Eléments finis discontinus et zoom numérique, applications aux écoulements dans les milieux poreux

Jean-Baptiste APOUNG KAMGA

Thèse de Doctorat de l'UPMC Directeur de thèse: Olivier PIRONNEAU

06 décembre 2006

Equations Modèles

Exercice couplex (Andra - CEA)

Ecoulement régime permanent

$(\nabla \cdot (\mathbf{K} \nabla \mathbf{H}) = 0$	dans Ω
$H = H_D$	sur Γ _D
$\frac{\partial H}{\partial t} = 0$	ailleurs
$\begin{bmatrix} \partial n \\ \mathbf{u} = -K\nabla H \end{bmatrix}$	dans Ω

- K : tenseur de perméabilité
- R est le facteur de retard, il vaut 1 pour l'Iode 129.
- La porosité effective ω , vaut 0.001 dans l'argile et 0.1 ailleurs. $\lambda = \log(2)/T$ avec *T* la période : Pour l'Iode, $T = 1.57 \times 10^7$.
- de : diffusion moléculaire, α_l, α_t : coefficient de dispersion longitudinale, et transversale.

$$D = deI + |\mathbf{u}| \left(\alpha_I E(\mathbf{u}) + \alpha_t (I - E(\mathbf{u})) \right)$$

Equation de transport

$$\begin{cases} R\omega(\frac{\partial C}{\partial t} + \lambda C) - \nabla \cdot (D\nabla C) + \mathbf{u} \cdot \nabla C = f \quad \text{dans } \mathcal{O} \times (0, T) \\ + CL, + CI \end{cases}$$

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

Méthode de zoom numérique

- Introduction
- Méthode
- Application

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

Méthode de zoom numérique

- Introduction
- Méthode
- Application

3 Conclusion et perspectives

< ∃⇒

Motivations

Principe des méthodes Galerkin discontinues

- Approximation totalement discontinue
- Intégration par parties au niveau des cellules.
- Choix des flux.

Avantages des méthodes Galerkin discontinues

- Conservent localement la masse
- Sont bien adaptées pour l'advection dominante
- Sont hautement parallélisables
- Sont locales (degrés de libertés associés aux éléments)

Inconvénients pour nos applications

- Nécessite la limitation de pente
- Ne dispose pas de critère rigoureux de choix de la CFL (sur le pas de temps)
 J-B. APOUNG K. (UPMC)
 O6 décembre 2006
 6 / 65

Formalisme abstrait

Espaces

$$\begin{split} \mathcal{V} \subset \mathcal{H}, \quad (.,.) \text{ le produit scalaire sur } \mathcal{H}. \\ \text{En pratique, } \mathcal{H} = L^2(\Omega). \end{split}$$

Hypothèses

 $\exists A_i, i = 0, 1, 2$ trois formes bilinéaires telles que :

- A₁ est symétrique définie positive.
- $\exists \mathcal{A}_3$ telle que $2\mathcal{A}_0(U,U) \ge -\mathcal{A}_1(U,U) + \mathcal{A}_3(U,U); \quad 2\mathcal{A}_2(U,V) \le \mathcal{A}_1(U,U) + \mathcal{A}_3(V,V)$

Λ

Problème abstrait

Soit
$$U_0 \in \mathcal{V}$$

Chercher $U \in C^1(0, T; \mathcal{V})$ telque $\forall V \in \mathcal{V}$
 $\left(\frac{\partial}{\partial t}U, V\right) + \mathcal{A}_0(U, V) + \mathcal{A}_1(U, V) - \mathcal{A}_2(U, V) =$
 $U = U_0 \Rightarrow t = 0$

Schéma d'ordre 1

schéma

$$\begin{pmatrix} \underline{U}_h^{n+1}-\underline{U}_h^n, V_h \end{pmatrix} + \mathcal{A}_0(\underline{U}_h^{n+1}, V_h) + \mathcal{A}_1(\underline{U}_h^n, V_h) \\ - \mathcal{A}_2(\underline{U}_h^n, V_h) = 0 \quad \forall V_h.$$

Théorème

Sous les conditions précédentes sur A_i , i = 0, 1, 2, si

$$\Delta t \mathcal{A}_1(U_h, U_h) \leq (U_h, U_h), \quad \forall U_h \in \mathcal{V}_h.$$

Alors le schéma d'ordre 1 est stable et on a :

$$\left(U_h^{n+1},U_h^{n+1}
ight)\leq \left(U_h^n,U_h^n
ight) \quad \forall n\in\mathbb{N}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schéma d'ordre 2

schéma

$$\frac{1}{3} \left(\frac{3U_h^{n+1} - 4U_h^n + U_h^{n-1}}{\Delta t}, V_h \right) + \frac{2}{3} \mathcal{A}_0(U_h^{n+1}, V_h) + \frac{2}{3} \mathcal{A}_1(2U_h^n - U_h^{n-1}, V_h) - \frac{2}{3} \mathcal{A}_2(2U_h^n - U_h^{n-1}, V_h) = 0, \quad \forall V_h.$$

Théorème

Sous les conditions précédentes sur A_i , i = 0, 1, 2, si

$$2\Delta t \mathcal{A}_1(U_h, U_h) \leq (U_h, U_h), \quad \forall U_h \in \mathcal{V}_h.$$

alors le schéma d'ordre 2 est stable et on a

$$(U_h^{n+1}, U_h^{n+1}) + (2U_h^{n+1} - U_h^n, 2U_h^{n+1} - U_h^n)$$

$$\leq \left(U_h^n, U_h^n\right) + \left(2U_h^n - U_h^{n-1}, 2U_h^n - U_h^{n-1}\right) \quad \forall n \in \mathbb{N}$$

CFL et paramètres de stabilisation

$$\left(\frac{\partial}{\partial t}U,V\right)+\mathcal{A}_{0}(U,V)+\mathcal{A}_{1}^{\alpha}(U,V)-\mathcal{A}_{2}^{\alpha}(U,V)=0, \ \forall V\in\mathcal{V}.$$

 $\stackrel{\hookrightarrow}{\to} \text{La condition CFL prend alors la forme :} \\ \left(\max_{U_h \in \mathcal{V}_h, \ U_h \neq 0} \frac{\mathcal{A}_1^{\alpha}(U_h, U_h)}{(U_h, U_h)}\right) \Delta t \leq C \\ \stackrel{\hookrightarrow}{\to} \text{il existe un meilleur } \alpha, \text{ note } \alpha_{\text{opt}}$

problème de min-max

$$\left(\max_{U_h\in\mathcal{V}_h,\ U_h
eq 0}rac{\mathcal{A}_1^{lpha_{ ext{opt}}}(U_h,U_h)}{(U_h,U_h)}
ight)\leq \left(\max_{U_h\in\mathcal{V}_h,\ U_h
eq 0}rac{\mathcal{A}_1^{lpha}(U_h,U_h)}{(U_h,U_h)}
ight),orall lpha.$$

Avantage

• Dans la pratique, A_0 et A_1 sont locales \hookrightarrow faible coût.

Application à la méthode DG

Démarche

- **()** Intégrations par parties $\hookrightarrow A_0$ est contribution volumique.
- **2** Action sur l'interface $\hookrightarrow A_1$ est contribution locale.
- **Output** Prise en compte des conditions aux limites $\hookrightarrow \mathcal{A}_2$.

Advection pure

 $\begin{array}{l} \partial_t c + \mathbf{u} . \nabla c = \mathbf{0}, \quad x \in \Omega \subset \mathbf{R}^2, \ t > \mathbf{0}. \ \mathcal{V} = \bigoplus_k H^1(\Omega_k) \subset \mathcal{H} = \bigoplus_k L^2(\Omega_k). \\ \forall U = (u_k) \in \mathcal{V} \text{ et } V = (v_k) \in \mathcal{V}, \text{ona}: \end{array}$

$(A_i), i = 0, 1, 2, 3$

 $\mathcal{A}_{0}(U, V) = -\sum_{k} \int_{\Omega_{k}} u_{k}(t, x) \mathbf{u} \cdot \nabla v_{k}(x) dx \quad \mathcal{A}_{1}(U, V) = \sum_{k} \int_{\partial \Omega_{k}} u_{k}(t, x) v_{k}(x) (\mathbf{u}, \mathbf{n}_{k}^{+}) d\sigma$

 $\mathcal{A}_{2}(U, V) = \sum_{k} \left(\sum_{j} \int_{\Sigma_{kj}} u_{j}(t, x) v_{k}(x) (\mathbf{u}, \mathbf{n}_{j}^{+}) d\sigma \right) \mathcal{A}_{3}(U, V) = -\sum_{k} \int_{\partial \Omega_{k}} u_{k}(t, x) v_{k}(x) (\mathbf{u}, \mathbf{n}_{k}^{-}) d\sigma$

э

イロト 不得 トイヨト イヨト

Analyse de la CFL

Lemme

Sur un maillage uniforme de pas *h*, La condition CFL abstraite pour le schéma d'ordre 1 est satisfaite si pour tout $\forall p \in \mathbf{N} \exists C_p^1 > 0, C_p^2 > 0$ telles que

$$\frac{3}{2}\Delta t \times \max_{k} \left(\frac{\alpha_{kj}}{C_p^1 h} + \frac{|\mathbf{u}|^2}{4\alpha_{kj}C_p^1 h} + \frac{K_k^2}{\alpha_{kj}C_p^2 h^3} \right) \le 1,$$

Si de plus K est constant, alors

$$x_{opt} = \sqrt{\frac{|\mathbf{u}|^2}{4} + \frac{K^2 C_p^1}{C_p^2 h^2}}$$

Observation

- CFL classique (méthode des différences finies).
- Interpolation continue entre l'advection pure et la diffusion pure.

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Théorème : (estimation L^2 – advection pure)

Soit $c \in \mathcal{V}$ la solution continue dans le cas de l'advection pure ($K \equiv 0$) avec la condition initiale $c_0 \in H^s(s \ge 2)$ et $U_h \in \mathcal{V}_p$ la solution du schéma d'ordre 2. Sous l'hypothèse de la condition CFL, II existe deux constantes C_1 et C_2 ne dépendant que de T et c telles que

$$\|(c-U_h)(T)\|_{L^2} \leq 3\|\pi_h c(\Delta t) - U_h^1\|_{L^2} + C_1(\Delta t)^2 + C_2 h^{\mu-1}$$

où $\mu = \min(p + 1, s)$.

Observations

- Optimalité en temps.
- Sous-optimalité en espace. Mais au moins de l'ordre du degré d'approximation polynômiale.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tests numériques :(wang,99,Bastian,03)

 $\Omega = (-0.5, 0.5)^2$, $\mathbf{u} = (-4y, 4x) \ K = 10^{-4}, x_c = 0.25, y_c = 0 \ \text{et} \ 2\sigma^2 = 0.004$. $[0, T] = [0, \pi/4] c(t, x, y) = \frac{2\sigma^2}{2\sigma^2 + 4Kt} \exp(-\frac{(\bar{x} - x_c)^2 + (\bar{y} - y_c)^2}{2\sigma^2 + 4Kt}),$ $\bar{x} = x \cos(4t) + y \sin(4t)$ et $\bar{y} = -x \sin(4t) + y \cos(4t)$.

	ordre 1		ordre 2]		ordre 1		ordre 2	
h	erreur L ²	taux	erreur L ²	taux]	h	erreur L ²	taux	erreur L ²	taux
	polynômes P ₀						pol	ynômes <i>F</i>	2	
1/16	6.77 <i>E</i> – 02	-	6.78E – 02	-]	1/16	1.12E - 02	-	5.83 <i>E</i> - 03	-
1/32	6.06 <i>E</i> - 02	0.16	6.09E - 02	0.16	1	1/32	4.49E - 03	1.32	4.91 <i>E</i> - 04	3.57
1/64	5.02E - 02	0.27	5.06E - 02	0.27	1	1/64	2.17E - 03	1.05	5.21 <i>E</i> - 05	3.24
1/128	3.71 <i>E</i> - 02	0.44	3.76E - 02	0.43	1	1/128	1.05E - 03	1.05	.91 <i>E</i> - 06	2.72
polynômes P ₁				1		pol	ynômes A	3		
1/16	3.28 <i>E</i> - 02	-	3.14E - 02	-]	1/16	8.02 <i>E</i> - 03	1.21	6.11 <i>E</i> - 04	4.10
1/32	1.27 <i>E</i> – 02	1.37	1.06E - 02	1.56]	1/32	4.15 <i>E</i> - 03	0.95	2.63 <i>E</i> - 05	4.54
1/64	3.89 <i>E</i> - 03	1.71	2.27E - 03	2.23	1	1/64	2.08E - 03	1.00	3.40 <i>E</i> - 06	2.95
1/128	1.31E - 03	1.57	4.61 <i>E</i> - 04	2.30	1	1/128	9.81 <i>E</i> - 04	1.08	5.97E - 07	2.51

Observation

- Optimalité en temps.
- Sous-optimalité en espace.

	Nouveau For	rmalisme	RKDG		
h	erreur L ²	taux	erreur L ²	taux	
1/32	1.31 <i>E</i> – 02	—	1.31 <i>E</i> – 02	_	
1/64	3.08 <i>E</i> - 03 2.09		3.08 <i>E</i> – 03	2.09	
CPU(s)	81.3	8	90.34		
	TVBMR	KDG	Crank-Nicholson		
h	erreur L ²	taux	erreur L ²	taux	
1/32	2.96 <i>E</i> – 02 –		1.31 <i>E</i> – 02	_	
1/64	1.39 <i>E</i> – 02 1.09		3.07 <i>E</i> – 03	2.09	
CPU(s)	32400		553.93		

RKDG, TVBMRKDG : Cockburn, Shu.I II III (1989-) Crank-Nicholson : Brezzi, Marini, Süli (2004).

Gain en temps CPUs.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	Nouveau	ı formali	sme		NIPO	à
h	erreur L ²	taux	CPU(s)	erreur L ²	taux	CPU(s)
1/32	5.16 <i>E</i> – 05	-	119.8	1.14 <i>E</i> – 03	_	71.25 + <i>renum</i>
1/64	1.28 <i>E</i> – 05	2.02	1855	2.84 <i>E</i> – 04	2.00	1519 + <i>renum</i>
					SIPC	à
1/32				1.10 <i>E</i> – 03	2.02	71.21 + <i>renum</i>
1/64				2.75 <i>E</i> – 04	2.00	1334 + <i>renum</i>

NIPG, SIPG : Rivière, Wheeler, Girault (1999-2000). Brezzi, Manzini, Marini, Pietra, Russo (2000)

Gain en temps CPUs.

크

(B) (A) (B) (A)

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

Méthode de zoom numérique

- Introduction
- Méthode
- Application

3 Conclusion et perspectives

But

Bien construire la pression et la vitesse de Darcy.

Contraintes

- Problème (3D) de grande taille → rester bas en ordre d'approximation.
- Méthodes mixtes DG : complexes à interpréter et nécessitent beaucoup d'espace mémoire.

Question

Comment obtenir de la formulation primale la variable duale?

Observation : Bastian Rivière (2003)

Une vitesse à trace normale discontinue conduit à des oscillations non physiques dans l'équation de transport.

- Maillage quasi-uniforme τ_h . $h = \max_{E \in \tau_h} h_E$.
- Décomposion des faces (3D) arêtes(2D) $\xi_h = \xi'_h \cup \xi^{\partial}_h, \qquad \xi^{\partial}_h = \xi^D_h \cup \xi^N_h$
- Espace produit ("broken space") $H^{s}(\tau_{h}) = \prod_{E \in \tau_{h}} H^{s}(E) \subset L^{2}(\Omega), \quad s \geq 2$
- Espace éléments finis $\mathcal{V}_{h}^{k} = \prod_{E \in \tau_{h}} \mathcal{P}_{k}(E) = \{ \mathbf{v} \in L^{2}(\Omega); \mathbf{v}|_{E} \in \mathcal{P}_{k}(E), \quad \forall E \in \tau_{h} \}$
- Saut et moyenne : $u \in H^{s}(\tau_{h})$, $e = E \cap E'$, *n* orientée de *E* vers *E'* $\llbracket u \rrbracket = (u|_{E})|_{e} - (u|_{E'})|_{e}$, $\lbrace u \rbrace = \frac{(u|_{E})|_{e} + (u|_{E'})|_{e}}{2}$

E 6 4 E 6

3

Formulation faible équivalente

$$\begin{array}{l} \blacksquare B(p,q) = \sum_{E \in \tau_h} \int_E K \nabla p \cdot \nabla q \, dx, \quad L(q) = \sum_{E \in \tau_h} \int_E fq \, dx \\ \blacksquare J(p,q) = \sum_{e \in \xi'_h} \int_e \{(K \nabla p) \cdot n_e\} \llbracket q \rrbracket \, d\gamma + \sum_{e \in \xi^D_h} \int_e (K \nabla p) \cdot n_e \, q \, d\gamma \\ \blacksquare J^{\alpha}(p,q) = \sum_{e \in \xi'_h} \frac{\alpha}{2} \int_e \llbracket p \rrbracket \llbracket q \rrbracket \, d\gamma + \sum_{e \in \xi^D_h} \alpha \int_e pq \, d\gamma \\ \blacksquare H^{\alpha}(p,q) = \sum_{e \in \xi'_h} \frac{1}{2\alpha} \int_e \llbracket (K \nabla p) \cdot n_e \rrbracket \llbracket (K \nabla q) \cdot n_e \rrbracket \, d\gamma, \\ \blacksquare H^{\alpha}_{BN}(p,q) = \sum_{e \in \xi^N_h} \frac{1}{\alpha} \int_e (K \nabla p) \cdot n_e \, (K \nabla q) \cdot n_e \, d\gamma \\ \blacksquare H^{\alpha}_{N}(q) = \sum_{e \in \xi^N_h} \frac{1}{\alpha} \int_e g_N(K \nabla q) \cdot n_e \, d\gamma \quad L_N(q) = \sum_{e \in \xi^N_h} \int_e g_N q \, d\gamma \\ \blacksquare J_D(q) = \sum_{e \in \xi^D_h} \int_e p_D \{(K \nabla q) \cdot n_e\} \, d\gamma \quad \text{et} \quad J^{\alpha}_D(q) = \sum_{e \in \xi^D_h} \alpha \int_e p_D q \, d\gamma \end{array}$$

æ

イロト イ団ト イヨト イヨト

Formulation équivalente et problème discret

Formulation discrète : $a_h(p_h, q_h) = I_h(q_h)$

 $\begin{aligned} \forall p_h, q_h \in \mathcal{V}_h^k \text{ on pose }: \\ a_h(p_h, q_h) = \\ B(p_h, q_h) - J(p_h, q_h) + J(q_h, p_h) + J^{\alpha}(p_h, q_h) + H^{\alpha}(p_h, q_h) + H^{\alpha}_{BN}(p_h, q_h) \\ I_h(q_h) = L(q_h) + L_N(q_h) + J_D(q_h) + J^{\alpha}_D(q_h) + H^{\alpha}_N(q_h) \end{aligned}$

Observation

Ce formalisme conduit à

- Une formulation Bauman-Oden stabilisée par les sauts de l'inconnu et ceux de sa dérivée normale.
- Un ajout du saut de la dérivée normale dans la formulation NIPG (Rivière 02, Girault 78).
- Un ajout du terme de saut de l'inconnue dans la formulation de (Romkes, Prudhomme, Oden, 2003).

Estimations a priori en norme discrète et en norme L²

• Espace :

$$\mathcal{V}(h) = \mathcal{V}_h^k + H^s(\Omega) \cap H_0^1(\Omega), s \ge 2$$

• Norme d'énergie : $\| q \|^{2} = B(q,q) + J^{\alpha_{h}}(q,q) + H^{\alpha_{h}}(q,q) + H^{\alpha_{h}}_{BN}(q,q) + M(q,q)$

Définition de $M(\cdot, \cdot)$

$$M(p,q) = \sum_{e \in \xi'_h} \frac{2}{\alpha_h} \int_e \{(K \nabla p) \cdot n_e\} \{(K \nabla q) \cdot n_e\} \ d\gamma + \sum_{e \in \xi^D_h} \frac{1}{\alpha_h} \int_e (K \nabla p) \cdot n_e(K \nabla q) \cdot n_e \ d\gamma$$

Propositions

- Orthogonalité : $a_h(p - p_h, q_h) = 0$ $\forall q_h \in \mathcal{V}_h^k$ • Continuité dans $\mathcal{V}(h)$: $\exists C > 0, / |a_h(p, q)| \leq C ||p|||||q|||, \quad \forall p, q \in \mathcal{V}(h).$
- Coercivité dans \mathcal{V}_h^k , pour $\alpha = \alpha_h = \sigma k^2 / h$: $\exists C > 0, / a_h(q,q) \ge C |||q|||^2, \quad \forall q \in \mathcal{V}_h^k.$

ъ

< 日 > < 同 > < 回 > < 回 > < □ > <

Estimation a priori

Estimation en norme d'energie, $p \in H^s$, $s \ge 2$

$$\| p - p_h \| \le C \frac{h^{\mu-1}}{k^{s-\frac{3}{2}}} \left(\sum_{E \in \tau_h} \| p \|_{s,E}^2 \right)^{\frac{1}{2}} \quad \mu = \min(k+1,s)$$

Estimation en norme L^2 , $p \in H^s$, $s \ge 2$, Ω convexe.

$$\|p - p_h\|_{0,\Omega} \le \left(C_1 \frac{h^{\mu-1}}{k^{s-\frac{3}{2}}} + C_2 \frac{h^{\mu}}{k^{s-1}}\right) \left(\sum_{E \in \tau_h} \|p\|_{s,E}^2\right)^{\frac{1}{2}}$$
$$\mu = \min(k+1,s)$$

Observations

Optimalité en norme d'énergie et sous-optimalité en norme L^2 .

J.-B. APOUNG K. (UPMC)

06 décembre 2006 23 / 65

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Tests numériques

$-\Delta p = f \operatorname{dans} \Omega = (0, 1)^2, \quad p = \sin(\pi x) \cos(\pi y) + \cos(\pi x) \sin(\pi y)$

$lpha=\sigma/h$ avec $\sigma=$ 10 ; \hookrightarrow sous-optimalité pour les ordres pairs.

	\mathcal{P}_1		\mathcal{P}_2		\mathcal{P}_3	
h	erreur L ²	taux	erreur L ²	taux	erreur L ²	taux
1/4	4.696 <i>e</i> - 01	-	1.309 <i>e</i> – 01	-	2.764 <i>e</i> - 02	-
1/8	1.479 <i>e</i> – 01	1.67	2.889 <i>e</i> – 02	2.18	1.977 <i>e</i> – 03	3.81
1/16	3.975 <i>e</i> – 02	1.90	6.930 <i>e</i> – 03	2.06	1.278 <i>e</i> – 04	3.95
1/32	1.015 <i>e</i> – 02	1.97	1.713 <i>e</i> – 03	2.02	8.044 <i>e</i> - 06	3.99
1/64	2.552 <i>e</i> – 03	1.99	4.271 <i>e</i> - 04	2.00	5.033 <i>e</i> - 07	4.00

$\alpha = \sigma/h$ avec $\sigma = 1000 \hookrightarrow$ on peut influencer la sous-optimalité.

	\mathcal{P}_1	\mathcal{P}_1		\mathcal{P}_2		
h	erreur L ²	taux	erreur L ²	taux	erreur L ²	taux
1/4	9.121 <i>e</i> – 01	—	1.328 <i>e</i> – 01	—	1.834 <i>e</i> - 02	_
1/8	2.962 <i>e</i> - 01	1.62	1.678 <i>e</i> – 02	2.98	1.070 <i>e</i> – 03	4.10
1/16	7.943 <i>e</i> – 02	1.90	2.130 <i>e</i> – 03	2.98	6.198 <i>e</i> – 05	4.11
1/32	2.02 <i>e</i> - 02	1.98	2.706 <i>e</i> - 04	2.98	3.739 <i>e</i> – 06	4.05
1/64	5.071 <i>e</i> - 03	1.99	3.519 <i>e</i> – 05	2.94	2.304 <i>e</i> - 07	4.02

Constructions de la vitesse de Darcy

Démarche

- Étendre le formalisme aux méthodes mixtes.
- Interpreter la relation a(u, v) + b(v, p) = l(v) comme une formule de reconstruction.
- Choisir les paramètres (par l'analogie entre formulation primale et duale.)

Première approche

chercher
$$u_h \in \Sigma_h^k$$
 tel que $\forall v_h \in \Sigma_h^k$,

$$\sum_{E \in \tau_h} \int_E \mathcal{K}^{-1} u_h \cdot v_h \, dx + \sum_{e \in \xi_h'} \frac{1}{2\alpha} \int_e^{[\![u_h \cdot n_e]\!] [\![v_h \cdot n_e]\!]} d\gamma$$

$$+ \sum_{e \in \xi_h^N} \frac{1}{\alpha} \int_e^{(u_h \cdot n_e)} (v_h \cdot n_e) \, d\gamma = - \sum_{E \in \tau_h} \int_E^{(v_h \cdot \nabla p_h)} dx + \sum_{e \in \xi_h'} \int_e^{[\![v_h]\!]} [\![v_h \cdot n_e]\!] \, d\gamma$$

$$+ \sum_{e \in \xi_h^D} \int_e^{(p_h - p_D)(v_h \cdot n_e)} d\gamma - \sum_{e \in \xi_h^N} \frac{1}{\alpha} \int_e^{(g_N)(v_h \cdot n_e)} d\gamma;$$

Deuxième approche

Prendre dans la première approche, $\llbracket u \cdot n_e \rrbracket = \llbracket -(K \nabla p) \cdot n_e \rrbracket$

Proposition (Estimation - première approche)

$$\sum_{E \in \tau_h} \|u - u_h\|_{0,E}^2 \approx \mathcal{O}(\frac{h^{2\mu-2}}{k^{2s-3}}).$$
$$\sum_{e \in \xi'_h} \|[(u - u_h) \cdot n_e]]\|_{0,e}^2 \approx \mathcal{O}(\frac{h^{2\mu-3}}{k^{2s-5}}).$$
$$\mu = \min(k+1, s)$$

Observations

 Saut de la dérivée normale améliorable (par raffinement de maillage) même pour une approximation P₁ de la pression.

$-\nabla \cdot K \nabla p = f$ dans Ω , $p = p_D$ sur $\partial \Omega$

 $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$, avec $\Omega_1 = (-1, 0) \times (-1, 1)$ et $\Omega_2 = (0, 1) \times (-1, 1)$. K = 1 dans Ω_1 et $K_2 = 10^{-4}$ dans Ω_2 . la solution exacte $p(x, y) = x^2 + y^2$. et données subséquentes.

Déroulement

Approximation \mathcal{P}_1 de la pression, avec un maillage uniforme fait de 2 × 10 × 10 triangles. Sur chaque arête $e, \alpha = \sigma/|e|$, avec $\sigma = 10$.

Construction de la vitesse par trois approches :

(a) simple différentiation locale : $\int_E K^{-1} u_h \cdot v_h dx = -\int_E v_h \cdot \nabla p_h dx \forall v_h \in \mathcal{P}_1(E)$

- (b) la seconde approche.
- (c) la première approche.

Observables

- (1) Vecteur vitesse de Darcy au milieu des arêtes.
- (2) Module de la vitesse de Darcy.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Tests numériques

Champs des vitesses de Darcy

Module des vitesses de Darcy

06 décembre 2006

28/65

Projection locale H(div) comme reconstruction

But

Corriger une vitesse de Darcy pour rendre sa composante normale continue.

Projection H(div) locale(P. Bastian & B. Rivière 2003)

Soit u_h la vitesse de Darcy discontinue et u^* la vitesse de Darcy avec trace normale continue. Alors u^* peut s'obtenir par :

$$\int_{e_i} \{ \boldsymbol{u}^* \cdot \boldsymbol{n}_{e_i} \} \boldsymbol{z} = \int_{e_i} \{ \boldsymbol{u}_h \cdot \boldsymbol{n}_{e_i} \} \boldsymbol{z} \, d\gamma \quad \forall \boldsymbol{z} \in P_{k-1}(e_i) \} \boldsymbol{i} = 1 \cdots$$

$$\int_{E} \boldsymbol{u}^* \cdot \nabla \boldsymbol{w} = \int_{E} \boldsymbol{u}_h \cdot \nabla \boldsymbol{w} \, dx, \qquad \forall \boldsymbol{w} \in P_{k-2}(E)$$

$$\int_{E} \boldsymbol{u}^* \cdot \mathbf{S}(\phi) = \int_{E} \boldsymbol{u}_h \cdot \mathbf{S}(\phi) \, dx, \qquad \forall \phi \in M_k(E)$$

 $\mathsf{lci}, \mathbf{S}(\phi) = (\partial_{x_2}\phi, -\partial_{x_1}\phi) \ M_k(E) = \{\phi \in P_k(E) : \phi_{|\partial E} = 0\}$

Proposition (projection locale appliquée au formalisme)

$$\|(u^* - u) \cdot n_e\|_{0,e} \approx \mathcal{O}(h^{\mu - \frac{3}{2}}), \|(u^* - u_h)\|_{0,E} \approx \mathcal{O}(h^{\mu - 1}). \text{ où } \mu = \min(k + 1, s)$$

Observation

Amélioration sans détérioration. En particulier, préservation de la moyenne dans l'élément, faible erreur sur la norme L2 dans l'élément.

J.-B. APOUNG K. (UPMC)

3.

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

Méthode de zoom numérique

- Introduction
- Méthode
- Application

Hydrostatique (couplex 2D)

Géométrie (à gauche), maillage (à droite)

Marne		Calcaire	Argile	Dogger
K(m/an)	3.1535 10 ⁻⁵	6.3072	3.153 10 ⁻⁶	25.2288

Isobares(gauche), faibles modules vitesse Darcy (droite)

Profils des vitesses de Darcy : à gauche (vx) à droite (vy)

Transport de l'iode 129

- Introduction
- Méthode et Analyse
- Applications

2

< ⊒ >

< A

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

2 Méthode de zoom numérique

- Introduction
- Méthode
- Application

< E

On peut être amener à :

Capturer les détails.

Améliorer une solution calculée (cas multi-échelle).

< 4 →

Motivations

On peut être amener à :

Capturer les détails

Améliorer une solution calculée (cas multi-échelle).

Solution Analytique

Cadre et algorithme formel

On considère le cadre multi-échelle du site de stockage

Objectif

Trouver un moyen

- pour résoudre les problèmes d'écoulement et de transport des radioéléments
- en prenant en compte une fuite au niveau de la galerie

Cadre et algorithme formel

Algorithme formel

- Etape de descente : Effectuer des calculs hydrodynamiques dans les domaines emboîtés jusqu'à capture du détail cherché.
- Etape de remontée : Remonter par des calculs successifs en résolvant le problème de transport des radioéléments, jusqu'à recouvrir le domaine tout entier.

Faisabilité

On peut par exemple

- Etape de descente : Coupler les méthodes
 - LDC (Local Defect Correction)(Hackbush, 1984)
 - aux méthodes multigrilles.
- Etape de remontée :
 - Si le maillage est structuré, utiliser les méthodes LDC instationaires (Hemker et al. 2002, Minero et al. 2006)

Cadre et algorithme formel

Difficultés

Gestion des maillages

• Résolution de l'équation de transport

Solution

- Méthode Chimère (pour la gestion des maillages)
- Méthode Galerkin discontinue (pour le transport)

(4) (5) (4) (5)

A D M A A A M M

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

2 Méthode de zoom numérique

- Introduction
- Méthode
- Application

< E

Algorithme

Étape de descente

- INITIALISER
 - Hydrodynamique sur un maillage grossier du domaine
- 8 RÉPÉTER
 - Afficher la solution
 - Définir le zoom
 - Nouveau calcul
- JUSQU'À
 - Capture du détail cherché

Étape de remontée

- INITIALISER
 - Transport dans le dernier zoom
- 2 RÉPÉTER
 - Agrandir le domaine
 - Transport (condition initiale = solution précédent domaine)
- 🟮 JUSQU'À
 - Recouvir le domaine entier
- Transport dans les zooms avec condition de sortie libre
- Test d'arrêt mesuré par la variation de la solution au bord

Méthode Chimère (HSDM)

On pose $V = V_1 + V_2$ et on cherche $u = \phi_1 + \phi_2$ par $a(\phi_1 + \phi_2, w_1 + w_2) = l(w_1 + w_2)$ Selon l'algorithme : Initialisation : $\phi_1^0 = \phi_2^0 = 0$ Itération jusqu'à convergence : $a(\phi_1^{m+1} + \phi_2^m, w_1) = l(w_1)$ $a(\phi_1^m + \phi_2^{m+1}, w_2) = l(w_2)$

Difficulté

Evaluer dans le cadre discret : $a(\phi_2^m, w_1)$ et $a(\phi_1^m, w_2)$

Une solution

Utiliser l'intersection de maillage.

J.-B. APOUNG K. (UPMC)

ヘロン 人間 とくほ とくほう

Proposition

La formule de quadrature ci-contre évalue exactement le produits de deux fonctions P_1 sur l'intersection des triangles.

イロト イヨト イヨト イヨト

06 décembre 2006

43 / 65

Application :– $\Delta u = 1$ dans Ω , u = 0 sur $\partial \Omega$

Inconvénients

Difficile à étendre en 3D.

Analyse de la descente

Proposition(Formule de quadrature)

$$a_{h}(u,v) = \sum_{k=1}^{N_{H}} \sum_{j=1..3} \frac{|T_{k}^{1}|}{3} \kappa \frac{\nabla u \cdot \nabla v}{l_{\Omega^{1}} + l_{\Omega^{2}}} |_{\xi_{jk}^{1}} + \sum_{k=1}^{N_{h}} \sum_{j=1..3} \frac{|T_{k}^{1}|}{3} \kappa \frac{\nabla u \cdot \nabla v}{l_{\Omega^{1}} + l_{\Omega^{2}}} |_{\xi_{jk}^{2}}$$

question

Contrôlons-nous l'erreur?

Proposition (Propriétés de la forme bilinéaire)

- Coercivité (Brezzi et al. 01)
- Continuité (O.Pironneau et J.-B. A., 05)

Proposition

Si les sommets de τ_i sont internes au éléments de τ_j , alors la solution discrète est unique et J-B APOUNG K. (UPMC) 06 décembre 2006 44/65

Question

Le zoom est-il une correction (une amélioration)?

Proposition(zoom comme correction)

 $\|\phi_h^2\|_{1,\Omega_2} \leq C(H+h)$

J.-B. APOUNG K. (UPMC)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

question

Jusqu'à combien de zoom récurcifs peut-on aller?

zoom récurcif

$$\begin{split} \int_{\Omega} (\kappa \nabla (\phi_H^1 + \phi_h^2 + \phi_h^3) \nabla (w_H^1 + w_h^2 + w_h^3)) \\ &= \int_{\Gamma_n} g(w_H^1 + w_h^2 + w_h^3) \ \forall w_H^1 \in V_H, \ w_h^2 \in V_h^2, \ w_h^3 \in V_h^3 \end{split}$$

Proposition

$$\|\phi_{\hbar}^{3}\| \leq \|\phi_{\hbar}^{3} + \phi_{h}^{2} + \phi_{H}^{1} - \phi\| + \|\phi_{h}^{2} + \phi_{H}^{1} - \phi\| \leq C(\varepsilon + \varepsilon')$$

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Analyse de la remontée

Question

A-t-on le droit d'éffectuer des calculs locaux dans l'étape de la remontée ? Si oui comment ?

Rappel de l'équation

$$\begin{aligned} &\alpha \frac{\partial c}{\partial t} + \beta c + u \cdot \nabla c - \nabla \cdot (\nu \nabla c) = 0 \text{ dans } \Omega \times (0, T) \\ &c(\cdot, 0) = c^0 \text{ in } \Omega, \qquad c \text{ ou } \frac{\partial c}{\partial n} = 0 \text{ sur } \partial \Omega \end{aligned}$$

Proposition

Soit *c* la solution dans un domaine ω et soit (\tilde{c}) la solution dans $\tilde{\Omega}$ contenant Ω . Alors

$$\|\tilde{c} - c\| \le C_1 |c^0|_{\infty} \frac{C}{t^{3/2}} e^{-\frac{|x-x_D|^2}{Ct} - \beta t}$$

Outils pour la mise en oeuvre

🕽 FreeFEM3D

- Solveur d'EDPs.
- Maille les surface d'objets provenant de la (CSG).
- Contient un solveur Éléments finis discontinus présentés.

2 Medit

- Visualiser la solution.
- Définir la zone de zoom.

48 / 65

Un formalisme Galerkin discontinu

- Cas de l'équation de transport
- Cas de l'équation de l'écoulement
- Application

2 Méthode de zoom numérique

- Introduction
- Méthode
- Application

3 Conclusion et perspectives

э

< E

- Application couplex 2D étendue à 3D.
- Application couplex 3D

< E

Couplex 2D en version 3D

Géométrie

constat

Taille des données trop importantes.

Pas d'information sur la solution exacte.

→ Utiliser au moins deux méthodes de résolution.

Solution

Exploiter les données du problème. Utiliser une décomposition par couche.

Avantage

On a une estimation sur la solution du problème global.

Problème global (Décomposition par couches)

 $\begin{aligned} -\nabla\cdot(K\nabla\phi) &= 0 \quad \text{dans} \quad \bar{\Omega} = \bar{\Omega}_0 \cup \bar{\Omega}_1, \bar{\Omega}_0 \cap \bar{\Omega}_1 = \Gamma, K|_{\Omega_i} = K_i, \\ \phi &= \phi_D \text{ sur } \partial\Omega_D, \quad K\nabla\phi \cdot n = g_N \text{ sur } \partial\Omega_N. \end{aligned}$

Compatibilité

$$\phi_0 = \phi_1$$
, sur Γ $K_0 \frac{\partial \phi_0}{\partial n_0} = -K_1 \frac{\partial \phi_1}{\partial n_1}$, sur Γ

 \hookrightarrow Résolution successive possible si $K_0 \gg K_1$.

$$\begin{array}{l} {{{\rm \acute E}tape \ 1: Neumann \ dans }} \\ {\Omega_0} \\ -\Delta \phi_0 = 0 \ dans \ \Omega_0, \\ \frac{\partial \phi_0}{\partial n_0} = 0, \ \ {\rm sur \ } \Gamma \\ + {\rm CL \ sur \ } \partial \Omega_0 \cap \Omega \end{array} \begin{array}{l} {{\rm \acute E}tape \ 2: Dirichlet \ dans \ \Omega_1} \\ -\Delta \phi_1 = 0 \ \ dans \ \Omega_1, \\ \phi_1 = \phi_0, \ \ {\rm sur \ } \Gamma \\ + {\rm CL \ sur \ } \partial \Omega_1 \cap \Omega \end{array}$$

Proposition

Soit ϕ_c telle que $\phi_c \equiv \phi_i$ sur $\Omega_i, i = 0, 1$. On a : $\|\phi_c - \phi\|_{1,\Omega} \simeq \mathcal{O}(\frac{\kappa_1}{\kappa_0})$.

- Résolution dans le domaine 5, correspondant au Tithonien
- Idem pour le domaine 4, correspondant au Kimmeridgien non recouvert.
- Résolution dans le domaine 2, correspondant au L2a-L2b et Hp1-Hp2.
- Résolution dans le domaine 3, correspondant au Kimmeridgien recouvert.
- Résolution dans le domaine 1, correspondant au C3a-C3b et Cox.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kimmeridgien non couvert. max \approx 366, min \approx 187

Tithonien. max \approx 342, min \approx 152

L2a-L2b et Hp1-Hp2. max \approx 366, min \approx 187

Kimmeridgien recouvert. max \approx 342, min \approx 152

L3a-L3b et Cox. max \approx 471, min \approx 189

$|P_{global} - P_{globalcouches}| / ||P||_{\infty,\Omega} (\approx 8\%)$

Isocourbes : (a) surface, (b) z = -100 m, (c) x = 821000 m

Conclusion

- Un nouveau formalisme Galerkin discontinu pour l'équation de transport des radionucléides est presenté
 - Il est stable pour tout ordre de polynôme sans limitation de pente
 - ② Conditions CFL abstraite sur le pas de temps proposée.
- Une nouvelle formulation DG pour l'équation de l'écoulement est proposé
 - Il introduit et contrôle une double stabilisations par les sauts de la pression et de la composante normale de son gradient.
 - Il Facilite la détermination de la vitesse de Darcy.
- Un algorithme de zoom numérique est proposé ainsi que des outils pour sa mise en oeuvre.
 - Les logiciels libres FreeFEM3D et Medit rendent sa mise en oeuvre conviviale.
 - Ø Formules de Quadrature approchées pour la méthode chimère est analysées.

- Étendre le formalisme à d'autres types d'équations : Navier-Stokes, couplage Darcy-Stokes.
- Analyser l'effet de la constante de stabilisation et comparer le nouveau formalisme pour les problèmes elliptiques aux formalismes existants.
- Analyser l'algorithme du zoom dans un cadre général.
- Intégrer l'outil de visualisation au solveurs d'EDPs pour plus de convivialité.
- Résoudre le problème Couplex 3D complet (recours au parallélisme).
- Appliquer au problème Couplex-Gaz.

MERCI!

J.-B. APOUNG K. (UPMC)

イロト イヨト イヨト

Soit *G* la fonction de Green du problème alors, $c(x,t) = \int_{\Omega} G(x-y,t)c^{0}(y)\delta y |G(x-y,t)| \leq \frac{C}{t^{3/2}}e^{-\frac{|x-y|^{2}}{Ct}}$

$$\begin{array}{l} \text{checher} \quad p_{h} \in V_{h}, u_{h} \in W_{h}, \quad \text{tels que} \quad \forall q_{h} \in V_{h}, v_{h} \in W_{h}, \\ \sum_{E \in \tau_{h}} \int_{E} \left(K^{-1} u_{h} \cdot v_{h} + v_{h} \cdot \nabla p_{h} - u_{h} \cdot \nabla q_{h} \right) dx \\ + \sum_{e \in \xi_{h}'} \int_{e} \left(\{u_{h} \cdot n_{e}\} \llbracket q_{h} \rrbracket - \{v_{h} \cdot n_{e}\} \llbracket p_{h} \rrbracket \right) d\gamma + \sum_{e \in \xi_{h}^{D}} \int_{e} \left((u_{h} \cdot n_{e})q_{h} - (v_{h} \cdot n_{e})p_{h} \right) d\gamma \\ + \sum_{e \in \xi_{h}'} \frac{\sigma}{2|e|} \int_{e} \llbracket p_{h} \rrbracket \llbracket q_{h} \rrbracket d\gamma + \sum_{e \in \xi_{h}^{D}} \frac{\sigma}{|e|} \int_{e} p_{h} q_{h} d\gamma \\ + \sum_{e \in \xi_{h}'} \frac{|e|}{2\sigma} \int_{e} \llbracket u_{h} \cdot n_{e} \rrbracket \llbracket v_{h} \cdot n_{e} \rrbracket d\gamma + \sum_{e \in \xi_{h}^{N}} \frac{|e|}{\sigma} \int_{e} (u_{h} \cdot n_{e})(v_{h} \cdot n_{e}) d\gamma \\ = \sum_{E \in \tau_{h}} \int_{E} fq_{h} dx \quad + \sum_{e \in \xi_{h}^{N}} \int_{e} (g_{N})q_{h} d\gamma - \sum_{e \in \xi_{h}^{D}} \int_{e} (v_{h} \cdot n_{e})p_{D} d\gamma \\ + \sum_{e \in \xi_{h}^{D}} \frac{\sigma}{|e|} \int_{e} (p_{D})q_{h} d\gamma - \sum_{e \in \xi_{h}^{N}} \frac{|e|}{\sigma} \int_{e} (g_{N})(v_{h} \cdot n_{e}) d\gamma. \end{array}$$

$$(1)$$

◆□> ◆圖> ◆理> ◆理> 「理

্র্যা ৩৭৫

$$\begin{split} &\sum_{E \in \tau_{h}} \int_{E} K \nabla p \cdot \nabla q \, dx \\ &+ \sum_{e \in \xi_{h}^{D}} \int_{e} \|p\| \{ (K \nabla q) \cdot n_{e} \} \, d\gamma - \sum_{e \in \xi_{h}^{D}} \int_{e} \|q\| \{ (K \nabla p) \cdot n_{e} \} \, d\gamma \\ &+ \sum_{e \in \xi_{h}^{D}} \int_{e} p(K \nabla q) \cdot n_{e} \, d\gamma - \sum_{e \in \xi_{h}^{D}} \int_{e} q(K \nabla p) \cdot n_{e} \, d\gamma \\ &+ \sum_{e \in \xi_{h}^{D}} \frac{\alpha}{2} \int_{e} \|p\| \|q\| \, d\gamma + \sum_{e \in \xi_{h}^{D}} \alpha \int_{e} pq \, d\gamma \\ &+ \sum_{e \in \xi_{h}^{L}} \frac{1}{2\alpha} \int_{e} \|(K \nabla p) \cdot n_{e}\| \|(K \nabla q) \cdot n_{e}\| \, d\gamma + \sum_{e \in \xi_{h}^{D}} \frac{1}{\alpha} \int_{e} (K \nabla p) \cdot n_{e} \, (K \nabla q) \cdot n_{e} \, d\gamma. \end{split}$$

$$(2)$$

$$&+ \sum_{e \in \xi_{h}^{L}} \int_{E} fq \, dx + \sum_{e \in \xi_{h}^{N}} \int_{e} (g_{N})q \, d\gamma + \sum_{e \in \xi_{h}^{D}} \int_{e} p_{D}(K \nabla q) \cdot n_{e} \, d\gamma \\ &+ \sum_{e \in \xi_{h}^{D}} \int_{e} \alpha p_{D}q \, d\gamma + \sum_{e \in \xi_{h}^{N}} \frac{1}{\alpha} \int_{e} g_{N}(K \nabla q) \cdot n_{e} \, d\gamma \end{split}$$

◆□> ◆圖> ◆理> ◆理> 「理

্রা ৩২৫