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1. Serre’s duality theorem

Theorem 1 (ICM Amsterdam, 1954)

k algebraically closed,
X/k smooth, projective, irreducible, of dimension m,
V a vector bundle on X , V ∨ = Hom(V ,OX ),
Ωi := ΛiΩ1

X/k . Then:

(a) dimk H
m(X ,Ωm) = 1;

(b) For all q ∈ Z, the pairing

Hq(X ,V )⊗ Hm−q(X ,V ∨ ⊗ Ωm)→ Hm(X ,Ωm)(
∼→ k)

is perfect.



Remarks

(a) Serre had previously proved (FAC) that, for any coherent sheaf
F on X , and all q, dimk H

q(X ,F) <∞ and Hq(X ,F) = 0 for
q > m.

(b) Serre doesn’t exhibit a distinguished basis of Hm(X ,Ωm).
Proof by induction on m, his vanishing theorems on Hq(X ,F(n))
for q > 0 and n large play a key role.
Construction of a distinguished basis crucial in further work by
Grothendieck et al.

(c) Serre proved analogue for X/C smooth, compact analytic, V a
vector bundle on X (Comm. Helv., 1955). Quite different
techniques.



Th. 1 revisited by Grothendieck:

1955-56, Sém. Bourbaki 149, May 1957

X/k smooth, projective, irreducible, dimension m as above.

Theorem 2 (Grothendieck, loc. cit., Th. 2, 3).

(1) A canonical basis εX ∈ Hm(X ,Ωm) (called fundamental class)
is constructed.

(2) For all q ∈ Z, the canonical pairing

Hq(X ,F)⊗ Extm−q(F ,Ωm)→ Hm(X ,Ωm)(
∼→ k)

is perfect.



Remarks

(a) Pairing in (2): usual pairing on Ext groups, using
H i (X ,G) = Exti (OX ,G) (Grothendieck, Tôhoku).

(b) (1) combines 2 ingredients:

• the fundamental local isomorphism for x ∈ X (k)

Extm(k(x),Ωm)
∼→ k(x)

• the trace map (an isomorphism as X is irreducible)

Tr : Hm(X ,Ωm)
∼→ k .

At the core of all further work on coherent duality.



2. Derived categories: Grothendieck’s revolution
How to generalize Th. 2 to:

• singular varieties X/k?

• morphisms f : X → Y ?

Grothendieck ICM Edimburgh (1958): Ωn should be replaced by
complex KX (later called residual or dualizing),

and isomorphism deduced from perfect pairing (2) in Th. 2

Hq(X ,F)∨
∼→ Extm−q(F ,Ωm)

by spectral sequences converging to H∗ of a common complex E ,
to be constructed.

To solve the question, builds new foundations to homological
algebra: derived categories:

Main ideas in Résidus et dualité, pré-notes pour un séminaire
Hartshorne (summer of 1963). Formal construction and
development of the theory left to, and worked out by, Verdier.



A: an abelian category, C (A): complexes of A

To L = (· · · → Ln
d→ Ln+1 → · · · ) in C (A), wants to associate an

object finer than H∗L, but coarser than L itself, that could
remember classical derived functors (Cartan-Eilenberg, Tôhôku) in
a functorial way.

Key new notion: f : K → L a quasi-isomorphism if
H i f : H iK → H iL is an isomorphism for all i

Derived category D(A) := C (A)[Quasi− isomorphisms]−1

Left and right calculus of fractions from K (A), where
HomK(A)(K , L) = HomC(A)(K , L)/({f = dh + hd)}

Triangulated structure on K (A), D(A) (given by distinguished
triangles coming from mapping cones of morphisms, or short exact
sequences of complexes): axiomatized by Verdier. Key axiom:
octahedral axiom.



Derived functors
For A having enough injectives, or projectives, or suitable
substitutes,

RF , LF : D(A)→ D(B)

of additive F : A → B replace old R iF , LiF of Cartan-Eilenberg
and Tôhôku: H iRF (L) = R iF (L), etc. They are triangulated, i.e.,
send distinguished triangles to distinguished triangles.

Generalized to triangulated multi-functors, such as

K (A)0 × K (A)→ K (Ab), (K , L) 7→ Hom•(K , L),

giving
RHom : D(A)0 × D(A)→ D(Ab).

Under mild assumptions, spectral sequences of composite functors
replaced by transitivity isomorphisms

RG ◦ RF ∼→ R(G ◦ F ).



Main (rough) idea: though F : K (A)→ K (B) doesn’t extend to
D(A)→ D(B) (as F (quasi-iso) is not a quasi-iso in general), for
suitable resolutions, i.e., certain quasi-iso K → K ′, F (K ′) in D(B)
“doesn’t depend” on the “suitable” K ′, and K 7→ F (K ′) is the
“closest” functor from D(A) to D(B) to a (in general, nonexistent)
functor extending F .

Changed the face of homological algebra. All that had been done
before became suddenly obsolete, except spectral sequences, still
giving deeper insight into derived categories.



The four basic functors

(called operations by Grothendieck in Récoltes et Semailles)

• internal
⊗L, RHom,

on a topos X with commutative ring OX ,

• external
Lf ∗, Rf∗

for a morphism of ringed topoi f : (X ,OX )→ (Y ,OY ), and

RΓ(X ,−) := Rf∗

for Y = pt, satisfying



Adjunction isomorphisms

Hom(K ⊗L L,M)
∼→ Hom(K ,RHom(L,M)),

souped up to

RHom(K ⊗L L,M)
∼→ RHom(K ,RHom(L,M)),

Hom(K ,Rf∗L)
∼→ Hom(Lf ∗K , L)

souped up to

RHom(K ,Rf∗L)
∼→ Rf∗RHom(Lf ∗K , L)

(trivial global duality),

and various Canonical isomorphisms, such as

Lf ∗(K ⊗L L)
∼→ Lf ∗K ⊗L Lf ∗L,

and
Lf ∗Lg∗

∼→ L(gf )∗, Rg∗Rf∗
∼→ R(gf )∗

for a composition X
f→ Y

g→ Z , etc.



Remark

Classically those four functors were not defined on the whole
derived categories, but on certain full subcategories defined by
degree restrictions. Recall

D+(A), D−(A), Db(A) ⊂ D(A)

consisting of complexes cohomologically bounded below, above,
bounded. For example, Lf ∗ : D−(Y )→ D−(X ),
Rf∗ : D+(X )→ D+(Y ), ⊗L : D(X )× D−(X )→ D(X ), etc. And
some canonical isomorphisms needed further restrictive hyotheses.

Grothendieck (1965) asked: could one get rid of those degree
restrictions?

Question solved by N. Spaltenstein (1988), using the notion of
homotopically injective (resp. projective) resolution. Generalized by
Kashiwara-Schapira (2006).



4. The f ! functor: duality in the coherent setting
For f : X → Y of finite type between Noetherian schemes, and
smoothable, i.e., of the form gi , for g : X ′ → Y smooth and
i : X ↪→ X ′ a closed immersion, Grothendieck defines a new functor

f ! : D+
qcoh(Y )→ D+

qcoh(X )

(where (−)qcoh means quasi-coherent H∗: image of D+(Qcoh(−))
by fully faithful functor to D+(−)) by the curious formula

f !(M) := RHomOX ′ (OX , g
∗(M)⊗ Ωd

X ′/Y )|X ,

where d is the relative dimension of g . Indeed, a miracle: RHS
doesn’t depend on factorization f = gi , up to transitive system of
isomorphisms. A corollary of the so-called fundamental local
isomorphism

RHomOZ
(OX ,E )

∼→ i∗E ⊗L
OX

ΛrN∨X/Z [−r ],

for a regular immersion i : X ↪→ Z of codimension r , ideal I,
E ∈ D+

qcoh(Z ), and NX/Z := I/I2 the conormal bundle.



Transitivity isomorphism (f2f1)
∼→ f !

1 f
!
2 for a composition, etc.

Second miracle: Grothendieck shows that for X , Y of finite Krull
dimension, and f projective, f ! turns out to be a partial right
adjoint to Rf∗ : Dqcoh(X )→ Dqcoh(Y ). Indeed, he constructs a
so-called trace map for M ∈ Dqcoh(Y ),

Trf : Rf∗f
!M → M,

giving rise to an isomorphism, the duality isomorphism,

(∗) Rf∗RHom(L, f !M)
∼→ RHom(Rf∗L,M)

for L ∈ Dqcoh(X ), M ∈ D+
qcoh(Y ), and, in particular, to the

adjunction isomorphism

Hom(L, f !M)→ Hom(Rf∗L,M),

deduced from (*) by applying H0RΓ.

Applying H−qRΓ, we recover, for Y = Spec(k), X/k projective
and smooth of dimension m, Grothendieck-Serre’s isomorphism

(Hq(X ,F))∨
∼→ Extm−q(F ,Ωm

X/k).



Duality isomorphism

(∗) Rf∗RHom(L, f !M)
∼→ RHom(Rf∗L,M)

generalized by Grothendieck to f proper, X , Y satisfying mild
additional assumptions, by means of a theory of residual complexes,
fitting with a theory of generalized residues (Hartshorne, R. and
D.).

Global duality (*) tightly linked with:

• Local duality, dualizing complexes (R. and D., SGA 2)

• Hodge cohomology classes (Grothendieck’s Prenotes for R. and
D.; Angeniol, El Zein, 1978)



Dualizing complexes

On a Noetherian scheme S , a dualizing complex is an object K of
Db

coh(S) which is of finite injective dimension, and such that, if
D : RHom(−,K ), then for any L ∈ Db

coh(S), the canonical map

L→ DDL

is an isomorphism (⇔ OS
∼→ DDOS).

A dualizing complex is unique up to shift, and twist by an invertible
sheaf).

It exists if S is the spectrum of a complete local ring, more
generally, if and only if S is a closed subscheme of a finite
dimensional Gorenstein scheme (Sharp’s conjecture, proved by
Kawasaki, 2002).



Exchange formulas

If K is dualizing on S , for a : X → S of finite type, KX := Ra!K is
dualizing. for f : X → Y projective, the global duality theorem
implies (with DX = RHom(−,KX ), DY = RHom(−,KY ))

Rf∗DXL
∼→ DYRf∗L.

For f of finite type, D exchanges Lf ∗ and f !.

Link with local duality

For S local, of closed point i : {s} → S , if K is dualizing on S ,
then i !K = k(s)[d ] for some d ∈ Z. If d = 0, then RΓs(K ) is an
injective envelope of k(s), and, for any M ∈ Db

coh(S), the natural
map

RΓs(M)→ RHom(DM,RΓs(K )),

where DM := RHom(M,K ), and
Γs(−) := Ker(Γ(S ,−)→ Γ(S − s,−)), is an isomorphism (local
duality theorem).



Verdier’s categorical approach to f !

Meanwhile, other similar duality theories had emerged:

• Duality for the cohomology of profinite groups (Verdier, 1963)

• Duality in étale cohomology (SGA 4, Artin-Grothendieck-Verdier,
1964)

• Duality in the cohomology of locally compact spaces (Verdier,
1965)

This last work was proposed to Verdier by Grothendieck, who
thought the theory would be analogous to (and easier than) duality
in the étale setting. But in it Verdier introduced a new idea
(already apparent in his work on profinite groups), namely:

• Prove a priori the existence of f ! as a right adjoint to Rf!,
calculate it afterwards for nice morphisms f .



Let f : X → Y , continuous, between locally compact spaces, and
let k be a Noetherian ring.
Then the direct image with proper support functor
f! : Mod(kX )→ Mod(kY ) has a derived functor

Rf! : D+(X )→ D+(Y ),

where D(X ) := D(X , kX ), D(Y ) := D(Y , kY ).

Assume f! has finite cohomological dimension. Then, using a
calculation process for Rf! on the level of complexes (based on soft
resolutions), Verdier constructs a right adjoint f ! to Rf!, giving rise
to an isomorphism

(∗∗) Rf∗RHom(L, f !M)
∼→ RHom(Rf!L,M)

similar to (*), for L ∈ D−(X ), M ∈ D+(Y ).



From the knowledge of H∗c (Rn, k) Verdier deduces from (**) that,
for an n-dimensional manifold X , and f : X → Y = pt, one has

f !k = ωX [n]

where ωX , the orientation sheaf, is the (invertible) sheaf associated
to U 7→ Hn

c (U, k)∨. Then the adjunction map Rf!f
! → Id gives a

trace map TrX : Hn(X , ωX )→ k , and, for k a field, (**) yields a
duality isomorphism similar to the Grothendieck-Serre one, namely,

(Hq(X ,F))∨
∼→ Extn−q(F , ωn

X ).

for any k-sheaf F .

Formula for f !k generalized by Verdier to f !M = f ∗M ⊗ ωX/Y [n]
for maps f : X → Y satisfying suitable condition of smoothness of
relative dimension n.



Deligne’s adaptation to the coherent setting

Let f : X → Y proper, X , Y Noetherian. Deligne observes that,
for formal reasons, as in the topological case,
Rf∗ : D+

qcoh(X )→ D+
qcoh(Y ) admits a right adjoint

f ! : D+
qcoh(Y )→ D+

qcoh(Y ):

Hom(Rf∗K , L)
∼→ Hom(K ,Rf !L)

(finite type, instead of proper, would even suffice). Why is that?

• Can calculate Rf∗K by functorial process on level of complexes:

Rf∗K := f∗C•(K ),

C•(K ) finite acyclic resolution, compatible with filtering inductive
limits, with each Cq(K ) exact in K (Cech, or modified Godement)



• Lemma. If A is Grothendieck abelian category, i.e., an abelian
category admitting a generator and exact filtering inductive limits,
any contravariant functor F on A with values in abelian groups,
transforming arbitrary (small) inductive limits into projective ones is
representable.

Apply it to F = Hom(f∗Cq(K ), I ) for fixed q and injective
quasi-coherent I .

Precursors of Lemma in Gabriel’s thesis (II 4). See
[Kashiwara-Schapira, Categories and Sheaves, 5.2.6] for a
generalization.



Homotopical variants in triangulated categories

Inspired by Neeman’s form of Brown’s representability theorem, see
Kashiwara-Schapira (loc. cit., 10.5.3, 14.2.3):

Theorem

Let D, D ′ be triangulated categories, with D admitting small direct
sums and a system of t-generators, i.e. a (small) system of
generators C such that Hom(C ,−) detects the vanishing of any
countable sum ⊕ui : Xi → Yi by the vanishing of Hom(C , ui ) (a
weaker condition than the notion of compactly generated
introduced by Neeman), e.g., (loc. cit., 14.2.1) D = D(A), A a
Grothendieck abelian category.

Then any triangulated functor F : D → D ′ commuting with direct
sums admits a right adjoint (which is triangulated).



Calculation of f !

Definition of f ! extended to f compactifiable by

f ! = j∗g !

for f = gj , j : X ↪→ Z open, g : Z → Y proper.

Independence of compactification proved independently by

• Deligne (App. to R. and D.), using a j! : Coh(X )→ ProCoh(Z )
functor

• Verdier (1968), using a base change formula for f ! (f proper, flat
base change).

Comparison with Grothendieck’s f !

Delicate issues: Lipman, Hashimoto, Neeman, Conrad, Iyengar,
Yekutieli, Nayak-Sastry (2019)



4. Duality in étale cohomology and the six operations
Coefficient ring Λ = Z/`nZ, ` invertible on base (much later (end
of 1970’s), Z`, Q`, Q`)

D(−) := D(−,Λ), Dc : constructible Hi .

The Rf! functor

Artin-Grothendieck: can’t imitate the topological case: for k = k ,
X/k an affine curve, F on X , sections of F on X with proper
support = ⊕x∈X (k)Γx(F), with bad derived functors ⊕H i

x(F)
(want: H2

c (A1
k ,Λ) = Λ(1)).

Good hybrid definition for f compactifiable, f = gj , j : X ↪→ Z
open, g : Z → Y proper:

Rf! := Rg∗ ◦ j!

but Rf! not derived functor of H0Rf!
Proper base change th. ⇒ independence of compactification, Rf!
commutes with base change, compatible with composition.



The f ! functor

(1) Grothendieck’s definition for f smoothable, i.e., of the form hi ,
for h : X ′ → Y smooth and i : X ↪→ X ′ a closed immersion:

f !L := Ri !h∗L(d)[2d ],

where d = relative dimension of h, and Ri ! = derived functor of
M 7→ H0

X (X ′,M)|X .

Relative purity for smooth pairs i : Y ↪→ Z , Y /S , Z/S smooth, i.e.
Ri !Λ = Λ(−r)[−2r ] (r = codimension of i) (SGA 4 XVI) implies
independence of factorization f = hi , compatibility with
composition.



For f : X → Y quasi-projective, using structure of H∗(Pr
S) (r = 1,

in fact, suffices), Grothendieck defines a trace map

Trf : Rf!f
! → Id

making f ! a right adjoint to Rf!, and giving rise to a global duality
isomorphism

Rf∗RHom(L, f !M)→ RHom(Rf!L,M)

for L ∈ D−(X ), M ∈ D+(Y ). (Proof by reduction to relative
curves. Written up by Verdier in (Driebergen, Local Fields, 1967).)



(2) Deligne’s method

Similar to the coherent setting, and written up later. For f
compactifiable, f = gj , j : X ↪→ Z open, g : Z → Y proper, can
calculate Rf!K by functorial process

Rf!K = g∗(C(j!K ))

where C is a modified Godement resolution, with each component
g∗Cq(j!K ) exact and commuting with filtering inductive limits,
hence (by the representability lemma) admitting a right adjoint,
giving rise to f ! : D+(Y )→ D+(X ), right adjoint to Rf!, yielding
global duality isomorphism similar to the above:

Rf∗RHom(L, f !M)→ RHom(Rf!L,M).



Difficulty shifted to comparing abstractly defined f ! with
Grothendieck’s f !.

Done in [SGA 4 XVIII], using theory of fundamental class, or trace
map to construct, for f : X → Y flat of relative dimension d , and
compactifiable, a canonical map

tf : f ∗M(d)[2d ]→ f !M

(for M ∈ D+(Y )), which is an isomorphism for f smooth.

As in (1), proof of tf being an isomorphism eventually reduced to
relative curve case.



Constructibility and the six operations

D(−) too big, want to stay within Dc(−) (possibly Db
c (−) or

Dctf(−), “ctf” for “constructible" and "tor-dimension finie").

At the time of Grothendieck, known that Rf! sends Db
c to Db

c , but
not (except under assumptions of existence of resolution of
singularities and validity of absolute purity conjecture) for Rf∗ (even
for f : X → Spec(k), k algebraically closed).

Stability of Dctf under f ∗ and ⊗L trivial, but Deligne (1973, SGA 4
1/2, Th. finitude) proved stability of Dctf under the remaining four
operations

RHom, Rf∗, Rf!, f
!,

for schemes separated and of finite type over a regular base of
dimension ≤ 1.

Method of proof (global to local) often imitated afterwards.



Two additional important results by Deligne, that are not corollaries
of the above, but are proved by the same method:

• The nearby cycle functor RΨ send Dctf to Dctf , and commutes
with surjective base change of traits.

• For a : X → S separated and of finite type, with S regular,
Noetherian, of dimension ≤ 1,

KX := a!ΛS

is a dualizing complex on X , i.e., is of finite injective dimension,
and if DX := RHom(−,KX ), then, for any L ∈ Db

c (X ), the
canonical map

L→ DXDXL

is an isomorphism. Observed by Grothendieck that such a dualizing
complex is unique up to shift, and twist by an invertible Λ-module.
He had proved existence only under the assumptions mentioned
above (resolution, etc.).



For f : X → Y an S-morphism, with X/S , Y /S , KX , KY as
before, the global duality isomorphism yields, for L ∈ Db

c (X )

Rf∗DXL
∼→ DYRf!L,

and,
DX f

∗M
∼→ f !DYM

for M ∈ Db
c (Y ): D exchanges Rf∗ and Rf!, resp. f ∗ and f !.



The Lefschetz-Verdier formula

This is the most famous and useful application of the duality
formalism. The results discussed above made it possible to state
and prove the LV formula unconditionally (SGA 5 III, 1977).
Classically, one works with schemes separated and of finite type
over an algebraically closed field k , and the formula consists of two
parts:

• Definition of local terms near the fixed points of a cohomological
correspondence

• A theorem expressing the compatibility of these local terms with
proper push-forward.



Local terms

Write D for Dctf . A cohomological correspondence with support in
a correspondence c = (c1, c2) : C → X × X is the data of
M ∈ D(X ) and a morphism

u : c∗1M → c !
2M.

Example: A pair (f : X → X , u : f ∗M → M), with
c = tΓf = (f , Id) the (transposed) graph.

In particular, we have the tautological correspondence IdM with
support in the diagonal ∆ : X → X × X .

One has
RHom(c∗1M, c !

2M) = c !(DM �L M),

hence
Hom(c∗1M, c !

2M) = H0(C , c !(DM �L M))



The natural pairing

(DM �L M)⊗L (M � DM)→ KX ⊗L KX
∼→ KX×X

send the pair ((c , u), (∆, IdM)) to the so-called Verdier local term

TrC∩∆(c , u) ∈ H0(C ∩∆,KC∩∆),

where C ∩∆ := C ×X×X (X ,∆) is the fixed point scheme of c .



The LV formula

This formula expresses compatibility of formation of Verdier local
term

TrC∩∆(c , u) ∈ H0(C ∩∆,KC∩∆),

with proper push-forward of correspondences (SGA 5 III). In
particular, for X , C proper over k , the cohomological
correspondence (c , u) has a push-forward to Spec(k), which is a
homomorphism

(c, u)∗ : RΓ(X ,M)→ RΓ(X ,M),

whose trace is given by the formula (LV formula)

Tr((c , u)∗) = TrC∩∆/kTrC∩∆(c , u),

where
TrC∩∆/k : H0(C ∩∆,KC∩∆)→ Λ

is the trace map of the global duality isomorphism defined by the
adjunction Ra!a

! → Id, a : C ∩∆→ Spec(k).



Remarks on the formalism of six operations

1. Gabber proved stability theorems for Db
c on quasi-excellent

schemes similar to those of Deligne in SGA 4 1/2 (Travaux de
Gabber, Astérisque 363-364) (and implying them). In particular, he
proved Grothendieck’s duality conjecture, to the effect that on a
regular, excellent scheme X , the constant sheaf ΛX is a dualizing
complex (Λ = Z/`nZ, ` invertible on X ).

2. Extension of six operations from torsion coefficients to `-adic
coefficients, such as Z`, Q`, or Q` was a nontrivial task: Jouanolou
(SGA 5), Deligne (1979), Ekedahl (1990), Bhatt-Scholze (2012).

3. Extension of the formalism (both for torsion coefficients and
`-adic ones) to algebraic stacks was an equally nontrivial task:
Laszlo-Olsson (2008), Liu-Zheng (2012).



Remarks on the LV formula

1. An analogue of LV in the coherent setting was proved in (SGA 5,
III). Implies the so-called (algebraic) Woods-Hole fixed point
formula (a conjecture of Shimura) (Hartshorne-Mumford-Verdier,
1964).

2. The LV formula implies Grothendieck’s trace formula (GTF) for
the Frobenius correspondence over finite fields. However, in SGA 5,
Grothendieck had proved GTF independently of LV, by the so-called
Nielsen-Wecken method of non-commutative traces (report by
Deligne in SGA 4 1/2).

3. But LV turned out to be crucial in the proof of Deligne’s
conjecture on Frobenius twisted correspondences (Fujiwara (1977),
generalization by Varshavsky (2007)). Used by L. Lafforgue in his
proof of the Langlands correspondence for GLn over function fields.



4. The Verdier local term decomposes into

TrC∩∆(c , u) =
∑
Z

TrZ (c , u)

where Z runs through the connected components of C ∩∆. Each
term is of étale local nature around Z . Even for an isolated fixed
point Z = {x}, and a correspondence of the form (tΓf , u),
f : X → X , u : f ∗M → M, the calculation of Trx(f , u) is difficult.
In this case, (f , u) induces an endomorphism (f , u)x of Mx , and
one can ask whether

(∗) Trx(f , u) = Tr((f , u)x).



Formula

(∗) Trx(f , u) = Tr((f , u)x).

was proved by Verdier (Driebergen (1967), SGA 5 III B) for X/k a
smooth curve and the graph of f assumed to be transversal at x to
the diagonal. Deligne conjectured that (*) holds in any dimension,
even for X singular at x , provided that f ∗ has no fixed vector on
the Zariski cotangent space T ∗x (X ). Conjecture recently proved by
Varshavski in a stronger form (T ∗x (X ) replaced by the conormal
cone).

5. Shown by Liu-Zheng (2019) that cohomological correspondences
form a symmetric monodoidal 2-category in a natural way, and that
the LV formula is a formal consequence of pairings in such
categories. They even prove a relative LV formula under local
acyclicity hypotheses. Such categorical trace arguments, that can
be traced back to Dold-Puppe (1978), were used by Gaitsgory et al.
in the past few years.



5. Further developments

On derived and triangulated categories

• Filtered derived categories

• t-structures on triangulated categories, perverse sheaves

• ∞-enhancements of D(A).



Duality and six operations in other contexts

• Coherent sheaves on complex analytic spaces:
Ramis-Ruget-Verdier (1971)

• D-modules: Bernstein, Kashiwara-Schapira, Mebkhout,
Malgrange (1970 - 1980)

• Mixed Hodge theory: Deligne, M. Saito (1990 - ...)

• Crystalline cohomology, rigid cohomology, arithmetic D-modules:
Berthelot, Le Stum, Ekedahl, Kedlaya, Caro, Caruso, ... (1970 - ...).

• Logarithmic geometry: C. Nakayama, Tsuji (1997 - ...)

• p-adic Hodge theory: still to come



Thank You!


