TD7. Mesures.

Échauffements

- * Exercice 1. Soient (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $f : (X, \mathcal{A}) \to (Y, \mathcal{B})$ mesurable. Montrer que $\mu_f : | \mathcal{B} \to \mathbb{R}_+$ est une mesure sur (Y, \mathcal{B}) . $| \mathcal{B} \mapsto \mu(f^{-1}(\mathcal{B}))$
 - **Exercice 2.** On considère la tribu $\mathcal{A} = \{A \in \mathcal{P}(\mathbb{R}); A \text{ est dénombrable ou } ^cA \text{ est dénombrable}\}$ sur \mathbb{R} . Montrer que $\mu : A \to \mathbb{R}_+$ est une mesure sur $(\mathbb{R}, \mathcal{A})$. $A \mapsto \begin{cases} 0 \text{ si } A \text{ est dénombrable}, \\ 1 \text{ sinon }; \end{cases}$
- * Exercice 3. Dans cet exercice on considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ où λ est la mesure de Lebesgue. Un ouvert de \mathbb{R} de mesure finie est-il nécessairement borné?

Quelques exercices classiques

- * Exercice 4.
 - a) Soient (X, \mathcal{A}) un espace mesurable et $(\mu_j)_{j\in\mathbb{N}}$ une suite croissante de mesures positives sur \mathcal{A} (pour tout $A \in \mathcal{A}$ et pour tout $j \in \mathbb{N}$, $\mu_j(A) \leq \mu_{j+1}(A)$). Pour tout $A \in \mathcal{A}$, on pose $\mu(A) = \sup_{j \in \mathbb{N}} \mu_j(A)$. Montrer que μ est une mesure.
 - b) Sur l'espace mesurable $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, on définit, pour tout $j \in \mathbb{N}$ et tout $A \in \mathcal{P}(\mathbb{N})$, $\nu_j(A) = \operatorname{card}(A \cap [j, +\infty])$. Montrer que pour tout $j \in \mathbb{N}$ ν_j est une mesure sur $\mathcal{P}(\mathbb{N})$ et que pour tout $A \in \mathcal{A}$, $\nu_j(A) \geq \nu_{j+1}(A)$.
 - c) Soit ν l'application positive définie sur $\mathcal{P}(\mathbb{N})$ par $\nu(A) = \inf_{j \in \mathbb{N}} \nu_j(A)$ pour toute partie A de \mathbb{N} . Déterminer $\nu(\mathbb{N})$ et $\nu(\{k\})$ pour tout $k \in \mathbb{N}$. Dire si ν est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

Exercice 5. Soient (X, \mathcal{A}) un espace mesurable. On suppose que $A \in \mathcal{A}$ est un atome de \mathcal{A} , c'est-à-dire que A est non vide et pour tout $B \in \mathcal{A}$ tel que $B \subseteq A$, alors $B = \emptyset$ ou B = A. Montrer que $\mu_A : A \to \overline{\mathbb{R}}_+$ est une mesure sur (X, \mathcal{A}) . $B \mapsto \begin{cases} 1 & \text{si } A \subseteq B \\ 0 & \text{sinon.} \end{cases}$

- * Exercice 6. Soient (X, \mathcal{A}, μ) un espace mesuré et $f: (X, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction mesurable.
 - a) On pose, pour tout $n \in \mathbb{N}$, $A_n = \{|f| \le n\}$. Montrer que, si $\mu(X) \ne 0$, il existe $n \in \mathbb{N}$ tel que $\mu(A_n) \ne 0$.
 - b) Montrer que si $\mu(\{f \neq 0\}) \neq 0$, alors il existe $A \in \mathcal{A}$ et $\varepsilon > 0$ tels que $\mu(A) \neq 0$ et pour tout $x \in A$, $|f(x)| \geq \varepsilon$.

* Exercice 7. [Lemme de Borel-Cantelli] Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que

$$\sum_{n\in\mathbb{N}}\mu(A_n)<+\infty.$$

Montrer que μ ($\limsup_{n} A_n$) = 0.

- * Exercice 8. Soient μ une mesure finie sur $\mathcal{B}(\mathbb{R})$ et $F : \mathbb{R} \to \mathbb{R}_+$ la fonction définie, pour tout $x \in \mathbb{R}$, par $F(x) = \mu([x, +\infty[)$.
 - a) Montrer que F est décroissante et continue à gauche sur $\mathbb R$ et calculer ses limites en $+\infty$ et $-\infty$.
 - b) Pour tout $x \in \mathbb{R}$, montrer que F est continue en x si et seulement si $\mu(\{x\}) = 0$. En déduire que $\{x \in \mathbb{R} : \mu(\{x\}) \neq 0\}$ (l'ensemble des atomes de μ) est dénombrable.

Pour aller plus loin...

Exercice 9. [Théorème d'Egoroff] Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < +\infty$ et soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- a) Montrer que l'ensemble de convergence C de la suite $(f_n)_{n\in\mathbb{N}}$ est mesurable.
- b) On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge μ -p.p. vers une fonction mesurable f, au sens où $\mu(^cC)=0$.

Pour tout
$$k \in \mathbb{N}^*$$
 et tout $n \in \mathbb{N}$, soit $E_n^k = \bigcap_{i > n} \{ |f_i - f| \le \frac{1}{k} \}.$

Montrer que $C \subseteq \bigcup_{n\geq 1} E_n^k$. En déduire que, pour tout réel $\varepsilon > 0$, pour tout $k \in \mathbb{N}^*$, il existe $n_{k,\varepsilon} \in \mathbb{N}^*$ tel que $\mu\left({}^c E_{n_{k,\varepsilon}}^k\right) < \frac{\varepsilon}{2^k}$.

- c) (Théorème d'Egoroff) En déduire que, pour tout $\varepsilon > 0$, il existe $E_{\varepsilon} \in \mathcal{A}$ tel que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f sur E_{ε} et tel que $\mu(^cE_{\varepsilon}) < \varepsilon$.
- d) Donner un contre-exemple lorsque $\mu(X) = +\infty$.

Exercice 10. [Application du théorème d'Egoroff] Soit (X, \mathcal{A}, μ) un espace mesuré et soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f si :

$$\forall \varepsilon > 0, \lim_{n} \mu(\{|f_n - f| > \varepsilon\}) = 0.$$

- a) Montrer que si $\mu(X) < +\infty$ et la suite $(f_n)_{n \in \mathbb{N}}$ converge μ -p.p. vers f, alors elle converge en mesure vers f.
- b) Réciproquement, supposons que $(f_n)_{n\in\mathbb{N}}$ converge en mesure vers f:
 - i) Montrer qu'il existe une sous-suite $(f_{n_k})_{k>1}$ telle que

$$\forall k \ge 1, \ \mu\left(\left\{|f_{n_k} - f| > \frac{1}{k}\right\}\right) < \frac{1}{k^2}.$$

ii) Soit $A = \underline{\lim}_{k} \{ |f_{n_k} - f| \leq \frac{1}{k} \}$. Montrer que $(f_{n_k})_{k \geq 1}$ converge vers f sur A et que $\mu(^c A) = 0$ (en d'autres termes, $(f_n)_{n \in \mathbb{N}}$ possède une sous-suite qui converge μ -p.p. vers f).