely to a map of strict Dieudonné algebras

e :WΩ•R → A.
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Its reduction mod V + dV ,

W1Ω•R →W1A

has to be the Cartier isomorphism from the de Rham complex of R to the
complex H•(Ω•B/p) with the Bockstein differential

C−1 : Ω•R → H•(Ω•B/p).

Therefore, by ([8], 2.5.5), Wne is an isomorphism for all n, hence e is an
isomorphism.

(b) Crystalline specialization of AΩ. Let C be an algebraically closed,
complete, nonarchimedean valued field of mixed characteristic (0, p), assumed
to be perfectoid (i.e. such that the Frobenius map on OC/pOC is surjective).
Let X be a smooth formal scheme over OC , with special fiber Xk (k the
residue field of OC), and rigid generic fiber X. Let

AΩX := LηµRν∗Ainf,X

be the object of D+(X , Ainf) constructed in ([7], §9). One of the main results
of loc. cit. is that there is defined a canonical specialization isomorphism

(5.3.1) AΩX ⊗̂
L

Ainf
W

∼→ WΩ•Xk
,

compatible with Frobenius actions on both sides, and multiplicative struc-
tures, where Ainf = W (O[C) → W = W (k) is the canonical projection ([7],
14.1.1 (i)). A new proof is given in ([8], §10). It exploits the fact that AΩX
is a fixed point of the operator Lηξ̃ for a certain element ξ̃ of Ainf generating
the kernel of the standard map θ̃ : Ainf → OC , and sent to p by the special-
ization map Ainf → W . The left hand side of (5.3.1) can be thus realized as
a fixed point of Lηp, and one then applies Th. 5.2.2 with its multiplicative
refinements, to get a strict Dieudonné algebra, which turns out to be the de
Rham-Witt complex of Xk.
6. Open questions

6.1. Comparison with rigid cohomology

As at the beginning of 4, let now k be a perfect field of characteristic
p > 0, and let X be a projective scheme over k. Let K be the fraction
field of W = W (k). Let RΓrig(X/K) be the object of Db(K) calculating the
rigid cohomology of X/K in the sense of Berthelot (se e. g. [30]). For X/k
smooth, there is a canonical isomorphism

RΓ(X/W )⊗W K
∼→ RΓrig(X/K),
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compatible with the product structures and the action of Frobenius, where

RΓ(X/W ) = RΓ(X,Ru∗OX/W ) = RΓ(X,WΩ•X)

calculates the crystalline cohomology of X.
Question 6.1.1. Can one expect a similar isomorphism

RΓ(X,WΩ•X)⊗W K
∼→ RΓrig(X/K)

for X/k no longer assumed to be smooth?
When X/k is singular, RΓ(X/W ) := RΓ(X,Ru∗OX/W ) is badly behaved

(see e. g. [5]), and is not calculated by RΓ(X,WΩ•X) but by RΓ(X,LWΩ•X)
when X/k is locally of complete intersection. Here LWΩ•X is the derived
de Rham-Witt complex (see ([8], 9.3.1, 9.3.5) for the relation between WΩ•X
and LWΩ•X .

Evidence for a positive answer to the above question is scarce. The only
case where the answer is known to be yes is when X has locally strict nor-
mal crossings singularities, thanks to the local du Bois shape of WΩ•X (4.1)
and Tsuzuki’s proper cohomological descent for rigid cohomology [38]. An
example of Bhatt (private communication) shows that one can’t expect cdh-
descent results for H∗(X,WΩ•X) in general. On the other hand, 3.3.4 might
still give some hope.

6.2. Finiteness

Let X/k be of finite type, with k as in 6.1. When X/k is smooth,
WΩ•X = WΩ•X , in particularW1Ω•X is the de Rham complex Ω•X , the sheaves
WnΩi

X are coherent on the scheme Wn(X), and their structure is well un-
derstood [24]. The upshot is that, when in addition X/k is proper, then
RΓ(X,WΩ•X) (= RΓ(X/W )) is an object of the derived category Db

c(R) of
coherent complexes over the Raynaud ring R = R(k), mentioned in 2, Exam-
ple (c). This property implies the fine results on the slope spectral sequence
Eij

1 = Hj(X,WΩi
X) ⇒ H i+j(X/W ) treated in ([25], [26]). In general, how-

ever, the structure of the sheaves WnΩi
X is mysterious. As mentioned at the

end of §2, it is known that they are quasi-coherent over Wn(X) ([8], 5.2.3),
but:

Question 6.2.1. Are the sheaves W1Ωi
X coherent over X?

Outside of the smooth case, the only known things are:
(i) The answer is yes when X has local normal crossings singularities, and

more generally, if X has ideally toroidal singularities [35]. In particular, the
answer is yes if X/k is a curve.13

13We may assume k algebraically closed and X seminormal, in which case, by (cf. [The
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(ii) The answer is yes for i = 0, with no extra assumption on X, asW1Ω0
X

is the seminormalization of OX (4.2) (which is finite over OX).
Using the saturated Cartier isomorphism (5.1.3) one can define iterated

cycles (resp. boundaries) ZnW1Ωi
X (resp. BnW1Ωi

X) as in the smooth case,
and prove analogues of the results of [24] about the structure of WnΩi

X (see
section 8). In particular, we have

Ker(V n :W1Ωi
X →Wn+1Ωi

X) = BnW1Ωi
X ,

Ker(dV n :W1Ωi−1
X →Wn+1Ωi

X) = Zn+1W1Ωi−1
X ,

and a description of the associated graded grnWΩi
X for the filtration ofWΩi

X

by the subgroups V n + dV n, as an extension

0→W1Ωi
X/Bn → grnWΩi

X →W1Ωi−1
X /Zn → 0.

Finally, we have an exact sequence

0→WΩi−1
X

(Fn,−Fnd)→ WΩi−1
X ⊕WΩi

X
dV n+V n

→ WΩi
X →WnΩi

X → 0

similar to ([25], II (1.2.1)), which, in terms of the Raynaud ring R and its
quotient Rn = R/(V nR + dV nR) is equivalent to an isomorphism

(6.2.2) Rn ⊗LRWΩ•X
∼→WnΩ•X .

In view of the quasi-coherence of the sheaves WnΩi
X , this implies that

RΓ(X,WΩ•X)
∼→ R lim←−Rn ⊗LR RΓ(X,WΩ•X).

Assume now that the sheaves W1Ωi
X are coherent. Then, if X/k is proper,

RΓ(X,W1Ω•X) belongs to Db
c(k[d]), so that, by Ekedahl’s criterion ([26],

2.4.7), ([19], 0 5.13, III 1.1), RΓ(X,WΩ•X) belongs to Db
c(R), and the re-

sults on the slope spectral sequence of ([25], II) hold, with WΩ•X replaced by
WΩ•X ([19], III 1.1). In particular, it degenerates at E1 modulo torsion, and
Hj(X,WΩi

X) ⊗ K gives the part of the F -crystal H i+j(X,WΩ•X) of slopes
in the interval [i, i+ 1). If X is seminormal, so that WΩ0

X = WOX (by ([8],
6.5.2), see 4.2), and if in addition the answer to 6.1.1 is yes, we get (in this
case) Berthelot-Bloch-Esnault’s result that Hj(X,WOX)⊗K is the part of
Hj

rig(X/K) of slopes in [0, 1).

Stacks project, Tag 0EUK]), X is isomorphic to the curve deduced from the normalization
π : Xn → X by contracting to a point each finite set π−1(x), for x ∈ X(k) ([15], 10.3.1),
hence has singularities which are locally étale isomorphic to a union of coordinate axes in
an affine space.
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6.3. Relative variants

One can hope for variants of saturated de Rham-Witt complexes in rel-
ative situations for morphisms X → Y over Fp, à la Langer-Zink [27] (or
Matsuue [31] for log morphisms). The problem is related to the construction
of saturated de Rham-Witt complexes for coefficients in suitable de Rham-
Witt connections (cf. [21], [28]).

7. Appendix 1: Saturation and Cartier type

We prove the statement at the beginning of 5.1, namely:
Proposition 7.1. If a saturated Dieudonné complex (M,F ) is of Cartier

type, and its components are p-adically separated, then F is bijective and
d = 0.

Consider the commutative diagram

M i/pM i F //

��

H i(M/pM)

��
W1M

i C−1
// H i(W1M)

where the right vertical arrow is the isomorphism (3.2.7), C−1 is the saturated
Cartier isomorphism (5.1.2), and the left vertical arrow is the obvious pro-
jection. AsM is of Cartier type, the top horizontal arrow is an isomorphism.
Therefore, the left vertical arrow is an isomorphism

(∗) M i/pM i ∼→W1M
i = M i/(VM i + dVM i−1).

It is the composition of the canonical projections

M i/pM i �M i/VM i �M i/(VM i + dVM i−1).

Therefore these two maps are isomorphisms. In particular, pM i = VM i,
hence pFM i = pM i, and, as M i is p-torsion-free,

FM i = M i.

In other words, F is surjective, hence bijective. As dF n = pnF nd, it follows
that pn divides dM i for all n ≥ 1. As M i+1 is p-adically separated, dM i = 0.

In general, if K ∈ DC is of Cartier type, and M = Sat(K), we have a

29



commutative diagram of isomorphisms

Ki/pKi

��

C−1
// H i(K/pK)

��
W1M

i //

C−1

&&NN
NNN

NNN
NNN

H i(M/pM)

��
H i(W1M).

8. Appendix 2: Saturated Cartier isomorphism and finiteness

We prove the results in 6.2. Let M be a strict Dieudonné complex. For
n = 1, the saturated Cartier isomorphism (5.1.2) is an isomorphism

(8.1) C−1 :W1M
i ∼→ H i(W1M)

For a smooth k-algebra R, with k as in 3.2, and M = WΩ•R, by the iso-
morphism can1 of 3.1.2 it corresponds to the usual Cartier isomorphism
C−1 : Ωi

R
∼→ H i(Ω•R). Using (8.1) one can define analogues of the iter-

ated cycles and boundaries of Ω•X of the smooth case. Namely, for n > 0,
one defines inductively Bn := BnW1M

i, Zn := ZnW1M
i,

(8.2) 0 = B0 ⊂ B1 ⊂ · · · ⊂ Bn ⊂ · · · ⊂ Zn ⊂ · · · ⊂ Z1 ⊂ Z0 =W1M
i,

by the conditions

B1 := dW1M
i−1
X , Z1 := Ker(d :W1M

i →W1M
i+1),

C−1 : Bn
∼→ Bn+1/B1, C

−1 : Zn
∼→ Zn+1/B1.

In other words,

(8.3) Zn = Im(F n), Bn+1 = Im(F nd)

where F n : Wn+1M
i → W1M

i, and d : Wn+1M
i−1 → Wn+1M

i. For R/k
smooth, andM =WΩ•R as above, (8.3) is half of ([24], I (3.11.3), (3.11.4))14.

The next lemma is a generalization of ([24], I 3.8):

Lemma 8.4. With the above notations, for all n > 0 and all i we have
morphisms of exact sequences

(8.4.1) 0 // BnW1M
i

� _

��

//W1M
i

Id
��

V n
//Wn+1M

i

��
0 // Bn+1W1M

i //W1M
i V n

//Wn+1M
i/dV nW1M

i−1,

14The other half in the more general situation considered here, i.e., Ker(Fn) = VWnM
i,

Ker(Fnd) = FWn+2M
i−1 can also be proved, using 8.4.
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(8.4.2) 0 // Zn+1W1M
i−1

� _

��

//W1M
i−1

Id
��

dV n
//Wn+1M

i

��
0 // ZnW1M

i−1 //W1M
i−1 dV n

//Wn+1M
i/V nW1M

i,

where the left (resp. right) vertical maps are the canonical inclusions (resp.
projections).

Proof. The commutativity of the diagrams is trivial. That the composi-
tions of two consecutive horizontal arrows is zero follows from (8.3). Let’s
prove the reverse inclusions.

(a) Let x ∈M i, with image x ∈ W1M
i, such that

V nx = V n+1y + dV n+1z

for some y ∈M i, z ∈M i−1. Applying F n+1 we get:

pnFx = pn+1y + dz.

As M is saturated, there exists t ∈M i−1 such that z = F nt. Then

Fx = py + F ndt.

By (8.2), (8.3), this implies C−1x ∈ Bn+1/B1, hence x ∈ Bn, which proves
the exactness of the top row of (8.4.1). Now, if x is such that there exists
y ∈M i, z ∈M i−1 with

V nx = V n+1y + dV nz,

applying this time F n instead of F n+1, we get

pnx = pnV y + dz,

hence there exists t ∈M i−1 such that z = F nt. Then

x = V y + F ndz,

hence, by (8.2), (8.3) again, x ∈ Bn+1, which proves the exactness of the
bottom row of (8.4.1).

(b) Let x ∈M i−1, with image x ∈ W1M
i−1, such that

dV nx = V n+1y + dV n+1z

for some y ∈M i, z ∈M i−1. Applying F n we get

(∗) d(x− V z) = pnV y,
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hence x − V z = F nt for some t ∈ M i−1, and x ∈ Zn. Then (*) gives
F ndt = V y, hence C−ndt = 0, hence dt = 0, i.e., t ∈ Z1, and x ∈ Zn+1,
which proves the exactness of the top row of (8.4.2). Finally, let x ∈ M i−1,
with image x ∈ W1M

i−1, such that

dV nx = V ny + dV n+1z

for some y ∈M i, z ∈M i−1. Applying F n, we get

d(x− V z) = pny,

and therefore x−V z = F nt for some t ∈M i−1, so that x ∈ Zn, which proves
the exactness of the bottom row of (8.4.2)

For n > 0, let FilnM be the subcomplex of M defined by

(8.5) FilnM i := V nM i + dV nM i−1

(FilnM = V nM + dV nM in short), so that M/FilnM = WnM . These
subcomplexes form a decreasing filtration with Fil0M = M , sometimes called
the canonical filtration (as in ([24], I 3 A). We put grn := Filn/Filn+1.

The following is a generalization of ([24], I 3.9), which, as in loc. cit., is
an immediate consequence of 8.4.

Proposition 8.6. For M as above, we have an exact cross, where we
write M i

1 instead of W1M
i for short:

(8.6.1) 0

��
M i−1

1 /Zn+1

dV n

�� &&NN
NNN

NNN
NNN

0 //M i
1/Bn

V n
//

&&MM
MMM

MMM
MM

grnM i

β′

��

β //M i−1
1 /Zn // 0

M i
1/Bn+1

��
0 ,

where β (resp. β′) sends V nx + dV ny to the class of y (resp. x), and the
slanted arrows are the canonical projections.
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It follows from 8.6, as in ([24], I 3.10 (d), 3.4) that multiplication by p
induces an injective homomorphism

(8.6.2) p :WnM ↪→Wn+1M

and that, for 0 6 r 6 n+ 1, we have

(8.6.3) Ker(pr :Wn+1M →Wn+1M) = Filn+1−iM/Filn+1M.

Various other results of ([24], I 3.10 – 3.21) formally follow, as in loc. cit..
Note, though, that the proof of ([24], 3.21) (which, for the saturated de
Rham-Witt complex, is part of (5.1.2)) has a gap, which was filled in in
([25], II 1.3).

8.7. When M is a strict Dieudonné algebra, the fact that M0 = W (M0
1 )

for M1 = W1M (2.2) and formula (2 (**)) imply the following. Consider
grnM = FilnWn+1M , which is a module overWn+1(M0

1 )/p, as anM0
1 -module

via F : M0
1 = Wn+1(M0

1 )/VWn(M0
1 ) → Wn+1(M0

1 )/p. Then the horizontal
and vertical arrows are linear, when the four terms around the central one
are considered as M0

1 - modules via F n+1 : M0
1 →M0

1 .
For M the saturated de Rham-Witt complex of a k-algebra R, or more

generally of a k-scheme X, we have W1Ω0
X = OXsn , where Xsn → X is the

semi-normalization of X (4.2), and the cross takes the shape
(8.7.1)

0

��
F n+1
∗ W1Ωi−1

X /Zn+1

dV n

�� ))SSS
SSSS

SSSS
SSSS

0 // F n+1
∗ W1Ωi

X/Bn
V n

//

))SSS
SSSS

SSSS
SSSS

grnWΩi
X

β′

��

β // F n+1
∗ W1Ωi−1

X /Zn // 0

F n+1
∗ W1Ωi

X/Bn+1

��
0 ,

where all horizontal and vertical maps are OXsn-linear.

Corollary 8.8. Suppose X/k is of finite type (with k as in 3.2). Then:
(a) Xsn is finite over X, and in particular, noetherian.
(b) Assume that, for all i, W1Ωi

X is a coherent module over Xsn (or,
equivalently, tover X, thanks to (a)). Then, for all n > 1 and all i, grnWΩi

X

is coherent over Xsn.
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(c) Under the assumption of (b), for all n > 1 and all i, WnΩi
X is a

coherent module over the scheme Wn(Xsn) having Xsn as underlying space,
and Wn(OXsn) as structural sheaf of rings (by ([27], Prop. A4), this scheme
is noetherian).

Proof. (a) As X is of finite type over k, its normalization Xn is finite
over X. By the universal property of Xsn, the canonical map Xn → X
factors through Xsn, and, as Xsn is reduced, OXsn → OXn is injective, and
the conclusion follows.

(b) By (a), F : Xsn → Xsn is finite. Therefore, for all n > 1, F n
∗W1Ωi

X

is coherent over Xsn. As C−1 (8.1) is linear from W1Ωi
X to F∗(W1Ωi

X)/B1),
it follows, by induction on n, that Bn (resp. Zn) is an OXsn-submodule of
F n
∗ (W1Ωi

X), hence is coherent, as well as the quotient F n
∗ (W1Ωi

X)/Bn (resp.
F n
∗ (W1Ωi

X)/Zn). By either the horizontal or vertical line of (8.6.2), it follows
that grnWΩi

X is coherent over Xsn.
(c) follows from (b) by induction on n, using the exact sequence

0→ grnWΩi
X →Wn+1Ωi

X →WnΩi
X → 0.

The last results of 6.2, relatingWΩ•X to the Raynaud ring R = R(k), are
consequences of the following lemma, which generalizes (6.2.2):

Lemma 8.9. Let M be a strict Dieudonné complex. Then, for all n > 1,
we have an exact sequence

(8.9.1). 0→M i−1 (Fn,−Fnd)→ M i−1 ⊕M i dV
n+V n

→ WnM
i → 0

Proof. The only non-trivial point is the inclusion

(∗) Ker(dV n + V n) ⊂ Im((F n,−F nd)).

Let x ∈M i−1, y ∈M i such that

dV nx+ V ny = 0.

Applying F n we get dx = −pny, hence, as M is saturated, there exists
t ∈ M i−1 such that x = F nt, and therefore V ny = −pndt, and y = −F ndt,
which proves (*).

Acknowledgements. I thank K. Česnavičius and A. Ogus for helpful
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34



References
[1] Berthelot, Pierre. Cohomologie cristalline des schémas de caractéris-

tique p>0. Lecture Notes in Mathematics, Vol. 407. Springer-Verlag,
Berlin-New York, 1974.

[2] Berthelot, Pierre; Ogus, Arthur. Notes on crystalline cohomology.
Princeton University Press, Princeton, N.J.; University of Tokyo Press,
Tokyo, 1978.

[3] Berthelot, P.; Ogus, A. F-isocrystals and de Rham cohomology. I. In-
vent. Math. 72 (1983), no. 2, 159–199.

[4] Berthelot, Pierre; Bloch, Spencer; Esnault, Hélène. On Witt vector
cohomology for singular varieties. Compos. Math. 143 (2007), no. 2,
363–392.

[5] Bhatt, Bhargav. Torsion in the crystalline cohomology of singular va-
rieties. Doc. Math. 19 (2014), 673–687.

[6] Bhatt, Bhargav; Scholze, Peter. Projectivity of the Witt vector affine
Grassmannian. Invent. Math. 209 (2017), no. 2, 329–423.

[7] Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Integral p-adic
Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128 (2018),
219–397. arXiv:1602.03148v2 (2018).

[8] Bhatt, Bhargav; Lurie, Jacob; Mathew, Akhil. Revisiting the de Rham-
Witt complex. arXiv:1805.05501v2 (2018).

[9] Bhatt, Bhargav; Morrow, Matthew; Scholze, Peter. Topological
Hochschild homology and integral p-adic Hodge theory. Publ. Math.
Inst. Hautes Études Sci. 129 (2019), 199–310.

[10] Bhatt, Bhargav; Scholze, Peter. Prisms and prismatic cohomology.
arXiv:1905.08229v2 (2019).

[11] Blickle, Manuel. Cartier isomorphism for toric varieties. J. Algebra
237 (2001), no. 1, 342–357.

[12] Cesnavicius, Kestutis; Koshikawa, Teruhisa. The Ainf-cohomology in
the semistable case, arXiv:1710.06145v2 (2017).

[13] Danilov, V. I. The geometry of toric varieties. (Russian) Uspekhi Mat.
Nauk 33 (1978), no. 2(200), 85–134, 247.

35



[14] Deligne, Pierre. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ.
Math. No. 40 (1971), 5–57.

[15] Deligne, Pierre. Théorie de Hodge. III. (French) Inst. Hautes Études
Sci. Publ. Math. No. 44 (1974), 5–77.

[16] Deligne, Pierre; Illusie, Luc. Relèvements modulo p2 et décomposition
du complexe de de Rham. Invent. Math. 89 (1987), no. 2, 247–270.

[17] Du Bois, Philippe. Complexe de de Rham filtré d’une variété singulière.
Bull. Soc. Math. France 109 (1981), no. 1, 41–81.

[18] Ekedahl, Torsten. On the multiplicative properties of the de Rham-Witt
complex. I. Ark. Mat. 22 (1984), no. 2, 185–239.

[19] Ekedahl, Torsten. On the multiplicative properties of the de Rham-Witt
complex. II. Ark. Mat. 23 (1985), no. 1, 53–102

[20] Ekedahl, Torsten. Diagonal complexes and F-gauge structures. With
a French summary. Travaux en Cours. Works in Progress, Hermann,
Paris, 1986.

[21] Étesse, Jean-Yves. Complexe de de Rham-Witt à coefficients dans un
cristal. Compositio Math. 66 (1988), no. 1, 57–120.

[22] Hyodo, Osamu. On the de Rham-Witt complex attached to a semi-stable
family. Compositio Math. 78 (1991), no. 3, 241–260.

[23] Hyodo, Osamu; Kato, Kazuya. Semi-stable reduction and crystalline
cohomology with logarithmic poles. Périodes p-adiques (Bures-sur-
Yvette, 1988). Astérisque No. 223 (1994), 221–268.

[24] Illusie, Luc. Complexe de de Rham-Witt et cohomologie cristalline.
Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661.

[25] Illusie, Luc; Raynaud, Michel. Les suites spectrales associées au com-
plexe de de Rham-Witt. Inst. Hautes Études Sci. Publ. Math. No. 57
(1983), 73–212.

[26] Illusie, L. Finiteness, duality, and Künneth theorems in the cohomol-
ogy of the de Rham-Witt complex. Algebraic geometry (Tokyo/Kyoto,
1982), 20–72, Lecture Notes in Math., 1016, Springer, Berlin, 1983.

[27] Langer, Andreas; Zink, Thomas. De Rham-Witt cohomology for a
proper and smooth morphism. J. Inst. Math. Jussieu 3 (2004), no. 2,
231–314.

36



[28] Langer, Andreas; Zink, Thomas. Gauss-Manin connection via Witt-
differentials. Nagoya Math. J. 179 (2005), 1–16.

[29] Langer, Andreas; Zink, Thomas. De Rham-Witt cohomology and dis-
plays. Doc. Math. 12 (2007), 147–191.

[30] Le Stum, Bernard. Rigid cohomology. Cambridge Tracts in Mathemat-
ics, 172. Cambridge University Press, Cambridge, 2007.

[31] Matsuue, Hironori. On relative and overconvergent de Rham–Witt co-
homology for log schemes. Math. Z. 286 (2017), no. 1-2, 19–87.

[32] Mazur, B. Frobenius and the Hodge filtration (estimates). Ann. of Math.
(2) 98 (1973), 58–95.

[33] Nygaard, Niels O. Slopes of powers of Frobenius on crystalline cohomol-
ogy. Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 4, 369–401 (1982).

[34] Ogus, A. Lectures on Logarithmic Algebraic Geometry, Cambridge
Studies in Advanced Mathematics (178), Cambridge University Press,
2018.

[35] Ogus, A. The saturated de Rham-Witt complex and toroidal singulari-
ties. Preprint, 2020.

[36] Swan, Richard G. On seminormality. J. Algebra 67 (1980), no. 1,
210–229.

[37] Tsuji, Takeshi. p-adic étale cohomology and crystalline cohomology in
the semi-stable reduction case. Invent. Math. 137 (1999), no. 2, 233–411.

[38] Tsuzuki, Nobuo. Cohomological descent of rigid cohomology for proper
coverings. Invent. Math. 151 (2003), no. 1, 101–133.

[39] Yao, Zijian. Logarithmic de Rham-Witt complexes via the décalage op-
erator, in preparation.

[40] Yao, Zijian. The log crystalline specialization of Ainf-cohomology in the
semistable case, in preparation.

37


