TD 5. Convergence faible, convexité

Exercice 1 (Convergence faible non forte). Pour a < b dans $[-\infty, +\infty]$, l'espace $L^2(a, b)$ est muni de son produit scalaire usuel

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx.$$

Soit $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction régulière non nulle à support compact.

- 1. (Evanescence) Montrer que $\mathbb{R} \ni x \mapsto u_n(x) := \varphi(x-n)$ converge faiblement vers 0 dans $L^2(\mathbb{R})$, mais que cette convergence n'est pas forte.
- 2. (Concentration) Montrer que $]-1,1[\ni x\mapsto v_n(x):=\sqrt{n}\varphi(nx)$ converge faiblement vers 0 dans $L^2(-1,1)$, mais que cette convergence n'est pas forte.
- 3. (Oscillations) Soit $w : \mathbb{R} \to \mathbb{R}$ une fonction 2π -périodique et $w_n(x) = w(nx)$ pour $x \in [0, 2\pi]$ et $n \in \mathbb{N}$. Montrer que w_n converge faiblement vers la moyenne de w sur $[0, 2\pi]$ mais ne converge pas fortement dans $L^2(0, 2\pi)$.

Exercice 2 (Lemme d'Opial). Soit H un espace de Hilbert, $(u_n)_{n\in\mathbb{N}}$ une suite de H et S un sous-ensemble non vide de H. On suppose que

- (i) pour tout u dans S, $||u u_n||$ converge (vers un certain réel);
- (ii) toutes les valeurs d'adhérences faibles de u sont dans S.

Montrer qu'il existe u dans S tel que u_n converge faiblement vers u.

Exercice 3. Soit E un espace de Banach, $(x_n) \subset E$ une suite telle que $x_n \rightharpoonup x \in E$ pour la topologie faible. On pose

$$s_n = \frac{1}{n}(x_1 + \dots + x_n).$$

Montrer que $s_n \rightharpoonup x$ pour la topologie faible.

Exercice 4. Soit $E = \mathcal{C}([0,1];\mathbb{R})$ muni de la norme de la convergence uniforme et $(f_n)_{n\geq 1}$ une suite de fonctions définies par $f_n(x) = \max(1 - nx, 0)$. Montrer qu'elle ne possède aucune sous-suite faiblement convergente. L'espace E est-il réflexif?

Exercice 5. Soit H un espace de Hilbert et C un ensemble convexe fermé non vide inclus dans H. Une fonction $F: C \to \mathbb{R}$ est dite α -convexe, pour $\alpha > 0$, si et seulement si

$$\frac{F(u) + F(v)}{2} \ge F\left(\frac{u+v}{2}\right) + \frac{\alpha}{2}||u-v||^2.$$

1. Soit $F:C\to\mathbb{R}$ une fonction convexe s.c.i. Montrer que F est minorée par une fonction affine continue :

$$F(v) \ge \langle x_0, v \rangle + c_0,$$

où $x_0 \in H$ et $c_0 \in \mathbb{R}$. (On pourra séparer epiF et $(u, s) \in C \times \mathbb{R}$ avec s < F(u)).

2. On suppose maintenant de plus que F est α -convexe. Montrer qu'il existe $\beta>0$ et $\gamma\in\mathbb{R}$ tels que

$$F(v) \ge \beta ||v||^2 + \gamma \quad \forall v \in C.$$

- 3. Etablir que F a un minimum, noté u, sur K et qu'il est unique.
- 4. Montrer que toute suite minimisante pour F converge fortement dans H et que u vérifie

$$F(v) - F(u) \ge \alpha ||v - u||^2.$$

Exercice 6. (Méthode de pénalisation). Soit E un espace de Banach réflexif, $J: E \to \mathbb{R}$ une fonction strictement convexe, s.c.i., coercive, et $\varphi: E \to \mathbb{R}^+$ une fonction convexe s.c.i..

- 1. Montrer que $U := \{u \in E : \varphi(u) = 0\}$ est un sous ensemble convexe de E.
- 2. On pose, pour tout $n \in \mathbb{N}$, $J_n := J + n\varphi$. Montrer qu'il existe un unique $u_n \in E$ tel que

$$J_n(u_n) = \min_E J_n.$$

- 3. Montrer qu'il existe une sous suite (u_{n_k}) de (u_n) et $u \in U$ tels que $u_{u_{n_k}} \rightharpoonup u$ faiblement dans E.
- 4. Montrer que u est l'unique solution de

$$\min_{II} J$$
,

et en déduire que **toute** la suite $u_n \rightharpoonup u$ faiblement dans E.

5. Montrer que

$$\min_{U} J = \lim_{n \to +\infty} \min_{E} J_n.$$

Exercice 7. (Flot gradient). Soient $F : \mathbb{R}^n \to \mathbb{R}^+$ une fonction convexe, continue et $u_0 \in \mathbb{R}^n$. Pour $\delta > 0$ et $i \geq 1$, on résoud le problème de minimisation

$$\inf_{v \in \mathbb{R}^n} \left\{ \frac{\|v - u_{i-1}\|^2}{2\delta} + F(v) \right\}.$$

- 1. Montrer l'existence d'une unique solution notée u_i .
- 2. Montrer que pour tout $i \geq 1$,

$$-\frac{u_i - u_{i-1}}{\delta} \in \partial F(u_i).$$

3. Montrer que pour tout $j \geq 1$,

$$F(u_j) + \sum_{i=1}^{j} \frac{\|u_i - u_{i-1}\|^2}{2\delta} \le F(u_0).$$

4. On définit les interpolations constantes et affines par morceaux : pour tout $t \in [(i-1)\delta, i\delta]$

$$u_{\delta}(t) := u_i, \quad v_{\delta}(t) := \frac{t - (i - 1)\delta}{\delta} (u_i - u_{i-1}) + u_{i-1}.$$

Montrer l'existence d'une sous-suite $\delta_k \to 0$ et d'une fonction $u : \mathbb{R}^+ \to \mathbb{R}^n$ telles que pour tout T > 0, $u \in H^1([0,T];\mathbb{R}^n)$, $u_{\delta_k} \to u$ fortement dans $L^{\infty}([0,T];\mathbb{R}^n)$ et $v_{\delta_k} \rightharpoonup u$ faiblement dans $H^1([0,T];\mathbb{R}^n)$.

5. Montrer que u est l'unique solution de

$$\begin{cases} -u'(t) \in \partial F(u(t)) & \text{pour presque tout } t > 0, \\ u(0) = u_0, \end{cases}$$

et en déduire qu'il n'est pas nécessaire d'extraire des sous-suites pour avoir les convergences des suites (u_{δ}) et (v_{δ}) .

6. Si F est de classe \mathcal{C}^1 , montrer que $u \in \mathcal{C}^1(\mathbb{R}^+; \mathbb{R}^n)$ et pour tout $t \geq 0$,

$$u'(t) = -DF(u(t)).$$

En déduire l'identité d'énergie

$$F(u(t_2)) + \int_{t_1}^{t_2} ||u'(s)||^2 ds = F(u(t_1)).$$

Exercice 8. (Sous-différentielle). Soit $f: E \to \mathbb{R} \cup \{+\infty\}$ une fonction propre. On dit que f est sous-différentiable au point $x \in \text{Dom} f$ s'il existe $p \in E^*$ tel que

$$f(y) \ge f(x) + \langle p, y - x \rangle \quad \forall y \in E.$$

On dit alors que p est un sous-gradient de f en x et on note $\partial f(x) \subset E^*$ l'ensemble des sous-gradients de f en x.

- 1. Interpréter géométriquement cette définition.
- 2. Montrer que si $\partial f(x) \neq \emptyset$ alors $f(x) = f^{**}(x)$.
- 3. Montrer que si $f(x) = f^{**}(x)$, alors $\partial f(x) = \partial f^{**}(x)$.
- 4. Montrer que

$$f(x) = \min_{y \in E} f(y)$$
 si et seulement si $0 \in \partial f(x)$.

5. Montrer que $p \in \partial f(x)$ si et seulement si

$$f(x) + f^*(p) = \langle p, x \rangle.$$

- 6. En déduire que $\partial f(x)$ est un ensemble convexe fermé.
- 7. Montrer que si $p \in \partial f(x)$ alors $x \in \partial f^*(p)$. Sous quelle hypothèse la réciproque est-elle vraie?
- 8. Montrer que si f est convexe et continue, alors pour tout $x \in \text{Dom} f$ on a $\partial f(x) \neq \emptyset$ (On pourra séparer int(Epi(f)) et $(x, f(x)) \notin \text{int}(\text{Epi}(f))$.)
- 9. Montrer que si f est convexe et Gâteaux différentiable en x, alors $\partial f(x) = \{D_G f(x)\}.$