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2 and Institut Universitaire de france Curie Olivier.Pironneau@upmc.fr

Summary. Chimera [9] happens to be a version of Schwarz’ method and of Lions’
space decomposition method (SDM). It was analyzed by Brezzi et al [1] but an
estimate was missing for numerical quadrature. We give it here with new numerical
tests.

1 Introduction

Consider a Hilbert space V , a continuous bilinear form a(u, û) symmetric with
a coercivity constant α > 0 and f regular enough for well posedness of

a(u, û) = (f, û) ∀û ∈ V. (1)

We assume that V = V1 + V2, that V1 ∩ V2 is of non zero measure (i.e.
overlapping) where each Vi is a closed subspace of V . We will need also two
continuous symmetric bilinear forms bi(u, û), i = 1, 2 coercive enough so that

2
∑

1

bi(ûi, ûi) + a(ûi, ûi) ≥ a(
2

∑

1

ûi,
2

∑

1

ûi) ∀ûi ∈ Vi. (2)

A typical example is the Dirichlet problem for −∆u = f in Ω = Ω1 ∪Ω2 and
such that Ω1 ∩ Ω2 6= ∅; denote by Si = ∂Ωi ∩ Ωj , j 6= i. Then set

Vi = {v ∈ L2(Ω) : v|Ωi
∈ V (Ωi), v|Ω−Ωi

= 0}. (3)

Algorithm 1 (Schwarz)
Begin loop with a chosen v0

i ∈ Vi, and n = 0.
Find vn+1

i such that vn+1
i − vn

j ∈ Vi, i, j = 1, 2, j 6= i by solving

a(vn+1
i , v̂i) = (f, v̂i) ∀v̂i ∈ Vi. (4)

End loop.
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The convergence has been analyzed by P.L. Lions [7] in a general setting.
To be more precise, we present the following alternative; it uses bi(u, v) =
b(u, v) = (βu, v), i = 1, 2 for some positive scalar β and two arbitrary func-
tions u0

i ∈ Vi.
Algorithm 2 (SDM)
Begin loop with n = 0:

Find un+1
i ∈ Vi by solving

b(un+1
1 − un

1 , û1) + a(un+1
1 + un

2 , û1) = (f, û1) ∀û1 ∈ V1,
b(un+1

2 − un
2 , û2) + a(un

1 + un+1
2 , û2) = (f, û2) ∀û2 ∈ V2. (5)

End loop.
When β = 0 Algorithm 2 is identical to Algorithm 1 with un+1

i = vn+1
i −

vn
j , i, j = 1, 2, j 6= i. If the decomposition is done with m subregions with

m ≥ 2 then un+1 is found by solving

b(un+1
i − un

i , ûi) + a(un+1
i − un

i +
m

∑

j=1

un
j , ûi) = (f, ûi) ∀ûi ∈ Vi. (6)

Theorem 1. (Hecht et al. [4]) We assume (1-2). Then Algorithm (6) is con-
vergent in the following sense: as n → ∞, un

i → u∗
i with u∗

1 + u∗
2 = u the

solution of (1) and the decomposition is uniquely defined by

(β + A)u1 =
1

2
(β + A)(u + u0

1 − u0
2) in Ω1 ∩ Ω2, u1|S1

= 0, u1|S2
= u,

(β + A)u2 =
1

2
(β + A)(u + u0

2 − u0
1) in Ω1 ∩ Ω2, u2|S2

= 0, u2|S1
= u,

Aui = f in Ωi\Ω1 ∩ Ω2, ui|∂Ωi
= 0. (7)

2 Discretization

Let T1h (resp T2h) be a triangulation of Ω1 (resp Ω2), quasi-uniform [2],
in the sense that, if hM and hm are the maximum and minimum edges in
T1h, and HM and Hm are the maximum and minimum edges in T2h, then
there exists two constants C1T and C2T such that hM ≤ C1T hm and HM ≤
C2T Hm. Without loss of generality we can also assume, that hM ≤ HM . For
clarity we assume that the Ωi are polygonal and that a(·, ·) represents the
Laplace operator with Dirichlet conditions. Let V1h and V2h be two Lagrange
conforming continuous finite element approximation spaces of order p of the
spaces V1 = H1

0 (Ω1) and V2 = H1
0 (Ω2). Then the discrete version of Algorithm

2 is to find for i=1,2, un+1
ih ∈ Vih such that ∀vih ∈ Vih

∫

Ωi
(β(un+1

ih − un
ih)vih + ∇(un+1

1h + un
2h)∇vih) =

∫

Ωi
fvih.

Theorem 2. (Hecht et al. [4]) Assume that the solution of (1) is in Hp+1(Ω)
for some p ≥ 1. Assume that in (7) ui|Ωi

∈ Hp+1(Ωi). If uh = lim(un
1h +

un
2h) is computed with Lagrange conforming finite elements of order p, then

‖u − uh‖1,Ω ≤ Chp(|u1|p+1,Ω1
+ |u2|p+1,Ω2

).
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3 Numerical Quadrature

As such, the scheme is too costly to implement because it requires the inter-
section of triangulations. Recall that the quadrature formula with integration
points at the vertices is exact for polynomials of degree less than or equal to
one. In particular, for a given triangle T̂ one has

∫

T̂

g dxdy =
|T̂ |

3

∑

i=1,2,3

g(qi) ∀g ∈ P1(T̂ ). (8)

Hence we introduce the following quadrature rule. (∇u,∇v)h :=

∑

T∈T1h

|T |

3

∑

i=1,2,3

∇(u|T ) · ∇v

IΩ1
+ IΩ2

|qi(T ) +
∑

K∈T2h

|K|

3

∑

j=1,2,3

∇(v|K) · ∇u

IΩ1
+ IΩ2

|qj(K),(9)

where IΩj
(x) = 1 if x ∈ Ωj and zero otherwise (j = 1, 2). The notation

∇(u|T ) is used to indicate that we first restrict the function u to T , and
then we compute its gradient (which is actually constant in T ). A similar
interpretation holds for ∇(v|K). With such definitions we propose to solve the
discrete problems:
- Find un+1

ih ∈ Vih such that ∀vih ∈ Vih

b(un+1
1h − un

1h, û1h) + ah(un+1
1h + un

2h, û1h) = (f, û1h) ∀û1h ∈ V1h,
b(un+1

2h − un
2h, û2h) + ah(un

1h + un+1
2h , û2h) = (f, û2h) ∀û2h ∈ V2h. (10)

Clearly these define un+1
ih uniquely. At convergence the problem solved is

- Find uih ∈ Vih such that ∀ûih ∈ Vih

ah(u1h + u2h, û1h + û2h) = (f, û1h + û2h). (11)

Under a mild assumption on the triangulations this discrete problem has a
unique solution at least when linear elements are used (p = 1):

each vertex of T1h is internal to a triangle K of T2h, and conversely.
(12)

This is because of the coercivity of the bilinear form and of the uniqueness of
the decomposition uh = u1h + u2h:

Theorem 3. (Brezzi et al. [1]) Assume (12) holds. If two functions uih ∈
Vih, i = 1, 2 coincide on a connected subset X of Ω1 ∩ Ω2, then both uih are
linear (not just piecewise linear) in X . Furthermore ah(u1h+u2h, u1h+u2h) ≥
c‖u1h + u2h‖2 for all uih ∈ Vih.

One more property is needed, the continuity of ah, and then we can apply
Strang’s lemma and obtain the following estimate:

Proposition 1. (Hecht et al. [4]) Assume that the triangulations of Ω1 and
Ω2 are compatible in the sense that they give a coercive bilinear form. As-
sume that ah is uniformly continuous for all h. Then the error between the
approximate problem (11) and the continuous one is ‖u−uh‖ < Ch(|u1|2,Ω1

+
|u2|2,Ω2

).
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4 Continuity of the Approximate Bilinear Form

4.1 The One Dimensional Case

We begin with the mono dimensional case because the proof is easier to follow.
The same argument will be extended to 2D.

Proposition 2. In one dimension the constant of continuity C in

|∇uH + ∇uh|h ≤ C|∇uH + ∇uh|

satisfies C2 ≤
1

2
max{max

i∈K

|xi+1 − xi|

|xi − Xj(i)|
, max

i∈L

|Xi+1 − Xi|

|Xi − xj(i)|
}, (13)

where K (resp. L) is the set of i such that j(i) exists with Xj(i) ∈ [xi, xi+1]
(resp xj(i) ∈ [Xi, Xi+1]). Consequently C is bounded by the square root of
half the largest interval length divided by the smallest distance between two
vertices.

Proof. For any real valued function f , max
uh,uH

f(∇uH +∇uh) ≤ max
Uh,UH

f(UH +

Uh) where uh, uH are real valued continuous-piecewise linear functions on
their meshes and UH , Uh are piecewise constant vector valued on their meshes,
because every∇u is a U and the opposite is not true when boundary conditions
exist at both ends. Denote V = UH + Uh. As V is piecewise constant, by
definition

4|V |2h =

∑

i

|xi+1 − xi|(|V |(x+

i
)2 + |V |(x−

i+1
)2) +

∑

j

|Xj+1 − Xj |(|V |(X+

j
)2 + |V |(X−

j+1
)2),

2|V |20 =
∑

i,j∈K

|Xj − xi|(|V |(X−

j
)2 + |V |(x+

i
)2) +

∑

i,j∈L

|xi − Xj |(|V |(X+

j
)2 + |V |(x−

i
)2)

(14)

+

∑

i∈I

|xi+1 − xi|(|V |(x+

i
)2 + |V |(x−

i+1
)2) +

∑

j∈J

|Xj+1 − Xj |(|V |(X+

j
)2 + |V |(X−

j+1
)2),

where I, J are the set of intervals completely inside an interval of the other
mesh, i.e.

I = {i : ∃j s.t. [xi, xi+1] ⊂ [Xj , Xj+1}, J = {j : ∃i s.t. [Xj , Xj+1] ⊂ [xi, xi+1]}

Denote by N the set of values of Vk of V right or left of xi or Xj. As f(V ) =
|V |2h/|V |20 we see that it is of the type f(V ) =

∑

k∈N αk|V |2k /
∑

k∈N βk|V |2k
with αi equal to a fourth of xi+1 − xi or Xi+1 − Xi, and βi equal half of
xi+1 − xi or Xi+1 − Xi or xi − Xj(i) or Xi − xj(i) a sum of two of those. Of
course it is important to notice that all values appear both in the nominator
and denominator. With a change of variable this is also

f(W ) =

∑

αk

βk
W 2

k
∑

W 2
k

. Then max f(W ) = max
k

αk

βk

.

Now that this is established we can address much more simply the problem
of finding maxαk/βk: it is the largest ratio of coefficients multiplying V (x±

i )
or V (X±

j ) in the expressions for |V |h and |V |20, i.e. in (14).
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4.2 The Two Dimensional Case

A similar argument applies in two dimensions. Assume we have two triangu-
lations with triangles {Tk}N

1 and {tk}n
1 respectively and vertices Qi and qi.

Recall that

|V |2h =
1

6

N
∑

k=1

∑

j=1,2,3

|VTk
(Qij

)|2|Tk| +
1

6

n
∑

k=1

∑

j=1,2,3

|Vtk
(qij

)|2|tk|, (15)

where ij , j = 1, 2, 3 are the numbers of the 3 vertices for each triangle. On
the other hand the exact value |V |20 is

|V |20 =
∑

k,l

∑

j=1,2,3

|VRkl
(ξkl)|

2|Rkl|, (16)

where Rkl = Tk ∩ tl and ξkl is any point in Rkl.
For each Qij

(resp qij
) in (15) there is a Rkl which contains it. For these R

let us choose in (16) ξkl = Qij
and qij

. Then for every term in |V |2h there is a
corresponding term in |V |20:

1

6
|VTk

(Qij
|2|Tk| corresponds to |VTk

(Qij
|2|Tk ∩ tl|, (17)

where l is such that Qij
∈ tl; and similarly with qij

.
However in this construction we will assign as many ξ to R as the number of
vertices it contains. So the safest is to divide the second term in (17) by 3.
Notice that some R do not contain any vertex; if we leave these aside we
obtain

|V |2h
|V |20

≤
1

2
max

k,l
{
max{|Tk|, |tl|}

|Tk ∩ tl|
: Tk ∩ tl contains at least one vertex }. (18)

So we have proved the following

Proposition 3. In two dimensions, the constant of continuity between the
approximate norm |∇uH + ∇uh|h and the exact one is proportional to the
square root of the biggest ratio of area between a triangle T and one of its
polygons T ∩ t where t is a triangle of the other triangulation containing a
vertex of T .

The proof is similar, except that in the exact norm there are terms which do
not exist in the approximate norm; but these are positive and appear in the
denominator of the expression which bounds C.

Remark 1. Consider the case where each triangle of the mesh h has no more
than one vertex of the mesh H inside. Assume that this vertex is near the
center of the triangle (or segment in one-D). Assume that all angles between
two intersecting edges are bounded away from 0 and π when h, H → 0 and
that H/h and h/H do not tend to 0. Then C is strictly posivite in the limit.
However it is difficult in practice to insure that no angle tend to zero when
the mesh is refined.
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Fig. 1. Top: Two meshes in 1D and the intersected mesh. Two intervals have been
singled out as they are strictly inside an interval of the other mesh; the continu-
ity constant is proportional to the ratio of the smallest interval in the intersected
mesh to the biggest interval in both mesh neighbors to the smallest one. Bottom:
The continuity constant is proportional to the smallest polygon containing a vertex
(shown with a texture) divided by the area of the biggest neighbor triangle in both
meshes. Notice that some edges pass right through a vertex in this example, so if
one mesh is shifted slightly the continuity constant estimate suddenly deteriorates.

5 Numerical Test

In all the numerical tests that follow, errors are evaluated on the inter-
sected mesh, using exact quadrature formula. The problem to solve is −∆u =
f in Ω, u = g on ∂Ω. Data are chosen so that u(x, y) = sin(x) × sin(y).

5.1 Exact quadrature

This formula is introduced so as to give an exact computation for integral
like

∫

Th∩TH
ΦΨ. Where Φ and Ψ see Fig 2 below are P1-lagrange functions

on the triangle Th and TH respectively. It is based on the intersection of the
two meshes. Ω1 is a circle of radius 1 centered at (0, 0) and Ω2 is the square

ψ

φ

Fig. 2. Quadrature for exact evaluation of
∫

Th∩TH
ΦΨ .

(−0.5, 0.5)2. Ω2 is going to be meshed with uniform triangles so that by dyadic
refinement, order of convergence can be easily evaluated see Table 1.

5.2 First quadrature formula

Table 1 displays the results when (9) is used. Notice that by taking u ∈ Vh, v ∈
Vh, we do not recover the ordinary approximated bilinear form for the Laplace
equation on the domain Ω1. So for a parallel implementation of (10), instead,
we must find un+1 ∈ V0h such that (here b ≡ 0), ∀v̂ ∈ V0h(Ω1)
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(∇un+1
1 ,∇v̂)h = (f, v̂) − (∇un

2 ,∇v̂)hH −
1

2
(∇un

1 ,∇v̂)h +
1

2
(∇un

1 ,∇v̂)H .

Here (·, ·)h, (·, ·)H do not need quadrature. For the numerical experiments, we
have taken Ω2 = (−2, 3)× (−3, 2) and Ω1 = (− 4

3 , 5
3 ) × (− 5

3 , 4
3 ).

5.3 Second quadrature formula

In our works, we have also tried, for u1, v1 ∈ Vh, u2, v2 ∈ VH

(∇u1,∇v2)hH,Ω1∩Ω2
:=

∑

K∈KH

|K|

3

∑

j=1,2,3

(∇(u1) · ∇(v2|K)) (qj(K)),

(∇u2,∇v1)Hh,Ω1∩Ω2
:=

∑

T∈τh

|T |

3

∑

j=1,2,3

(∇(u2) · ∇(v1|T )) (qj(T )).
(19)

5.4 Schwarz algorithm with quadrature

Finally, to compare with Schwarz’ algorithm, let πhH : Vh 7→ VH and πHh :
VH 7→ Vh be the P 1 interpolation operators. Then the Schwarz method is
implemented as

{

(∇(un+1 + πHhvn),∇û)h = (f, û)h ∀û ∈ V0h,
(∇(vn+1 + πhHun),∇v̂)H = (f, v̂)H ∀v̂ ∈ V0H .

(20)

u − (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Exact Quadrature

10 5 1.54E − 02 − 2.25E − 01 −

20 10 3.78E − 03 2.02 1.11E − 01 1.02

40 20 8.24E − 04 2.2 5.03E − 02 1.15

First Quadrature

3 5 4.64E − 01 − 1.00E − 00 −

6 10 8.18E − 02 2.50 5.44E − 01 0.89

u − (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Second Quadrature

10 5 1.85E − 02 − 2.32E − 01 −

20 10 5.66E − 03 1.71 1.16E − 01 1.00

40 20 1.03E − 03 2.45 5.34E − 02 1.12

Schwarz overlapping

10 5 1.68E − 02 − 2.29E − 01 −

20 10 3.49E − 03 2.26 1.09E − 01 1.06

40 20 9.15E − 04 1.93 5.13E − 02 1.09

Table 1. Numerical L2 errors, and convergence rate, for P1 polynomials with dif-
ferent quadrature formula. Ni, i = 1, 2 is the number of vertices on the boundary of
the domain Ωi.

Conclusion

The results show that the first quadrature formula has optimal errors numeri-
cally but the results are very sensitive to the position of the grid points. Good
results are obtained with the second quadrature formula, which is also easy
to implement in 3D but no error analysis is yet available.
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Fig. 3. Chimera solution of the test case
with exact quadrature formula. Top: so-
lution on the entire domain. Bottom : so-
lution on each subdomain.

Fig. 4. Chimera solution of (∆u =
1 on Ω, u = 0 on ∂Ω) with sec-
ond quadrature formula. Top right: inter-
sected mesh. Bottom : solution on each
subdomain.


