Université Paris Saclay Année 2020-2021 Master 2 F.E.S. Préparation à l'agrégation

Calcul différentiel

1 Différentiabilité

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \left(\frac{x^2y}{x^4 + y^2}\right)^2 & \text{si } y \neq 0, \\ 0 & \text{si } y = 0. \end{cases}$$

Montrer que f admet des dérivées partielles en (0,0) mais qu'elle n'est pas continue en ce point.

Exercice 2. Soient U un ouvert de \mathbb{R}^n , $a \in U$ et $v \in \mathbb{R}^n$. On dit qu'une fonction $f: U \to \mathbb{R}$ est dérivable en a suivant v si

 $\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} \quad \text{existe.}$

Dans ce cas, ce nombre est appelé dérivée de f en a suivant v et est noté $\partial_v f(a)$. On suppose dans la suite que f est dérivable en a suivant v.

- 1. À quoi correspondent les dérivées partielles de f?
- 2. Supposons f différentiable en a. Montrer que, pour tout vecteur $v = (v_1, \ldots, v_n)$,

$$\partial_v f(a) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) v_i = \nabla f(a) \cdot v.$$

- 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = y^2/x$ si $x \neq 0$ et f(0,y) = y, pour tout $y \in \mathbb{R}$. Montrer que f est dérivable au point (0,0) suivant tout vecteur de $v \in \mathbb{R}^2$. Calculer $\partial_v f(0,0)$. L'application f est-elle différentiable?
- 4. Soit $\mathbb{S}^{n-1}=\{v\in\mathbb{R}^n: \|v\|=1\}$ la sphère unité de \mathbb{R}^n pour la norme euclidienne. On suppose que f est différentiable en a. Notons

$$M = \sup_{v \in \mathbb{S}^{n-1}} \partial_v f(a).$$

Que vaut M? Pour quel vecteur v cette valeur est-elle atteinte? Donner une interprétation géométrique.

5. Vous êtes sur une montagne dont la surface est donnée par l'équation $z = \max(-x^2 - y^2 + 1800, 0)$, au point A de coordonnées (20, 20, 1000). Quelle direction devez-vous choisir pour atteindre le sommet au plus vite?

Exercice 3. Soit $g:]0, +\infty[\to \mathbb{R}$ une fonction de classe \mathcal{C}^2 . Pour tout $(x, y) \in U := \mathbb{R}^2 \setminus \{(0, 0)\}$, on pose $f(x, y) = g(\sqrt{x^2 + y^2})$.

- 1. Expliquez pourquoi f est de classe C^2 sur U. Calculer les dérivées partielles premières $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et les dérivées partielles secondes $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$.
- 2. On rappelle que le Laplacien de f est défini, pour tout $(x,y) \in U$ par $\Delta f(x,y) = \frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y)$. Montrer que pour tout $(x,y) \in U$,

$$\Delta f(x,y) = g''(\sqrt{x^2 + y^2}) + \frac{g'(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}.$$

- 3. En déduire que $\Delta f(x,y) = 0$ pour tout $(x,y) \in U$ si et seulement si $\frac{1}{r} \frac{d}{dr} (rg'(r)) = 0$ pour tout r > 0.
- 4. Montrer alors que $\Delta f(x,y)=0$ pour tout $(x,y)\in U$ si et seulement si

$$f(x,y) = a \ln(\sqrt{x^2 + y^2}) + b$$
 pour tout $(x,y) \in U$,

où a et b sont des réels.

Exercice 4. On pose $\Omega = \mathbb{R}^2 \setminus \{(0,0)\}$. Soit $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{si } (x,y) \in \Omega \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- 1. Montrer que f est différentiable sur Ω et calculer sa différentielle.
- 2. Montrer que f est différentiable en (0,0) et que sa différentielle est nulle.
- 3. Montrer que f admet en tout point des dérivées partielles secondes $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$, et calculer la valeur de ces dérivées en (0,0). Que peut-on en déduire pour la continuité de ces dérivées partielles secondes en (0,0)?

Exercice 5. Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ l'application définie par $f(A) = \det(A)$. Montrer que f est de classe \mathcal{C}^{∞} et calculer sa differentielle.

Exercice 6. Soit $\mathscr{L}(\mathbb{R}^n)$ l'ensemble des applications linéaires continues de \mathbb{R}^n dans lui même muni de la norme d'opérateur et $GL_n(\mathbb{R})$ le sous-espace vectoriel de $\mathscr{L}(\mathbb{R}^n)$ constitué des éléments inversibles.

- 1. Montrer que $GL_n(E)$ est un ouvert de $\mathscr{L}(\mathbb{R}^n)$.
- 2. Montrer que l'application inv : $u \in GL_n(\mathbb{R}) \mapsto u^{-1}$ est différentiable et calculer sa différentielle.

2 Difféomorphismes, inversion locale et fonctions implicites

Exercice 7. Montrer que les fonctions suivantes sont des \mathcal{C}^1 -difféomorphismes globaux

$$\Phi:]0, +\infty[\times]0, 2\pi[\rightarrow \mathbb{R}^2 \setminus ([0, +\infty[\times\{0\})])$$
$$(r, \theta) \mapsto (r\cos\theta, r\sin\theta)$$

$$\Psi:]0, +\infty[\times]0, 2\pi[\times\mathbb{R} \to \mathbb{R}^3 \setminus ([0, +\infty[\times\{0\}\times\mathbb{R}) (r, \theta, z) \mapsto (r\cos\theta, r\sin\theta, z).$$

Exercice 8. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ le champ de vecteurs défini par

$$f(x,y) = (x^2 - y^2, 2xy).$$

Montrer que f est un \mathcal{C}^1 -difféomorphisme local en point de $\mathbb{R}^2\setminus\{(0,0)\}$, mais que ça n'est pas un \mathcal{C}^1 -difféomorphisme global sur $\mathbb{R}^2\setminus\{(0,0)\}$.

Exercice 9. (Folium de Descartes) Soit

$$\mathcal{C} = \{(x, y) \in \mathbb{R}^2 : x^3 + y^3 - 3xy = 0\}.$$

Cette équation définit-elle y comme fonction implicite de x? Si oui, calculer la dérivée de la fonction implicite et écrire l'équation de la tangente à C.

3 Recherche d'extrema

Exercice 10. Soit : $\mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^2 - y^2$ pour tout $(x,y) \in \mathbb{R}^2$. Montrer que (0,0) est un point critique de f, mais que ce n'est pas un extremum local.

Exercice 11. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^3 - 3x(1+y^2)$.

- 1. Étudier les extrema locaux de f.
- 2. Soit $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leqslant 1\}$. Montrer que f admet un maximum M et un minimum m sur D.
- 3. Soit $(x,y) \in D$. Montrer que si f(x,y) = M ou f(x,y) = m, alors $x^2 + y^2 = 1$.
- 4. Étudier la fonction $t \mapsto f(\cos t, \sin t)$. En déduire les valeurs de M et m.

Exercice 12. (Principe du maximum) Soit $\Omega \subset \mathbb{R}^n$ un ouvert borné et $u : \overline{\Omega} \to \mathbb{R}$ une fonction de classe C^2 sur l'ouvert Ω et continue sur le fermé $\overline{\Omega}$ telle que

$$\Delta u(x) = 0$$
 pour tout $x \in \Omega$.

Pour tout $\varepsilon > 0$, posons $u_{\varepsilon}(x) = u(x) + \varepsilon e^{x_1}$.

- 1. Pourquoi les fonctions u et u_{ε} atteignent-elle leur maximum sur $\overline{\Omega}$?
- 2. Montrer que $\Delta u_{\varepsilon}(x) > 0$ pour tout $x \in \Omega$.
- 3. Soit $x_{\varepsilon} \in \overline{\Omega}$ un point de maximum de u_{ε} sur $\overline{\Omega}$. Montrer que $x_{\varepsilon} \in \partial \Omega$.
- 4. En déduire que le maximum de u sur $\overline{\Omega}$ est atteint sur le bord.
- 5. Montrer que si u_1 et $u_2 \in \mathcal{C}(\overline{\Omega}) \cap \mathcal{C}^2(\Omega)$ sont deux fonctions harmoniques sur Ω telles que $u_1 = u_2$ sur $\partial\Omega$, alors $u_1 = u_2$ sur $\overline{\Omega}$.

Exercice 13. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 . On s'intéresse à la recherche d'extrema locaux de f sur la sphère $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.

- 1. On considère une paramétrisation de S donnée par $\gamma: t \in \mathbb{R} \mapsto (\cos t, \sin t)$. Rappeler l'expression du vecteur tangent à S au point $(x, y) = (\cos t, \sin t)$.
- 2. Pour tout $t \in \mathbb{R}$, on pose $g(t) = f(\cos t, \sin t)$. Montrer que g est de classe C^1 sur \mathbb{R} et que si $(x_0, y_0) = (\cos t_0, \sin t_0)$ est un extremum local de f sur S, alors $g'(t_0) = 0$.
- 3. En déduire que

$$-\frac{\partial f}{\partial x}(\cos t_0, \sin t_0)\sin t_0 + \frac{\partial f}{\partial y}(\cos t_0, \sin t_0)\cos t_0 = 0.$$

4. Etablir alors que le vecteur $\nabla f(x_0, y_0)$ est orthogonal au vecteur tangent à S en (x_0, y_0) . En déduire l'existence d'un $\lambda \in \mathbb{R}$ tel que

$$\nabla f(x_0, y_0) = \lambda \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$