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CFL CONDITION AND BOUNDARY CONDITIONS FOR DGM
APPROXIMATION OF CONVECTION-DIFFUSION∗

JEAN-BAPTISTE APOUNG KAMGA† AND BRUNO DESPRÉS‡

Abstract. We propose a general method for the design of discontinuous Galerkin methods
(DGMs) for nonstationary linear equations. The method is based on a particular splitting of the
bilinear forms that appear in the weak DGM. We prove that an appropriate time splitting gives a
stable linear explicit scheme whatever the order of the polynomial approximation. Numerical results
are presented.
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1. Introduction. The convection-diffusion equation is widely used in real-life
problems such as contaminant transport in porous media [1, 8, 26]. Due to the ge-
ological structure of the problem, the equation is convection-dominant in random
distributed parts of the media. This makes its numerical resolution difficult. While
difference schemes suffer from the complex geometry of the domain, ordinary finite
element methods suffer from their lack of local conservativity [28], and finite volume
methods suffer from their low order of accuracy (due to low order polynomial approx-
imation). The discontinuous Galerkin method (DGM or DG), introduced in 1973 by
Reed and Hill [32], in its development [24] found here a good field of application. In a
computational aspect, the DGM can be used efficiently to handle the advection part
in an operator splitting technique scheme [27]. But this strategy may break apart
at boundary conditions of mixed type, where it is difficult to determine whether the
boundary condition is more in the advection step or in the diffusion step. For real-life
problems [8], the Dirichlet part of the boundary can also be split into inflow and
outflow parts. This boundary condition can astutely be distributed in between the
advection terms and diffusion terms [5, 6]. In a mathematical aspect, it is more conve-
nient to have a unique bilinear form even if the splitting technique is used [20, 37, 33].
This leads to an ordinary differential equation, a different approach is [39]. Assuming
for example that the DGM is used only in space to exploit the block diagonal mass
matrix obtained, most time discretizations are explicit and therefore require a CFL
condition.

In the one-dimensional case, using Von Neumann analysis, Chavent & Cockburn
[11] proved that explicit linear Euler time integration of the DGM is unconditionally
unstable if the ratio Δt

Δx is held constant. To overcome this striking difficulty and
still keep high order accuracy, Cockburn and Shu [19, 20, 21, 22] introduced the
RKDG (Runge–Kutta discontinuous Galerkin method). It uses at each time step an
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explicit Euler scheme, stabilized by a particular slope limiter, which makes the scheme
nonlinear. Due to this nonlinearity, proof of convergence of the fully discrete explicit
DGM is not possible except perhaps in very rare and special cases. We refer the reader
to Cockburn [18] for a presentation of the convergence theory for the DGM. Despite
this lack of theory, numerical experiments show the convergence. For example, in the
one-dimensional case for advection, the convergence is observed if the CFL condition
is of the form 1

2k+1 for polynomials of order k [18]. To the best of our knowledge, the
analysis of the fully discrete explicit DGM scheme remains an open problem.

In this work we propose a way to solve this problem. We propose an abstract
functional formalism. Within this formalism, it is easy to design explicit (only local-in-
the-cell) computations, which are linear and stable under CFL DGMs. Then we apply
this method to our model problem, which is advection diffusion in two dimensions,

∂tc + u.∇c−∇.(K∇c) = 0, x ∈ R2, t > 0.(1.1)

The diffusion coefficient is nonnegative K ≥ 0, and the velocity is divergence-free
∇.u = 0. Boundary conditions are general and are specified in the core of the paper.
Due to the stability (under the CFL condition) and linearity of our explicit DGM
scheme, we are able to prove the convergence by a standard method. For example, we
obtain the estimate of convergence in two dimensions for the advection case (K = 0),

‖c(nΔt) − cnh‖L2 ≤ C1Δt2 + C2h
p + E.

E is an error term due the discretization of the initial condition and can be taken
as small as desired. This estimate is true for the second order in time discretization.
The order in space is p, which is the degree of the polynomial basis. Since the optimal
order in space is p+ 1/2, we think this loss of 1/2 is an artifact of the analysis, which
could be corrected with a more sophisticated technique [13, 14, 15]. To our knowledge,
such an estimate is new and was not possible to get for previous fully discrete explicit
DGM schemes.

At the theoretical level the key idea is to reformulate (1.1) as a weak problem(
∂

∂t
U, V

)
+ A0(U, V ) + A1(U, V ) −A2(U, V ) = 0 ∀V ∈ V,(1.2)

where U is the solution, V is a test function, (., .) is the standard L2 scalar product,
and A0,1,2 are some bilinear forms defined later in this paper. The space is V ⊂∑

k L
2(Ωk), where (Ωk) is a partition of the plane, i.e., is the mesh. Among other

properties, the local bilinear forms A0(U, V ), A1(U, V ), and A2(U, V ) satisfy

A0(U,U) + A1(U,U) −A2(U,U) ≥ 0.(1.3)

The first order time discretization of (1.3) is as follows: Find Un
h , U

n+1
h ∈ Vh such

that for all test functions Vh ∈ Vh,(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n
h , Vh) −A2(U

n
h , Vh) = 0.(1.4)

When applied to (1.1), the bilinear form A0 is local-in-the-cell, and this is why the
scheme is explicit. The main stability property that we prove is the inequality

||Un+1
h ||L2(R2) ≤ ||Un

h ||L2(R2) ∀n ∈ N,(1.5)
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which is true under a CFL condition that is studied in detail. It guarantees stability
whatever the order of the polynomial approximation. Since A0 is in practice a local-
in-the-cell bilinear form, the scheme is explicit at the price of the resolution of a
local-in-the-cell linear system. At the implementation level, it does not cost more
than inverting the local mass matrix. We also study the second order discretization
in time,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
A0(U

n+1
h , Vh)(1.6)

+
2

3
A1(2U

n
h − Un−1

h , Vh) − 2

3
A2(2U

n
h − Un−1

h , Vh) = 0.

The CFL condition is twice as stringent for (1.6) than for (1.4). It is possible to define
all the parameters of the method in order to optimize the CFL condition. We will
apply this method for our convection-diffusion problem.

The paper is organized as follows. In section 2 we consider a general setting.
We present the properties which the bilinear forms should satisfy in this framework.
Assuming these properties, we discuss some time schemes and derive the abstract
CFL condition that guarantees their stability. In section 3 we address the convection-
diffusion equation within the discontinuous Galerkin approximation and show how
to cast the bilinear form to fit within the abstract formalism. We show how to
introduce commonly used boundary conditions. In section 4 we analyze the abstract
CFL condition in the case of a uniform grid and give values to all constants. We
give the bilinear forms in particular cases of pure advection and pure diffusion. We
conclude that the totally discrete schemes introduced for the convection-diffusion
equation make up a continuous interpolation between the scheme for pure advection
and the scheme for pure diffusion. In section 5 we analyze the convergence of the
second order schemes in the case of the pure advection equation. Finally, in section
6 we present numerical results for advection and diffusion and compare them with
other DGMs.

2. The abstract discontinuous Galerkin formalism. We first consider an
abstract formalism in a more general setting and derive some time discretization,
which will be stable under an abstract CFL condition.

2.1. Abstract formalism. Let us define the spaces

V ⊂ H.(2.1)

H is endowed with a scalar product, namely (., .) . In practice H = L2(Ω).
Definition 2.1. A sequence (Up)p ∈ V will be said to be L2 stable if there exists

a constant C ∈ R such that (Up, Up) ≤ C for all p ∈ N.
Let Ai, i = 0, 1, 2, be three bilinear forms on V satisfying the following properties:

⎧⎪⎪⎨
⎪⎪⎩
A1 is symmetric nonnegative.

There exist a bilinear form A3 also defined on V such that

A0(U,U) ≥ 1
2 (−A1(U,U) + A3(U,U)) and A2(U, V ) ≤ 1

2
(A1(U,U) + A3(V, V )) .

(2.2)

A consequence of (2.2) is

A0(U,U) + A1(U,U) −A2(U,U) ≥ 0 ∀U ∈ V.
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We now consider the problem (2.3):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Given U0 ∈ V,
find U ∈ C1(0, T ;V) such that ∀V ∈ V,(

∂

∂t
U, V

)
+ A0(U, V ) + A1(U, V ) −A2(U, V ) = 0,

U = U0 at t = 0.

(2.3)

In what follows we will assume that it has a unique solution.
Lemma 2.2. Assume that the bilinear forms Ai, i = 0, 1, 2, satisfy (2.2). Then

the solution to (2.3) is L2 stable.
Proof. Choosing V = U and using the property of (2.2) one gets directly that

dt
[
1
2 (U,U)(t)

]
≤ 0. Therefore the energy t 	→ (U,U)(t) decreases.

2.2. Time and space discretizations and abstract CFL conditions. Let
Vh ⊂ V be a finite-dimensional vectorial subspace of V. The unknown at time step n
is Un

h ∈ Vh. The test function is denoted by V n
h ∈ Vh. Under assumptions (2.2) on

bilinear forms Ai, i = 0, 1, 2, we can now derive some fully discrete schemes, which
are stable under abstract CFL conditions.

2.2.1. First order scheme. The first order scheme reads(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n
h , Vh) −A2(U

n
h , Vh) = 0 ∀Vh.(2.4)

We have the following result.
Theorem 2.3. Assuming that the bilinear forms Ai, i = 0, 1, 2, satisfy the prop-

erties (2.2), we assume that the time step satisfies the abstract CFL requirement

ΔtA1(Uh, Uh) ≤ (Uh, Uh) ∀Uh ∈ Vh.(2.5)

Then scheme (2.4) is L2 stable and(
Un+1
h , Un+1

h

)
≤ (Un

h , U
n
h ) .(2.6)

Δt > 0 exists because the dimension of Vh is finite.
Proof. The proof explicitly uses the inequalities of (2.2). The scalar product of

(2.4) with Un+1
h gives (

Un+1
h , Un+1

h

)
=

(
Un
h , U

n+1
h

)
− ΔtA0(U

n+1
h , Un+1

h ) − ΔtA1(U
n
h , U

n+1
h ) + ΔtA2(U

n
h , U

n+1
h )

≤
(
Un
h , U

n+1
h

)
− ΔtA0(U

n+1
h , Un+1

h ) − ΔtA1(U
n
h , U

n+1
h )

+
Δt

2

(
A1(U

n
h , U

n
h ) + A3(U

n+1
h , Un+1

h )
)

≤
(
Un
h , U

n+1
h

)
+

Δt

2

(
A1(U

n
h , U

n
h ) − 2A1(U

n
h , U

n+1
h ) + A1(U

n+1
h , Un+1

h )
)
.

Using the symmetry of bilinear form A1 and the scalar product, we rewrite the pre-
vious inequality as (

Un+1
h , Un+1

h

)
≤

(
Un+1
h , Un+1

h

)
−
((
Un+1
h − Un

h , U
n+1
h − Un

h

)
− ΔtA1

(
Un+1
h − Un

h , U
n+1
h − Un

h

))
.

Assuming the abstract CFL-like condition (2.5), the result is proved.
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2.2.2. Second order scheme. Extending to second order time discretization
the abstract DGM already mentioned is not easy. After numerous attempts, we
focused on the following approach, which is based on the theory of A-stable time
integration for stiff equations; see [25]. First, we begin with the retrograde second
order time integration,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
(A0 + A1 −A2) (Un+1

h , Vh) = 0 ∀Vh.(2.7)

Its stability can be proved, by taking Vh = Un+1
h in (2.7). The scheme is fully implicit

in the sense that it requires the inversion of a global linear system to get the new
value. Let us now define a semi-implicit second order time scheme. The idea is to
get rid of the cell-to-cell coupling that appears in (2.7). For this we use the relation
U((n+ 1)Δt) = 2U(nΔt)−U((n− 1)Δt) +O(Δt2), which is true provided that U is
smooth. Then we eliminate some occurrences of Un+1

h in (2.7) using transformation
Un+1
h ← 2Un

h − Un−1
h . It gives the scheme

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Vh

)
+

2

3
A0(U

n+1
h , Vh)(2.8)

+
2

3
A1(2U

n
h − Un−1

h , Vh) − 2

3
A2(2U

n
h − Un−1

h , Vh) = 0 ∀Vh.

We will see that in practice, A0 is of local-in-the-cell bilinear form. In this case,
scheme (2.8) is only locally implicit, and we need only inverse local linear systems to
get the new solution. Hence scheme (2.8) is in practice an explicit one.

Theorem 2.4. Assume the bilinear forms Ai, i = 0, 1, 2, satisfy the properties
(2.2), and assume the time step satisfies the abstract CFL requirement

2ΔtA1(Uh, Uh) ≤ (Uh, Uh) ∀Uh ∈ Vh.(2.9)

Then scheme (2.8) is L2 stable and(
Un+1
h , Un+1

h

)
+
(
2Un+1

h − Un
h , 2U

n+1
h − Un

h

)
(2.10)

≤ (Un
h , U

n
h ) +

(
2Un

h − Un−1
h , 2Un

h − Un−1
h

)
.

Proof. Let us take Vh = Un+1
h in (2.8). We get

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)
+

2

3
A0(U

n+1
h , Un+1

h )

+
2

3
A1(2U

n
h − Un−1

h , Un+1
h ) − 2

3
A2(2U

n
h − Un−1

h , Un+1
h ) = 0.

We can give a lower bound to A0(U
n+1
h , Un+1

h ) and −A2(2U
n
h − Un−1

h , Un+1
h ) using

(2.2). Therefore

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)
+

1

3
(A3 −A1)(U

n+1
h , Un+1

h )

+
2

3
A1(2U

n
h −Un−1

h , Un+1
h )− 1

3
A1(2U

n
h −Un−1

h , 2Un
h −Un−1

h )− 1

3
A3(U

n+1
h , Un+1

h ) ≤ 0,
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that is,

1

3

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)

− 1

3
A1(U

n+1
h − 2Un

h +Un−1
h , Un+1

h − 2Un
h +Un−1

h ) ≤ 0.

Let us define the energy

E(n + 1) =
(
Un+1
h , Un+1

h

)
+
(
2Un+1

h − Un
h , 2U

n+1
h − Un

h

)
.

One has the equality

E(n + 1) − E(n) = 6

(
3Un+1

h − 4Un
h + Un−1

h

Δt
, Un+1

h

)

−
(
Un+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h

)
.

Plugging in the previous inequality, we obtain

E(n + 1) ≤ E(n) −
(
Un+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h

)
+ 2ΔtA1(U

n+1
h − 2Un

h + Un−1
h , Un+1

h − 2Un
h + Un−1

h ).

Under the abstract CFL condition (2.9), the result is proved.

2.2.3. Implicit scheme. The implicit scheme is(
Un+1
h − Un

h

Δt
, Vh

)
+ A0(U

n+1
h , Vh) + A1(U

n+1
h , Vh) −A2(U

n+1
h , Vh) = 0.(2.11)

Lemma 2.5. The implicit scheme (2.11) is L2 stable unconditionally.
Proof. The proof is left to the reader.

2.3. Optimization of numerical parameters. It is well known that the DGM
applied to convection-diffusion needs the definition of some arbitrary numerical pa-
rameters in order to completely define the bilinear forms at interfaces. We refer to
[30, 12], where the dependence between the convergence of the DGM for stationary
problems and the numerical parameters is analyzed. In what follows, we analyze the
influence of the numerical parameters on the CFL condition (for nonstationary prob-
lems, of course). An open problem is to show that the parameter which is optimal
with respect to the CFL condition is also optimal for convergence.

By inspection of the bilinear forms defined in the following section for convection-
diffusion, it is enough to consider the abstract problem(

∂

∂t
U, V

)
+ A0(U, V ) + Aα

1 (U, V ) −Aα
2 (U, V ) = 0 ∀V ∈ V.(2.12)

The bilinear forms A0,Aα
1 ,Aα

2 satisfy (2.2). The dependence to the arbitrary param-
eters is represented by α. The CFL condition takes the form(

max
Uh∈Vh, Uh �=0

Aα
1 (Uh, Uh)

(Uh, Uh)

)
Δt ≤ C,(2.13)
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where C = 1 for the first order scheme (2.5) and C = 1
2 for the second order scheme

(2.9). So the best α, denoted as αopt, is the one that minimizes the constant in this
inequality. We obtain the min-max problem for αopt,(

max
Uh∈Vh, Uh �=0

Aαopt

1 (Uh, Uh)

(Uh, Uh)

)
≤

(
max

Uh∈Vh, Uh �=0

Aα
1 (Uh, Uh)

(Uh, Uh)

)
∀α.

We will apply this method in order to define optimized coefficients for DGM dis-
cretization for convection-diffusion in section 3.

3. Advection-diffusion with discontinuous coefficients and boundary
conditions. In what follows, we describe the introduction of mixed-type boundary
conditions in an advection-diffusion problem. We show that physically correct bound-
ary conditions fit into the framework. So the stability of the scheme is guaranteed for
all boundary conditions described below. Let us recall the model equation

∂tc + u.∇c−∇.(K∇c) = 0, x ∈ Ω ⊂ R2, t > 0.(3.1)

Ω is a bounded smooth open set of R2.

3.1. Abstract discontinuous Galerkin formalism of problem (3.1). We
are now going to show how to cast the discontinuous Galerkin formulation of problem
(3.1) so that the bilinear forms fit with properties (2.2).

3.1.1. Notation. We begin with some notation. Let (Ωk) be a mesh of the
plane. The cells Ωk do not overlap. They cover the plane. The boundary of cell
Ωk is ∂Ωk. The intersection of the boundary of cell Ωj and cell Ωk is referred to as
Σjk = Σkj . The outgoing normal from Ωk is nk.

The velocity field u is not necessarily constant but is divergence-free. Therefore
the degrees of freedom of u are naturally described in terms of its fluxes (ukj ,nk)
across Σjk. The diffusion coefficient is assumed to be positive and lower bounded,
but not necessarily constant. Let Kk denote the value of the diffusion coefficient in
cell Ωk. For simplicity, Kk is considered constant in the cell, but there is no real
issue if it is not, except at the implementation level. We will describe the boundary
conditions later on. If necessary we will assumed that the outgoing unit normal is
split into two parts{

if (u,nk) ≥ 0, then n+
k = nk and n−

k = 0,
if (u,nk) < 0, then n+

k = 0 and n−
k = nk.

(3.2)

Let us define the spaces

V = ⊕kH
2(Ωk) ⊂ H = ⊕kL

2(Ωk).(3.3)

H is endowed with a scalar product (U, V ) =
∑

k

∫
Ωk

uk(x)vk(x)dx.

3.1.2. Construction of the bilinear forms. Next we assume that c is smooth.
Let us define U = (uk) with uk = c|Ωk

. The test function is V = (vk). Let us define
the local bilinear form

A0(U, V ) =
∑
k

∫
Ωk

(−uk(t, x)u.∇vk(x) + uk∇.(Kk∇vk) + 2Kk∇uk.∇vk) dx.(3.4)
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We also need to define A1 and A2. So let us compute

(∂tU, V ) + A0(U, V ) =
∑
k

∫
Ωk

(−u.∇uk + ∇.(Kk∇uk)) vk

+
∑
k

∫
Ωk

(−uk(t, x)u.∇vk(x) + uk∇.(Kk∇vk) + 2Kk∇uk.∇vk) dx

=
∑
k

∫
∂Ωk

(
−ukvk(ukj ,nk) + ukKk

∂

∂nk
vk + vkKk

∂

∂nk
uk.

)
dσ = R.H.S.

Next we need to transform the right-hand side (R.H.S.) in order to be able to define
A1 and A2. For this task we define{

w+
k = Kk

∂
∂nk

uk − 1
2 (ukj ,nk)uk + αjkuk,

w−
k = −Kk

∂
∂nk

uk + 1
2 (ukj ,nk)uk + αjkuk

and {
z+
k = Kk

∂
∂nk

vk − 1
2 (ukj ,nk)vk + αjkvk,

z−k = −Kk
∂

∂nk
vk + 1

2 (ukj ,nk)vk + αjkvk.

The value of the positive parameter αjk = αkj will be specified later on. Then the
R.H.S. is also

R.H.S. =
∑
k

∫
∂Ωk

[
uk

(
Kk

∂

∂nk
vk −

1

2
(ukj ,nk)vk

)
+ vk

(
Kk

∂

∂nk
uk −

1

2
(ukj ,nk)uk

)]
dσ,

R.H.S. =
∑
k

∫
∂Ωk

1

2αjk
(w+

k z
+
k − w−

k z
−
k )dσ.

The nonnegative symmetric bilinear form is given by the w−z− part of the integral.
Therefore we define

A1(U, V ) =
∑
k

∫
∂Ωk

1

2αjk

(
−Kk

∂

∂nk
uk +

1

2
(ukj ,nk)uk + αjkuk

)
(3.5)

×
(
−Kk

∂

∂nk
vk +

1

2
(ukj ,nk)vk + αjkvk

)
dσ

so that we now have the relation

(∂tU, V ) + A0(U, V ) + A1(U, V ) −
∑
k

∫
∂Ωk

1

2αjk
w+

k z
+
k dσ = 0.(3.6)

It is the place into which boundary conditions must be plugged. Let us start with
some notation. The boundary between two cells Ωk and Ωj is still referred to as Σjk.
The exterior boundary of cell Ωk is Γk,

Γk = ∂Ωk ∩ ∂Ω, ∂Ωk = (∪jΣjk) ∪ Γk.(3.7)

To transform the residual in (3.6) we use the continuity equation

w+
k = w−

j on Σjk(3.8)

⇐⇒ Kk
∂

∂nk
uk − 1

2
(ukj ,nk)uk + αjkuk = −Kk

∂

∂nj
uj +

1

2
(ukj ,nj)uj + αjkuj .
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For mathematical convenience we consider that all boundary conditions may be rewrit-
ten as

w+
k = Rα

kw
−
k on Γk,(3.9)

where Rα
k ∈ R characterizes the boundary condition. This coefficient Rα

k is very
similar to a reflexion coefficient in time-harmonic wave equations. It will be more
obvious later on that physically correct boundary conditions are such that |Rα

k | ≤ 1.
αkk stands for the value of the artificial parameter on Γk, and (ukj ,nk) stands for the
value of the velocity flux on the boundary. We now define

A2(U, V ) =
∑
kj

∫
Σkj

1

2αjk

(
−Kj

∂

∂nj
uj +

1

2
(ukj ,nj)uj + αjkuj

)
(3.10)

×
(
Kk

∂

∂nk
vk − 1

2
(ukj ,nk)vk + αjkvk

)
dσ

+
∑
k

∫
Γk

Rα
k

2αkk

(
−Kk

∂

∂nk
uk +

1

2
(ukk,nk)uk + αkkuk

)

×
(
Kk

∂

∂nk
vk − 1

2
(ukk,nk)vk + αkkvk

)
dσ.

The bilinear form A3 is

A3(U, V ) =
∑
k

∫
∂Ωk

1

2αjk

(
Kk

∂

∂nk
uk − 1

2
(ukj ,nk)uk + αjkuk

)
(3.11)

×
(
Kk

∂

∂nk
vk − 1

2
(ukj ,nk)vk + αjkvk

)
dσ.

Now that we have defined all the bilinear forms, let us show that they satisfy the
required properties.

Lemma 3.1. Consider the bilinear forms (3.4), (3.5), (3.10), (3.11). Assume that
|Rα

k | ≤ 1. Then properties (2.2) are satisfied.
Proof. One has

A0(U,U) =
∑
k

∫
Ωk

(−uk(t, x)u.∇uk(x) + uk∇.(Kk∇uk) + 2Kk∇uk.∇uk) dx

≥
∑
k

∫
∂Ωk

(
−1

2
(u,nk)u

2
k + ukK

∂

∂nk
uk

)
dσ =

1

2
(−A1(U,U) + A3(U,U)) ,

which proves the first part of (2.2). Then using the Cauchy–Schwarz inequality and
property |Rα

k | ≤ 1, one gets A2(U, V ) ≤ 1
2 (A1(U,U) +A3(V, V )), which is the second

part of (2.2). A1 is obviously symmetric nonnegative.

3.1.3. Boundary conditions. One major particularity of this formalism is the
way boundary conditions are introduced. They are all defined by giving different
values to parameter Rα

k . Equation (3.9) shows how to introduce homogeneous bound-
ary conditions. The expressions of Rα

k for commonly used boundary conditions are
given in Table 3.1. For the Robin-type boundary condition, we need to restrict the
admissible boundary conditions to 1

2 (u,n) + σ ≥ 0 so that |Rα
k | ≤ 1.

Lemma 3.2. All Rα
k given in Table 3.1 satisfy the inequality |Rα

k | ≤ 1.
Proof. The proof is obtained by straightforward computation.
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Table 3.1

Values of Rα
k for commonly used boundary conditions in the convection-diffusion equation.

Outgoing Kk = 0, (u,n) > 0 Rα
k =

−(u,n)+α
(u,n)+α

Ingoing Dirichlet Kk = 0, (u,n) < 0 Rα
k = 0

Dirichlet Kk > 0, (u,n) = 0 Rα
k = −1

Neumann Kk > 0, (u,n) = 0 Rα
k = 1

Mixed or Robin Kk
∂
∂n

c + σc = 0 Rα
k =

α− 1
2
(u,n)−σ

α+ 1
2
(u,n)+σ

3.2. Fully discrete DGM. Now we need to choose the space Vh. The standard
choice for DGMs is Vh = Vp ⊂ V with

Vp = ⊕kPp(Ωk),(3.12)

where Pp(Ωk) is the space of all polynomial functions of degree p ∈ N or less on
cell Ωk. Applying the time discretization defined in section 2.2, we obtain the fully
discrete DGM. By construction, this DGM is L2 stable for all p and without the need
of any limiter. Therefore this method is different from the standard RKDG approach.
The bilinear form A0 is local-to-one-cell so that both the first (2.4) and the second
(2.7) order schemes are semi-implicit. In fact, one needs only inverse local linear
systems to get the new solutions. Let us now analyze the abstract CFL condition in
the case of uniform meshes.

4. CFL analysis. In this section we show that the abstract CFL condition (2.5)
is equivalent to standard CFL requirements for the convection-diffusion equation,
which is a kind of interpolation between pure convection and pure diffusion.

Lemma 4.1. Consider (for simplicity) a sequence of triangular and conformal
meshes. Assume the sequence of meshes is uniformly regular. Denote by h a charac-
teristic length of the mesh. Consider the first order scheme (2.4) with bilinear forms
(3.4), (3.5), (3.10).

For all p ∈ N, there exists two constants C1
p > 0, C2

p > 0 such that if

3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC2
ph

3

)
≤ 1,(4.1)

then the abstract CFL condition (2.5) holds, and (2.4) is L2 stable. Assuming that K
is constant for simplicity, the optimal value of α corresponding to the least stringent
CFL constraint is

αopt =

√
|u|2
4

+
K2C1

p

C2
ph

2
.(4.2)

Proof. First, the abstract CFL condition (2.5) is

Δtmax
k

(
max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(αkjuk + 1
2 (u,nk)uk −K ∂

∂nk
uk)

2∫
Ωk

u2
k

)
≤ 1.

This is true once the following inequality is satisfied:

Δtmax
k

(T k
1 + T k

2 + T k
3 ) ≤ 1,
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where T k
1 , T

k
2 , T

k
3 are given by

T k
1 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(αkjuk)
2∫

Ωk
u2
k

,

T k
2 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

( 1
2 (u,nk)uk)

2∫
Ωk

u2
k

,

T k
3 = 3 max

degree(uk)≤p

1

2αkj

∫
∂Ωk

(K ∂
∂nk

uk)
2∫

Ωk
u2
k

.

Let us introduce the linear transformation Fk that maps the triangular cell Ωk onto
the reference cell T̂ . Using the regularity of the mesh,

T k
1 ≤ 3

αkj

2hck

(
max

degree(ûk)≤p

∫
∂T̂

û2
k∫

T̂
û2
k

)
,

where ck depends on transformation Fk. Since the mesh is assumed to be uniformly
regular, ck is uniformly bounded from below. Let us define

cp = max
degree(ûk)≤p

∫
∂T̂

û2
k∫

T̂
û2
k

and C1
p =

mink c
k

cp
. Then T k

1 ≤ 3

2

αkj

h

1

C1
p

.

Also, one has

T k
2 ≤ 3

2

|u|2
4h

1

αkjC1
p

.

Using again the regularity of the mesh, we have

T k
3 ≤ 3

2

K2
k

αkj

dk
h3

(
max

degree(uk)≤p

∫
∂T̂

( ∂
∂n̂k

uk)
2∫

T̂
û2
k

)
,

where dk depends on Fk. Since the mesh is assumed to be uniformly regular, dk is
uniformly upper bounded. Let us define

ep = max
degree(ûk)≤p

∫
∂T̂

∂
∂n̂u

2
k∫

T̂
û2
k

and C2
p =

1

ep max
k

dk
. Then T k

3 ≤ 3

2

K2
k

αkj

dk
h3

1

C2
p

.

Putting this all together, we have

Δtmax
k

(T k
1 + T k

2 + T k
3 ) ≤ 3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC3
ph

3

)
.

The abstract CFL condition is thus satisfied once we have

3

2
Δtmax

k

(
αkj

C1
ph

+
|u|2

4αkjC1
ph

+
K2

k

αkjC3
ph

3

)
≤ 1.

Assuming K is constant, the optimal value of parameter α is the one that minimizes
the multiplicative constant in front of Δt. Since the constant is aα + 1

αb , where
a > 0 and b > 0 are constants, then the optimal value is the solution of the equation
d
dα

(
aα + b

α

)
= 0, that is, α =

√
b
a . Expanding with the definition of a and b, it gives

(4.2).
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4.1. Particular cases. This section discusses the particular cases of the pure
advection equation (i.e., K ≡ 0,u constant) and pure diffusion equation (i.e., u ≡ 0
but K > 0).

4.1.1. Pure advection. In this particular case we have (K ≡ 0,u constant).
Notation is still the same as in section 3.1.1. A consequence of Lemma 4.1 is the
following.

Lemma 4.2. Consider a sequence of triangular and conformal meshes. Assume
the sequence of meshes is uniformly regular. Denote by h a characteristic length of
the mesh. For all p ∈ N, there exists a C1

p > 0 such that if

|u|Δt ≤ C1
ph,(4.3)

then the abstract CFL condition is true.

4.1.2. Pure diffusion. In this particular case we have (K > 0 but u ≡ 0). The
equation is

∂tc−∇.(K∇c) = 0.(4.4)

We consider αkj ≡ α > 0 for simplicity of notation. Asfwe s in Lemma 4.1 we have
the following.

Lemma 4.3. Consider a sequence of triangular and conformal meshes. Assume
the sequence of meshes is uniformly regular. Denote by h a characteristic length of
the mesh. For all p ∈ N, there exists a C2

p > 0 such that if

Δt ≤ 1
α

C1
ph

+ K2

αC2
ph

3

,(4.5)

then the abstract CFL condition is true. Both constants C1
p , C

2
p depend only on the

mesh and the degree of the polynomials, and not on the parameters of the equations
or on α.

For an optimal value for parameter α, we also have the following.
Lemma 4.4. Consider the CFL inequality (4.5), with parameter α set to

α =
K

h
.(4.6)

Then inequality (4.5) is equivalent to the more standard CFL inequality

KΔt ≤ C3
ph

2,
1

C3
p

=
1

C1
p

+
1

C2
p

.(4.7)

The proof is left to the reader.
The value (4.6) is optimal, since we recover the classical time step CFL constraint

for explicit discretization of diffusion.
Remark. Formula (4.2) is a kind of continuous interpolation between (4.3) and

(4.7). More importantly, if K ≡ 0, then α = |u|
2 and the scheme defined by (3.4),

(3.5), (3.10) is equal to the standard DGM for the pure advection case. On the other
hand, if u ≡ 0, then the method is equal to the DGM defined above for the pure
diffusion case. Therefore (4.2) ensures that the scheme for advection-diffusion is a
continuous interpolation between the scheme for pure advection and the scheme for
pure diffusion.
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5. Convergence analysis for the advection case. Let us now state the
convergence result. We restrict the analysis to the DGM for advection and leave
convergence analysis of diffusion for future studies. Let us define an L2 projection
πh : H → Vp,

πh(u) = (uk) ⇐⇒
∫

Ωk

uk(x)vk(x)dx =

∫
Ωk

u(x)vk(x)dx ∀vk, ∀k.(5.1)

The scheme that we analyze in this section is defined by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U0
h = πh(u0), where u0 is the initial condition,

U1
h is the solution of the first order time scheme (2.4),

Un+1
h is the solution of the second order time scheme (2.8),

the bilinear forms are A0, A1, A2, A3,

as defined in section 3.1.2 in the case K ≡ 0.

(5.2)

We will use the following approximation property of the projection πh.
Lemma 5.1. Let E be an element (a triangle or a tetrahedron) in R

n(n = 2, 3)
of diameter hE. Then for any u ∈ Hk+1(E),

‖u− πhu‖Hr(E) ≤ Chk+1−r
E ‖u‖Hk+1(E) r = 0, 1,

where C is independent of hE. See [2].
Lemma 5.2 (trace inequality). Let E be an element in R

n(n = 2, 3) of diameter
hE. Let ek be an edge or a face of E. Then for any f in Hs(E) and for s ≥ 2,

‖f‖L2(ek) ≤ Ĉ|ek|
1
2 |E|− 1

2 (‖f‖L2(E) + hE‖∇f‖L2(E)).

If f is a polynomial of degree p > 0 on E,

‖f‖L2(ek) ≤ Ĉp2|ek|
1
2 |E|− 1

2 (‖f‖L2(E)).

Here Ĉ is a constant independent of hE and p. See [33].
Lemma 5.3. Let c ∈ V be the solution of the advection equation and Un

h ∈ Vp be
the solution of (5.2). Then

θ2
l+1 − θ2

l ≤ 6Δtrl+1,(5.3)

where

θ2
l = (ξl, ξl) + (2ξl − ξl−1, 2ξl − ξl−1) ∀ l ≥ 1,

ξl = πhu(lΔt) − U l
h,

6χl = πhu(lΔt) − u(lΔt) and

rl+1 =
1

3

(
3χl+1 − 4χl + χl−1

Δt
, ξl+1

)
+

2

3
A0(χ

l+1, ξl+1)

+
2

3
A1(2χ

l − χl−1, ξl+1) − 2

3
A2(2χ

l − χl−1, ξl+1)

+
1

3

(
3ul+1 − 4ul + ul−1

Δt
− 2∂tu((l + 1)Δt), ξl+1

)

+
2

3
A1(2u

l − ul−1 − ul+1, ξl+1)r

− 2

3
A2(2u

l − ul−1 − ul+1, ξl+1).
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Proof. Taking Vh = ξl+1 in (2.8) with U l
h replaced by πhu(lΔt), and subtracting

the resulting equation in which Vh = ξl+1, from (2.8), gives

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
+

2

3
A0(ξ

l+1, ξl+1)

+
2

3
A1(2ξ

l − ξl−1, ξl+1) − 2

3
A2(2ξ

l − ξl−1, ξl+1) = rl+1.

Using the lower bounds of A0 and A2 given by (2.2) and the symmetry of the bilinear
form A1, we have

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
+

1

3
A1(ξ

l+1 − 2ξl + ξl−1, ξl+1 − 2ξl + ξl−1) ≤ rl+1.

Now applying the abstract CFL condition (2.9), we further obtain

1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
− 1

6Δt
(ξl+1 − 2ξl + ξl−1, ξl+1 − 2ξl + ξl−1) ≤ rl+1

which, from the equality

(θ2
l+1−θ2

l )/(6Δt) =
1

3

(
3ξl+1 − 4ξl + ξl−1

Δt
, ξl+1

)
− 1

6Δt
(ξl+1−2ξl+ξl−1, ξl+1−2ξl+ξl−1),

reduces to θ2
l+1 − θ2

l ≤ 6Δt rl+1. This ends the proof.
Lemma 5.4. Notation is the same as in Lemma 5.3. Let us assume that the

solution c is sufficiently smooth. Then there exist two constants, C1 and C2 not
depending on l, Δt, and h such that

|rl+1| ≤ (C1(Δt)2 + C2h
μ−1)θl+1.(5.4)

Here μ = min(p + 1, s) and s is the order of regularity of the solution in Sobolev’s
spaces.1

Proof. The velocity u is constant. In this proof we denote its module by cvel = |u|.
The method consists of estimating all the terms in the right hand side in the definition
of rl+1 in lemma 5.3. By the definition of the projection πh, we have

1

3

(
3χl+1 − 4χl + χl−1

Δt
, ξl+1

)
= 0.

Since u.∇ξl+1
k ∈ Vp, we have

∫
Ωk

χl+1
k u.∇ξl+1

k dx = 0. Therefore A0(χ
l+1, ξl+1) = 0.

Let us estimate |A1(2χ
l − χl−1, ξl+1)|.

|A1(2χ
l − χl−1, ξl+1)|≤

∑
k

∫
e∈∂Ωk

cvel|(2χl
k − χl−1

k )||ξl+1
k |

≤
∑
k

cvelh
−1

(
‖(2χl

k − χl−1
k )‖L2(Ωk)(5.5)

+h‖∇(2χl
k − χl−1

k )‖L2(Ωk)

)
‖ξl+1

k ‖L2(Ωk)

≤
∑
k

cvelc1h
μ−1‖ξl+1

k ‖L2(Ωk)

≤ Chμ−1(ξl+1, ξl+1)
1
2 .

1A requirement of which is that u ∈ C1([0, T ];Hs(Ω)), utt ∈ L∞([0, T ];L∞(Ω)), and uttt ∈
L∞([0, T ];L2(Ω)).
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Similarly,

|A2(2χ
l − χl−1, ξl+1)|≤

∑
k,j

∫
e∈∂Ωk∩∂Ωj

cvel|(2χl
j − χl−1

j )||ξl+1
k |

≤
∑
k,j

cvelh
−1

(
‖(2χl

j − χl−1
j )‖L2(Ωj)(5.6)

+h‖∇(2χl
j − χl−1

j )‖L2(Ωj)

)
‖ξl+1

k ‖L2(Ωk)

≤ Chμ−1(ξl+1, ξl+1)
1
2 .

The two other terms are∣∣∣∣
(

3ul+1 − 4ul + ul−1

Δt
− 2(∂tu)l+1, ξl+1

k

)∣∣∣∣≤ (Δt)2
∑
k

∫
Ωk

cvel|∂tttu(t∗, x)||ξl+1
k (x)|

≤ C(Δt)2‖∂tttu‖L∞(0,T ;L2(Ω))(ξ
l+1, ξl+1)

1
2

≤ C(Δt)2(ξl+1, ξl+1)
1
2 .

Also,

|A1(2u
l − ul−1 − ul+1, ξl+1)|≤ (Δt)2

∑
k

∫
e∈∂Ωk

cvel|∂ttu(t∗, x)||ξl+1
k (x)|

≤ (Δt)2
∑
k

cvel‖∂ttu(t∗)‖L∞(Ωk)

∫
e∈∂Ωk

|ξl+1
k (x)|

≤ (Δt)2
∑
k

cvel‖∂ttu(t∗)‖L∞(Ωk)h
1
2h− 1

2 ‖ξl+1
k ‖L2(Ωk)

≤ C(Δt)2‖∂ttu‖L∞(0,T ;L∞(Ω))(ξ
l+1, ξl+1)

1
2

≤ C(Δt)2(ξl+1, ξl+1)
1
2 .

Proceeding as above, we have

|A2(2u
l − ul−1 − ul+1, ξl+1)| ≤ C(Δt)2(ξl+1, ξl+1)

1
2 .

Now observing that (ξl+1, ξl+1)
1
2 ≤ θl+1, we obtain the result by summing all the

above inequalities.
Theorem 5.5 (L2 error estimate for pure advection). Let c ∈ V be the solution

of (1.1) in the advection case (K ≡ 0) with initial condition c0 ∈ Hs(s ≥ 2) and
Uh ∈ Vp the solution of (2.8), with the initial condition given by (5.2). Assume the
CFL condition (2.9). Then there exist two constants C1 and C2 depending only on T
and u such that

‖(u− Uh)(T )‖L2 ≤ 3‖πhu(Δt) − U1
h‖L2 + C1(Δt)2 + C2h

μ−1,

where μ = min(p + 1, s).
Proof. Using the triangular inequality, we have

‖(u− Uh)(T )‖L2 ≤ ‖(u− πhu)(T )‖L2 + ‖(πhu− Uh)(T )‖L2 .

The first term on the R.H.S. is bounded using the classical approximation theory [16]
‖(u− πhu)(T )‖L2 ≤ c(u)hμ. Observe that by

‖(πhu− Uh)(T )‖2
L2 = (ξN , ξN ),
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it is possible to give an upper bound where N is defined by T = NΔt. Therefore
according to Lemma 5.3, we have(

θ2
n+1 − θ2

n

)
/6Δt ≤ rn+1.

From Lemma 5.4 there exist two constants C1 and C2 such that

θ2
n+1 − θ2

n ≤ 6Δt(C1(Δt)2 + C2h
μ−1)θn+1.

We then have θ2
n+1 − 6Δt(C1(Δt)2 + C2h

μ−1)θn+1 ≤ θ2
n, which can be rewritten as(

θn+1 − 3Δt(C1(Δt)2 + C2h
μ−1)

)2 ≤ θ2
n +

(
3Δt(C1(Δt)2 + C2h

μ−1)
)2

.

Therefore θn+1 − θn ≤ 6Δt(C1(Δt)2 + C2h
μ−1). Summing this inequality over all n

from 1 to N − 1 produces

θN ≤ θ0 +

n=N−1∑
n=1

6Δt(C1(Δt)2 + C2h
μ−1).

Since

θ2
0 = (ξ1, ξ1) + (2ξ1 − ξ0, 2ξ1 − ξ0)

≤ ((ξ1, ξ1)
1
2 + (2ξ1 − ξ0, 2ξ1 − ξ0)

1
2 )2

≤ (3(ξ1, ξ1)
1
2 + (ξ0, ξ0)

1
2 )2,

we have θ0 ≤ 3(ξ1, ξ1)
1
2 + (ξ0, ξ0)

1
2 . By definition of the scheme, initials values are

such that

ξ1 = πhu(Δt) − U1
h and ξ0 = 0.

Also one has NΔt = T so that
∑N−1

1 (6Δt) ≤ 6T . Therefore taking Ci = Ci6T, i =
1, 2, ends the proof.

Remark.
• The above theorem shows the convergence of the second order time discretiza-

tion. Note that since it is second order in time, two initial conditions are
needed: U0

h , U
1
h . We have taken U1

h as the solution of a particular iteration
of the first order scheme. So πhu(Δt) − U1

h can be kept as small as we need.
• One can observe that in the demonstration above, except in Lemma 5.4,

we have used only the property of the bilinear forms A0,A1,A2. So by
just giving an analogous lemma for pure diffusion and for mixed convection-
diffusion equations, one obtains the convergence result for those equations.
It is possible to guess that, in general, one has

|rl+1| ≤ (C1(Δt)ν + C2h
μ)(ξl+1, ξl+1)

1
2 ,

where ν = 1, 2 is the order of time discretization and μ is the order of the
approximation error seen by the bilinear forms A0,A1,A2. Note that μ can
be kept optimal by replacing the L2-projection with a well-chosen projection
Rh related to the Gauss quadrature formula; see [17].

6. Numerical results. This section is devoted to the study of the order of
convergence of our method by means of numerical tests and comparison with other
methods. The algorithm presented in this work is denoted by the words “new formal-
ism.”
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6.1. Pure advection. In this example, we consider (1.1) in the case when K ≡
0. The computational domain is (Ω = (−0.5, 0.5)2). The initial condition and the
inflow boundary condition are taken from the exact solution, which is chosen here to
be

c(t, x, y) = exp

(
− (x̂− xc)

2 + (ŷ − yc)
2

2σ2

)
.

The velocity field is u = (−1, 1)T and x̂ = x + t, ŷ = y − t. The parameters are
xc = 0.25, yc = −0.25, 2σ2 = 0.004. The time interval for the simulation is (0, 0.5),
which is the required time to shift the cone from its initial position to the symmetric
position with respect to the center (0, 0). The domain is subdivided into an initial
mesh consisting of 8×8×2 = 138 uniform regular triangles. We then successively refine
the mesh and compute L2 and L∞ errors eh on the mesh of size h and the numerical
convergence rates by the ratio ln(eh/eh/2)/ ln(2). The use of uniform meshes leads
to the following values for the parameters in the CFL analysis. In formula (4.3) the
value of C1

p is

C1
p =

{
1

4+4
√

2
for p = 1,

1
6+6

√
2

for p = 2.

For a second order in time discretization the value of C1
p is divided by 2. In our

computations we divide it by 10, just to stay away from the optimal value. Table 6.1
shows the behavior of our formalism with respect to the order of the polynomial basis
and time discretization. In Table 6.2 we compare the new formalism with RKDG
(without flux limiting), RKDG (with the Cockburn–Shu flux limiting) that we call
TVBMRKDG (total variation bounded modified slope limiter; see [23]), and with a
Crank–Nicholson scheme applied to the stabilized DGM formulation of convection-
equation introduced by Brezzi, Marini, and Süli [10]. The last one is introduced to
compare our results to schemes in which the global matrix is inverted at every time
step. We have done an element renumbering in that Crank–Nicholson scheme in order
to have a thin band global matrix. We factor the global matrix before entering into
loops, which leads to a gain in time compared to a sparse direct resolution of the
global algebraic equation at every time step. The time required to do this operation
is denoted by R in Table 6.2.

Observations. From Table 6.1, the error at the time T is of the form C1(Δt)α +
C2h

β , where α is the order of the time discretization and β is a real whose optimal
value is β = p + 1 (where p is the degree of the polynomials). Even if constants
C1, C2 influence the computed convergence rate, one can still observe that when using
polynomials of order p with second order time discretization, the L2 error is at least
of order p in space. By comparison with other theoretical results [10] it is possible

to conjecture a behavior of the form O(Δt2) + O(hp+ 1
2 ). But for this test problem

the error in time is clearly dominant over the error in space. Therefore it is difficult
to clearly identify the asymptotic order of convergence when using the second order
in time discretization. At a more general level, it shows the interest of the second
order in time discretization. This is seen in Table 6.2, where we observe the same
convergence rate with RKDG without flux limiting, which is of order 2 for polynomials
of order 1. The same convergence rate is observed for the Crank–Nicholson scheme
applied to the formulation of [10]. These three second order formulations produce the
same convergence rate for first order polynomials.
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Table 6.1

Numerical L2 errors, L∞ errors, and convergence rate at time t = 0.5s, for first and second
order in time with first and second order basis polynomials, in the new formalism ((2.4), (2.8))
scheme applied to the pure advection equation.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P1 basis polynomials
1/8 5.47E − 02 − 7.28E − 01 − 5.15E − 02 − 6.42E − 01 −
1/16 4.08E − 02 0.49 6.15E − 01 0.31 3.43E − 02 0.59 5.07E − 01 0.34
1/32 2.11E − 02 1.02 3.54E − 01 0.94 1.31E − 02 1.39 2.16E − 01 1.23
1/64 9.72E − 03 1.16 1.63E − 01 1.17 3.08E − 03 2.09 5.65E − 02 1.93
1/128 4.78E − 03 1.02 7.55E − 02 1.11 5.87E − 04 2.40 1.13E − 02 2.32

P2 basis polynomials
1/8 4.23E − 02 − 6.39E − 01 − 3.14E − 02 − 4.83E − 01 −
1/16 2.05E − 02 1.05 3.21E − 01 0.99 6.99E − 03 2.17 1.10E − 01 1.80
1/32 1.09E − 02 0.91 1.59E − 01 1.01 5.44E − 04 3.68 1.17E − 02 3.23
1/64 5.90E − 03 0.89 8.49E − 02 0.91 4.37E − 05 3.64 1.87E − 03 2.65
1/128 3.10E − 03 0.93 4.49E − 02 0.92 6.66E − 06 2.73 2.53E − 04 2.88

Table 6.2

Comparison of numerical errors and convergence rates at time t = 0.5s, for second order in
time with first order basis polynomials. R is the time spent renumbering the elements and factoring
the global matrix. Computational times are for the finest mesh, using a Pentium III/1.266 GHZ.

New formalism RKDG TVBMRKDG Crank–Nicholson
h Error Rate Error Rate Error Rate Error Rate

L2 errors
1/8 5.15E − 02 − 5.18E − 02 − 5.23E − 02 − 5.15E − 02 −
1/16 3.43E − 02 0.59 3.44E − 02 0.59 3.83E − 02 0.45 3.43E − 02 0.59
1/32 1.31E − 02 1.39 1.31E − 02 1.39 2.96E − 02 0.37 1.31E − 02 1.39
1/64 3.08E − 03 2.09 3.08E − 03 2.09 1.39E − 02 1.09 3.07E − 03 2.09

L∞ errors
1/8 6.42E − 01 − 6.48E − 01 − 6.57E − 01 − 6.43E − 01 −
1/16 5.07E − 01 0.34 5.08E − 01 0.35 5.58E − 01 0.24 5.05E − 01 0.34
1/32 2.16E − 01 1.23 2.16E − 01 1.23 4.63E − 01 0.27 2.15E − 01 1.23
1/64 5.65E − 02 1.93 5.62E − 02 1.96 2.79E − 01 0.73 5.62E − 02 1.93

CPU time
1/64 81.38 90.34 32400 553.93 + R

6.2. Pure diffusion. In this example we consider the Dirichlet equation (1.1)
with (K ≡ 1, u ≡ 0). The computational domain is Ω = (0, 1)2. The boundary
condition is homogeneous so that the exact solution is

c(t, x, y) = sin(πx) sin(πy) exp(−2π2t).

The initial condition is taken from this exact solution. The time interval is (0, 1.510−2).
This is the required time to reduce the maximum of the exact solution by about 25%.
The domain is meshed into 16 uniform regular triangles. We successively refine this
mesh uniformly. For each mesh of size h we compute the L2 and L∞ errors eh and the
numerical convergence rates given by the ratio ln(eh/eh/2)/ ln(2). The use of uniform

meshes leads to the following values of C2
p in formula (4.5): C2

p = 1
12+6

√
2

for p = 1

and C2
p = 1

120+66
√

2
for p = 2.

In order to enforce a better interelement continuity for small p, one can choose
the parameter α to be of the form α = βK

h , where β ≥ 1 is a user-defined constant.
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The optimal value of β is β =

√
C1

p

C2
p
. Therefore our optimal value for C3

p in formula

(4.7) is in this case C3
p =

√
C1

pC
2
p . In Table 6.4 we compare the new formalism for

first order in time and second order polynomials with computed solutions obtained
by Nonsymmetric Interior Penalty Galerkin (NIPG) and Symmetric Interior Penalty
Galerkin (SIPG) GDMs [7, 35, 36]. For this first order in time, we have used an implicit
scheme to discretize the SIPG and NIPG methods. We intended to do the same
comparison for the second order in time. We tried a θ-scheme (see [34]) to discretize
time in both SIPG and NIPG (note that implicit scheme corresponds to a θ-scheme
with θ = 1, as in [29], while the Crank–Nicholson scheme corresponds to θ = 0 as
described in [34]). But we noticed that using the same time step for the new formalism
and for SIPG and NIPG Galerkin methods with the Crank–Nicholson scheme leads
to instabilities in SIPG and NIPG. So for that time step, θ must stay in the interval
]0, 1], and therefore the θ-scheme is no longer of second order. This is a significant
advantage of our formalism over the two others. We have taken the stabilization
parameter σ = 1 for NIPG and σ = 10 for SIPG; see [35, 36]. The time step has also
been multiplied by 10 in SIPG and NIPG, which are implicit methods (θ = 1).

Observations. Here, as in the pure advection case, the error is of the form
C1(Δt)α + C2h

β . Since we have used the optimal CFL condition while refining the
mesh, Δt ≈ Ch2, the convergence rate obtained numerically should be close to

γ = min(2α, β).

Let us discuss the values of α, β, and γ observed in Tables 6.3 and 6.5. For first order
time discretization, α = 1. Therefore γ = min(2, β). It shows that for first order
or second order polynomials in conjunction with first order time discretization, we
obtain a convergence rate of order 2. This is what we get in Table 6.3. Second order
time discretization with first order polynomials gives also a convergence rate of γ = 2.
Hence β = 2 for first order polynomials, and the convergence in space is optimal in
this case. It is also seen in Table 6.3 that when we use second order polynomials
with second order time discretization, the convergence rate starts from almost 3 and
tends asymptotically to γ = 2. This shows that α = 2 and β = 2 for second order
time discretization with second order polynomials. Hence the convergence in space
is suboptimal in this case. However, this is only a matter of worst behavior for even
order polynomials. To view that, let us try third order polynomials with a sufficiently
small CFL condition so that the error in time is absolutely negligible and we get an
accurate value for β. Table 6.5 shows a convergence rate of order γ = min(2×2, 4) = 4.
By inspection of all these results we deduce that the new formalism presented in this
paper keeps (on pure diffusion) the optimal space convergence rate for polynomials of
odd order. This behavior is similar to other nonsymmetric discretizations like NIPG.

In order to analyze the advantage of our method over NIPG and SIPG for this
kind of test problem, let us analyze the ratio accuracy/CPU time of the computation
(see the last line of Table 6.4). We see that the error is slightly smaller for our method.
But more important is the CPU time required to perform the computation. Due to
well-known stability issues, NIPG and SIPG are implicit, which means a certain CPU
time is needed to factorize and invert the matrix. This CPU time is denoted as R in
the table. It is well known that R can be quite large. In our computations, R is about
the same order as the CPU time needed to perform the whole computation. But here
the matrix is factorized only once because the coefficients of the problem are constant
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Table 6.3

Numerical L2 errors, L∞ errors, and convergence rates for first and second order in time with
first and second order basis polynomials in the new formalism ((2.4), (2.8)) scheme applied to the
pure diffusion equation.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P1 basis polynomials
1/8 1.00E − 02 − 3.10E − 02 − 8.87E − 03 − 3.17E − 02 −
1/16 2.50E − 03 2.00 7.47E − 03 2.05 2.16E − 03 2.04 7.50E − 03 2.08
1/32 6.20E − 04 2.01 1.83E − 03 2.03 5.37E − 04 2.00 1.84E − 03 2.02
1/64 1.55E − 04 2.00 4.56E − 04 2.00 1.34E − 04 2.00 4.57E − 04 2.00
1/128 3.87E − 05 2.00 1.14E − 04 2.00 3.35E − 05 2.00 1.14E − 04 2.00

P2 basis polynomials
1/8 8.95E − 04 − 2.63E − 03 − 7.53E − 04 − 3.02E − 03 −
1/16 2.10E − 04 2.09 4.63E − 04 2.50 1.75E − 04 2.11 4.92E − 04 2.61
1/32 5.16E − 05 2.02 1.15E − 04 2.00 4.27E − 05 2.03 9.64E − 05 2.35
1/64 1.28E − 05 2.01 2.86E − 05 2.00 1.06E − 05 2.01 2.20E − 05 2.13
1/128 3.20E − 06 2.00 7.14E − 06 2.00 2.65E − 06 2.00 5.34E − 06 2.04

Table 6.4

Numerical comparison of L2 errors, L∞ errors, CPU time, and convergence rate, for first order
in time with second order basis polynomials in the new formalism, and implicit scheme for SIPG
and NIPG DGM. R is the time spent renumbering the elements and factoring the global matrix.
Computational times were evaluated on a Pentium III/1.266 GH processor.

New formalism NIPG SIPG

h Error Rate CPU Error Rate CPU Error Rate CPU

L2 error
1/8 8.95E − 04 − 0.94 1.94E − 02 − 0.87 + R 1.89E − 02 − 0.86 + R
1/16 2.10E − 04 2.09 9.29 4.62E − 03 2.07 5.91 + R 4.47E − 03 2.08 6.18 + R
1/32 5.16E − 05 2.02 119.8 1.14E − 03 2.02 71.25 + R 1.10E − 03 2.02 71.21 + R
1/64 1.28E − 05 2.02 1855 2.84E − 04 2.00 1519 + R 2.75E − 04 2.00 1334 + R

L∞ error
1/8 2.63E − 03 − 0.94 3.84E − 02 − 0.87 + R 3.75E − 02 − 0.86 + R
1/16 4.63E − 04 2.50 9.29 9.22E − 03 2.06 5.91 + R 8.93E − 03 2.07 6.18 + R
1/32 1.15E − 04 2.00 119.8 2.28E − 03 2.02 71.25 + R 2.21E − 03 2.01 71.21 + R
1/64 2.86E − 05 2.00 1855 5.69E − 04 2.00 1519 + R 5.50E − 04 2.00 1334 + R

Table 6.5

Numerical L2 errors, L∞ errors, and convergence rates for second order time discretization with
third order basis polynomials in the new formalism scheme (2.8) applied to pure diffusion equation.
Computations are done with a very small CFL condition so as to reduce the time discretization
error.

Second order time scheme with P3 basis polynomials

h L2 error Rate L∞ error Rate

1/2 3.885E − 03 − 4.517E − 02 −
1/4 3.663E − 04 3.41 4.212E − 03 3.42
1/8 2.636E − 05 3.80 2.668E − 04 3.98
1/16 1.757E − 06 3.91 1.769E − 05 3.91
1/32 1.139E − 07 3.95 1.127E − 06 3.97
1/64 7.246E − 09 3.97 7.191E − 08 3.97
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Fig. 6.1. L2 and L∞ convergence errors at different times steps for the pure diffusion equation
with nonhomogeneous boundary conditions. The computation is done using the new formalism with
polynomials of order 2 in space and second order time discretization. The notation P2T2 stands
for polynomials of order 2 in space (P2) with second order (T2) time discretization.

in time. So if ever one desires to apply NIPG and SIPG to problems with variable
coefficients, then R is to be multiplied by the number of iterations. Note that in our
calculations, we have adapted the time step for NIPG and SIPG so that the number
of time steps is already 10 times smaller for NIPG and SIPG. An even much greater
time step is possible for NIPG and SIPG but at the price of a loss of accuracy of the
discretization in time. In this case the new method, which is explicit, is much better
than NIPG and SIPG.

6.3. An example with a nonhomogeneous Dirichlet boundary condi-
tion. Here is an example with a nonhomogeneous boundary Dirichlet condition. In-
stead of simply writing ω+

k = Rα
kω

−
k (see Table 3.1), one uses

ω+
k = Rα

kω
−
k + αk(1 −Rα

k )cd for Dirichlet boundary condition c = cd,

ω+
k = Rα

kω
−
k + (1 + Rα

k )gN for Neumann boundary condition K
∂

∂n
c = gN .

We now take the same test case as above (K ≡ 1, u ≡ 0), with R.H.S. f(t, x, y) = −4,
and a nonhomogeneous Dirichlet boundary condition gD(x, y) = x2 + y2. We know
that the limit of the exact solution as time tends to infinity is the solution of the
stationary problem. That limit solution is in fact the function we have chosen as
the Dirichlet boundary condition. In order to show that the new formalism han-
dles nonhomogeneous boundary conditions, we have computed the solution with the
initial condition taken to be c(t = 0, x, y) = 0 which is not related to the exact
solution. The computational domain is Ω = (−1, 1)2, meshed with nonuniform tri-
angles (with 21 vertices per side ) to show that the behavior of the formalism is
well suited to the nonuniform mesh. Different steps of the solution are shown in
Figure 6.2. Figure 6.1 shows the convergence to the exact solution as L2 and L∞

errors (measured by ||u(∞) − u(tn)||) and relative L2 and L∞ errors (measured by
log(||u(∞) − u(tn)||/||u(∞)||) ) at every time step. Here u(∞) denotes the limit
solution.

Observations. In Figure 6.2 the initial solution is zero, and as the time passes
the convergence to the exact solution is achieved. It shows that boundary conditions
of Dirichlet type are correctly discretized by this method.
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Fig. 6.2. Asymptotic solution of the pure diffusion equation with nonhomogeneous boundary
conditions, on a nonuniform mesh. On the left is the initial solution; on the right is the solution
at t = 1.5s. The computations are done using the new formalism with second order polynomials in
space and second order time discretization.

6.4. A convection-diffusion example. In this section we consider the rotating
pulse problem. The spatial domain is Ω = (−0.5, 0.5) × (−0.5, 0.5), and the rotating
field is imposed as u = (−4y, 4x). The initial condition and Dirichlet boundary
condition are taken from the exact solution

c(t, x, y) =
2σ2

2σ2 + 4Kt
exp(− (x̄− xc)

2 + (ȳ − yc)
2

2σ2 + 4Kt
,

where x̄ = x cos(4t)+ y sin(4t) and ȳ = −x sin(4t)+ y cos(4t). Here K is the constant
diffusion coefficient. The R.H.S. is f = 0. This example was considered in [38], where
only maxima and minima of many methods were listed. It is also used as a model
equation in [4] to compare the L2 error of a higher order DGM with various other
methods on uniform rectangular meshes. Here we consider the same model problem on
uniform triangular meshes, and we evaluate the L2 and L∞ errors and the convergence
rate for the first and second order schemes presented in this paper. We take the same
parameters as in [38, 4]: K = 10−4, xc = 0.25, yc = 0, and 2σ2 = 0.004. The time
interval for the simulation is [0, T ] = [0, π/4], which is the time for a half rotation. We
begin with a uniform mesh of the domain made up of 8×8×2 = 138 uniform triangles.
We then successively refine the mesh and compute the L2 and L∞ errors eh on the
mesh of size h and the numerical convergence rates by the ratio ln(eh/eh/2)/ ln(2).
The time step is chosen so that the ratio Δt/h is kept constant. The constant value
is 1/82 for first order time discretization and 1/164 for the second order time scheme.
The results obtained are recorded in Table 6.6.

Observations. This numerical test [38] is advection dominant in most parts of
the domain and is diffusion dominant in the center of the domain. We solve it with
the formalism presented in this paper with a constant ratio Δt/h. This constant
ratio is obtained when we use the optimal parameter α (4.2) to determine the CFL
condition (4.1). The second order in time scheme gives good results with higher order
polynomials. Table 6.6 shows that using the constant ratio Δt/h, the convergence rate
is greater than 2. Hence in second order time discretization, the time discretization
error is small compared to the space discretization error for this test problem. This is a
good feature when dealing with a coarse mesh. The second order time discretization is
well suited for this kind of problem, where fine meshes are prohibitive due to memory
management.

6.5. Conclusion driven from numerical experiments. The theoretical anal-
ysis is confirmed by numerical experiments. In particular we have L2 stability and
correct treatment of boundary conditions whatever the order of the polynomials is.
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Table 6.6

Numerical L2 errors, L∞ errors, and convergence rates for first and second order time dis-
cretization schemes (2.4), (2.8) applied to constant diffusion but variable velocity convection-diffusion
equation. The convergence rates are obtained by computing the ratio ln(eh/eh/2)/ ln(2) as the mesh
is been refined. The polynomial space is of order 0, 1, 2, and 3, and the ratio Δt/h is kept constant
during the mesh refinement. The experimental order is 1 for first order in time integration and
greater than 2 for second order in time integration.

First order in time Second order in time

h L2 error Rate L∞ error Rate L2 error Rate L∞ error Rate

P0 basis polynomials
1/8 7.28E − 02 − 3.93E − 01 − 7.29E − 02 − 3.93E − 01 −
1/16 6.77E − 02 0.11 6.92E − 01 −0.82 6.78E − 02 0.10 6.93E − 01 −0.82
1/32 6.06E − 02 0.16 7.50E − 01 −0.11 6.09E − 02 0.16 7.52E − 01 −0.12
1/64 5.02E − 02 0.27 6.77E − 01 0.15 5.06E − 02 0.27 6.81E − 01 0.14
1/128 3.71E − 02 0.44 5.36E − 01 0.34 3.76E − 02 0.43 5.41E − 01 0.33

P1 basis polynomials
1/8 4.94E − 02 − 5.89E − 01 − 4.89E − 02 − 5.76E − 01 −
1/16 3.28E − 02 0.59 4.49E − 01 0.39 3.14E − 02 0.64 4.30E − 01 0.42
1/32 1.27E − 02 1.37 1.86E − 01 1.27 1.06E − 02 1.56 1.57E − 01 1.46
1/64 3.89E − 03 1.71 5.64E − 02 1.72 2.27E − 03 2.23 3.26E − 02 2.27
1/128 1.31E − 03 1.57 1.89E − 02 1.58 4.61E − 04 2.30 6.09E − 03 2.42

P2 basis polynomials
1/8 3.39E − 02 − 4.77E − 01 − 3.03E − 02 − 4.29E − 01 −
1/16 1.12E − 02 1.60 1.55E − 01 1.62 5.83E − 03 2.38 7.43E − 02 2.53
1/32 4.49E − 03 1.32 6.55E − 02 1.24 4.91E − 04 3.57 1.30E − 02 2.51
1/64 2.17E − 03 1.05 3.11E − 02 1.07 5.21E − 05 3.24 2.32E − 03 2.49
1/128 1.05E − 03 1.05 1.48E − 02 1.07 7.91E − 06 2.72 3.15E − 04 2.88

P3 basis polynomials
1/8 1.86E − 02 − 2.53E − 01 − 1.05E − 02 − 1.31E − 01 −
1/16 8.02E − 03 1.21 1.26E − 01 1.01 6.11E − 04 4.10 1.99E − 02 2.72
1/32 4.15E − 03 0.95 6.87E − 02 0.87 2.63E − 05 4.54 2.25E − 03 3.14
1/64 2.08E − 03 1.00 3.20E − 02 1.10 3.40E − 06 2.95 1.29E − 04 4.12
1/128 9.81E − 04 1.08 1.49E − 02 1.10 5.97E − 07 2.51 9.24e− 06 3.80
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