Approximation des équations différentielles

Exercice 1 Soit le système différentiel dans \mathbb{R}^2 défini par

$$\begin{cases} x' = 2(x - ty) \\ y' = 2y. \end{cases} \text{ pour tout } t \ge 0.$$

- 1. Déterminer la solution de ce système qui passe par le point (x_0, y_0) en t = 0.
- 2. On utilise la méthode d'Euler explicite avec pas constant h démarrant au temps $t_0 = 0$. Soit (x_n, y_n) le point atteint au temps $t_n = nh$ $(n \in \mathbb{N}^*)$.
 - a) Ecrire la relation qui lie (x_{n+1}, y_{n+1}) à (x_n, y_n) .
 - b) Calculer explicitement (x_n, y_n) en fonction de n, h, x_0 et y_0 .
 - c) Sans utiliser les théorèmes généraux du cours, vérifier que la solution approchée qui interpole linéairement les points (x_n, y_n) aux temps t_n , converge sur \mathbb{R}^+ vers la solution exacte du système quand $h \to 0$.

Exercice 2 On considère l'équation différentielle du second ordre avec conditions initiales

$$\begin{cases} y''(t) &= f(t, y(t)) \text{ pour tout } t \in [0, T], \\ y(0) &= y_0, \\ y'(0) &= y'_0. \end{cases}$$

On suppose que $f \in \mathcal{C}^2([0,T] \times \mathbb{R})$ et $y_0, y_0' \in \mathbb{R}$. On choisit de discrétiser l'équation par le schéma à deux pas

$$y_{n+1} - 2y_n + y_{n-1} = h^2 f(t_n, y_n)$$
 pour tout $n \in \mathbb{N}^*$,

où $t_n = nh$ et h = T/N. Majorer l'erreur de consistance définie par

$$\varepsilon(h) := \sup_{1 \le n \le T/N-1} \left| f(t_n, y(t_n)) - \frac{y(t_{n+1}) - 2y(t_n) + y(t_{n-1})}{h^2} \right|.$$

Exercice 3 (Méthode de Heun)

Soit le problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)) \text{ pour tout } t \in [0, T], \\ y(0) = y_0, \end{cases}$$

où $f:[0,T]\times\mathbb{R}\to\mathbb{R}$ est globalement Lipschitzienne par rapport à y et uniformément en t. On suppose que la solution y de cette équation différentielle est de classe \mathcal{C}^3 .

1. Etudier l'erreur de consistance de la méthode de Heun :

$$y_{n+1} = y_n + h \left[\frac{1}{2} f(t_n, y_n) + \frac{1}{2} f(t_{n+1}, y_n + h f(t_n, y_n)) \right],$$

où $t_n = nh$ et h = T/N.

2. Montrer que cette méthode est convergente d'ordre 2.

Exercice 4 On considère le système différentiel suivant

$$\begin{cases} u_1'(t) + 2u_1(t) - u_2(t) + u_1(t)e^{u_1(t)} &= 0, \\ u_2'(t) - u_1(t) + 2u_2(t) + u_2(t)e^{u_2(t)} &= 0, \end{cases} \text{ pour tout } t > 0,$$

avec la condition initiale $u_1(0) = u_2(0) = 1$. Dans la suite, on pose $u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix}$.

- 1. Démontrer que si u est solution du problème, alors la fonction g définie par $g(t) := ||u(t)||^2$ pour tout t > 0 est décroissante.
- 2. Si h > 0 est le pas de temps et si $t_n = nh$ pour $n \in \mathbb{N}$, écrire le schéma d'Euler implicite qui permettra de calculer les approximations u^n de $u(t_n)$.
- 3. Démontrer que si u^n est solution du schéma d'Euler implicite, alors la suite $(g_n)_{n\in\mathbb{N}}$ définie par $g_n = \|u^n\|^2$ pour tout $n \in \mathbb{N}$ est décroissante.
- 4. Expliquer la méthode de Newton-Raphson qui permettra de calculer u^{n+1} à partir de u^n .