TD10. Intégration. Théorèmes de convergence.

Échauffement, exemples et contre-exemples

* Exercice 1.

- a) Donner une suite de fonctions boréliennes positives $(f_n)_{n\geq 0}$ telle que $\int_{\mathbb{R}} f_n d\lambda$ admet une limite c>0 et $\int_{\mathbb{R}} \liminf f_n d\lambda < c$.
- b) Si (E, \mathcal{A}, μ) est un espace mesuré, $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de signe quelconque telle que $\int_E |\liminf f_n| d\mu < +\infty$, a-t-on toujours $\int_E \liminf f_n d\mu \leq \liminf \int_E f_n d\mu$?
- c) Donner une suite $(f_n)_{n\geq 0}$ de fonctions continues sur [0,1] à valeurs dans [0,1] telle que pour tout $x\in [0,1]$ la suite $f_n(x)$ n'admet pas de limite et $\lim_{n\to\infty}\int_{[0,1]}f_nd\lambda=0$.
- d) Donner une suite $(f_n)_{n\geq 0}$ de fonctions continues positives sur [0,1] telle que $\lim_{n\to\infty} \int_{[0,1]} f_n d\lambda = 0$ et $\int_{[0,1]} \sup_{n\geq 0} f_n d\lambda = +\infty$.

Exercice 2. Calculer la limite des suites suivantes :

- a) $\int_{\mathbb{R}} e^{-|x|/n} dx$,
- b) $\int_{\mathbb{R}} \mathbb{1}_{\{3|\cos(\frac{x}{m})| \ge 2\}} \frac{e^{-x^2}}{2\cos(\frac{x}{m})-1} dx$,
- c) $\sum_{m>1} \frac{n}{m} \sin(\frac{1}{nm})$.

Convergence dominée, variations

Exercice 3. Soient (E, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n\geq 0}$ une suite décroissante de fonctions mesurables positives qui converge μ -p.p. vers une fonction f.

a) On suppose qu'il existe n_0 tel que $\int_E f_{n_0} d\mu < \infty$. Montrer que

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

b) Que peut-on dire sans l'hypothèse d'intégrabilité?

Exercice 4. Soit $f:]0,1[\to\mathbb{R}$ une fonction positive, monotone et intégrable. On définit pour tout $n \ge 1$, $g_n(x) = f(x^n)$. Calculer la limite de $\int_{[0,1[} g_n d\lambda$.

* Exercice 5.

a) Soient (X, \mathcal{A}, μ) un espace mesuré, et $(f_n)_{n\geq 0}$ une suite de fonctions intégrables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que si $\sum_{n\geq 0} \int_X |f_n| d\mu < \infty$, alors

$$\sum_{n>0} \int_X f_n d\mu = \int_X \left(\sum_{n>0} f_n\right) d\mu.$$

- b) Soit $(\mathbb{N}, \mathcal{P}(\mathbb{N}), m)$ où m est la mesure de comptage. Soit $u : \mathbb{N} \to \overline{\mathbb{R}}_+$. Montrer que $\int_{\mathbb{N}} u dm = \sum_{n \geq 0} u(n)$.
- c) Soit $(a_{n,p})_{n,p\geq 0}$ des réels. Montrer que

$$\sum_{p \ge 0} \sum_{q \ge 0} |a_{p,q}| < \infty \Rightarrow \sum_{p \ge 0} \sum_{q \ge 0} a_{p,q} = \sum_{q \ge 0} \sum_{p \ge 0} a_{p,q}.$$

d) Calculer la limite de $\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$. ¹

Convergence en mesure, convergence dominée

* Exercice 6. Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < \infty$. Soient $(f_n)_{n \geq 1}$ et f des fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que la suite $(f_n)_{n \geq 1}$ converge en mesure vers f si:

$$\forall \varepsilon > 0, \lim_{n} \mu(\{|f_n - f| > \varepsilon\}) = 0.$$

- a) Montrer que si $\int_X |f_n f| d\mu \to 0$, alors la suite $(f_n)_{n \ge 1}$ converge en mesure vers f.
- b) Montrer que si la suite $(f_n)_{n\geq 1}$ converge μ -p.p. vers f, alors elle converge en mesure vers f.
- c) Réciproquement, supposons que (f_n) converge en mesure vers f:
 - i) Montrer qu'il existe une sous-suite $(f_{n_k})_{k\in\mathbb{N}}$ telle que

$$\forall k \ge 1, \ \mu(\{|f_{n_k} - f| > \frac{1}{k}) < \frac{1}{k^2}.$$

- ii) Soit $A = \underline{\lim}_{k} \{|f_{n_k} f| \leq \frac{1}{k}\}$. Montrer que (f_{n_k}) converge vers f sur A et que $\mu(^cA) = 0$ (en d'autres termes, f_n possède une sous-suite qui converge μ -p.p. vers f).
- * Exercice 7. Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < \infty$. Soient $(f_n)_{n \geq 1}$ et f des fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On suppose que la suite $(f_n)_n$ converge en mesure vers f, et qu'il existe une fonction $g: X \to \mathbb{R}$ intégrable positive telle que $|f_n| \leq g$ μ -p.p. pour tout $n \geq 1$.
 - a) Montrer que $|f| \leq g \mu$ -p.p.
 - b) En déduire à l'aide de la propriété d'uniforme continuité de l'intégrale que

$$\int_X |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0.$$

Exercice 8. Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction intégrable.

- a) Montrer que $\lim_n n\mu(\{|f| \ge n\}) = 0$.
- 1. Indication : appliquer le théorème de convergence dominée à $\sum_{k>0} (-1)^k x^k$ sur]0,1[.

b) Montrer que

$$\sum_{n\geq 1} \frac{1}{n^2} \int_{|f|\leq n} |f|^2 d\mu < +\infty.$$

Exercice 9. Soient (E, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n\geq 1}$ une suite de fonctions intégrables. On suppose qu'il existe f intégrable telle que

$$\int_{E} |f_n - f| d\mu \underset{n \to \infty}{\longrightarrow} 0.$$

Montrer qu'il existe une suite extraite $(f_{\phi(n)})_{n\geq 1}$ convergeant vers f μ -p.p., et une fonction B intégrable telle que $\sup_{n\geq 1}|f_{\phi(n)}|\leq B$ μ -p.p.

Le coin du curieux

Exercice 10. Soit f_n une suite de fonctions continues de [0,1] dans [0,1] telle que pour tout $x \in [0,1]$ $f_n(x) \to 0$ quand $n \to \infty$. Retrouver sans utiliser la théorie de l'intégration de Lebesgue que la suite des intégrales de Riemann vérifie $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$.