Chapitre 8

Annexes

Dans chapitre, on désigne par X un ensemble et par $\mathcal{P}(X)$ l'ensemble des parties de X.

8.1 Théorème de Carathéodory : existence de mesures

Définition 8.1.1. Une application $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ est appelée mesure extérieure si elle vérifie

- (i) $\mu^*(\emptyset) = 0$;
- (ii) Pour tout $A, B \in \mathcal{P}(X)$, on a $\mu^*(A) \leq \mu^*(B)$;
- (iii) Pour toute suite $(A_n)_{n\in\mathbb{N}}$ de $\mathcal{P}(X)$, on a

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^* (A_n).$$

Si une mesure sur la tribu triviale $\mathcal{P}(X)$ est toujours une mesure extérieure, la réciproque n'est pas forcément vraie. Toutefois il est possible de restreindre μ^* à une tribu sur laquelle μ^* est une mesure.

Définition 8.1.2. Un ensemble $A \in \mathcal{P}(X)$ est dit μ^* -mesurable si pour tout $E \in \mathcal{P}(X)$, on a

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A).$$

Par la sous-additivité d'une mesure extérieure, pour vérifier qu'un ensemble A est μ^* -mesurable, il suffit de montrer que

$$\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A)$$

pour tout $E \in \mathcal{P}(X)$ tel que $\mu^*(E) < \infty$.

Théorème 8.1.3. (de Carathéodory) Soit μ^* une mesure extérieure sur un ensemble X. Alors la classe A des ensembles μ^* -mesurables est une tribu et la restriction de μ^* à A est une mesure.

Démonstration. Montrons tout d'abord que \mathcal{A} est une tribu. Clairement, on a $\emptyset \in \mathcal{A}$ car $\mu^*(\emptyset) = 0$. Par ailleurs \mathcal{A} est stable par passage au complémentaire puisque $E \cap (X \setminus A) = E \setminus A$ et $E \setminus (X \setminus A) = E \cap A$. Il reste donc à montrer que \mathcal{A} est stable par union dénombrable.

Vérifions d'abord que \mathcal{A} est stable par réunion et intersection finie (ce qui fera de \mathcal{A} une algèbre). Si A_1 et A_2 sont μ^* -mesurables, par sous-additivité de μ^* , on a pour tout $E \in \mathcal{P}(X)$,

$$\mu^{*}(E) = \mu^{*}(E \cap A_{1}) + \mu^{*}(E \setminus A_{1})$$

$$= \mu^{*}(E \cap A_{1}) + \mu^{*}((E \setminus A_{1}) \cap A_{2}) + \mu^{*}((E \setminus A_{1}) \setminus A_{2})$$

$$= \mu^{*}(E \cap A_{1}) + \mu^{*}(E \cap A_{2} \setminus A_{1}) + \mu^{*}(E \setminus (A_{1} \cup A_{2}))$$

$$\geq \mu^{*}(E \cap (A_{1} \cup A_{2})) + \mu^{*}(E \setminus (A_{1} \cup A_{2})),$$

ce qui montre que $A_1 \cup A_2 \in \mathcal{A}$. Par passage au complémentaire, on en déduit que $A_1 \cap A_2 \in \mathcal{A}$, puis que $A_1 \setminus A_2 \in \mathcal{A}$.

Soit maintenant $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} , posons $A=\bigcup_n A_n$ et montrons que $A\in\mathcal{A}$. On définit $A'_0=A_0$ puis $A'_n=A_n\setminus\bigcup_{m< n}A_m$ pour tout $n\geq 1$; \mathcal{A} étant une algèbre, on obtient ainsi une suite $(A'_n)_{n\in\mathbb{N}}$ d'ensembles dans \mathcal{A} disjoints deux à deux et de réunion $\bigcup_n A'_n=\bigcup_n A_n=A$.

Posons $B_n = \bigcup_{k \le n} A'_k \in \mathcal{A}$, on obtient alors pour tout $E \in \mathcal{P}(X)$

$$\mu^*(E \cap B_{n+1}) = \mu^*(E \cap B_{n+1} \cap B_n) + \mu^*(E \cap B_{n+1} \setminus B_n)$$

= $\mu^*(E \cap B_n) + \mu^*(E \cap A'_{n+1}),$

car les A'_n sont deux à deux disjoints. Ceci établit par récurrence que pour tout $n \in \mathbb{N}$,

$$\mu^*(E \cap B_n) = \sum_{k=0}^n \mu^*(E \cap A_n'). \tag{8.1.1}$$

Les ensembles B_n étant μ^* -mesurables, on a

$$\mu^*(E) = \mu^*(E \cap B_n) + \mu^*(E \setminus B_n)$$

ce qui implique, par (8.1.1) et croissance de μ^* ($B_n \subset A$), que

$$\mu^*(E) \ge \sum_{k=0}^n \mu^*(E \cap A_k') + \mu^*(E \setminus A).$$

Par passage à la limite quand $n \to +\infty$ et sous-additivité de la mesure extérieure μ^* , il vient

$$\mu^*(E) \ge \sum_{k=0}^{\infty} \mu^*(E \cap A_k') + \mu^*(E \setminus A) \ge \mu^*(E \cap A) + \mu^*(E \setminus A), \tag{8.1.2}$$

ce qui montre que $A \in \mathcal{A}$ et donc que \mathcal{A} est une tribu.

Si les A_n sont disjoints deux à deux, alors $A'_n = A_n$ pour tout $n \in \mathbb{N}$. En prenant E = A dans (8.1.2), on obtient

$$\sum_{k=0}^{\infty} \mu^*(A_k) = \mu^*(A),$$

ce qui montre que μ^* est une mesure sur \mathcal{A} .

8.2 Théorème de la classe monotone : unicité de mesures

Définition 8.2.1. On appelle classe monotone toute famille $\mathscr C$ de parties de X vérfiant :

- (i) $X \in \mathscr{C}$;
- (ii) Si $A, B \in \mathcal{C}$ et $A \subset B$, alors $B \setminus A \in \mathcal{C}$;
- (iii) Si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante de $\mathcal{P}(X)$ (i.e. $A_n \subset A_{n+1}$ pour tout $n \in \mathbb{N}$), alors $\bigcup_n A_n \in \mathscr{C}$.

Une tribu est toujours une classe monotone, mais la réciproque n'est pas forcément vraie.

Théorème 8.2.2. (de la classe monotone) Soit \mathcal{E} une famille de parties de X stable par intersection finie et contenant X. Alors la classe monotone engendrée par \mathcal{E} coïncide avec la tribu engendrée par \mathcal{E} .

 $D\acute{e}monstration$. Notons $\mathscr C$ la classe monotone engendrée par $\mathcal E$ et $\mathscr T$ la tribu engendrée par $\mathcal E$. Comme $\mathscr T$ est une classe monotone contenant $\mathcal E$, alors $\mathscr C\subset \mathscr T$. Il s'agit maintenant de montrer l'autre inclusion.

Montrons d'abord que $\mathscr C$ est stable par union finie. Par passage au complémentaire, il suffit de montrer que $\mathscr C$ est stable par iintersection finie. Soit $E \in \mathcal E$ fixé et

$$\mathscr{C}_E := \{ A \in \mathscr{C} : A \cap E \in \mathscr{C} \}.$$

Comme $E = X \cap E \in \mathcal{E}$, on en déduit que $X \in \mathscr{C}_E$. Par ailleurs, si $A, B \in \mathscr{C}_E$ et $A \subset B$, alors $A \cap E \in \mathscr{C}$, $B \cap E \in \mathscr{C}$ et $A \cap E \subset B \cap E$, ce qui implique que $(B \setminus A) \cap E = (B \cap E) \setminus (A \cap E) \in \mathscr{C}$ et donc que $B \setminus A \in \mathscr{C}_E$. Enfin si $(A_n)_{n \in \mathbb{N}}$ est une suite croissante de \mathscr{C}_E , alors on a $A_n \cap E \in \mathscr{C}$ et $A_n \cap E \subset A_{n+1} \cap E$ pour tout $n \in \mathbb{N}$, ce qui montre que $(\bigcup_n A_n) \cap E = \bigcup_n (A_n \cap E) \in \mathscr{C}$, soit $\bigcup_n A_n \in \mathscr{C}_E$. On en déduit que \mathscr{C}_E est une classe monotone qui contient \mathscr{E} puisque \mathscr{E} est stable par intersection finie. Par conséquent, $\mathscr{C} \subset \mathscr{C}_E$ pour tout $E \in \mathscr{E}$, i.e.

$$A \cap E \in \mathscr{C}$$
 pour tout $A \in \mathscr{C}$ et tout $E \in \mathcal{E}$.

Soit maintenant $B \in \mathscr{C}$ et

$$\mathscr{C}_B := \{ A \in \mathscr{C} : A \cap B \in \mathscr{C} \}.$$

On montre de même que \mathscr{C}_B est une classe monotone qui, d'après ce qui précède, contient \mathcal{E} . Par conséquent, $\mathscr{C} \subset \mathscr{C}_B$, ce qui signifie que

$$A \cap B \in \mathscr{C}$$
 pour tout $A, B \in \mathscr{C}$.

Montrons à présent que $\mathscr C$ est une tribu. On sait déjà que $\mathscr C$ contient X et est stable par passage au complémentaire. Il reste à montrer que $\mathscr C$ est stable par union dénombrable. Soit $(A_n)_{n\in\mathbb N}$ une suite d'éléments de $\mathscr C$. Pour tout $n\in\mathbb N$ on pose

$$B_n = \bigcup_{k=0}^n A_n.$$

Comme $\mathscr C$ est stable par réunion finie, il vient $B_n \in \mathscr C$ pour tout $n \in \mathbb N$. La suite $(B_n)_{n \in \mathbb N}$ étant croissante et $\mathscr C$ étant une classe monotone, on en déduit que $\bigcup_n B_n \in \mathscr C$. Finalement, comme $\bigcup_n A_n = \bigcup_n B_n$ on en déduit que $\bigcup_n A_n \in \mathscr C$.

Comme \mathscr{C} est une tribu contenant \mathcal{E} , on obtient l'autre inclusion $\mathscr{T} \subset \mathscr{C}$.

Corollaire 8.2.3. Soient λ et μ deux mesures de Radon sur \mathbb{R}^N qui coïncident sur les cubes ouverts. Alors $\lambda = \mu$.

 $D\acute{e}monstration$. Soit \mathcal{E} la famille des cubes ouverts dans \mathbb{R}^N (i.e. les boules ouvertes $B_{\infty}(x,r)$ de \mathbb{R}^N pour la norme $\|\cdot\|_{\infty}$). Clairement \mathcal{E} est stable par intersection finie. Montrons que la tribu \mathscr{T} engendrée par \mathcal{E} est la tribu Borélienne sur \mathbb{R}^N . En effet, on a tout d'abord l'inclusion $\mathscr{T} \subset \mathcal{B}(\mathbb{R}^N)$. Pour montrer l'autre inclusion, on considère un ouvert $U \subset \mathbb{R}^N$ et le sous ensemble dénombrable de \mathcal{E}

$$\mathcal{F}_U := \{ (B_{\infty}(a, r) \subset U : a \in U \cap \mathbb{Q}^N \text{ et } r \in \mathbb{Q}_+^* \}$$

de boules de centre rationnel et de rayon rationnel, incluses dans U. Si $x \in U$ et R > 0 tel que $\overline{B_{\infty}(x,R)} \subset U$, alors il existe $a \in U \cap \mathbb{Q}^N$ tel que $\|x-a\|_{\infty} < R/4$. De plus, il existe $r \in \mathbb{Q}_+^*$ tel que R/4 < r < R/2, ce qui implique que $x \in B_{\infty}(a,r)$ et $B_{\infty}(a,r) \subset B_{\infty}(x,R) \subset U$. On a donc montré que

$$U = \bigcup_{B \in \mathcal{F}_U} B$$

et donc que $U \in \mathcal{T}$. Comme la tribu Borélienne est engendrée par les ouverts, on en déduit l'autre inclusion $\mathcal{B}(\mathbb{R}^N) \subset \mathcal{T}$.

Pour tout $n \in \mathbb{N}$, et tout $B \in \mathcal{B}(\mathbb{R}^N)$, on pose

$$\lambda_n(B) := \lambda(B \cap] - n, n[^N), \quad \mu(B \cap] - n, n[^N) =: \mu_n(B).$$

Comme λ et μ sont des mesures de Radon sur \mathbb{R}^N , on en déduit que λ_n et μ_n sont des mesures Boréliennes finies sur \mathbb{R}^N . On définit

$$\mathscr{C}_n = \{ A \in \mathcal{B}(\mathbb{R}^N) : \lambda_n(A) = \mu_n(A) \} \subset \mathcal{B}(\mathbb{R}^N).$$

Alors $\mathbb{R}^N \in \mathscr{C}_n$ car $\lambda_n(\mathbb{R}^N) = \lambda(]-n, n[^N) = \mu(]-n, n[^N) = \mu_n(\mathbb{R}^N)$ puisque $]-n, n[^N \in \mathcal{E}$. Ensuite si $A, B \in \mathscr{C}_n$ sont tels que $A \subset B$, alors $\lambda_n(B \setminus A) = \lambda_n(B) - \lambda_n(A) = \mu_n(B) - \mu_n(A) = \mu_n(B \setminus A)$ ce qui montre que $B \setminus A \in \mathscr{C}_n$. Enfin si $(A_k)_{k \in \mathbb{N}}$ est une suite croissante de \mathscr{C}_n , alors $\lambda_n(A_k) = \mu_n(A_k)$ pour tout $k \in \mathbb{N}$, puis passage à la limite quand $k \to +\infty$,

$$\lambda_n\left(\bigcup_{k\in\mathbb{N}}A_k\right) = \lim_{k\to+\infty}\lambda_n(A_k) = \lim_{k\to+\infty}\mu_n(A_k) = \mu_n\left(\bigcup_{k\in\mathbb{N}}A_k\right),$$

ce qui montre que $\bigcup_k A_k \in \mathscr{C}_n$. On a donc établi que \mathscr{C}_n est une classe monotone. Comme par hypothèse \mathscr{C}_n contient \mathcal{E} , alors \mathscr{C}_n contient la classe monotone engendrée par \mathcal{E} qui, en vertu du théorème de la classe monotone, coïncide avec la tribu engendrée par \mathcal{E} , i.e. la tribu Borélienne. On a donc établi que $\mathscr{C}_n = \mathcal{B}(\mathbb{R}^N)$, i.e. $\lambda_n(B) = \mu_n(B)$ pour tout Borélien $B \subset \mathbb{R}^N$, ou encore

$$\lambda(B\cap] - n, n[^N) = \mu(B\cap] - n, n[^N).$$

Par passage à la limite quand $n \to +\infty$, il vient $\lambda(B) = \mu(B)$.