TD5. Fonctions en escalier, fonctions étagées, fonctions réglées, fonctions boréliennes.

Remarque 1 Pour rappel, une fonction définie sur un segment est réglée, c'est-à-dire limite uniforme de fonctions en escalier, si et seulement si elle admet une limite à droite et à gauche en tout point. Ce critère pourra être utilisé pour tous les exercices suivants, et sa preuve fait l'objet du dernier exercice.

Échauffements

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par f(x,y) = x.

- a) Décrire la tribu image réciproque de \mathcal{B} par f, $f^{-1}(\mathcal{B}) = \{f^{-1}(A) : A \in \mathcal{B}\}$, où \mathcal{B} est la tribu borélienne de \mathbb{R} .
- b) Décrire la tribu image directe par f de la tribu borélienne de \mathbb{R}^2 , c'est-à-dire $\{A \in \mathcal{P}(\mathbb{R}) : f^{-1}(A) \in \mathcal{B}^2\}$ avec \mathcal{B}^2 la tribu borélienne de \mathbb{R}^2 .

Exercice 2. Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si et seulement si pour tout couple de réels (a, b), la restriction de f à [a, b] est mesurable.

Fonctions réglées

- * Exercice 3.
 - a) Donner un exemple de fonction étagée qui n'est pas réglée.
 - b) Existe-t-il une suite de fonctions en escalier qui converge simplement vers $\mathbb{1}_{\mathbb{Q}} \colon \mathbb{R} \to \mathbb{R}$?

Fonctions mesurables

* Exercice 4. Soit (E, A) un espace mesurable et $f_n : E \to \mathbb{C}$ une suite de fonctions mesurables. Montrer que l'ensemble

$$A = \{x \in E : \text{la suite } (f_n(x))_{n \in \mathbb{N}} \text{ est convergente} \}$$

est un élément de A.

Exercice 5. Soit (E, A) un espace mesurable. Soient f et g deux fonctions réelles sur E qui sont $(A, \mathcal{B}(\mathbb{R}))$ -mesurables. Montrer que f + g est mesurable.

* Exercice 6. Soient X et Y deux espaces métriques et $f: X \to Y$ une application dont l'ensemble des points de discontinuité est dénombrable. Montrer que f est mesurable (X et Y sont munis de leur tribu borélienne).

- * Exercice 7. Soit $f: E \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et $\mathcal{A}_f = f^{-1}(\mathcal{B}(\mathbb{R}))$ la tribu image réciproque de $\mathcal{B}(\mathbb{R})$ par f.
 - a) Soit $h : \mathbb{R} \to \mathbb{R}$ une fonction borélienne. Montrer que $g = h \circ f$ est une fonctions mesurable de (E, \mathcal{A}_f) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - b) Soit $s:(E,\mathcal{A}_f)\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction étagée. Montrer qu'il existe une fonction borélienne t telle que $s=t\circ f$.
 - c) Montrer que si $g:(E, A) \to \mathbb{R}$ est mesurable, alors il existe h borélienne telle que $g = h \circ f$. Indication: On pourra approcher g par une suite de fonctions étagées.

Exercice 8.

- a) Soit X un borélien de $\mathbb R$ et $f:X\to\mathbb R$ une fonction monotone. Montrer que f est mesurable.
- b) Montrer que toute fonction réglée de \mathbb{R} dans \mathbb{R} est borélienne.

* Exercice 9.

- a) L'application $a=\sum_{n\in\mathbb{N}^*}\mathbbm{1}_{\{\frac{1}{n}\}}:[0,1]\to\mathbb{R}$ est-elle une fonction réglée? Étagée? Borélienne?
- b) Qu'en est-il de l'application $b = \sum_{n \in \mathbb{N}^*} \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \colon [0, 1] \to \mathbb{R}$?
- c) Répondre aux mêmes questions, concernant les applications suivantes (depuis [0,1] vers \mathbb{R}).

$$c = \sum_{n \in \mathbb{N}^*} \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}; \quad d = \sum_{n \in \mathbb{N}^*} \frac{1}{n} \mathbb{1}_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}; \quad e(x) = \frac{1}{x} d(x) \text{ si } x \in]0, 1], = 0 \text{ si } x = 0;$$

$$f(x) = x d(x); \qquad g(x) = \frac{1}{\sqrt{x}} d(x) \text{ si } x \in]0, 1], = 0 \text{ si } x = 0.$$

Pour aller plus loin... Un exercice classique

Exercice 10. Montrer qu'une fonction $f:[a,b] \to \mathbb{R}$ est réglée si et seulement si elle admet en tout point de [a,b] une limite à gauche et une limite à droite.