Calcul des variations : outils et méthodes

Examen du 11 mai 2016

- Le sujet comporte deux parties indépendantes, à rédiger sur des feuilles différentes.
- Seules les notes de cours sont autorisées.
- Durée : 3 heures.
- Dans un même exercice, on peut admettre pour traiter une question les résultats des questions précédentes même s'ils n'ont pas été démontrés.

Partie A

Exercice 1. Soit $f : \mathbb{R} \to \mathbb{R}$ est une fonction semi-continue inférieurement. On suppose qu'il existe c > 0 et 1 tels que

$$0 \le f(s) \le c(1+|s|^p)$$
 pour tout $s \in \mathbb{R}$.

On définit la fonctionnelle $J: L^p(0,1) \to \mathbb{R}$ par

$$J(u) = \int_0^1 f(u(x)) dx \quad \text{pour tout } u \in L^p(0,1).$$

On se propose de montrer que f est convexe si et seulement si J est séquentiellement faiblement semi-continue inférieurement dans $L^p(0,1)$.

- 1. On suppose dans cette question que f est convexe.
 - 1.1. Montrer que J est fortement semi-continue inférieurement dans $L^p(0,1)$.
 - **1.2.** Montrer que J est convexe.
 - 1.3. En déduire que J est séquentiellement faiblement semi-continue inférieurement dans $L^p(0,1)$.
- **2.** Supposons maintenant que J est séquentiellement faiblement semi-continue inférieurement dans $L^p(0,1)$. Soient $\lambda \in [0,1]$ et $a,b \in \mathbb{R}$.
 - **2.1.** Soit $u \in L^{\infty}(\mathbb{R})$ une fonction 1-périodique, i.e., u(x+1) = u(x) presque pour tout $x \in \mathbb{R}$. On définit la moyenne de u par $\bar{u} = \int_0^1 u(y) \, dy$ et la suite $(u_n)_{n \in \mathbb{N}}$ par $u_n(x) = u(nx)$ pour tout $n \in \mathbb{N}$ et presque tout $x \in \mathbb{R}$. Montrer que $u_n \rightharpoonup \bar{u}$ faiblement dans $L^p(0,1)$.
 - **2.2.** Soit $\ell : \mathbb{R} \to \mathbb{R}$ la fonction 1-périodique dont la restriction à l'intervalle [0,1[est la fonction caractéristique de l'intervalle $[0,\lambda]$. Soit $(\ell_n)_{n\in\mathbb{N}}$ la suite de $L^p(0,1)$ définie par $\ell_n(x) = \ell(nx)$ pour tout $n \in \mathbb{N}$ et pour presque tout $x \in \mathbb{R}$. En appliquant la question précédente, montrer que $\ell_n a + (1-\ell_n)b \rightharpoonup \lambda a + (1-\lambda)b$ et $f(\ell_n a + (1-\ell_n)b) \rightharpoonup \lambda f(a) + (1-\lambda)f(b)$ faiblement dans $L^p(0,1)$.
 - **2.3.** De la séquentielle faible semi-continuité inférieure de J dans $L^p(0,1)$, en déduire que la fonction f est convexe.

Exercice 2. Soit $1 . Pour tout <math>f \in L^p(0, +\infty)$, on pose

$$F(x) = \frac{1}{x} \int_0^x f(t) dt \quad \text{pour tout } x > 0.$$

On se propose de montrer l'inégalité de Hardy :

$$||F||_{L^p(0,+\infty)} \le \frac{p}{p-1} ||f||_{L^p(0,+\infty)}.$$

- 1. On suppose dans cette question que $f \in C_c([0, +\infty[)])$ et $f \ge 0$.
 - 1.1. Montrer alors que $F \in \mathcal{C}^1(]0, +\infty[) \cap L^p(0, +\infty)$ et que

$$xF'(x) = -F(x) + f(x)$$
 pour tout $x > 0$.

1.2. Montrer que

$$\int_0^{+\infty} F(x)^p \, dx = \frac{p}{p-1} \int_0^{+\infty} F(x)^{p-1} f(x) \, dx.$$

(Indication : on pourra utiliser une intégration par parties)

- **1.3.** En déduire l'inégalité de Hardy pour les fonctions $f \in \mathcal{C}_c(]0, +\infty[)$ avec $f \geq 0$.
- 2. En appliquant la question précédente à |f|, en déduire l'inégalité de Hardy pour les fonctions $f \in \mathcal{C}_c(]0, +\infty[)$.
- **3.** En raisonnant par approximation, montrer la validité de l'inégalité de Hardy pour les fonctions $f \in L^p(0, +\infty)$ générales.

Partie B

Exercice 3. Soit I =]0,1[. Soient $f \in L^2(I)$ et $u \in H^2(I)$ tels que

$$-u'' + u = f \operatorname{dans} L^2(I).$$

On suppose qu'il existe $M \in \mathbb{R}$ tel que

$$(2) u(0) \le M \text{ et } u(1) \le M,$$

(3) pour presque tout
$$x$$
 dans $I, f(x) \leq M$.

On veut montrer que

(4) pour tout
$$x$$
 dans I , $u(x) \le M$.

Soit $G: R \to \mathbb{R}$ une fonction de classe C^1 telle que

(5) pour tout
$$y$$
 dans $]-\infty, M], G(y)=0$,

(6)
$$G$$
 est strictement croissante sur $[M, +\infty[$.

- **1.** Montrer que la fonction $x \in I \mapsto G \circ u(x) = G(u(x)) \in \mathbb{R}$ est dans $H_0^1(I)$.
- **2.** En multipliant (1) par $G \circ u$, vérifier que

(7)
$$\int_{I} u'(x)^{2} G'(u(x)) dx + \int_{I} (u(x) - M) G(u(x)) dx = \int_{I} (f(x) - M) G(u(x)) dx.$$

3. Montrer que

(8)
$$\int_{I} (u(x) - M)G(u(x))dx \le 0.$$

4. Montrer (4).

Exercice 4. Soit H l'ensemble des fonctions $u \in C^0(]-1,0[\cup]0,1[)$ telles que

(9)
$$u \text{ restreint } \grave{a} \]0,1[\text{ est dans } H^1(]0,1[),$$

(10)
$$u \text{ restreint à }]-1,0[\text{ est dans } H^1(]-1,0[).$$

Pour u dans H, on note u_1 la restriction de u à]-1,0[et u_2 la restriction de u à]0,1[et on définit $u' \in L^2(]-1,1[)$ par

(11)
$$u' = \begin{cases} u'_1 \text{ sur }] - 1, 0[, \\ u'_2 \text{ sur }]0, 1[. \end{cases}$$

Pour u dans H et v dans H, on définit

(12)
$$\langle u, v \rangle = \int_{-1}^{0} \left[u'(x)v'(x) + u(x)v(x) \right] dx + \int_{0}^{1} \left[u'(x)v'(x) + u(x)v(x) \right] dx.$$

Pour $u \in H$, on note

(13)
$$u(0^+) = \lim_{x \to 0^+} u(x),$$

(13)
$$u(0^{+}) = \lim_{x \to 0^{+}} u(x),$$
(14)
$$u(0^{-}) = \lim_{x \to 0^{-}} u(x).$$

Soit $\lambda \geq 0$ et soit $f \in C^0([-1,1])$. On définit $J_{\lambda}: H \to \mathbb{R}$ par

(15)
$$J_{\lambda} = \frac{1}{2} \langle u, u \rangle + \frac{\lambda}{2} (u(0^{+}) - u(0^{-}))^{2} + \int_{-1}^{1} \frac{1}{6} \left[u(x)^{6} - f(x)u(x) \right] dx.$$

- **1.** Montrer que les limites dans (13) et dans (14) existent bien. Montrer que $H \subset L^6(]-1,1[)$.
- **2.** Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur H.
- **3.** Montrer que H muni du produit scalaire $\langle \cdot, \cdot \rangle$ est un espace de Hilbert.
- **4.** Montrer que J_{λ} est de classe C^1 . Donner, pour u et v dans H, $J'_{\lambda}(u)v$.
- 5. Caractériser les solutions $u \in H$ de $J'_{\lambda}(u) = 0$, c'est-à-dire donner l'équation différentielle satisfaite par u sur $]-1,0[\cup]0,1[$ ainsi que les conditions en -1,0 et 1, puis montrer que, réciproquement, $u \in H$ satisfaisant l'équation et les conditions en -1, 0 et 1 est solution de $J'_{\lambda}(u) = 0$.
- **6.** Montrer que J_{λ} est strictement convexe et que

(16)
$$\lim_{\langle u,u\rangle \to +\infty} J_{\lambda}(u) = +\infty.$$

7. Montrer qu'il existe un et un seul \bar{u}_{λ} dans H tel que

(17) pour tout
$$v$$
 dans H , $J_{\lambda}(\bar{u}_{\lambda}) \leq J_{\lambda}(v)$.

8. Montrer qu'il existe C>0 (dépendant de f mais pas de $\lambda\in[0,+\infty[$) tel que

(18) pour tout
$$\lambda$$
 dans $[0, +\infty[, \langle \bar{u}_{\lambda}, \bar{u}_{\lambda} \rangle \leq C]$.