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1. The origins

Vanishing cycles in Riemann 7

No, but ...



Riemann (1857) studied the hypergeometric equation E(«, 3,7)
t(l—t)f" +(y—(a+B+1)t)f —af =0

(r, 8,7 € C), and the monodromy of its solutions around its

singular points (0, 1, c0).

E(a, 8,7) has regular singularities at these points (moderate
growth of solutions).

The hypergeometric function

(o, n)(B, n) "
(y,n) n!

Fla, 8,7,8) =

n>0

(|t] < 1), where (u, n) = []o<;<,_1(u+ i), is the unique solution
which is holomorphic at 0 with value 1.



Solutions form a complex local system Hc of rank 2 over
S =P¢ —{0,1,00}. For a chosen base-point ty € S, it is given by

p (S, to) = GL((Hc)s,) ~ GL2(C).

Suitable standard loops around s = 0, 1, 0o give local monodromy
operators Ts € GLy(C), satisfying To T1 Too = 1, generating the
global monodromy group

= p(m1(S, t))) € GL2(C).

What are the T.'s ? Whatis I ?



An example : the Legendre family

Consider the family X/S of elliptic curves on S = P¢ — {0, 1, 00}
Xi:y? = x(x —1)(x — t).
Fora=8=1/2,y=1,
E(1/2,1/2,1) : t(1 — t)f" + (1 — 2t)f — g =0
is the DE satisfied by the periods of holomorphic differential forms

on Xt-

The relative de Rham cohomology group Har := Hiz(X/S) is a
free Os-module of rank 2, equipped with the Gauss-Manin
connection V.



Har = Oser @ Ose,
e1 = [dx/y], e = V(d/dt)(e1),
with
(2t —1)e el
t(l—t)  4t(l—1t)
Horizontal solutions fie) + fe) of the dual of Hag are given by
fi =f, fh = f{, where f, a local section of Og, satisfies

V(d/dt)e; =

cuaaany a0 <020 o
We have
HCYF{ZO =Hz®C,

where Hz := HY(X/S,Z), a rank 2 Z-local system, equipped with
the (symplectic, unimodular) intersection form (, ).



If v is a local horizontal section of Hy = H1(X/S,Z), the period
f7 % is a solution of E(1/2,1/2,1). For example, the
hypergeometric function

< o

y

F(1/2,1/2,1,1) = 1/
1

™

is a solution.

The representation p : m1(S, to) = GL((Hc¢)4,) is deduced from
p:mi(S, to) = Sp((Hc)w) = SLa(Z).

Local monodromies around 0 and 1 can be calculated by choosing
suitable symplectic bases (7, d) of (Hz):, using the description of
X; as a 2-sheeted cover of Pé.






e In a suitable symplectic base, Ty and T; are given by

12 1 0
7o) m=(503)

e The global monodromy group is conjugate in SLy(Z) to the

a

subgroup I = {(C Z)} of index 2 of the congruence

subgroup (2) defined by a = d =1 mod 4. It acts freely on
the Poincaré upper half plane D = {Imz > 0}.

e Riemann’s period mapping t (fvw, J5w), where
w = % € H%(X;,Q'), induces an isomorphism
S=P¢t —{0,1,00} ~ D/T.
which extends to an isomorphism
Pc~ M, (= (DUPYQ))/T(2)
)

sending 0, 1, oo to the 3 cusps of My (T(2) = image of (2)
in PSL>(2)).



In particular, as x(S) = —1, and [SLy(Z) : '] = 12, the Galois
cover

D—S=D/r
implies that S = BT, hence x(I') = —1, and

X(SL2(2)) = 15,

as is well known.

It was discovered by Picard (around 1880) that the form of Ty is
“explained" by the fact that § vanishes when t — 0, and that the
singularity of the surface X at (x =0,y = 0) is equivalent to

u? + v2 = t? (Picard-Lefschetz formula).



2. The Milnor fibration

Let f : (C"*1,0) — (C,0) be a germ of holomorphic function
having an isolated critical point at 0 with f(0) = 0.

Milnor (1967) proved that, for ¢ > 0 small, and 0 < 7 << ¢, if
B = {z|> g |zi|*> < e}, D = {|t| < n}, the restriction of f to
Bnf-1(D),

f:Bnf(D)— D,

induces over D — {0} a locally trivial C* fibration in (real)
2n-dimensional manifolds with boundary

M, =f71(t)nB,

trivial along the boundary OM;.

This is now called the Milnor fibration, and M; is called a Milnor
fiber.






Moreover, Milnor proved:

e M, has the homotopy type of a bouquet of i n-dimensional
spheres:
S"Vv..-vS" (p terms),

hence, if H' = Coker(H'(pt) — H'),

Z' ifi=n

Hi(M..Z) = {o if i # n.

e The Milnor number u = u(f) is given by

H= dimCC{ZO, T ,z,,}/(@f/@zo, e 7af/azn)‘



Letting t turn once around zero clockwise in D gives an
automorphism of H"(M;, Z), the monodromy automorphism

T € Aut(H"(M;, Z)).

Milnor conjectured:

e The eigenvalues of T are roots of unity (i.e.,, T is
quasi-unipotent).

Grothendieck proved it, using Hironaka's resolution of singularities
and his theory of RV and R®.



3. Grothendieck and Deligne

Given a 1-parameter family (X;):cs of (algebraic, or analytic
varieties), and a point s € S, Grothendieck (1967) constructed in
SGA 7 a complex of sheaves on X, called complex of vanishing
cycles, measuring the difference between H*(X;) and H*(X;) for t
“close" to s (special fiber X5 vs general fiber X;), and a closely
related one, called nowadays complex of nearby cycles.

Set-up : complex analytic, or étale.

Will discuss only the étale one.



Etale set-up

S =(S,s,n), a strictly local trait
7n: the generic point
7. a separable closure of 7.

For f: X — S, get cartesian squares

Xy —= X<t X
| 1]
s——=S<~—7

Work with coefficients ring A = Z/¢¥Z (¢ prime, invertible on S)
(or Zy, Qu, Qy, £ prime, invertible on S), write D(—) for D(—, A).

For K € D*(X,), the complex of nearby cycles is:
RU(K) := i"Rj.(K|X7) € DF(X,).

Comes equipped with an action of the inertia group I = Gal(77/n)
(complex of sheaves of /-modules on Xj).



For K € D*(X), get an (/-equivariant) exact triangle
K|Xs = RV¢(K|X;) = R®¢(K) —,

where R®¢(K) is called the complex of vanishing cycles.

A generalization
S = (S, s, n) henselian trait, not necessarily strictly local. Take
strict localization of S at a separable closure 5 of s:

5=1(5,57) = (S,s,1).

For f : X — S, base changed f : X — S, and K € DT(X,) (resp.
K € DT (X)), define

RV¢K (resp. R®rK) € DT(X3)

as R\IJ;(K|)~(77) (resp. RCD;(K\)?)). Get action of full Galois group
Gal(7/n) (7 — 1), not just of inertia | = Gal(77/m) C Gal(7/n).



General properties

Functoriality Consider a commutative diagram:

Xy

i

S

If his smooth, the natural map
h*RVy — RWxh*
is an isomorphism. In particular, if f is smooth, R®¢(A) = 0.
If his proper, the natural map
Rh.RVx — RV yRh,

is an isomorphism. In particular (taking Y = S), if f is proper,
for K € D™(X,), we have a canonical isomorphism
(compatible with the Galois actions)

RT (X, RUxK) 5 RT(Xs, K).



For X/S proper, the triangle K| X = RV¢(K|X,) = R®¢(K) —
gives an exact sequence

o= H7Y( Xz, Rdx(K)) — H (X5, K) B H (X, K)
— H/(Xz, ROx(K)) = -+,
where sp is the specialization map:
sp : H'(Xs, K) ~ H'(Xz, K) = H'(Xg, K).

When K = A, R®x(A) is concentrated on the points x € Xz where
X/S is not smooth.



e Finiteness (Deligne, 1974) Nearby cycles are constructible:
RV x induces

RWx : D2(X,) — DE(X5).

e Perversity (Gabber, 1981) RV commutes with
Grothendieck-Verdier duality:

RW(Dx, K) = Dx.RVK,

induces Per(X,) — Per(Xz).



In the analytic setup, there are analogous definitions and properties,
and a comparison theorem (Deligne, 1968) between the étale RV
and the analytic RV, similar to Artin-Grothendieck's comparison
theorem Betti vs étale.

Over C, nearby cycles have been extensively studied in connection
with Hodge theory (Steenbrink et al.), and the theory of D-modules
(M. Saito et al.).



A crucial example

Let X/S be as above, with S strictly local, and x — X be a
geometric point.

For K € D*(X), by general nonsense on étale cohomology, the
stalk of RVU(K) (:= RVUxK) at x is given by

(RVK)x = RI((X(x))7, K)-

Here X is the strict localization of X at x (a kind of Milnor ball),
and (X, )7 its geometric generic fiber (a kind of Milnor fiber).






But (RIVK), is difficult to calculate!

Known for K = A (constant sheaf), when X has semistable
reduction at x, i.e., étale locally at x,

X 5 S[ty, - ta]/(t- -t —7)

(7 a uniformizing parameter in S). Then:

(R'WA), = Ker(Z" ™' Z) @ A(—1)

(RIWA), = NI(RYWA),
(A9 = g-th exterior power, A(m) = m-th Tate twist).
e The inertia group / acts trivially on (RIWA),.



For X = S[ty,--- , t]/(t1--- t, — m),
topological model of (X(y))7 : fiber of

(SHY =S (21, ,z) =z 2.

Proof combines:
e Grothendieck’s calculation of tame nearby cycles
(RIWA), := (RIWA)P (P C I the wild inertia), modulo
validity of Grothendieck's absolute purity conjecture for
components of (X(,))s
e validity OK and (RIWA); = RIVA (Rapoport-Zink, 1982).



Recall Grothendieck's absolute purity conjecture:

For regular divisor D C X, X regular, N\=2Z/¢"Z, .- as above, ¢
invertible on X,

Ap(—1) ifg=2

HH(XA) = {o if g % 2.



Modulo absolute purity conjecture (OK if S/Q, and now in general
by Gabber (1994)), Grothendieck calculated tame nearby cycles for
X étale locally of the form S[ty,--- , tn]/(uty* --- /" — 7) (u a
unit):

RIWA, = Z[uem] ® N (Ker(Z" =55 Z))  A(—q)

where ged(ny, -+ ,n,) =¢Md, (¢,d) = 1.

Here | acts on Z[um] by permutation through its tame quotient
Z,(1), in particular, acts on RIWA; , through a finite quotient,
hence quasi-unipotently on RWA .

Combined with Hironaka's resolution of singularities, and
functoriality of RW for proper maps, calculation yields a proof of
Milnor's conjecture on the monodromy of isolated singularities.



4. Grothendieck's local monodromy theorems

Grothendieck's arithmetic local monodromy theorem is the
following:

Theorem

S =(S,s,n) henselian, k = k(s), ¢ prime different from

p = char(k). Assume that no finite extension of k contains all
roots of unity of order a power of { (e. g., k finite). Let

p: Gal(7i/n) — GL(V)

be a continuous representation into a finite dimensional Q-vector
space V. Then, there exists an open subgroup I C I, such that,
for all g € I, p(g) is unipotent.

Proof. B
Exercise | (Use strong action of Gal(k/k) on tame inertia /;:
gog ! = ox(& y = cyclotomic character.)

O



A corollary is that there exists a unique nilpotent morphism
N:V(Q1)—V,
called the monodromy operator, such that, foralloc € , and x € V,
ox = exp(N(t(0)x)),

where t; : | — Z;(1) is the {-component of the tame character.

The operator N is Gal(7/n)-equivariant. In particular, for k = Fg,
if F € Gal(77/n) is a lifting of the geometric Frobenius (a — a%/9),
then

NF = gFN.

Led to the Weil-Deligne representation.



The geometric local monodromy theorem is the following result,
due to Grothendieck in a weaker form, later improved by various
authors:

Theorem

Let S be an (arbitrary) henselian trait. Let X, be separated and of
finite type over n. Then, there exists an open subgroup I, C I,
independent of £, such that for all i € Z and all g € I,

(g—1)* =0

on H'(Xz,N) (resp. H.(Xz, N)).
History

e Existence of 1 (a priori (-dependent) for H. with i + 1
replaced by uncontrolled bound, proved by Grothendieck, as a
consequence of the arithmetic local monodromy theorem
(reduction to k small). Method generalized to H' once
finiteness of H' was proved (Deligne, 1974).



e Existence of Iy (a priori ¢-dependent), with bound i + 1,
proved by Grothendieck for X, /1 proper and smooth, modulo
validity of absolute purity and resolution of singularities, as a
consequence of local calculation of RIWZ, in the (quasi-)
semistable case. Unconditional for i <1, or p = 0.

e Existence of I, independent of £, but with / + 1 replaced by
uncontrolled bound, proved by Deligne (1996), using
Rapoport-Zink's calculation of RUZ, in the semistable case,
and de Jong's alterations. Final result obtained by refinement
of this method (Gabber - 1., 2014).



Why care for exponent j +1 7

Grothendieck’s motivation: for i = 1, exponent 2 is a crucial
ingredient in his proof of the semistable reduction theorem for
abelian varieties:

Theorem

With S as before, let A, be an abelian variety over 1. There exists
a finite extension 1 of n such that A, acquires semistable
reduction over the normalization (S1,s1,m1) of S inmy, ie., the
connected component Agl of the special fiber of the Néron model
of A, is an extension of an abelian variety by a torus:

0 — (torus) — A(s)1 — (abelian variety) — 0.



Deligne-Mumford (1969) deduced from it the semistable reduction
theorem for curves:

Corollary

Let X,, be a proper, smooth curve over 1. There exists a finite
extension 1y of 1) such that X;), has semistable reduction over the
normalization S; of S in 11, i.e., is the generic fiber of a proper,
flat X1/51, with Xy regular, and special fiber (X1)s, a reduced
curve having simple nodes.



Corollary is the key tool in Deligne-Mumford's proof of the
irreducibility of the coarse moduli space M, (over any
algebraically closed field k).

Proofs of corollary independent of theorem found later
(Artin-Winters, 1971; T. Saito, 1987).

For char(k) = 0, a generalization of corollary to arbitrary
dimension proved by Mumford et al. (1973).
Over S excellent (any char.), a generalization of corollary in a

weaker form given by de Jong (1996). Recently improved by
Gabber, Temkin.



5. The Deligne-Milnor conjecture

At the opposite of semistable reduction, we have isolated
singularities.

Let S = (S, s,n) be a strictly local trait, with k = k(s)
algebraically closed. Assume X regular, flat, finite type over S,
relative dimension n, smooth outside closed point x € Xs. Then
R®A is concentrated at x, and in cohomological degree n:

0 ifg#n
A ifq=n

(ROIN), = {

The coherent module Sxtl(Q}</5, Ox) is concentrated at x, its
length

p = lg(Ext'(Q /s, Ox))

generalizes the classical Milnor number.



The action of / on R"®A has a Swan conductor Sw(R"®A) € Z,
measuring wild ramification (=0 if S of char. 0).

Deligne conjectured (SGA 7 XVI, 1972):
p=r—+ Sw(R"®A).
Generalizes Milnor formula over C.

Conjecture proved:

e if X/S finite, or x is an ordinary quadratic singularity, or S is
of equal characteristic (Deligne, loc. cit.)

e if n =1 (Bloch, 1987 + Orgogozo, 2003)

General case open. In equal char., generalization by T. Saito (2015)
with A replaced by a constructible sheaf.



6. The Picard-Lefschetz formula

Let X/S as before, with relative dimension n. Assume x is an
ordinary quadratic singularity of X/S, i.e., étale locally at x, X/S
is of the form (7 a uniformizing parameter):

g XiXitm+1 =T

1<i<m+1

(n=2m+1),

2
5 XiXj4m T Xomy1 =T
1<i<m

(n=2m, p>2),

2
E XiXj4+m T Xomy1 + @Xem+1 + 7 = 0
1<i<m

with 22 — 47 #0 (n=2m, p = 2).



Then
(R"®N)x = A,

with action of inertia / trivial is n odd, through a character of order
2 if n even, tame if p > 2.

Assume now X /S proper, flat, of relative dimension n > 0, smooth
outside ¥ C X, finite, and each x € X is an ordinary quadratic
singularity.






Then the monodromy of H*(X5) is described as follows (Deligne,
SGA 7 XV, 1972):
Sp
e Fori#n, n+1, H(Xs) 5 H (X;).
e For each x € ¥, there exists d, € H"(X5)(m) (n=2m or
2m+ 1), well defined up to sign, called the vanishing cycle at
x, and the sequence

0 H'(X;) 39S A(m = n) = H™(X,)
XEX
B H LX) — 0.

is exact. One has (dx,0,) = 0 for x # y, (x,9x) =0 for n
odd, and (0x,dx) = (—1)™.2 for n =2m . Here
(a, b) = Tr(ab), where Tr : H?" — A(—n).



o The inertia | acts trivially on H(Xz) for i # n, and on H"(Xz)
through orthogonal (resp. symplectic) transformations for
n=2m (resp. n =2m+ 1), given by the Picard-Lefschetz
formula:

Foroel, aec H"(Xy),

IR (G Vi o )15 5,06, ifn=2m
oa— =
(=)™ Y o5 te(o)(a, 0x)6x  if n=2m+ 1.

Here ty: | — Z;(1) is the tame character, and e : | — +1 is
the unique character of order 2 if p > 2 and that defined by
the quadratic extension t? + at + 7 = 0 for X locally at x of
the form

§ 2
XiXi+m + Xom4+1 + axom41 + T = 0.
1<i<m



Difficult case in the proof: n odd, n = 2m + 1. Use factorization:

Oxex(R"ON)x

o— 1l Var(o)x i

H"(Xi) =—— ®xex HY(Xs, RVA)

where:
e top row is part of specialization sequence
e bottow row = composition of H — H" and
HM(Xs, RUA) = H"(X).
e (R"®A(m+1))x and H](Xs, RWA)(m) are isomorphic to A,
with respective generators 0, &, defined up to sign, with

(8',0,) =1, for a perfect pairing with values in
Tr

H27(Xs, RWA(n)) = A. We have &, — dx € H"(Xz).



@XEZ(Rn(D/\)X 9

o— ll Var(o)x i

H" (X)) <—— @xes HZ (Xs, RUA)

The map Var(o), called variation, is given by the
local Picard-Lefschetz formula:

Var(0)«(8)) = (=1)" te(0)d,

which is the crux of the matter.
e Original proof (Deligne) required lifting to char. 0 and a
transcendental argument.

e Purely algebraic proof given later (I., 2000), as a corollary of
Rapoport-Zink's theory of nearby cycles in the semistable case.



Over C, Milnor fiber M; of f: (x1,--+ , Xomy2) lez is fiber
bundle in unit balls of tangent bundle to sphere
S"={x e R™ | x?=1}.
e R"®, corresponds to ﬁ”(l\/lt),
e HJ(Xs, RV) corresponds to H!(M; — M),
e §, dual to 8 € H,(M;,OM,) given by one fiber of M; over S”,
e & dual to (6.)Y € Hy(M,) given by S" C M,.
Next slide: picture, for n =1 (m = 0) of the dual variation map (T
the positive generator of 71(S?))

Var(T)Y : Hy(My, OMy;) — Hy(M),

o = —(2)".

X






Back to the Legendre family:
Xi i y? = x(x — 1)(x — t).

Locally at x =y =t =0, X/S is x? + x3 = t2, instead of
x2 + x2 = t, hence variation is doubled, and get

T(0)=96, T(y)=7£t20



Arithmetic applications

e Grothendieck used the PL formula in his theory of the
monodromy pairing for abelian varieties having semistable
reduction (SGA 7 IX), with a formula for calculating the group
of connected components of the special fiber of the Néron
model. Variants, generalizations, and arithmetic applications
by Raynaud, Deligne-Rapoport, Mazur, Ribet.

e Most importantly, the PL formula was the key to the
cohomological study (by Deligne and Katz, SGA 7 XVIII) of
Lefschetz pencils, which led to the fiirst proof, by Deligne, of
the Weil conjecture (Weil I).



Variants and generalizations

e Tame variation
Recall the case of isolated singularities:
X regular, flat, finite type over S, relative dimension n,
smooth outside closed point x € X;. Then RPA is
concentrated at x, and in cohomological degree n:

0 ifg#n
AN ifg=n

(ROIN)x = {
Moreover,
fo}(Xs, RVA) =N,

with a perfect intersection pairing

RMD(N)x @ HYy (Xs, RUA) — HE™ (Xs, RUA) = A(—n).



Finally, if / acts tamely on RWA, i.e., through its quotient Z,(1),
and if o is a topological generator of it, then o — 1 induces an
isomorphism

Var(o) : R"O(A)x 5 HPLy (Xs, RUA),

called the variation at x (., 2003), a (weak) generalization of the
local Picard-Lefschetz formula. The analogue over C had been
known since the 1970's (Brieskorn).



e Thom-Sebastiani theorems
The Picard-Lefschetz theory describes vanishing cycles,
monodromy and variation at the isolated critical point {0} of
the function
X2 4+ X2

The classical Thom-Sebastiani theorem (/C) describes the
same invariants at the isolated critical point {0} of a function
of the form

fx1, s Xm) = fA(x1) + -+ (X)),

where the x; are independent packs of n; + 1 variables, and
f; : CMi*T1 — C has an isolated critical point at {0}.



If n=">5"n; (= rel. dim. of f), then (for coefficients Z)
an)f = ®1§i§mRnf¢ﬁ,

with monodromy
T = ®1<i<m Ti,

and variation
Var = ®1§,-§m\/ar,-.

Algebraic analogues 7
(over an alg. closed field k, in the étale set-up)



Deligne’s observation: analogue wrong in general, tensor product
must be replaced by

local convolution product *
of Deligne-Laumon.

Formulas in this framework given by Fu Lei (2014), I. (2015).



7. Euler numbers and characteristic cycles

Quite recently, T. Saito, in conjunction with Beilinson's
construction of a singular support

SS(F)c T*X

for a constructible sheaf F on a smooth X/k (an equidimensional
conic closed subset of T*X, of dimension = dim(X)), defined a
characteristic cycle supported on SS(F), with coefficients in Z[1/p]
(actually, in Z (Beilinson)):

CC(]:) € Zdim(X)(T*X)>

proved a generalization of the Deligne-Milnor formula (equal
characteristic case), and as a corollary, a global index formula for
the Euler number of F.



The global index formula reads:

For X/k proper and smooth, k alg. closed, A = Qq,
X(X, F) = (CC(F), TxX).

Here x(X, F) = >_.(=1)'dim H (X, F), Tx(X) = O-section of
T*X.

This work was inspired by Kashiwara-Schapira’'s analogous theory
over C, and various conjectures of Deligne.

Ingredients

e Radon and Legendre transforms (Brylinski), geometric theory
of Lefschetz pencils (Katz, SGA 7 XVII)

¢ Ramification theory for imperfect residue fields (Abbes, T.
Saito)

e Deligne's theory of vanishing cycles over general bases
(Deligne, Gabber, Orgogozo) (also used in generalized
Thom-Sebastiani theorems).



Thank youl



