Fonctions continues

Exercice 1. (Lemme d'Urysohn) Soient K un compact et V un ouvert borné dans \mathbb{R}^N tels que $K \subset V \subset \Omega$. Montrer qu'il existe une fonction $f \in \mathcal{C}_c(\Omega; [0,1])$ telle que f = 1 sur K et $\operatorname{Supp}(f) \subset V$.

Exercice 2. (Partition de l'unité) Soient V_1, \ldots, V_n des ouverts de Ω et K un compact tel que $K \subset \bigcup_{i=1}^n V_i$. Montrer que, pour tout $i=1,\ldots,n$, il existe des fonctions $f_i \in \mathcal{C}_c(\Omega;[0,1])$ telles que $\operatorname{Supp}(f_i) \subset V_i$ et $\sum_{i=1}^n f_i = 1$ sur K.

Exercice 3. (Topologie de l'espace des fonctions \mathcal{C}^{∞} sur un ouvert) Soit Ω un ouvert de \mathbb{R}^{N} .

- 1. Construire une suite de compacts $(K_n)_{n\geq 1}$ telle que $\overline{K}_n \subset \mathring{K}_{n+1} \subset \Omega$ pour tout $n\geq 1$ et $\Omega = \bigcup_{n\geq 1} K_n$.
- 2. Pour tout f et $g \in \mathcal{C}^{\infty}(\Omega)$ et tout $n \geq 1$, on pose

$$d_n(f,g) := \sup_{x \in K_n} \sup_{\alpha \in \mathbb{N}^N, |\alpha| \le n} |D^{\alpha} f(x) - D^{\alpha} g(x)|.$$

Pourquoi d_n n'est pas une distance sur $\mathcal{C}^{\infty}(\Omega)$?

3. Montrer que

$$d(f,g) := \sum_{n>1} \frac{1}{2^n} \frac{d_n(f,g)}{1 + d_n(f,g)}$$

définit une distance sur $\mathcal{C}^{\infty}(\Omega)$.

- 4. Montrer que $d(f_k, f) \to 0$ si et seulement si $D^{\alpha} f_k \to D^{\alpha} f$ uniformément sur tout compact de Ω pour tout $\alpha \in \mathbb{N}^N$.
- 5. Montrer $(\mathcal{C}^{\infty}(\Omega), d)$ est un espace métrique complet ¹.
- 6. Montrer que si $(f_k)_{k\in\mathbb{N}}$ est une suite bornée de $(\mathcal{C}^{\infty}(\Omega), d)$, alors elle admet une sous-suite convergente. L'espace $(\mathcal{C}^{\infty}(\Omega), d)$ peut-il être normé?
- 7. Quels résultats subsistent si l'on remplace $\mathcal{C}^{\infty}(\Omega)$ par $\mathcal{C}^k(\Omega)$ pour tout $k \in \mathbb{N}$?

Exercice 4. Le but de cet exercice est de montrer que si $-\infty \le a < b \le +\infty$, alors l'espace $\mathcal{C}_b([a,b])$ n'est pas séparable.

1. Soit $(a_n)_{n\in\mathbb{N}}$ une suite décroissante telle que $a_n\to a$ et $(b_n)_{n\in\mathbb{N}}$ une suite croissante telle que $b_n\to b$. On pose $x_n=\frac{a_n+a_{n+1}}{2}$. Construire une fonction $\varphi_n\in\mathcal{C}_c(]a,b[)$ telle que $0\leq \varphi_n\leq 1,\, \varphi_n(x_n)=1$ et $\mathrm{Supp}(\varphi_n)\subset]a_{n+1},a_n[$.

^{1.} Il s'agit en fait d'un espace de Fréchet, i.e. un espace vectoriel topologique muni d'une famille dénombrable de semi-normes (ici $p_n(f) := d_n(f, 0)$), métrisable et complet

2. En notant $\mathcal{P}(\mathbb{N})$ l'ensemble des parties de \mathbb{N} , on pose pour tout $A \in \mathcal{P}(\mathbb{N})$

$$\varphi_A := \sum_{n \in A} \varphi_n.$$

Montrer que $\varphi_A \in \mathcal{C}_b(]a,b[)$.

3. Supposons que $C_b(]a, b[)$ est séparable et considérons une famille $D = \{f_k\}_{k \in \mathbb{N}}$ dénombrable et dense dans $C_b(]a, b[)$. Pour tout $A \in \mathcal{P}(\mathbb{N})$, montrer qu'il existe un entier $k_A \in \mathbb{N}$ tel que

$$\|\varphi_A - f_{k_A}\|_{\infty} < \frac{1}{2}.$$

- 4. Montrer que l'application $\Phi: \mathcal{P}(\mathbb{N}) \to \mathbb{N}$ qui a toute partie A de \mathbb{N} associe $\Phi(A) := k_A$ est injective.
- 5. Conclure.

Exercice 5. (Théorème de Weierstrass) L'objet de cet exercice est de montrer par une méthode constructive que pour toute fonction $f \in \mathcal{C}([0,1])$, il existe une suite de fonctions polynômiales $(P_n)_{n\in\mathbb{N}}$ telle que $P_n \to f$ uniformément sur [0,1].

Pour $n \in \mathbb{N}$ fixé et $0 \le j \le n$, on définit les polynômes de Bernstein par

$$B_j(x) = C_n^j x^j (1-x)^{n-j}$$
, pour tout $x \in [0,1]$.

On pose, pour tout $x \in [0, 1]$,

$$P_n(x) = \sum_{j=0}^{n} f\left(\frac{j}{n}\right) B_j(x).$$

1. Montrer que pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}$,

$$|f(x) - P_n(x)| \le \sum_{j=0}^n \left| f(x) - f\left(\frac{j}{n}\right) \right| B_j(x).$$

2. Pour $x \in [0,1]$ fixé et $\delta > 0$, on pose :

$$I_{\delta} = \left\{ j = 0, \dots, n : \left| x - \frac{j}{n} \right| < \delta \right\}.$$

En utilisant l'uniforme continuité de f sur [0,1], montrer que pour tout $\varepsilon>0$, il existe $\delta>0$ tel que

$$\sum_{j \in I_{\delta}} \left| f(x) - f\left(\frac{j}{n}\right) \right| B_j(x) \le \frac{\varepsilon}{2}.$$

3. Montrer que

$$\sum_{j=0}^{n} (nx - j)^2 B_j(x) = nx(1 - x).$$

4. En posant $J_{\delta} = \{0, \dots, n\} \setminus I_{\delta}$, montrer que

$$\sum_{j \in J} \left| f(x) - f\left(\frac{j}{n}\right) \right| B_j(x) \le \frac{\|f\|_{\infty}}{2n\delta^2}.$$

5. Conclure.

Exercice 6. (Théorème d'extension de Tietze) Soient $C \subset \mathbb{R}^N$ un ensemble fermé et $f: C \to \mathbb{R}$ une fonction continue. Le but de cet exercice est de construire une fonction continue $f^*: \mathbb{R}^N \to \mathbb{R}$ telle que $f^* = f$ sur C et

$$|f^*(x)| \le \sup_{y \in C} |f(y)|$$
 pour tout $x \in \mathbb{R}^N$.

a) Supposons d'abord que $\sup_C |f| \le 1$. Montrer l'existence d'une fonction $g_1: \mathbb{R}^N \to [-1/3,1/3]$ telle que

$$g_1 = \frac{1}{3} \text{ sur } \left\{ f \ge \frac{1}{3} \right\} \text{ et } g_1 = -\frac{1}{3} \text{ sur } \left\{ f \le -\frac{1}{3} \right\}.$$

b) Montrer par récurrence l'existence d'une suite $(g_n)_{n\geq 1}$ de fonctions continues sur \mathbb{R}^N telle que pour tout $n\geq 1$,

$$|g_n(x)| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$
 pour tout $x \in \mathbb{R}^N$,

et

$$\left| f(x) - \sum_{i=1}^{n} g_i(x) \right| \le \left(\frac{2}{3}\right)^n \text{ pour tout } x \in C.$$

c) Conclure.