
Logarithmic Kummer étale sites and Hodge degeneration

Luc Illusie (*)

These are notes of a talk given at the JAMI conference on Hodge theory and logarithmic
geometry at Johns Hopkins, March 14, 2005, about some parts of the joint work [IKN].
I wish to thank C. Nakayama for his careful reading of a first draft and many helpful
comments.

1. Log Hodge degeneration

The following theorem is due to Deligne [D].

Theorem 1.1. Let Y be a scheme of characteristic zero, f : X → Y be a proper and
smooth morphism. Then the Hodge to de Rham spectral sequence

Epq
1 = Rqf∗Ω

p
X/Y ⇒ Rp+qf∗Ω

·
X/Y

degenerates at E1 and its initial term is locally free of finite type.

Let us briefly review the proof. By standard reduction arguments we may assume that
Y = Spec A, where A is an artinian local C-algebra. Let y = Spec C ∈ Y be the closed
point. By the relative Poincaré lemma the augmentation

(1) AX → Ω·,an
X/Y

is a quasi-isomorphism. Denoting by lgA the length of an A-module, we have

lgAHn(X, Ω·
X/Y ) = lgAHn(X, Ω·,an

X/Y )

(by GAGA), hence, by (1),

(2) lgAHn(X, Ω·
X/Y ) = lg(A)dimHn(Xy, C).

By classical Hodge degeneration for Xy,

(3) dimHn(Xy, C) =
∑

p+q=n

dimHq(Xy, Ω
p
Xy

),

hence, by (2),

(4) lgAHn(X, Ω·
X/Y ) = lg(A)

∑

p+q=n

dimHq(Xy, Ω
p
Xy

).

(*) March 5, 2006
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Therefore we have the following inequalities

∑

p+q=n

lgAHq(X, Ωp
X/Y ) ≥ lgAHn(X, Ω·

X/Y ) ≥
∑

p+q=n

lgAHq(X, Ωp
X/Y ).

These have to be equalities. Therefore we get

(5)
∑

p+q=n

lgAHq(X, Ωp
X/Y ) = lgAHn(X, Ω·

X/Y ),

which proves the degeneration at E1, and (by (4))

(6) lgAHq(X, Ωp
X/Y ) = lg(A)dimHq(Xy, Ω

p
Xy

),

which proves that the initial term is free of finite type over A.

Remark 1.2. The degeneration result (3), and more generally 1.1 for Y smooth over a
field of characteristic zero can be proved by “mod p2” techniques ([DI], [I1]).

The main result I want to discuss in this talk is the following generalization of 1.1 :

Theorem 1.3 ([IKN 7.1]). Let Y be an fs log scheme over Q and let f : X → Y
be a proper, log smooth and exact morphism. Then the (log) Hodge to de Rham spectral
sequence

Epq
1 = Rqf∗ω

p
X/Y ⇒ Rp+qf∗ω

·
X/Y

degenerates at E1. Moreover, if for each point y of Y the monoid My/O∗
y is free, i. e.

isomorphic to Nr(y) for some nonnegative integer r(y), then its initial term is locally free
of finite type.

Here “fs” means “fine (= integral and of finite type) and saturated”, i. e. the log scheme
in question has local (étale) charts by fine and saturated monoids ; “exact” means that
for all x ∈ X , y = f(x) the map My/O

∗
y → Mx/O∗

x is exact, where a homomorphism of fs
monoids h : P → Q is called exact if h−1(Q) = P in the group envelope P gp ; “log smooth”
means that X is locally smooth over the pull-back by a strict morphism g : Y → Spec Q[P ]
(“strict” meaning that g is a chart) of a morphism Spec Q[Q] → Spec Q[P ] given by an
injective homomorphism P → Q of fs monoids. A typical example of a log smooth and
exact morphism is a morphism of the form An

C
→ A1

C
, (x1, · · · , xn) 7→ xm1

1 · · ·xmr
r (for some

r ≤ n and nonnegative integers mi) (“generalized semistable reduction”). Finally, ω·
X/Y

denotes the (log) de Rham complex of X/Y .

Remarks 1.4. (a) If one drops the assumption of freeness on the stalks of MY /O∗
Y , it

may happen that the initial term is not locally free. For example, if X = A2
C

= Spec C[x, y],
Y = Spec[x2, xy, y2] and f : X → Y is the morphism given by the inclusion of C[x2, xy, y2]
into C[x, y](corresponding to taking the quotient of X by the involution a → −a), then f
is log étale and exact, ω.

X/Y = OX and f∗OX is not locally free.

(b) Steenbrink [St] treated the case of semistable reduction over a curve. Since
then several other cases of 1.3 were obtained by Cailotto [C], Fujisawa [F], Illusie [I1],
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Kawamata-Namikawa [KwN]. Variants involving certain coefficients are considered by
Kato-Matsubara-Nakayama in [KMN].

(c) Note that in 1.3 f is not assumed to be “vertical” : if X and Y are log smooth over
a field k, “vertical” means that the inverse image of the open subset of triviality of the log
structure of Y , which may be bigger than that of X , is equal to it ; in other words, in this
case, in 1.3 “horizontal divisors” are permitted.

2. Kummer étale sites and log degeneration

In this section, for simplicity, we work over Q, all schemes (resp. log schemes) are of
characteristic zero.

2.1. A morphism f : X → Y of fs log schemes is said to be Kummer étale (ket for short)
if it is log étale and exact. It is equivalent to asking that locally X is (classicaly) étale
over the pull-back by a strict map g : Y → Spec Q[P ] (“strict” meaning that g is a chart)
of a map Spec Q[Q] → Spec Q[P ] given by an injective morphism of fs monoids P → Q
such that there exists an integer n ≥ 1 such that nQ ⊂ P . A typical example is A1

C
→ A1

C

given by t → tn (n ≥ 1), where A1
C

is endowed with the log structure given by the origin,
i. e. given by N → C[t], 1 7→ t.

The Kummer étale site Xket of an fs log scheme X consists of the category of ket
maps U → X equipped with the topology given by surjective families. We have a natural
morphism of ringed toposes

ε : Xket → Xet.

If f : X → Y is a morphism of fs log schemes, we define

ωp
X/Y,ket := ε∗ωp

X/Y ,

i. e. ωp
X/Y,ket is the sheaf associating to U Kummer étale over X Γ(U, ωp

U/Y ). The ket site

is functorial, so f defines a morphism fket : Xket → Yket.
We shall deduce 1.3 from the following ket variant :

Theorem 2.2. Let f : X → Y be a proper, log smooth and exact morphism between fs
log schemes of characteristic zero. Then the Hodge to de Rham spectral sequence

Epq
1 = Rqf∗ω

p
X/Y,ket ⇒ Rp+qf∗ω

·
X/Y,ket

degenerates at E1 and Epq
1 is locally free of finite type for all p, q.

To deduce 1.3 from 2.2 one needs the following easy lemma ([IKN, 3.7] for (a) (b) and
an algebraic variant of 6.4.1 for (c)) :

Lemma 2.3. (a) For all sheaves F of Q-vector spaces on Xket, one has ε∗F = Rε∗F .
(b) The natural map OXet

→ Rε∗OXket
is an isomorphism.

(c) Assume that for all y ∈ Y , My/O∗
y is free, then for any locally free OYket

-module of
finite type, ε∗F is locally free of finite type.
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Let us show that 2.2 implies 1.3. By 2.3 (a) and (b) one has

ω
[a,b]
X/Y = ε∗ω

[a,b]
X/Y,ket

for all intervals [a, b], where ω[a,b] denote the naive truncation in degrees [a, b], and therefore

(∗) Rf∗ω
[a,b]
X/Y = ε∗Rf∗ω

[a,b]
X/Y,ket.

By the ket degeneration 2.2, the short exact sequences

0 → ω
[b,c]
X/Y,ket → ω

[a,c]
X/Y,ket → ω

[a,b−1]
X/Y,ket → 0

then give short exact sequences

0 → Rnf∗ω
[b,c]
X/Y,ket → Rnf∗ω

[a,c]
X/Y,ket → Rnf∗ω

[a,b−1]
X/Y,ket → 0.

The degeneration in 1.3 follows, using 2.3 (a) and (*). By (*) again, the last asssertion of
1.3 is a consequence of 2.2 and 2.3 (c).

3. Kato-Nakayama spaces and relative log Poincaré lemma

3.1. To any fs log analytic complex space X Kato and Nakayama associate a topological
space X log together with a proper map τ : X log → X , which somehow “displays” the log
structure of X (cf. [KN], [I2]). The points of X log are the pairs (x, h) where x is a point of
X and h : Mgp

x → S1 is a homomorphism, which we will call the angle map, extending the
usual angle map a → a(x)/|a(x)| for a ∈ O∗

x, and τ is the first projection : τ(x, h) = x.
The fiber of τ at x is homeomorphic to (S1)r(x) where r(x) is the rank of the log structure
at x, i. e. r(x) = rkMgp

x /O∗
x. If X is the log analytic space associated to Spec C[P ], for

an fs monoid P , X log is the set of monoid homomorphisms from P to the (multiplicative)
monoid R≥0 × S1, with the topology given by that of R≥0 × S1, and τ is given by the
“polar map” R≥0 × S1 → C, (r, z) 7→ rz. For example, if P = N, then X is the affine line
A1

C
with the standard log structure given by the origin, X log is the real blow-up R≥0 × S1

of the origin, and τ the polar map. If X is log smooth and j : U → X is the open subset of
triviality of its log structure, then U = U log, X log is a topological manifold with boundary
[KjN] and jlog : U log → X log is the inclusion of the complement of the boundary.

3.2. The space X log is endowed with a sheaf of rings Olog
X , whose definition we briefly

recall.
One first defines a sheaf L of logarithms of sections of τ−1(Mgp

X ). This sheaf L fits in
an exact sequence

(3.2.1) 0 → Z(1) → L → τ−1(Mgp
X ) → 0

obtained by pulling back the exact sequence of abelian sheaves on X log

0 → Z(1) → Cont(−, iR) → Cont(−, S1) → 0
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by the angle map h : τ−1(Mgp
X ) → Cont(−, S1). Here Cont means a sheaf of continuous

functions, and the second map is the exponential. The sequence (3.2.1) extends the usual
exponential sequence (on X log)

0 → Z(1) → τ−1(OX) → τ−1(O∗
X) → 0.

In other words, sections of L are pairs (iθ, a) where θ is a real continuous function on X log,
and a a section of τ−1(Mgp) such that eiθ = h(a). We will denote again by exp the map
L → τ−1(Mgp

X ) in (3.2.1). The sheaf L contains τ−1(OX) as an abelian subsheaf. One

defines a sheaf Olog
X of τ−1(OX)-algebras, containing L, by

Olog
X = (τ−1(OX) ⊗Z SymZ(L))/I,

where I is the ideal generated by sections of the form f ⊗ 1 − 1 ⊗ f . The stalk of Olog
X at

each point (x, h) of X log is a polynomial algebra over OX,x on r(x) generators Ti, sent to
logarithms of elements of Mgp

x forming a basis modulo O∗
x.

3.3. One defines the ket site Xket of X as in the case of schemes. As a ket map U → V
induces a local homeomorphism U log → V log, the map τ from X log to X factors through
Xket via a map still denoted τ : X log → Xket. One defines the sheaf of rings Oklog

X on X log

by
Oklog

X = τ−1(OXket
) ⊗τ−1(OX ) O

log
X .

Finally, one defines the de Rham complex

ω.,klog
X/Y

where
ωp,klog

X/Y = Oklog
X ⊗OXket

ωp,ket
X/Y ,

and the differential d : Oklog → ω1,klog is defined on L by da = dlog(exp(a)).
The main tool in the proof of 2.2 is the following relative log Poincaré lemma :

Theorem 3.4. Let f : X → Y be an exact and log smooth map of fs complex analytic
spaces. Then the natural augmentation

(f log)−1(Oklog
Y ) → ω.,klog

X/Y

is a quasi-isomorphism.

The proof is a local calculation imitating the construction of a homotopy operator in
the classical (non log) case.

Remarks 3.5. (a) The analogue of 3.4 for the non ket case is true and was proven by F.
Kato [FK].

(b) As F. Kato observed in (loc. cit.), the exactness assumption on f is essential, as the
example of a log blow-up shows.
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Corollary 3.6. Under the assumptions of 2.2, the sheaves Rnf∗ω
.,ket
X/Y are locally free of

finite type for all n.

To deduce 3.6 from 3.4 one uses the following two facts :
(i) The natural map

ω.,ket
X/Y → Rτ∗ω

.,klog
X/Y

is an isomorphism.
(ii) For all n, the sheaf Rnf log

∗ CXlog is a locally constant sheaf of C-vector spaces on
Y log ; moreover, it is quasi-unipotent, which means that, locally over Y , it admits a finite
filtration whose successive quotients are inverse images of locally constant sheaves (of C-
vector spaces) on Yket.

The first one is easy ([IKN, 3.7 (4)]). The second one ([IKN, 6.1]) relies on a delicate
result of Kajiwara-Nakayama [KjN].

To prove 3.6, consider the commutative square

X log
τ

//

f log

��

Xket

fket

��

Y log
τ

// Y ket

.

Using (i) one has

Rfket
∗ ω.,ket

X/Y = Rτ∗Rf log
∗ ω.,klog

X/Y ,

hence, by 3.4 and the projection formula,

Rnfket
∗ ω.,ket

X/Y = τ∗(O
klog
Y ⊗ Rnf log

∗ C).

Now, using (ii) (plus (i)) one finds that Rnfket
∗ ω.,ket

X/Y is locally free of finite type on Y ket

for all n.

4. Outline of the proof of 2.2

4.1. As the question is ket local on Y , by a result of Nakayama-Tsuji (cf. [IKN A 4.3])
one may (and will) assume that f is saturated, which means that f has reduced fibers, and
implies that the underlying scheme of any fs pull-back of X by a map of fs log schemes
g : Y ′ → Y is the usual schematic pull-back of X by g. By 3.6 the ket de Rham cohomology
sheaves

Hn
dR,ket = Rnfket

∗ ω.,ket
X/Y

are locally free on Yket. Therefore, by ket localization on Y , we may assume that they are
of the form Hn

dR,ket = ε∗Mn, where Mn is a free module of finite type on Yet. Then, by
2.3,

Rnf∗ω
.
X/Y = ε∗H

n
dR,ket = Mn

is free of finite type on Yet for all n. Therefore it suffices to show the following :
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Proposition 4.2. Let f : X → Y be a proper, log smooth and saturated morphism of fs
log schemes of characteristic zero. Assume that the sheaves Rnf∗ω

.
X/Y are locally free of

finite type on Yet. Then :
(a) The (étale) spectral sequence

(1) Epq
1 = Rqf∗ω

p
X/Y ⇒ Rp+qf∗ω

.
X/Y

degenerates at E1 and has locally free initial terms.
(b) The (ket) spectral sequence

(2) Epq
1 = Rqfket

∗ ωp,ket
X/Y ⇒ Rp+qfket

∗ ω.,ket
X/Y

degenerates at E1 and has locally free initial terms.
(c) For any interval [a, b] and any integer n the natural map

ε∗Rnf∗ω
[a,b]
X/Y → Rnfket

∗ ω
[a,b],ket
X/Y

is an isomorphim, in other words, the spectral sequence (2) is the inverse image by ε of
the spectral sequence (1).

4.3. The proof of 4.2 is in several steps.
(1) One first shows that (a) implies (c), hence (b). This is easy.
(2) One then treats the particular case of (a) where Y = Spec C. One does this using

standard spreading out arguments and mod p2 techniques as in [DI]. The saturatedness
property of f ensures “Cartier type” and one can apply the degeneration result of Kato
[K, 4.12].

(3) By standard reductions (spreading out, limit arguments, Lefschetz principle) one
reduces the problem to the case where Y is the spectrum of a local artinian C-algebra A.
Then, using the hypothesis that Hn(X, ω.

X/Y ) is free of finite type over A for all n, the
same calculation of lengths as in the proof of Deligne’s theorem 1.1, with Ω·

X/Y replaced
by ω.

X/Y , proves the degeneration at E1 and the freeness of the initial terms.

5. Complements and questions

In 1.1, Deligne also showed that Epq
1 and Eqp

1 have the same rank (Hodge symmetry).
In the situation of 2.2 we also get a similar result, under additional hypotheses.

Theorem 5.1. Under the hypotheses of 2.2, let us assume moreover that f is projective
and vertical. Then Epq

1 and Eqp
1 have the same rank for all p, q.

Here “vertical” means that for all x ∈ X , y = f(x), the homomorphism My/O∗
y →

Mx/O∗
x is vertical. A homomorphism of monoids h : P → Q is called vertical if for

all q ∈ Q there exists p ∈ P and q′ ∈ Q such that h(p) = q + q′. For example, the
first projection Spec C[N2] → Spec C[N] corresponding to the inclusion N → N2 of the
first factor is not vertical (presence of the horizontal divisor y = 0) while the semistable
reduction map (x, y) → xy (corresponding to the diagonal inclusion) is. As recalled in 1.4
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(c), if X and Y are log smooth over some field k, f is vertical if and only if the inverse
image by f of the open subset of triviality of Y is that of X .

Here is a brief sketch the proof. By standard reductions, we may assume that f is
saturated and that Y = Spec C, with MY /O∗

Y = P . Choosing a local homomorphism
u : P → N (i. e. such that u−1(0) = 0), we may assume that P = N, i. e. Y is a standard
log point. By 4.2 we have to show that

dimHq(X, ωp
X/Y ) = dimHp(X, ωq

X/Y )

for all p, q. By a result of Vidal [V] (a variant of a result of Yoshioka, see also [Sa]), up
to further ket localization on Y , there is a log blow-up h : X ′ → X such that f ′ : X ′ → Y
is strictly semistable. Using that OX = Rh∗OX′ , and hence ω.

X/Y = Rh∗ω
.
X′/Y , one is

then reduced to the case where f is strictly semistable. In this case, the result is due
to Y. Nakkajima [N], using a duality theorem of Tsuji and the (classical) hard Lefschetz
theorem.

Remark 5.2. If Y is a standard log point, the conclusion may fail if f is not assumed
to be projective, as an example of Nakkajima shows. If Y is log smooth over C, it is not
known, however if one can remove the hypothesis that f is projective.

5.3. In [IKN, 6.3] the result in 3.6 is extended to certain quasi-unipotent coefficients. In
particular, a Riemann-Hilbert type equivalence

(5.3.1) Lqunip(X) → Vqnilp(X)

is defined for any log smooth fs log analytic complex space X , and shown to be functorial
with respect to maps f : X → Y which are proper and log smooth (no exactness assumption
is needed in this case). Let L(X) be the category of locally constant sheaves of finite
dimensional C-vector spaces on X log. By restriction to the open subset U of triviality of
the log structure, this category is equivalent to the category of locally constant sheaves of
finite dimensional C-vector spaces on U . In (5.3.1) Lqunip(X) denotes the full subcategory
of L(X) consisting of those local systems L which have quasi-unipotent local monodromies
(this means that at any point y ∈ X log with τ(x) = y, π1(τ

−1(x), y) acts quasi-unipotently
on Ly, or, equivalently, that, locally over X , L admits a finite filtration whose successive
quotients are inverse images by τ of locally constant sheaves (of finite dimensional C-vector
spaces) on Xket). The correspondence (5.3.1) associates to L a vector bundle V on Xket,
defined by

V = τ∗(O
klog
X ⊗C L),

equipped with an integrable connection ∇ : V → ω1,ket
X/Y ⊗ V , which is quasi-nilpotent,

which means that, locally on Xket, V admits a finite filtration (Vi) by vector bundles
stable under ∇ such that the successive quotients are vector bundles on which the induced
connection has no pole, i. e. ∇(Vi/Vi−1) ⊂ Im(Ω1

X/C
⊗(Vi/Vi−1) → ω1,ket

X/C
⊗(Vi/Vi−1)). The

functoriality indicated above says, in particular, that for V in Vqnilp(X), and f : X → Y

proper and log smooth, then, for all n, Rnfket
∗ ω.,ket

X/Y (V ) is locally free of finite type on Yket.

Let us finally mention that Kato-Matsubara-Nakayama [KMN] have proved variants
of the main degeneration result 2.2 for certain variations of log Hodge structures. In
particular, they show the following (see (loc. cit) for the relevant definitions) :

8



Theorem 5.4. Let Y be a log smooth fs log scheme over C and f : X → Y a projective,
log smooth and vertical morphism. Let (HZ,V, (−,−)) be a variation of polarized log Hodge

structures of pure weight w on X. Then, for all n, Rnf log
∗ HZ underlies a variation of

polarized log Hodge structures of pure weight w + n on Y . In particular, the Hodge to de
Rham ket spectral sequence

Epq
1 = Rp+qfket

∗ grp(ω.,ket
X/Y (V)) ⇒ Rp+qfket

∗ ω.,ket
X/Y (V)

degenerates at E1 and its E1-term is locally free of finite type on Yket.

5.5. Questions. (a) In 2.2, is the conclusion still valid without the hypothesis “exact”,

but assuming that Y is log smooth over C ? (Note that, as mentioned in 5.3, Rnfket
∗ ω.,ket

X/Y

is locally free of finite type in this case.)
(b) Can one find a common generalization of 2.2 and 5.4 ?
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