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Foreword v

Foreword

In these lectures, we give an account of certain recent developments of the theory of
spatial branching processes. These developments lead to several remarkable probabilistic
objects, which combine spatial motion with a continuous branching phenomenon and
are closely related to certain semilinear partial differential equations.

Our first objective is to give a short self-contained presentation of the measure-valued
branching processes called superprocesses, which have been studied extensively in the
last twelve years. We then want to specialize to the important class of superprocesses
with quadratic branching mechanism and to explain how a concrete and powerful rep-
resentation of these processes can be given in terms of the path-valued process called
the Brownian snake. To understand this representation as well as to apply it, one needs
to derive some remarkable properties of branching trees embedded in linear Brownian
motion, which are of independent interest. A nice application of these developments is
a simple construction of the random measure called ISE, which was proposed by Aldous
as a tree-based model for random distribution of mass and seems to play an important
role in asymptotics of certain models of statistical mechanics.

We use the Brownian snake approach to investigate connections between superprocesses
and partial differential equations. These connections are remarkable in the sense that
almost every important probabilistic question corresponds to a significant analytic prob-
lem. As Dynkin wrote in one of his first papers in this area, “it seems that both theories
can gain from an interplay between probabilistic and analytic methods”. A striking ex-
ample of an application of analytic methods is the description of polar sets, which can
be derived from the characterization of removable singularities for the corresponding
partial differential equation. In the reverse direction, Wiener’s test for the Brownian
snake yields a characterization of those domains in which there exists a positive solution
of Au = u? with boundary blow-up. Both these results are presented in Chapter VI.

Although much of this book is devoted to the quadratic case, we explain in the last
chapter how the Brownian snake representation can be extended to a general branching
mechanism. This extension depends on certain remarkable connections with the theory
of Lévy processes, which would have deserved a more thorough treatment.

Let us emphasize that this work does not give a comprehensive treatment of the theory
of superprocesses. Just to name a few missing topics, we do not discuss the martin-
gale problems for superprocesses, which are so important when dealing with regularity
properties or constructing more complicated models, and we say nothing about catalytic
superprocesses or interacting measure-valued processes. Even in the area of connections
between superprocesses and partial differential equations, we leave aside such important
tools as the special Markov property.

On the other hand, we have made our best to give a self-contained presentation and
detailed proofs, assuming however some familiarity with Brownian motion and the basic
facts of the theory of stochastic processes. Only in the last two chapters, we skip some
technical parts of the arguments, but even there we hope that the important ideas will
be accessible to the reader.
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There is essentially no new result, even if we were able in a few cases to simplify the
existing arguments. The bibliographical notes at the end of the book are intended to
help the reader find his way through the literature. There is no claim for exhaustivity
and we apologize in advance for any omission.

I would like to thank all those who attended the lectures, in particular Amine Asselah,
Freddy Delbaen, Barbara Gentz, Uwe Schmock, Mario Wiithrich, Martin Zerner, and
especially Alain Sznitman for several useful comments and for his kind hospitality at
ETH. Mrs Boller did a nice job typing the first version of the manuscript. Finally, I am
indebted to Eugene Dynkin for many fruitful discussions about the results presented
here.

Paris, February 4, 1999
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Notation X

Frequently used notation

B(E)
By(E)
B, ()
By (E)
C(E)
Co(E)
Co+(E)
C(E,F)
Ci°(RY)
M;(E)
M (E)
Supp p
dim A
B(xz,r)
B(z,r)

(, f) = [ fdp

Borel o-algebra on F.

Set of all real-valued bounded measurable functions on FE.

Set of all nonnegative Borel measurable functions on FE.

Set of all nonnegative bounded Borel measurable functions on F.

Set of all real-valued continuous functions on E.

Set of all real-valued continuous functions with compact support on F.
Set of all nonnegative bounded continuous functions on F.

Set of all continuous functions from FE into F.

Set of all C*°-functions with compact support on R?.

Set of all finite measures on FE.

Set of all probability measures on E.
Topological support of the measure u.
Hausdorff dimension of the set A C R¢.
Open ball of radius r centered at .

Closed ball of radius r centered at z.

for f € BL(E), p€ My(E).

dist(z, A) = inf{|y — z|,y € A}, reRY ACRY

pe(z,y) = pe(y — ) = (271)

2
—d/2 _—|y il ), z,y €RY >0,

P (= T

G(z,y) =Gy —=z) = [, p(z,y)dt =valy —z|>~¢,  z,yeR? d>3.

The letters C, ¢, ¢1, co etc. are often used to denote positive constants whose exact
value is not specified.
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I An overview

This first chapter gives an overview of the topics that will be treated in greater detail
later, with pointers to the following chapters. We also discuss some recent related results
which provide an a posteriori motivation for our investigations.

1 Galton-Watson processes and continuous-state
branching processes

1.1 Galton-Watson processes are the simplest branching processes. They describe
the evolution in discrete time of a population of individuals who reproduce themselves
according to an offspring distribution . More precisely, starting from a probability
measure p on N = {0,1,2,...}, the associated Galton-Watson process is the Markov
chain (N, k > 0) with values in N such that, conditionally on N,

Ny,
(d)
NnJrl = ZS’L?
=1

d
where the variables &; are i.i.d. with distribution p and the symbol @ means equality
in distribution.

Notice the obvious additivity (or branching) property: If (Nj,k > 0) and (N}, k > 0)
are two independent Galton-Watson processes with offspring distribution p, then so is
(Nk + N., k> 0).

In what follows, we will concentrate on the critical or subcritical case, that is we assume

i ku(k) <1.
k=0

Then it is well known that the population becomes extinct in finite time: N, = 0 for k
large, a.s. (we exclude the trivial case when p = §; is the Dirac mass at 1).

The genealogy of a Galton-Watson process starting with 1 (resp. m) individuals at time
0 is obviously described by a random tree (resp. by m independent random trees). We
will use the standard labelling of vertices (= individuals) of the tree. The ancestor is
denoted by ¢, the children of the ancestor by 1,2, 3, ..., the children of 1 by 11,12,13, ...

and so on.
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In view of forthcoming developments, it is important to realize that the knowledge of
the tree provides more information than that of the associated Galton-Watson process
(which corresponds to counting the number of individuals at every generation). For
instance, a quantity such as the generation of the last common ancestor to individuals
of the generation p is well defined in terms of the tree but not in terms of the process
(N, k > 0).

1.2 Continuous-state branching processes are continuous analogues of the Galton-
Watson branching processes. Roughly speaking, they describe the evolution in continu-
ous time of a “population” with values in the positive real line R;. More precisely, we
consider a Markov process (Y, > 0) with values in R, whose sample paths are cadlag,
i.e. right-continuous with left limits. We say that Y is a continuous-state branching
process (in short, a CSBP) if the transition kernels P;(z,dy) of Y satisfy the basic
additivity property
Pz +a',:) = P(z,) * Py(a,) .

If we restrict ourselves to the critical or subcritical case (that is [ Pi(x,dy)y < ), one
can then prove (Theorem II.1) that the Laplace transform of the transition kernel must
be of the form

/Pt(:l;,dy)e_)‘y = eru(Y)

where the function u:(A) is the unique nonnegative solution of the integral equation

ut(A)+/0 b (us(N))ds = A

and 1 is a function of the following type

(1) Y(u) = au + fu? +/ m(dr)(e”™ =14 ru)

(0,00)

where o > 0, > 0 and 7 is a o-finite measure on (0, 0o0) such that [ 7(dr)(rAr?) < oo.

Conversely, for every function v of the previous type, there exists a (unique in law)
continuous-state branching process Y associated with ¢ (in short, a -CSBP). The
function ¢ is called the branching mechanism of Y. In the formula for ¢ (u), the term
au corresponds to a killing at rate o (if ¥(u) = au, it is easy to see that Y; = Yge™ ),
the measure 7 takes account of the jumps of Y (these jumps can only be positive), and
the quadratic term Bu? corresponds to a diffusion part.

In the special case when 1 (u) = Bu? (quadratic branching mechanism), it is easy to
compute
A

wl) =150
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and the process Y can be constructed as the solution of the stochastic differential

equation
dY, = /2pY, dB,

where B is a one-dimensional Brownian motion (the well known Yamada-Watanabe
criterion shows that for every y > 0 the previous s.d.e. has a unique strong solution
started at y, which is a continuous Markov process with values in Ry ). In this special
case, Y is the so-called Feller diffusion, also known as the zero-dimensional squared
Bessel process.

1.3 Continuous-state branching processes may also be obtained as weak limits of
rescaled Galton-Watson processes. Suppose that, for every k > 1, we consider a Galton-
Watson process (N¥,n > 0) with initial value ny and offspring distribution s, possibly
depending on k. If there exists a sequence of constants ai T oo such that the rescaled
processes

1
SN > 0)
(ak [ft] o

converge to a limiting process (Y;,t > 0), at least in the sense of weak convergence of the
finite-dimensional marginals, then the process Y must be a continuous-state branching
process. Conversely, any continuous-state branching process can be obtained in this
way (see Lamperti [Lal] for both these results).

Of special interest is the case when pi = p for every k. Suppose first that p is critical
(3" ku(k) = 1) with finite variance o?. Then the previous convergence holds with
ar, = k for every k, provided that k= 'n, — z for some x > 0. Furthermore, the
limiting process is then a Feller diffusion, with ¢ (u) = $o%u?. This result is known as

the Feller approximation for branching processes.

More generally, when pj, = p for every k, the limiting process Y (if it exists) must be
of the stable branching type, meaning that

Y(u) = cu”

for some v € (1,2]. For 1 < = < 2, this corresponds to the choice a« = § = 0,
7(dr) = ¢'r~177dr in the previous formula for 1.

1.4 We observed that the genealogy of a Galton-Watson process is described by a tree,
or a finite collection of trees. A natural and important question is to get a similar de-
scription for the genealogy of a continuous-state branching process, which should involve
some sort of continuous random tree. Furthermore, one expects that the genealogical
trees of a sequence of Galton-Watson processes which converge after rescaling towards a
continuous-state branching process should also converge in some sense towards the cor-
responding continuous genealogical structure. These questions will be discussed below.
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2 Spatial branching processes and superprocesses

2.1 Spatial branching processes are obtained by combining the branching phenomenon
with a spatial motion, which is usually given by a Markov process ¢ with values in
a Polish space E. In the discrete setting, the branching phenomenon is a Galton-
Watson process, the individuals of generation n move between time n and time n + 1
independently according to the law of £. At time n+ 1 the newly born individuals start
moving from the final position of their father, and so on.

In the continuous setting, the branching phenomenon is a continuous-state branching
process with branching mechanism . The construction of the spatial motions is less
easy but may be understood via the following approximation. As previously, consider
a sequence N*, k > 1 of Galton-Watson processes such that

1 .d.
) (5Nt = 0) =% (vt 2 0)

where Y is a ¥-CSBP, and the symbol (f4) means weak convergence of finite-

dimensional marginals.

More precisely, we need for every k the genealogical trees associated with N*. Then

if N¥ = ny, we consider n; points z¥,... ,xf?bk in E. We assume that the nj initial
individuals start respectively at =¥, ... ,xfik and then move independently according to

the law of ¢ between times t = 0 and t = % At time t = % each of these individuals is
replaced by his children, who also move between times t = % and t = % according to
the law of £, independently of each other, and so on.

Then, for every ¢t > 0, let ff’z, i € I(k,t) be the positions in F of the individuals alive

at time t. Consider the random measure ZF defined by
2 =% b
t ar, & &

Then Z} is a random element of the space M ;(E) of finite measures on F, which is
equipped with the topology of weak convergence.
By construction the total mass of ZF is

1
ZF, 1)y = —Nj;
<t7> ag [kt] »

which by (2) converges to a ¢-CSBP.

Suppose that the initial values of Z¥ converge as k — oo:

1
zk = a25$5—> 0 € M;(E).
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Then, under adequate regularity assumptions on the spatial motion £ (satisfied for
instance if ¢ is Brownian motion in RY), there will exist an M ¢(E)-valued Markov
process Z such that

(ZF,t > 0)—(Z;,t > 0)

in the sense of weak convergence of finite-dimensional marginals. The transition kernels
of Z are characterized as follows. For f € B, (F), and s < t,

E[exp—(Zt,fHZs} = exp —(Zs,vi—s) ,

where (vt (z),t > 0,2 € E) is the unique nonnegative solution of the integral equation

ve(z) + Il (/Ot ¢(Ut—s(fs)) dS) =11, (f(ft))

where we write I, for the probability measure under which ¢ starts at x, and 11, U for
the expectation of U under II,.

The process Z is called the (&,1))-superprocess. When ¢ is Brownian motion in R? and
¥(u) = Bu?, Z is called super-Brownian motion.

If ¢ is a diffusion process in R? with generator L, the integral equation for v; is the

integral form of the p.d.e.
(%t

E = L'Ut — w('l)t) .

This provides a first connection between Z and p.d.e.’s associated with Lu — ¢ (u).

From our construction, or from the formula for the Laplace functional, it is clear that
the total mass process (Z;, 1) is a ¥-CSBP.

2.2 What are the motivations for studying superprocesses?

In a sense, superprocesses are prototypes of infinite-dimensional Markov processes, for
which many explicit calculations, concerning for instance hitting probabilities or mo-
ment functionals, are possible. The rich structure of superprocesses has allowed the
derivation of many detailed sample path properties. A small sample of these will be
given in Chapter IV.

There are interesting connections between superprocesses and stochastic partial differ-
ential equations. When ¢ is linear Brownian motion and v (u) = Su?, the measure Z;
has a density z;(z) (w.r.t. Lebesgue measure), which solves the equation

1 .
% = §A2t + v Qﬁzt Wt

where W is space-time white noise (Konno and Shiga [KS], Reimers [R]). More general
superprocesses with varying branching intensity can be used to construct solutions of
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more general s.p.d.e.’s (see Mueller and Perkins [MP], and the survey paper [DP2] for
additional references).

The connections between superprocesses and partial differential equations associated
with the operator Lu — 1(u) have been known for a long time and used in particular to
understand the asymptotic behavior of superprocesses. In the beginning of the nineties,
the introduction by Dynkin of exit measures, followed by the probabilistic solution of a
nonlinear Dirichlet problem, lead to a considerable progress in this area, which is still
the object of active research. The connections between superprocesses and partial dif-
ferential equations were initially used to get probabilistic information on superprocesses,
but more recently they made it possible to prove new analytic results. This topic is
treated in detail in Chapters V,VI,VII below.

One important initial motivation for superprocesses was the modelling of spatial popu-
lations. For this purpose it is often relevant to consider models with interactions. The
construction of these more complicated models makes a heavy use of the technology de-
veloped to study superprocesses (see the survey paper [DP3] and the references therein).
Catalytic superprocess, for which the branching phenomenon only occurs on a subset
of the state space called the catalyst, can be thought of as modelling certain biological
phenomena and have been studied extensively in the last few years (see the references
in [DP3]).

Finally, remarkable connections have been obtained recently between superprocesses
(especially super-Brownian motion) and models from statistical mechanics (lattice trees
[DS], percolation clusters [HS]) or infinite particle systems (contact process [DuP], voter
model [CDP]|, [BCL]). See the discussion in Section 6 below. This suggests that, like
ordinary Brownian motion, super-Brownian motion is a universal object which arises in
a variety of different contexts.

3 Quadratic branching and the Brownian snake

3.1 In the discrete setting we can construct the spatial branching process by first
prescribing the branching structure (the genealogical trees) and then choosing the spatial
motions (running independent copies of the process £ along the branches of the tree).
In order to follow the same route in the continuous setting, we need to describe the
genealogical structure of a -CSBP. We consider here the quadratic branching case
¥(u) = Bu? and, to motivate the following construction, we recall a result due to
Aldous.

We start from an offspring distribution g which is critical and with finite variance,
so that the corresponding Galton-Watson process suitably rescaled will converge to a
CSBP with 1 (u) = fu?. Under a mild assumption on u, we can for every n sufficiently
large define the law of the Galton-Watson tree with offspring distribution u, conditioned
to have a total population equal to n.
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Aldous [Al3] proved that, provided that we rescale the lengths of the branches by the

factor \/Lﬁ (for a suitable choice of ¢ > 0), these conditioned trees converge to the

so-called continuum random tree (CRT).

To explain this result, we need
(A) to say what the CRT is;
(B) to say in which sense the convergence holds.

To begin with (A), we briefly explain how a continuous tree can be coded by a function.
We consider a continuous function e : [0,0] — R4 such that e(0) = e(o) = 0.

The key idea is that each s € [0, 0] corresponds to a vertex of the associated tree, but
we identify s and ¢ (s ~ t) if

e(s) =e(t) = [13ntf] e(r)

(in particular 0 ~ o).

The quotient set [0,0]/~ is the set of vertices. It is equipped with the partial order
s <t (s is an ancestor of t) iff
e(s) = inf e(r
(5) = inf e(r
and with the distance
d(s,t) =e(s) +e(t) — inf e(r) .

[s,t]

Finally, the generation of the vertex s is d(0, s) = e(s).

The set of ancestors of a given vertex s is then isometric to the line segment [0, e(s)].
If 0 < s <t <o, the lines of ancestors of s and ¢ have a common part isometric to the
segment [0,inf[, ;) e(r)] and then separate, etc.

By definition, the CRT is the random tree obtained via the previous coding when e
is chosen according to the law of the normalized Brownian excursion (i.e. the positive
excursion of linear Brownian motion conditioned to have duration 1).

Concerning question (B), the convergence holds in the sense of convergence of the finite-
dimensional marginals. For p > 1 fixed, the marginal of order p of a discrete tree is the
law of the reduced tree consisting only of the ancestors of p individuals chosen uniformly
(and independently) on the tree. Similarly, for the limiting tree CRT, the marginal of
order p consists of the reduced tree associated with p instants ¢4, ... ,t, chosen uniformly
and independently over [0, o].

A more concrete way to express the convergence is to say that the (scaled) contour
process of the discrete tree converges in distribution towards the normalized Brownian
excursion. The contour process of the discrete tree is defined in the obvious way and it
is scaled so that it takes a time % to visit any given edge.

A thorough discussion of the genealogical structure associated with Brownian excursions
is presented in Chapter III.
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3.2 The previous results strongly suggest that the genealogical structure of the Feller
diffusion can be coded by Brownian excursions. This fact is illustrated by the Brownian
snake construction of superprocesses with quadratic branching mechanism. The first
step of this construction is to choose a collection of Brownian excursions, which will
code the genealogical trees of the “population”. In the second step, one constructs the
spatial motions by attaching to each “individual” in these trees a path of the process &, in
such a way that the paths of two individuals are the same up to the level corresponding
to the generation of their last common ancestor.

To be specific, start from a reflected Brownian motion (s, s > 0) (¢ is distributed as the
modulus of a standard linear Brownian motion started at 0). For every a > 0, denote
by (L%, s > 0) the local time of ¢ at level a. Then set 1; = inf{s > 0, L% > 1}. We will
consider the values of ¢ over the time interval [0,7;]. By excursion theory, this means
that we look at a Poisson collection of positive Brownian excursions.

Fix a point y € E. Conditionally on ((s,s > 0), we construct a collection (W, s > 0)
of finite paths in F so that the following holds.

(i) For every s > 0, Wy is a finite path in E started at y and defined on the time interval
[0, (s]. (In particular Wy is the trivial path consisting only of the starting point y.)

(ii) The mapping s — Wy is Markovian and if s < s,

o Wy (t) = Wi(t) if t <inf, o1 ¢ = m(s,s') ;

e conditionally on W (m(s, s’)), the path (WSI (m(s, s') + t),O <t < (s —mf(s, s’)) is
independent of W and distributed as the process £ started at W (m(s, s’ )), stopped at
time (¢ — m(s, s').

Property (ii) is easy to understand if we think of s and s’ as labelling two individuals in
the tree who have the same ancestors up to generation m(s, s’): Their spatial motions
must be the same up to level m(s,s’), and then behave independently.

At an informal level one should view W as a path of the spatial motion £ with a random
lifetime (s evolving like (reflecting) linear Brownian motion. The path gets “erased”
when (s decreases, and is extended when (, increases.

The next theorem again requires some regularity of the spatial motion. A precise and
more general statement is given in Chapter IV.

Theorem. For every a > 0 let Z, be the random measure on E defined by

(Za, f) = /O " Lo f(W(a))

where in the right side we integrate with respect to the increasing function s — L%. The
process (Zq,a > 0) is a (§,v)-superprocess started at §,, with ¥ (u) = 2u?.

To interpret this theorem, we may say that the paths Wy, 0 < s < 1, are the “historical”
paths of the “individuals” in a superprocess Z started at d,. For each a > 0, the support
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of Z, is the set {Ws(a),0 < s < m;} of positions of these paths at time a. The local
time measure dL? is used to construct Z, as a measure “uniformly spread” over this
set.

The process (Ws,s > 0) is called the &-Brownian snake with initial point y. In what
follows we will have to consider various choices of the initial point and we will use the
notation [P, for the probability under which the initial point is y.

4 Some connections with partial differential equations

We will now discuss certain connections between superprocesses and a class of semilinear
partial differential equations. We will assume that the spatial motion £ is Brownian
motion in R¢ and we will rely on the Brownian snake construction.

Let D be a bounded domain in R? and y € D. If w is a finite path started at y, we set
7(w) = inf{t > 0,w(t) € D} < 0.

In a way analogous to the classical connections between Brownian motion and the
Laplace equation Au = 0, we are interested in the set of exit points

EP = {Ws(r(Wy)); 0< s <mp, 7(Wy) < o0} .

Our first task is to construct a random measure that is in some sense uniformly dis-
tributed over £7.

Proposition. P, a.s. the formula

1M
(ZP,f) = lim ; FWs(rW)lirwy<co<rwoy+ey ds . f € C(9D)
defines a random measure on 0D called the exit measure from D.

The exit measure leads to the solution of the Dirichlet problem for the operator Au —u?

due to Dynkin (cf Chapter V for a proof, and Chapter VI for a number of applications).
Note that we give in Chapter V a slightly different formulation in terms of excursion
measures of the Brownian snake (a similar remark applies to the other results of this
section).

Theorem. Assume that 0D is smooth and that f is continuous and nonnegative on
0D. Then

u(y) = —log Ey(exp—(Z7,f)), yeD
is the unique nonnegative solution of the problem
{%Au:2u2 mn D,

ulop = f .
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This theorem is the key to many other connections between super-Brownian motion or
the Brownian snake and positive solutions of the p.d.e. Au = u?. We will state here
two of the corresponding results, which both lead to new analytic statements. The first
theorem provides a classification of all positive solutions of Au = u? in a smooth planar
domain. A proof is provided in Chapter VII in the case when D is the unit disk.

Theorem. Assume that d = 2 and 0D is smooth. There is a 1 — 1 correspondence
between

e nonnegative solutions of Au = 4u? in D
e pairs (K, v), where K is a compact subset of 0D and v is a Radon measure on 0D\ K.

If u is given,

K = {.CL‘ € 0D , lim sup dist(y, 0D)%u(y) > 0}
Doy—zx

and
(v, f) = lim o(dr)f(x)u(z+rNe),  f € Co(OD\K),
710 Jop\K
where o(dx) denotes Lebesgue measure on 0D, and N, is the inward-pointing unit nor-
mal to 0D at x. Conversely,

u(y) = ~10g 5, (Lensecsy exp(~ [ vlde)zn(@)))

where (zD(:z:), x € GD) is the continuous density of ZP with respect to o(dx).

In higher dimensions (d > 3) things become more complicated. One can still define the
trace (K, v) of a solution but there is no longer a one-to-one correspondence between a
solution and its trace. Interesting results in this connection have been obtained recently
by Dynkin and Kuznetsov (see the discussion at the end of Chapter VII). The previous
theorem (except for the probabilistic representation) has been rederived by analytic
methods, and extended to the equation Au = uP, provided that d < dy(p), by Marcus
and Véron [MV2].

It has been known for a long time that if 9D is smooth and p > 1 there exists a positive
solution of Au = w” in D that blows up everywhere at the boundary. One may ask
whether this remains true for a general domain D. Our next result gives a complete
answer when p = 2. If r < 7’ we set

Clz,r,)={yeR4r <|y—z| <r'}.
For every compact subset K of R, we also define the capacity

c22(K) = inf{||g0||;2 ; p€ CX(RY),0<p<1and ¢ =1 on a neighborhood of K} ,

where ||¢||2,2 is the norm in the Sobolev space W22(R%). The following theorem is
proved in Chapter VI.
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Theorem. Let D be a domain in R®. The following statement are equivalent.

(i) There exists a positive solution u of the problem

{Au:uz in D,

ulop = +oo .

(ii) d < 3, ord > 4 and for every x € 0D

> 28y, (0D NC(x, 27", 27" )) =00

n=1

(iii) If T = inf{s > 0 ; W(t) ¢ D for some t > 0}, then P,(T = 0) = 1 for every
x €0D.

From a probabilistic point of view, the previous theorem should be interpreted as a
Wiener criterion for the Brownian snake: It gives a necessary and sufficient condition
for the Brownian snake (or super-Brownian motion) started at a point x € 9D to
immediately exit D. Until today, there is no direct analytic proof of the equivalence
between (i) and (ii) (some sufficient conditions ensuring (i) have been obtained by
Marcus and Véron).

To conclude this section, let us emphasize that Chapters V,VI,VII are far from giving
an exhaustive account of the known connections between superprocesses (or Brownian
snakes) and partial differential equations: See in particular Dynkin and Kuznetsov
[DK7], Etheridge [Et], Iscoe and Lee [IL], Lee [Le] and Sheu [Sh2],[Sh3] for interesting
contributions to this area, which will not be discussed here.

5 More general branching mechanisms

The Brownian snake construction described in the previous sections relied on the cod-
ing of the genealogical structure of a CSBP with (u) = fu? in terms of Brownian
excursions. Our goal is now to extend this construction to more general branching
mechanisms, of the type described above in Section 1.

To explain this extension, it is useful to start again from the discrete setting of Galton-
Watson trees. Let p be an offspring distribution and consider a sequence of independent
Galton-Watson trees with offspring distribution . Then imagine a particle that “visits”
successively all individuals of the different trees. For a given tree, individuals are visited
in the lexicographical order. When the particle has visited all individuals of the first
tree, it jumps to the ancestor of the second tree, and so on. For every n > 0 denote by
the H,, the generation of the individual that is visited at time n.

The process n — H,, is called the height process corresponding to the offspring distri-
bution p. It is easy to see that the sequence of trees is completely determined by the
function n — H,,. In this sense we have described a coding of the sequence of trees
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(this coding is closely related, although different, to the contour process mentioned in
Section 3).

At first glance, the previous coding does not seem particularly interesting, because the
process H,, does not have nice properties (in particular it is usually not Markovian).
The next proposition shows, however, that the height process is a simple functional of
a random walk.

Proposition. There erists a random walk on Z, denoted by (Sp,n > 0), with jump
distribution v(k) = p(k+1), k= —1,0,1,2,..., such that for every n > 0,

H, = Card{j €{0,1,...,n—1}5; :jéﬁins’“} .
(Hint: On the interval of visit of the m-th tree, the random walk S is defined by
Sp = Uy, —(m—1), where U, is the total number of “younger” brothers of the individual
visited at time n and all his ancestors.)

Then let 1) be a branching mechanism function of the type (1), and let (u) be a sequence
of offspring distributions such that the corresponding Galton-Watson processes, suitably
rescaled, converge in distribution towards the ¢)-CSBP: As in Section 1, we assume that,
if N* is a Galton-Watson process with offspring distribution uz, started say at NF = ay,
the convergence (2) holds and Y is a 1-CSBP started at 1. For every k, let H* be the
height process corresponding to ur. We ask about the convergence of the (rescaled)
processes H*. The formula of the previous proposition suggests that the possible limit
could be expressed in terms of the continuous analogue of the random walk S, that is
a Lévy process with no negative jumps (observe that S has negative jumps only of size
-1).

Let X be a Lévy process (real-valued process with stationary independent increments,
started at 0) with Laplace exponent :

Elexp —AXy] = exp(typ(N)), A >0

(although X takes negative values, the Laplace transform Flexp —AX;| is finite for a
Lévy process without negative jumps). Under our assumptions on ¢ (cf (1)), X can be
the most general Lévy process without negative jumps that does not drift to +oo as
t — 4o00.

We assume that the coefficient (§ of the quadratic part of v is strictly positive. For
0<r<t, we set
I = inf X,.

r<s<t

Theorem. ([LL1],[Dull]) Under the previous assumptions, we have also

1 (f.d.
(Hfapt=0) — = L (Hyt>0)
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where the limiting process H is defined in terms of the Lévy process X by the formula
H =8""m{I;0<r<t})

if m denotes Lebesgue measure on R.

The process H; is called the (continuous) height process. The formula for H; is obviously
a continuous analogue of the formula of the previous proposition. The theorem suggests
that H codes the genealogy of the y-CSBP in the same way as reflected Brownian
motion does when 1(u) = Bu?. Indeed, we can observe that, when 1 (u) = fu?, X is a
(scaled) linear Brownian motion and

1 .
He=5(Xe~ int, X0)

is a reflected Brownian motion, by a famous theorem of Lévy.

The Brownian snake construction of Section 3 extends to a general ¢, simply by re-
placing reflected Brownian motion by the process H. This extension is discussed in
Chapter VIII. In the same spirit, one can use H to define a i-continuous random tree
analogous to the CRT briefly described in Section 3. The finite-dimensional marginals
of the 1-continuous random tree can be computed explicitly in the stable case [DulLl].

The convergence of finite-dimensional marginals in the previous theorem can be im-
proved to a convergence in the functional sense, under suitable regularity assumptions.
This makes it possible [Dull] to derive limit theorems for quantities depending on the
genealogy of the Galton-Watson processes (for instance, the reduced tree consisting of
ancestors of individuals of generation k). In this sense, the previous theorem shows that
whenever a sequence of (rescaled) Galton-Watson processes converges, their genealogy
also converges to the genealogy of the limiting CSBP.

6 Connections with statistical mechanics and interacting
particle systems

In this last section, we briefly present two recent results which show that super-Brownian
motion arises in a variety of different settings.

6.1 Lattice trees. A d-dimensional lattice tree with n bonds is a connected subgraph
of Z% with n bonds and n + 1 vertices in which there are no loops.

Let @, (dw) be the uniform probability measure on the set of all lattice trees with n
bonds that contain the origin. For every tree w, let X, (w) be the probability measure
on R? obtained by putting mass n+r1 to each vertex of the rescaled tree en~'/%w. Here
¢ = ¢(d) is a positive constant that must be fixed properly for the following to hold.

Following a conjecture of Aldous [Al4], Derbez and Slade [DS] proved that if d is large
enough (d > 8 should be the right condition) the law of X,, under @,, converges weakly
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as n — oo to the law of the random measure J called ISE (Integrated Super-Brownian
Excursion) which can be defined as follows.

Recall the Brownian snake construction of Section 3, in the special case when the
spatial motion is d-dimensional Brownian motion and the initial point is 0. We use
this construction, with the only difference that the lifetime process ((5,0 < s <1)is a
normalized Brownian excursion rather than reflected Brownian motion. If (W,,0 < s <
1) is the resulting path-valued process, J may be defined by

(T f) = /0 ds f(W.()) -

Alternatively, ISE can be viewed as combining a branching structure given by Aldous’
CRT with Brownian motion in R?. A detailed discussion of ISE is presented in Chapter
IV.

The proof of the Derbez-Slade result uses the lace expansion method developed by
Brydges and Spencer. A work in progress of Hara and Slade [HS] also indicates that
ISE arises as a scaling limit of the incipient infinite percolation cluster at the critical
probability, again in high dimensions.

6.2 The voter model and coalescing random walks. The voter model is one of
the most classical interacting particle systems. At each site z € Z¢ sits an individual
who can have two possible opinions, say 0 or 1. At rate 1, each individual forgets
his opinion and gets a new one by choosing one of his nearest neighbors uniformly at
random, and taking his opinion. Our goal is to understand the way opinions propagate
in space. For simplicity, we consider only the case d > 3.

Start from the simple situation where all individuals have type (opinion) 0 at the initial
time, except for the individual at the origin who has type 1. Then with a high prob-
ability, type 1 will disappear. More precisely, if U; denotes the set of individuals who
have type 1 at time ¢, Bramson and Griffeath [BG]| proved that

P 0]~ <

as t — oo. One may then ask about the shape of the set U; conditional on the event
{U; # (0}. To state the result, let U; be the random measure on R? defined by

1
QZEUt

Then [BCL] the law of U; conditionally on {U; # (0} converges as t — oo to the law of ¢H,
where ¢ > 0 and ‘H is a random measure which is most conveniently described in terms
of the Brownian snake as follows. Consider again the Brownian snake of Section 3 (with
¢ Brownian motion in R¢, initial point 0), but now assuming that the lifetime process
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(¢s,0 < s < o) is a Brownian excursion conditioned to hit level 1 (supp< <, (s > 1).
Then

(H, ) = / AL (W)

where L! is as previously the local time process of ({s,0 < s < o) at level 1.

Alternatively, H can be described as super-Brownian motion at time 1 under its canon-
ical measure. Closely related results showing that super-Brownian motion is the limit
of rescaled voter models have been obtained by Cox, Durrett and Perkins [CDP].

A possible approach to the previous statement about the voter model is to use du-
ality with a system of coalescing random walks. As a matter of fact, the result can
be reformulated in terms of such a system. Suppose we start independent (simple)
continuous-time random walks at every point = of Z¢, and that any two random walks
coalesce when they are at the same point at the same time. Let I, be the set of all
x € Z% such that the walk started at z is at 0 at time ¢ (again U, will be empty with a
high probability) and let U, be the random measure

~ 1
xGZ;lt

Then, the law of U, conditionally on {Z;{t # ()} converges as t — oo to the law of ¢H.

A direct proof of the last result involves a careful analysis of the tree of coalescence for p
coalescent random walks starting at different points of Z¢. It turns out that the limiting
behavior of this tree of coalescence can be described in terms of the genealogical structure
of the Feller diffusion. This leads to the connection with super-Brownian motion or the
Brownian snake.
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IT Continuous-state branching processes
and superprocesses

In this chapter, we first obtain the general form of the Laplace functional of continuous-
state branching processes, in the critical or subcritical case. We then provide a con-
struction of these processes via an approximation by continuous-time Galton—Watson
processes. If the branching phenomenon is combined with a spatial motion, a similar
approximation leads to the measure valued processes called superprocesses. In the last
two sections, we derive some basic properties of superprocesses.

1 Continuous-state branching processes

We consider a measurable family (Pt(sc, dy),t >0,z € R+) of transition kernels on the
positive real line R,. This means that, for every ¢ > 0 and z € Ry, P;(z,dy) is a
probability measure on R, the mapping (¢,z) — P;(z, A) is measurable for any Borel
subset A of Ry, and finally the Chapman—Kolmogorov equation P;,s = P;Ps holds for
every t, s > 0. We are interested in such families that satisfy the additivity or branching
property P;(z,-) * Py(2’,-) = Py(x 4+ 2’,-). The following theorem is a special case of a
result due to Silverstein [Si].

Theorem 1. Suppose that the family (Py(x,dy),t > 0,2 € Ry) satisfies the following
properties:

(i) Pi(z,-) x P(2',-) = P(z +2',-) for every t >0, z,2" € R,.
(ii) [ Pi(z,dy)y <z for every t >0, z € Ry.

Then, if we exclude the trivial case where Py(x,-) = d for everyt >0 and x € Ry, the
Laplace functional of Py(x,dy) must be of the form

/ Pi(x,dy)e™™ = e ™ x>0,

and the function (ut()\),t >0, > 0) s the unique nonnegative solution of the integral
equation

u(N) + /0 ds(us(N) = A |



Continuous-state branching processes and superprocesses 17

with a function ¢ of the form
Y(u) = au + fu® + /ﬁ(dr)(e_m —1+4+ru),

where o > 0, 3> 0 and 7 is a o-finite measure on (0,00) such that [ w(dr)(rAr?) < co.

Remark. A function 1 of the form given in the theorem is nonnegative and Lipschitz
on compact subsets of Ry. These properties play an important role in what follows.

Obviously if 1 is given, there is at most one associated family (Pt (z, dy)). We will see
later that there is in fact exactly one.

Condition (ii) means that we consider only the critical or subcritical case. If we remove
this condition, the theorem remains essentially true, with a more general form of v, but
there are technical problems due to the possibility of explosion in finite time (for this
reason, it is more convenient to consider transition kernels in R, = R, U {400}, see

[Si]).
Proof. Assumption (i) implies that, for every fixed t > 0, (Pi(z,-),z € Ry) form a

semigroup of infinitely divisible distributions on R, . By the Lévy-Khintchine formula,
there exist a; > 0 and a o-finite measure n; on Ry, with [ n;(dr)(1Ar) < oo, such that

and

up(A) = a A + /nt(dr)(l —e ).

From (ii) and the Jensen inequality we have u;(A) < A. By letting A — 0 we get

a; + /nt(dr)r <1.

From the Chapman—-Kolmogorov identity, we have also w45 = us o us. Since ur(A) < A,
we see that for every A > 0 the mapping ¢ — wu;(\) is nonincreasing. By a standard
differentiability theorem, the derivative

(1) lim Upys(A) — ug(N)

s—0 S

exists for almost every ¢t > 0, for every A > 0.

We assumed that for some ¢, z, Py(x, -) # dg. It follows that, for this value of £, u;(\) > 0.
Using the relation u;4 s = u o ugs, we easily obtain that us(A) > 0 for every ¢t > 0, A > 0.
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By Fubini’s theorem, we can pick t; > 0 such that the limit (1) exists for ¢t = ¢y for
a.a. A > 0. Using the relation uy,45(A) = us (uto ()\)) and the continuity of the mapping
A — g, (X)) we get that

2) im %) =7
sl0 S

exists for v belonging to a dense subset of (0, 7], where vy = ug, (1) > 0.

Fix any such ~, and observe that

v —us(7) = (1—a,— /ms(dr))z + 1/(6—77’ — 14+ r)ns(dr) .

S S S

Notice that both terms in the right hand side are nonnegative. The existence of the
limit (2) implies that these terms are bounded when s varies over (0, 1]. It follows that
there exists a constant C' such that for every s € (0, 1],

S S

1/(7“/\7“2)ns(d7")§6’, l(1—CL(S»—/?“?”LS(dT’)) <C.

By a standard compactness argument, there exists a sequence s | 0 such that the
measures

1 , 1
(3) g(r A1) ng, (dr) + 5(1 — ag, — /Tnsk(dr))éoo(dr)

converge weakly to a finite measure 7(dr) on [0, co].

Writing

v — us, (7) vy, 1 e =1+ 2
_ . = 1— s — s — S
o ( s, /rnk(dr))8k+8k T (r ANr%)ng, (dr)

we get from weak convergence that for every v > 0

klim T sV Zs’“ ) =ay+ 8y + /(e’” — 14 vr)m(dr)

where a = n(o0), = @ and m(dr) = 1(g,c0)(r)(r Ar?)"In(dr). Let 1(y) denote the
limit in the last displayed formula. Note that a = ¢'(0), and for v > 0,

vy =av+ (54 [ e hinar)y?

where h(r) = [ 7([u,0)) du is monotone decreasing and locally integrable over R
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If we change the sequence (si), the limit ¢ () must remain the same for v belonging
to a dense subset of (0,70], by (2). By standard arguments of analytic continuation, it
follows that h, and then 1 and 7, do not depend on the choice of the sequence (sg).
Therefore the convergence of the measures (3) holds as s | 0 and not only along the
subsequence (si). We then conclude that, for every v > 0,

i 10— )

and the limit is uniform when v varies over compact subsets of R,. From the identity
upys(A) = us(ur(N)) we see that the (right) derivative of s — u,(A) at ¢ is —tp(us(N)),
and the integral equation of the theorem now follows easily. 0

Exercise. With the notation of the previous proof, verify that a;ys = a;as. Then show
that a; = 0 for every t > 0 except possibly in the case when g = 0 and f rr(dr) < oo
[Hint: Assuming that a; > 0 write

L=l ()2 [ e nar)

S

and use the form of a4 to argue in a way similar to the proof of the theorem.]

We will now obtain the converse of Theorem 1. We fix a function ¢ of the type intro-
duced in Theorem 1, corresponding to the parameters «, 3 and 1, and we will construct
the associated family of transition kernels. To this end, we will use an approximation
by continuous-time Galton—Watson processes. This approximation is useful to under-
stand the behaviour of the Markov process associated with P;(z,dy), and especially the
meaning of the parameters «, § and 7.

We consider a Galton-Watson process in continuous time X°¢ = (X;,t > 0) where
individuals die at rate p. = a. + O + 7. (the parameters a., B:,7. > 0 will be fixed
later). When an individual dies, three possibilities may occur:

e with probability a./p., the individual dies without descendants;

e with probability f./p., the individual gives rise to 0 or 2 children with probability
1/2;

e with probability v./pe, the individual gives rise to a random number of offsprings
which is distributed as follows: Let V be a random variable distributed according to

e (dv) = 7((2,00)) " gyoeym(do) ;

then, conditionally on V, the number of offsprings is Poisson with parameter m.V,
where m. > 0 is a parameter that will be fixed later.

In other words, the generating function of the branching distribution is:

Qe Be 1+r? Ve / — 1—
r) = + < ) + 7. (dv)emev1=T)
908() a6+ﬁ8+78 Oés‘l’ﬁa_“’ya 2 O‘E"’ﬁs‘*")/s E( )




20 Continuous-state branching processes and superprocesses

We set g.(r) = pe (cpg(r) — r) =a.(l—7r)+ %(1 —7r)? + ys(f Wg(dv)e*mav(lf’") - ).
Write Py for the probability measure under which X¢ starts at k. By standard results
of the theory of branching processes (see e.g. Athreya-Ney [AN]), we have for r € [0, 1],

E4 [rXtE] = v;(r)

where .
vi(r)=r +/ gg(vi(r))ds .
0

We are interested in scaling limits of the processes X°: We will start X¢ with X§ =
[mez], for some fixed z > 0, and study the behaviour of m-!X¢. Thus we consider for
A>0

Elm.a) [e_Ams_le] =i (e_A/mE)[mgx] = eXP([mgx] log vf(e_A/mE)> .

This suggests to define uf () = m. (1—v§(e~*/™¢)). The function u§ solves the equation

(4) () + / be(uE(N))ds = ma(1 — e >me)

where ¢6(u) = me gs(l - ms_l )
From the previous formulas, we have

u2

Ve(u) = acu + m;lﬁE? + maYe /Ws(dr)(e_"’“ — 1+ m;lu)

2
_ u
= (Oée — MeYe / me(dr)r + 'YE)U +m, 16&7

+meyer((e,00)) / m(dr)(e™™ — 1+ ru) .

(g,00)

At the present stage we want to choose the parameters a., Gc,v. and m. so that

(1) limg o me = 400.

(ii) If w # 0, lim. o mefygw((e, oo))_1 =1.Ifr=0,=0.

(iii) lim.jo 3168, = B.

(iv) lime o (e — meve [ me(dr)r +7¢) = a, and a. — meye [ mo(dr)r + 4. > 0, for every
e > 0.

Obviously it is possible, in many different ways, to choose a., 3:,7. and m. such that
these properties hold.

Proposition 2. Suppose that properties (i) — (iv) hold. Then, for everyt > 0, z > 0,
the law of mZ'X§ under Piy.2) converges as € — 0 to a probability measure Py(x,dy).
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Furthermore, the kernels (Pt(x,dy),t >0,z € R+) are associated with the function
i the way described in Theorem 1.

Proof. From (i) — (iv) we have

(5) lim e (u) = 9(u)

€l0

uniformly over compact subsets of R ;. Let u;(\) be the unique nonnegative solution of
t
(6) ug () -I—/ Y (us(N))ds = A
0

(ut(A) may be defined by: f;\t()\) ¥(v)~ldv =t when X > 0; this definition makes sense
because 1(v) < Cv for v < 1, so that [, Y(v)"ldv = +0).

We then make the difference between (4) and (6), and use (5) and the fact that 1) is
Lipschitz over [0, A] to obtain

up(N) — S (V)] < Cy / s (A) — ()| ds + a(e, A)

where a(e,\) — 0 as ¢ — 0, and the constant C) is the Lipschitz constant for ¢ on
[0, A]. We conclude from Gronwall’s lemma that for every A > 0,

Ly
lim g (A) = u(A)

uniformly on compact sets in .

Coming back to a previous formula we have

lim E[mam] [e—/\mngf] )

e—0

=€

and the first assertion of the proposition follows from a classical statement about Laplace
transforms.

The end of the proof is straightforward. The Chapman—Kolmogorov relation for
Pi(z,dy) follows from the identity u;ys = u; o us, which is easy from (6). The ad-
ditivity property is immediate since

/Pt(x + 2, dy)e N = e~ (@ )m () = </ Pt(x,dy)e_Ay) (/ Pt(x’,dy)e_’\y> :

The property [ Pi(x,dy)y < z follows from the fact that limsupy_, A" us(X) < 1.
Finally the kernels P;(x, dy) are associated with ¢ by construction. O
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Definition. The 1)-continuous state branching process (in short, the ¥-CSBP) is the
Markov process in Ry (X, t > 0) whose transition kernels Py(xz,dy) are associated
with the function ¢ by the correspondence of Theorem 1. The function v is called the
branching mechanism of X.

Examples.

(i) If ¥(u) = au, Xy = Xoge=™

(ii) If ¢(u) = Bu? one can compute explicitely us(\) = %ﬁ)\t The corresponding
process X is called the Feller diffusion, for reasons that are explained in the exercise
below.

(ili) By taking o = 8 = 0, m(dr) = c=&5 with 1 < b < 2, one gets ¢(u) = c'u’. This is
called the stable branching mechanism.

From the form of the Laplace functionals, it is very easy to see that the kernels P;(zx, dy)
satisfy the Feller property, as defined in [RY] Chapter III (use the fact that linear
combinations of functions e=** are dense in the space of continuous functions on R
that tend to 0 at infinity). By standard results, every )-CSBP has a modification whose
paths are right-continuous with left limits, and which is also strong Markov.

Exercise. Verify that the Feller diffusion can also be obtained as the solution to the
stochastic differential equation

dXt =V 2/8XtdBt

where B is a one-dimensional Brownian motion [Hint: Apply Itd’s formula to see that

A X

TR

exp (-

is a martingale.]

Exercise. (Almost sure extinction) Let X be a ¢-CSBP started at > 0, and let
T = inf{t > 0, X; = 0}. Verify that X; = 0 for every ¢t > T, a.s. (use the strong
Markov property). Prove that T' < oo a.s. if and only if
> du -

— < 00.

¥(u)
(This is true in particular for the Feller diffusion.) If this condition fails, then 7" = oo
a.s.

2 Superprocesses

In this section we will combine the continuous-state branching processes of the previous
section with spatial motion, in order to get the so-called superprocesses. The spatial
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motion will be given by a Markov process (&5, s > 0) with values in a Polish space E.
We assume that the paths of ¢ are cadlag (right-continuous with left limits) and so &
may be defined on the canonical Skorokhod space D(Ry, E). We write II, for the law
of ¢ started at . The mapping x — II, is measurable by assumption. We denote by
Byt (E) (resp. Cpy(E)) the set of all bounded nonnegative measurable (resp. bounded
nonnegative continuous) functions on F.

In the spirit of the previous section, we use an approximation by branching particle
systems. Recall the notation p., m., ¢. of the previous section. We suppose that, at
time ¢ = 0, we have N particles located respectively at points z7,...,2%_in E. These
particles move independently in E according to the law of the spatial motion £. Each
particle dies at rate p. and gives rise to a random number of offsprings according to
the distribution with generating function (.. Let Z; be the random measure on E
defined as the sum of the Dirac masses at the positions of the particles alive at t. Our
goal is to investigate the limiting behavior of m-1Z¢, for a suitable choice of the initial
distribution.

The process (Z7,t > 0) is a Markov process with values in the set M,(E) of all point
measures on 2. We write Pj for the probability measure under which Z° starts at 6.

Fix a Borel function f on F such that ¢ < f <1 for some ¢ > 0. For every x € E, t > 0
set

wi (x) = E5_ (exp(Zf,log f))

where we use the notation (u, f) = [ fdu. Note that the quantity exp(Z¢,log f) is the
product of the values of f evaluated at the particles alive at .

Proposition 3. The function w§(x) solves the integral equation
t
wi @) = pL ([ st (60) = i (6)) =T (7(&)

Proof. Since the parameter ¢ is fixed for the moment, we omit it, only in this proof.
Note that we have for every positive integer n

Ens, (exp(Zs,log f)) = wy(x)" .

Under P5, the system starts with one particle located at . Denote by 71" the first
branching time and by M the number of offsprings of the initial particle. Let also
Py;(dm) be the law of M (the generating function of Py is ¢). Then

wi(z) = Es, (1{r>1y exp(Zs,log f)) + Es, (1{r<) exp(Zy, log f))

™ — ¢ L, (f(&)) + pTl, ® Py (/O ds € " Eps,, (exp(Zu.log 1)) )

= e 'L (f(&)) + 1L, (/Ot ds e‘psw(wt_s(ﬁs))) :
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The integral equation of the proposition is easily derived from this identity: From (7)
we have

p 1l (/Ot ds wt_s(fs))
= 1L ( /0 dse I (F(6)) + I /0 s /0 e mp(wan@)))
g s PTL(£()) + 47 / s / e L, (T (s (6r-)

=(1—e "I (f(&)) +pIL, (/Ot dr(1 — e—pr)@(wt_r(fr)» ‘

By adding this equality to (7) we get Proposition 3. O

We now fix a function g € By (E), then take f = =™ 9 in the definition of w(z) and

set
ui (z) = me (1 — wi(z)) = m. (1 ~ES (efm;%z:,m)) .

From Proposition 3, it readily follows that

(8) ug (z) + 11, (/Ot ds . (uf_s(gs))) =m.I1, (1 - e—ms_lg(it))

where the function ). is as in Section 1.

Lemma 4. Suppose that conditions (i) — (iv) before Proposition 2 hold. Then, the limit
liné uj () =: ug(x)

exists for everyt > 0 and x € E, and the convergence is uniform on the sets [0,T] x E.
Furthermore, ui(x) is the unique nonnegative solution of the integral equation

©) wie) 1L ( [ dsw(ua(€)) = L (g(60)

Proof. From our assumptions, 1. > 0, and so it follows from (8) that uf(z) < X\ :=
sup,cp 9(x). Also note that

lim m.IT, (1 — e~ 96)) =TI, (g(&))
uniformly in (¢, z) € Ry x E (indeed the rate of convergence only depends on \). Using
the uniform convergence of 1. towards ¢ on [0, A] (and the Lipschitz property of ¢ as
in the proof of Proposition 2), we get for e > &’ > 0 and t € [0, T,

t
S () — ' ()] < Cx / ds sup 15 (y) — u (5)| + b(e. T,
0 ye
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where b(e,T, ) — 0 as ¢ — 0. From Gronwall’s lemma, we obtain that u$(x) converges
uniformly on the sets [0,7] x E. Passing to the limit in (8) shows that the limit satisfies
(9). Finally the uniqueness of the nonnegative solution of (9) is also a consequence of
Gronwall’s lemma. 0

We are now ready to state our basic construction theorem for superprocesses. We denote
by M(E) the space of all finite measures on E, which is equipped with the topology
of weak convergence.

Theorem 5. For every p € My(E) and every t > 0, there ezists a (unique) probability
measure Q¢ (i, dv) on M¢(E) such that for every g € Byt (E),

(10) /Qt(#,dv)6_<”79> — e (mout)

where (uy(z), x € E) is the unique nonnegative solution of (9). The collection Qy(p, dv),
t >0, p € My(E) is a measurable family of transition kernels on M(E), which
satisfies the additivity property

Qt(:u7 ) * Qt(ulv ) - Qt(u + Nla ) .

The Markov process Z in M (E) corresponding to the transition kernels Q(u,dv) is
called the (£, 1)-superprocess. By specializing the key formula (10) to constant functions,
one easily sees that the “total mass process” (Z,1) is a ¢»-CSBP. When ¢ is Brownian
motion in R? and v(u) = Bu? (quadratic branching mechanism), the process Z is called
super-Brownian motion.

Proof. Consider the Markov process Z° in the case when its initial value Zj is dis-
tributed according to the law of the Poisson point measure on F with intensity m.u.
By the exponential formula for Poisson measures, we have for g € By (F),

E[e_<ms_1zts’g>} = E[exp(/ Z5(dx) log E§ (e—<m§12579>))]

_ exp(—mg /,u(dx)(l — K5, (e_<m£1vag>))>
= exp(—(u, uz)) -

From Lemma 4 we get

; —(mZ7'Z5.9)) — _
lslfan(e ) = exp(—(u, ur)) -

Furthermore we see from the proof of Lemma 4 that the convergence is uniform when
g varies in the set {g € By (F),0 < g < A} =: H,.
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Lemma 6. Suppose that R, (dv) is a sequence of probability measures on My(E) such
that, for every g € By (F),

lim [ Ry(dv)e™ "9 = L(g)

n—oo

with a convergence uniform on the sets Hy. Then there exists a probability measure

R(dv) on M¢(E) such that

/R(dy)e<”’9> = L(g)

for every g € Bpy(E).

We postpone the proof of Lemma 6 and complete the proof of Theorem 5. The first
assertion is a consequence of Lemma 6 and the beginning of the proof. The uniqueness
of Q¢(u,dv) follows from the fact that a probability measure R(dv) on M(E) is de-
termined by the quantities [ R(dv)exp(—(v,g)) for g € By+(E) (or even g € Cpy(E)).
To see this, use standard monotone class arguments to verify that the closure under
bounded pointwise convergence of the subspace of B,(My(E)) generated by the func-

tions v — exp(—(, 9)), 9 € Byy(E), is By(My(E)).

For the sake of clarity, write u§9 ) for the solution of (9) corresponding to the function

g. The Chapman—Kolmogorov equation Q¢4 = Q:Q)s follows from the identity
w9
u§ o = ug—)s )
which is easily checked from (9). The measurability of the family of kernels Q;(u,-) is a

consequence of (10) and the measurability of the functions u.(x). Finally, the additivity
property follows from (10). O

Proof of Lemma 6. By a standard result on Polish spaces (see e.g. Parthasarathy
[Pa], Chapter 1) we may assume that E is a Borel subset of a compact metric space
K. If g € By (K) we write L(g) = L(g|g). Also M(E) can obviously be viewed as a
subset of M#(K). Denote by M;(K) the set of all probability measures on K, and fix
to € M1(K). Consider then the one-to-one mapping

J : Ms(K) — [0,00] x M;(K)
defined by J (v) = ((v, 1), <Vl7’1>) if v # 0 and J(0) = (0, p0)-

Let R, denote the image of R,, under J. Then R, € M; ([0,00] x M1 (K)), which is
a compact metric space. Hence there exists a subsequence Rnk which converges weakly
to R € M1 ([0,00] x M;(K)). By our assumption, for every e > 0,

n—oo

(11) / Ry (dbdp)e st = / Ry (dv)e s — L(e)
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and because the function (¢, 1) — e~¢ is bounded and continuous on [0, c0] x M (K)
we get

/R(dﬁdu)e_ae = L(e) .

On the other hand we have also for every n

(12) / R, (dbdp)e =t = / Ry, (dv)e==D) —1.

Since the convergence (11) is uniform when ¢ varies over (0, 1), we easily conclude from
(11) and (12) that

. ~ ) .
= =1.
161?01 R(dldu)e lglfgl L(e)

It follows that R is in fact supported on [0, 00) x M (K).
Let R(dv) be the image of R(d¢dy) under the mapping (¢, y1) — £u. For g € Cpy (K),

[ R0 = [ Rt 0 = i [ B a0

k—o0

= lim [ R,, (dv)e” "9 = L(g) .

k—oo

(Note that the function (¢,u) — e %9 is continuous on [0,00) x M;(K)). The
uniform convergence assumption ensures that the mapping ¢ — L(g) is continuous

under bounded pointwise convergence: If g,, € By (K), g, < C and g, — g pointwise,
then L(g,) — L(g). Thus, the set

(g€ Byy (K, / R(dv)e 9 = L(g)}

contains Cp4 (K) and is stable under bounded pointwise convergence. By a standard
lemma (see e.g. [EK], p. 111) this set must be By (K).

Finally, by taking g = 1x\ g in the equality [ R(dv)e="9) = L(g) we see that, R(dv)
a.e., v is supported on E. Therefore we can also view R as a probability measure on

M (E). O

We will write Z = (Z;,t > 0) for the (&, )-superprocess whose existence follows from
Theorem 6. For p € My(FE), we denote by P, the probability measure under which
Z starts at p. From an intuitive point of view, the measure Z; should be interpreted
as uniformly spread over a cloud of infinitesimal particles moving independently in F
according to the spatial motion £, and subject continuously to a branching phenomenon
governed by .
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Remark. For many applications it is important to consider, in addition to the (§,)-
superprocess 7, the associated historical superprocess which is defined as follows. We
replace £ by the process 3

gt:(gsy()SSSt)'

Then & is a Markov process with values in the space W of finite (cadlag) paths in E.
Note that W is again a Polish space for an appropriate choice of a distance (based on
the Skorokhod metric on cadlag functions) and that E can be viewed as a subset of W,
by identifying a point x with a trivial path with length 0.

The historical superprocess Z is then simply the (é ,¥)-superprocess. If we start from Z
started at Zy = p, for p € My (E) C Mf(WW), we can reconstruct a (&, 1)-superprocess
Z started at p via the formula

(Zu, ) = / Zu(dw) f (w(t)) .

This identification is immediate from the formula for the Laplace functional of the
transition kernels.

Informally, if we view Z; as supported on the positions at time ¢ of a set of “infinites-
imal particles”, Z; is the corresponding measure on the set of “historical paths” of
these particles. We refer to the monograph [DP] for various applications of historical
superprocesses.

3 Some properties of superprocesses

Theorem 6 gives no information about the regularity of the sample paths of Z. Such
regularity questions are difficult in our general setting (Fitzsimmons [Fil],[Fi2] gives
fairly complete answers). In the present section, we will use elementary methods to
derive some weak information on the sample paths of Z. We will rely on the integral
equation (9) and certain extensions of this formula that are presented below.

It will be convenient to denote by II; ,, the probability measure under which the spatial
motion & starts from x at time s. Under Il ,, & is only defined for t > s. We will make
the convention that I, . (f(&)) = 0if ¢ < s.

Proposition 7. Let 0 <t; <ty <---<t, and let f1,..., fp € Bpy(E). Then,

p

Eu (eXp - Z<Zti’ fl>) = eXp(_<M7 w0>)

i=1
where the function (wt (x),t > 0,2 € E) is the unique nonnegative solution of the integral
equation

p

(13) wi(o) + | T p(a(e)) ds) = (D fie)

=1
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Note that, since 1) is nonnegative, formula (13) and the previous convention imply that
we(z) =0 for t > t,.

Proof. We argue by induction on p. When p = 1, (13) is merely a rewriting of (9): Let
u¢(x) be the solution of (9) with g = fi, then

Wy (I) = 1{t§t1}ut1—t(x)

solves (13) and

]Eu(exp _<Zt1 ) f1>) = exp _<lu7 ut1> = exp _<:u7 w0> :
Let p > 2 and assume that the result holds up to the order p — 1. By the Markov
property at time ¢y,

p p

E.(exp—Y (Zi,, ) = Eu(exp(—(Zs,, i))Ez, (exp =Y (Zi,—1,, fi)))

i=1 =
=E, (exp(—(Zy,, f1) — (Z4,, W0))

where W solves

[e%e) p
We(z) + i (/t ¢(U~)s(§s)) dS) =1I; » (Z fi (fti—h)) .
i=2
By the case p =1 we get
P
By (exp = Y (Zu,, fi)) = exp—(p, o)
i=1

with
o)+ T ([ 0(0.(60) ds) = T (F1(6) + nlsi) -

We complete the induction by observing that the function wy(z) defined by

wi () = Ty<p 30 () + Lps y Wity ()

solves (13).

Finally the uniqueness of the nonnegative solution of (13) easily follows from Gronwall’s
lemma (note that any nonnegative solution w of (13) is automatically bounded and such
that wy(x) =0 for t > ¢t,). O

Remark. The same proof shows that

p

exp — (i, wy) = Et (exp - Z<Zti7 fz)) =E, (exp -

i=1

M-

(Zt;—t, fz>> :

Vv
@F'_I
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From now on, we assume that t — &; is continuous in probability under II,, for every
reFl.

Proposition 8. For every p € Mys(E), the process (Zs,s > 0) is continuous in
probability under P,,.

Proof. Recall (see e.g. [Pa]) that the topology on M;(E) may be defined by a metric

of the form

d(p i) = (I fo) = (15 ) A27T)

n=0

where (f,,) is a suitably chosen sequence in Cpi (FE). Because of this observation it
is enough to prove that for every f € Cy(FE), (Zs, f) is continuous in probability.
Equivalently, we have to prove that for every » > 0 and A,y >0

rl/i_)mrEM (eXp(_)\<Z?“7 f> - ,7<Z7”/7 f))) = EM (eXp _()\ + ’Y)<Z7“7 f>) °
By Proposition 7, the expectations in the previous displayed formula are computed in
terms of the functions w{(x),v;”" (x) that solve the integral equations

i)+ Mo ([ 0(wi(€)) ds) = A e (£(6))

o) (@) + T / (e (6) ds) = Ay ((6) + M (F€0)) -

The proof of Proposition 8 then reduces to checking that v; i’ () — wi(x) as ' — r.
However, from the previous integral equations we get

rvr’
7 @ —up@)] < ([ e (60 —wields) + 17 @)

where H"" (z) = ~ 1L 2 (f(&) — f(&))| tends to 0 as 1’ — r, except possibly for t = r,
and is also uniformly bounded. By iterating the previous bound, as in the proof of the
Gronwall lemma, we easily conclude that |v;"" (z) — w] (x)| goes to 0 as r’ — 7. O

It follows from Proposition 8 that we can choose a measurable modification of the process
Z (meaning that (t,w) — Z;(w) is measurable). Precisely, we can find an increasing
sequence (D)) of discrete countable subsets of R, such that, if d,(¢) = inf{r > t,r €
D, }, the process
g1 _ { limy, 00 Zg, (1) 1if the limit exists |,
=

0 if not

is such that Z, = Z; a.s. for every t > 0 (and Z’ is clearly measurable).
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From now on, we systematically replace Z by Z’. Recall from Section 1 that the total
mass process (Z,1), which is a ¥-CSBP, has a modification with cadlag paths, hence
is a.s. bounded over any bounded countable subset of R;. From our choice of the
measurable modification, it follows that ((Z,1),t € [0,7T]) is a.s. bounded, for any
T > 0.

The measurability property allows us to consider integrals of the form [ dt h(t){Z, [),
where h and f are nonnegative and measurable on R, and F respectively.

Corollary 9. Let f € By (F) and h € By (Ry). Assume that h has compact support.
Then

E, (exp—/ooo dt h(t)(Zt,f>> = exp —(u, wp)

where w is the unique nonnegative solution of the integral equation
(14) wile) e ([ 0(wale)) ds) =T [ h(s)(E0)ds)
t t

Proof. We first assume that both f and h are continuous. Then, Proposition 8 implies
that, for every K > 0,

lim EM(/OO dt (|h(&)(Ze, ) — h(n™ 08 Zns s £ /\K)) — 0.

n—oo 0
Since the process (Z, 1) is locally bounded, it follows that
> ol i
|tz g) = lim S R Zigas£)
0 R

in IP,,-probability.
By Proposition 7,

i=0
where
wp () + e T p2(€) ds) = e (2 0 6) = gultr)
t i=0

The functions g,(t,z) are uniformly bounded, and converge pointwise to g(t,x) =
I, . (/" dsh(s)f(&s)). By the remark following the proof of Proposition 7, we also
know that

Wi (@) = —log Es, (exp~ S 0( 021y 1)).
1=0
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Hence wy () converges as n — oo to wy(z) = —log Ey 5, (exp — [, ds h(s)(Zs, f)). We
can then pass to the limit in the integral equation for w™ to get that w satisfies (14) (and
is the unique nonnegative solution by Gronwall’s lemma). The desired result follows by
passing to the limit n — oo in (15), in the case when f and h are continuous. In the
general case, we use the fact that the property of Corollary 9 is stable under bounded
pointwise convergence. 0

4 Calculations of moments

Recall that a > 0 is the coefficient of the linear part in ¢). To simplify notation we write
T f(x) =11, (f(&)) for the semigroup of &.

Proposition 10. For every f € By (E), t >0,
E.((Z, f)) = e ", T1f) -
Proof. First observe that ¢ is differentiable at 0 and ¢’(0) = . Then

L 1=Eulexp=XZi, f)) . 1—etmed)
E.((Z, [)) = gng N = %T 3

where v} (1) = —log Es, (exp —A\(X}, f)) solves

) + 1L [ 0 (e) ds) = ML (5(60).

From the Hélder inequality, the function A — v*(z) is concave. It follows that the limit
_ v (x

exists and this limit is obviously bounded above by II, (f(¢;)). By passing to the limit
in the integral equation for v} we get

he(z) + all, (/Ot he s (&) ds) =L, (f(&)) -

However, it is easy to see that the unique solution to this integral equation is h;(x) =
e I, (f(&)). The desired result follows. O

Moments of higher order need not exist in general. However, they do exist when m = 0,
in particular in the case of the quadratic branching mechanism (u) = Bu?. These
moments can be computed from our formulas for the Laplace functionals. To illustrate
the method we consider the case of second moments in the next proposition.
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Proposition 11. Suppose that (u) = Bu?. Then,

E,((Z0 [)?) = (. T, f)? + 20 / (T (To—s f)2))ds

and more generally
tAt
E,U«(<Zta f><Zt’7g>) = <,u7 th> <H, Tt’g> + 26/(; <:u7 Ts ((Tt—sf)(Tt’—sg))>ds :

Proof. First observe that
(16) By (e 20D — 14 XNZy, f)) = e 0) — 1 4 \u, Ty f)

where

v (z —l—ﬁ/ (v} ) (x)ds = AT, f () .

It readily follows from the last equation that as A — 0,

oM &) = AT f( )\26/ (Ti—of)?) (@)ds + O(N?)
with a remainder uniform in x € E. Since

.2,
(Zy, f)? = lif%p(e MZof) 14+ M2, 1))

it follows from (16) and Fatou’s lemma that E,({Z;, f)?) < oo, and then by dominated
convergence that

2 \
By ((Ze: £)?) = lim 5 (70 =14 Mp, 1))

= (1, T f)* + 25/0 (1, To(Ti—s f)?) ) ds

By polarization we easily get

t
EM(<Zta f><Zt7g>> = <:u’7 th) <:u7 Ttg> + 25/ <:u7 TS ((Tt—sf)<Tt—s.g))>dS :
0
Finally, if ¢ < ¢/, the Markov property and Proposition 10 give

E.((Zt, [)(Ze,9)) = Bu({Zt, [)Ez,((Zv—+.9))) = Eu({Zs, [)(Zt, Tyr—19)) -

The desired result follows. O
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Exercise. From Proposition 11 one also easily obtains that
//Zt dy) Z, (dy' Y (y, y //HTt dy) Ty (dy' ) (y, y')
—1—25/0 ds/uTs(dz) //Tt_s(z,dy)Tt_s(z,dy’)w(y,y').
Use this to verify that for super-Brownian motion in R? (d > 2), for t > 0 and € € (0,1)

] 2ot ..

[Hint: If ps(z,y) is the Brownian transition density, verify that for a fixed ¢t > 0

¢ C(l+logy p2y) ifd=2
/ ds / dz ps(x, 2)pi—s (2, Y)pi—s(2,9') < Y
0 Clly—y'1""+1) ifd=>3

where the constant C' depends only on t.]

The bound (17) and an application of the classical Frostman lemma imply that
dim supp(Z;) > 2 as. on {Z; #0},

where dim A denotes the Hausdorff dimension of A. We will see later that this lower
bound is sharp (it is obviously when d = 2!).
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III The genealogy

of Brownian excursions

We briefly explained in Chapter I that the genealogical structure of the superprocess
with branching mechanism (u) = Su? can be coded by Brownian excursions. Our
main goal in this chapter is to explain how one can define random trees associated with
a Brownian excursion and to give explicit formulas for the distribution of these random
trees. As a corollary of our results, we also recover the finite-dimensional marginals of
Aldous’ continuum random tree.

1 The Ito excursion measure
We denote by (B;,t > 0) a linear Brownian motion, which starts at  under the prob-

ability measure P,. We also set Tp = inf{t > 0, By = 0}. For z > 0, the density of the
law of T, under P, is

A major role in what follows will be played by the I1t6 measure n(de) of positive excur-
sions. This is an infinite measure on the set Ey of excursions, that is of continuous map-
pings e : Ry — Ry such that e(s) > 0 if and only if s € (0, 0), for some o = o(e) > 0
called the length or duration of the excursion e.

For most of our purposes in this chapter, it will be enough to know that n(de) has the
following two (characteristic) properties:

(i) For every t > 0, and every measurable function f : Ry — R, such that f(0) =0,

1) [ ntde) stete) = / " dwaat) ().

(ii) Let t > 0 and let ® and ¥ be two nonnegative measurable functions defined respec-
tively on C([0,t],R;) and C(R4,Ry). Then,

/n(de) B(e(r),0 < 1 < ) T(e(t + 1)1 > 0)

= /n(de) Pe(r),0 <r <t) Eep (\II(BMTO,T > 0))



36 The genealogy of Brownian excursions

Note that (i) implies n(o > t) = n(e(t) > 0) = (27t)~ /2 < co. Property (ii) means that
the process (e(t),t > 0) is Markovian under n with the transition kernels of Brownian
motion absorbed at 0.

Let us also recall the useful formula n(sup,sqe(s) >¢) = (2¢)~* for € > 0.

Lemma 1. If f € BL(R;) and f(0) =

n(/ooo dt f(e(t))) - /OOO dz f(z).

Proof. This is a simple consequence of (1). O

For every t > 0, we set I; = info<s<¢ Bs.

Lemma 2. If f € B{(R3) and z > 0,

(2) Ex(/OTO dtf(t,[t,Bt)> = 2/098 dy/yoo dz/ooo dt Gt 2—2y(t) f(t,y,2).

In particular, if g € By (R?),

(3) E(/OT dtg(]t,Bt)> =2/0$ dy/yoo dz g(y, 7).

Proof. Since

Em(/OTO dtf(tJt,Bt)) = /OOO dt B, (f(t, Iy, B)) 1{1,501),

the lemma follows from the explicit formula

-2 w4z—2y)2
E [t7Bt / / dz :z:—f—z y>e (rtar2y) 9(y, z)

which is itself a consequence of the reflection principle for linear Brownian motion. [J
2 Binary trees

We will consider ordered rooted binary trees. Such a tree describes the genealogy of a
population starting with one ancestor (the root ¢), where each individual can have 0
or 2 children, and the population becomes extinct after a finite number of generations
(the tree is finite). The tree is ordered, which means that we put an order on the two
children of each individual.

Formally we may and will define a tree as a finite subset 7" of U2 {1,2}™ (with {1,2}° =
{¢}) satisfying the obvious conditions:
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(i) peT;

(ii) if (i1,...,4p) € T with n > 1, then (i1,...,i,-1) € T ;

(iii) if (i1,...,4,) € T, then either (iy,...,in,1) € T and (iy,...,in,2) € T, or
(i1y... in,1) ¢ T and (i1, ... in,2) & T.

The elements of T' are the vertices (or individuals in the branching process terminology)
of the tree. Individuals without children are called leaves. If T and 7" are two trees,
the concatenation of T" and T”, denoted by T * T”, is defined in the obvious way: For
n>1, (i1,...,i,) belongs to T x T" if and only if i1 = 1 and (ia,...,i,) belongs to T,
or iy = 2 and (ig,...,i,) belongs to T'. Note that T« T’ # T’ x T in general.

For p > 1, we denote by T, the set of all (ordered rooted binary) trees with p leaves. It

is easy to compute a, = Card T),. Obviously a; =1 and if p > 2, decomposing the tree

at the root shows that a, = Z?;% aja,—j. It follows that

I1Xx3x...x(2p—23)
ap = )

or—1,

A marked tree is a pair (T,{h,,v € T}), where h,, > 0 for every v € T. Intuitively, h,
represents the lifetime of individual v.

We denote by 7, the set of all marked trees with p leaves. Let 6 = (T, {h,,v € T'}) € T,
¢ = (T',{hl,v€T")}) € Ty, and h > 0. the concatenation

0«6
h

is the element of 7, whose “skeleton” is T'* 7" and such that the marks of vertices
in T, respectively in 7", become the marks of the corresponding vertices in 7' * T”, and
finally the mark of ¢ in T x T is h.

3 The tree associated with an excursion

Let e : [a,b] — R4 be a continuous function defined on a subinterval [a,b] of Ry. For
every a < u < v < b, we set
= inf e(t).
m(u,v) = inf e(t)

Let t1,...,t, € Ry be such that a <t; <ty <--- <t, <b. We will now construct a
marked tree

O(e,t1,...,t,) = (T(e,tr, ... tp), {hole,ts, ... t,), v €T} €T,

associated with the function e and the times ¢4, ...,¢,. We proceed by induction on p.
If p=1, T(e, t1) is the unique element of Ty, and hg(e,t1) = e(t1). If p=2, T'(e, t1,12)
is the unique element of Ty, hy = m(t1,t2), h1 = e(t1) —m(t1,t2), he = e(t2) —m(t1, t2).
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Then let p > 3 and suppose that the tree has been constructed up to the order p — 1.
Let j =inf{i € {1,...,p—1},m(t;, tix1) = m(t1,t,)}. Define €’ and €’ by the formulas

e'(t) = e(t) — m(ty, tp), t € [t1,14],
e(t) - m(th tp)v te [tj-l-lvtp]'

~
=
—~
~
S~—

By the induction hypothesis, we can associate with e’ and ¢1,...,t;, respectively with
e’ and tjy1,...,t,, atree 8(e,t1,...,t;) € T;, resp. O(e’,tj41,...,tp) € T,—;. We set

H(G,tl,...,tp):0(6’,t1,...,tj) * 0(6”,tj+1,...,tp).
m(tlvtp)

4 The law of the tree associated with an excursion

Our goal is now to determine the law of the tree f(e, t1, .. .,t,) when e is chosen according
to the Itdo measure of excursions, and (ti,...,t,) according to Lebesgue measure on
[0,a(e)]P.

Proposition 3. For f € By (R?™),
n(/ dtl...d,tpf(m(tl,tQ),...,m(tp_l,tp),e(tl),...,e(tp))>
{0<t; <<t <o}

p—1
= 2p1/RZp_1d051 e dozp,ldﬂl e dﬁp( H 1[0’5i/\5i+1](057;)>f(0417 .. ,Oépfl,ﬁl, e ,ﬁp).
. i=1

Proof. This is a simple consequence of Lemmas 1 and 2. For p = 1, the result is exactly
Lemma 1. We proceed by induction on p using property (ii) of the It6 measure and
then (3):

n(/ iy ..dty f(m{tr.to). ....m{tpr. 1), e(tr). .. e(t,)
{0<t: <<ty <o}

:n(/ dtl..‘dtp_l
{0<t1 < <tp_1<0}

To
Ee(tp_1)</ dt f(m(ta,ta), oo mltya,ty 1), I e(ta), ety 1), By) ) )
0
:2n(/ dty ...dt,
{05t <<ty 1 <0}

e(tp—1) 00
[ o]
0 «

p—

B, f(m(ty,ta), ..., m(ty2,ty_1), ap1,e(tr), .. .,e(tp_l),ﬁp)>.

The proof is then completed by using the induction hypothesis. O
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The uniform measure A, on 7, is defined by

/Ap(dH) Fo)=Y / I1 dh F(T, {hu,v e T}).

TeT,” veT
Theorem 4. The law of the tree O(e,t1,...,t,) under the measure
n(de) 1jo<s, <...<t,<o(e)ydts - - . dty,
is 2P71A,,.
Proof. From the construction in Section 3, we have
Oe,tr,....tp) =Tp(m(ts,ta),....m(tp—1,tp),e(t1),...,e(tp)),

where I'), is a measurable function from ]Rip ~1 into 7,. Denote by A, the measure on
Rip ~1 defined by

p—1

Ap(dan ... doy1dfr . dBy) = (T Vo pinpini(ed) )den ... dey 1dBr ... dB,.
=1

In view of Proposition 3, the proof of Theorem 4 reduces to checking that I',(A,) = A,,.
For p = 1, this is obvious.

Let p > 2 and suppose that the result holds up to order p—1. For every j € {1,...,p—1},
let H; be the subset of Rip ~1 defined by

Hj = {(a1,...,0p-1,51,...,0p): aj < a for every i # j}.

Then,
p—1
Ap=> 1m, A,
j=1
On the other hand, it is immediate to verify that 15, - A, is the image of the measure

Aj(dedy .. dB}) @ 110,00y (R)dh ® Ap_j(da ... dB1_)

p

under the mapping @ : (a,..., 8}, h,af ..., B ;) — (a1,..., ) defined by

Oéj:h,

a;=a,+h for 1 <i<j—1,
Bi=0i+h  forl1<i<yj,
a=af j+h forj+1<i<p-1,
Bi=p;+h forj+1<i<p.
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The construction by induction of the tree (e, t1,...,t,) exactly shows that
I'po®(af,... ,ﬁ;, h,of ..., g_j) =T(ad,... ,ﬁ;) * Lp_jlad ..., ;’_j).

Together with the induction hypothesis, the previous observations imply that for any
f S B—i— (7;-0)’

[ st 1, @) 50 (0) = [ [ [ A8, ) 500 b))
_ / an [ [ A5ty syt (00 Ty a)
:/Ooo dh/Aj * Ap—j(df) £(0)

where we write A; * A,_; for the image of A;(df)A,—;(df') under the mapping
0,0y — 0 * 0’. To complete the proof, simply note that

p—1 0
AP:Z/O dhAj % Apj.
j=1

5 The normalized excursion and Aldous’ continuum
random tree

In this section, we propose to calculate the law of the tree (e, t1,. .., ;) when e is chosen
according to the law of the Brownian excursion conditioned to have duration 1, and
t1,...,t, are chosen according to the probability measure p!lo<s, <...<z,<1ydt1 ... dty.
In contrast with the measure A, of Theorem 4, we get for every p a probability measure
on 7,. These probability measures are compatible in a certain sense and they can be
identified with the finite-dimensional marginals of Aldous’ continuum random tree (this
identification is obvious if the CRT is described by the coding explained in Chapter I).

We first recall a few basic facts about the normalized Brownian excursion. There exists
a unique collection of probability measures (n(s),s > 0) on Ey such that the following
properties hold:

(i) For every s > 0, n¢s (0 = s) = 1.
(ii) For every A > 0 and s > 0, the law under n,(de) of ex(t) = Ve(t/) is T (\s)-
(iii) For every Borel subset A of Fj,

n(A) = < (2m)-1/2 /0 T2 (4) ds.

N =
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The measure n(;) is called the law of the normalized Brownian excursion.

Our first goal is to get a statement more precise than Theorem 4 by considering the
pair (6(e,t1,...,t,),0) instead of (e, t1,...,t,). If 6 = (T,{hy,v € T}) is a marked
tree, the length of 0 is defined in the obvious way by

L(0) =) he.

veT
Proposition 5. The law of the pair (8(e,t1,...,tp),0) under the measure

n(de) 1{0§t1§--~§tp§0(e)}dt1 cee dtp

18
2P71 Ay (dB) gar (o) (5)ds.

Proof. Recall the notation of the proof of Theorem 4. We will verify that, for f €
B+ (R:—)&)—p)7

n</ dty ... dt,
{0<t1 <<ty <o}

f(m(ti,ta), ..., m(tp—1,tp),e(t1), ... e(tp), t1,ta —t1,...,0 — tp)>

= 2p_1/Ap(doz1 NN dap_ldﬁl NN dﬁp) / dSl e dSp_|_1 45, (31)QE1—|—,82—2041 (82) ‘e

p+1
R+

<48, _1+Bp—20ap_1 (Sp)Q5p (Sp-i-l) f(alv s, Qp1, ﬁlv cee 7ﬁp7 S1y.-- 7Sp+1)-

(4)

Suppose that (4) holds. It is easy to check (for instance by induction on p) that

p—1

2L(Fp(a17 .o 7ap—17ﬁ15 ‘. 7ﬁp)> - ﬁl + Z(ﬁz + ﬁi—l - 20[1,) + ﬁp'
i=1
Using the convolution identity g, * ¢, = gz+y, We get from (4), for f € B4 (R?P),

n(/ dt1...dtpf(m(tl,tg),...7m(tp_1,tp),e(t1),...,e(tp),a))

{0<t1 <<t <o}

= 2p—1 /Ap(dal e dOép_ldﬁl e dﬁp) / dt qu(Fp(alw-zﬁp))(t) f(Ozl, Ce ,ﬂp,t).
0

As in the proof of Theorem 4, the statement of Proposition 5 follows from this last
identity and the equality I'y(A,) = A,.
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It remains to prove (4). The case p = 1 is easy: By using property (ii) of the Itd
measure, then the definition of the function ¢, and finally (1), we get

/n(de) /OG dt fle(t),t,0 — 1) :/n(de) /U dt Evgyy (f(elt), £, T0))

= [ e / "t / " oo () Fe(t), 1.1
:/Ooodx/ooodtqm(t)/Ooodt’qx(t’)f(:v,t,t’)-

Let p > 2. Applying the Markov property under n successively at ¢, and at ¢,_;, and
then using (2), we obtain

n</ dt: ... dt,
{0<t: <<t <o}

X f(m(ti,ta),...,m(tp—1,t),e(t1),...,e(tp), t1,ta — ..,a—tp))
To
:n(/ dty...dty 1 o, ) / dt/ ds qp, (s
{0<t1 <<ty 1 <0}
x f(m(ty,ta),...,m(tp—o,tp_1), I,e(tr), ..., e(tp_1), Be,t1, ..., tp_1 —ty_a,t, 8)))

e(tp 1)
:2n</ dty...dty— 1/ dy/ dz/ dt/ ds qe(t,_1)+=— 2y (1)q=(s)
{0<t:1 <<ty 1 <0}
X f(m(ty,t2), ..., m(tp—2,tp—1),y,€(t1), ..., e(tp—1), 2, t1,. .., tp—1 — tp_2,1, s)).

It is then straightforward to complete the proof by induction on p. 0

We can now state and prove the main result of this section.

Theorem 6. The law of the tree 6(e,t1,...,t,) under the probability measure

p! 1{0§t1§---§tp§1}dt1 ..dty n(l)(de)

’ p! 20TV L(6) exp (— 2 L(0)%) A, (d9).

Proof. We equip 7, with the obvious product topology. Let F' € Cy4(7,) and h €
By+(R4). By Proposition 5,

/n(de) h(o) /{0<t ot dty...dt, F(0(e,t1,...,tp))
=2t [T dsh(s) [ 8,008) o 5) FOO)
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On the other hand, using the properties of the definition of the measures n ), we have
also

/n(de) h(o) / dty ...dt, F(0(e, t1,...,tp))
{0<t <<t <o}

1 o0
= §(27r)1/2/ ds s73/? h(s)/n(s)(de)/ dty ...dt, F(B(e,t1,...,tp)).
0 {0<t1 < <tp<s}

By comparing with the previous identity, we get for a.a. s > 0,

/ n(s)(de) / dty...dt, F(O(e,t1,...,t,))
{0<t1 < <tp <}

= optl /Ap(dG) L(6) exp ( — 2

Both sides of the previous equality are continuous functions of s (use the scaling property
of n(s for the left side). Thus the equality holds for every s > 0, and in particular for
s = 1. This completes the proof. 0

Concluding remarks. If we pick ¢1,...,t, independently according to Lebesgue mea-
sure on [0,1], we can consider the increasing rearrangement t; < t5 < --- < t, of
t1,...,t, and define (e, t1,...,t,) = O(e,t},...,1,). We can also keep track of the
initial ordering and consider the tree é(e,tl, ..., tp) defined as the tree O(e,t1,...,t,)
where leaves are labelled 1, ..., p, the leaf corresponding to time ¢; receiving the label
i. (This labelling has nothing to do with the ordering of the tree.) Theorem 6 implies
that the law of the tree é(e, t1,...,tp) under the probability measure

1[0,1];7 (t1,... ,tp)dtl codty n(l)(de)

has density
2PTLL(6) exp(—2L(6)?)

with respect to A,(df), the uniform measure on the set of labelled marked trees.

We can then “forget” the ordering. Define 6*(e,t1,...,t,) as the tree O(e,ty,... tp)
without the order structure. Since there are 2P~! possible orderings for a given labelled
tree, we get that the law (under the same measure) of the tree 6*(e,t1,...,t,) has

density

227 1(0) exp(—2L(6)?)
with respect to Aj(df), the uniform measure on the set of labelled marked unordered
trees.

For convenience, replace the excursion e by 2e (this simply means that all heights are
multiplied by 2). We obtain that the law of the tree 8*(2e,1,...,t,) has density

L(0)?

L(8) exp(——

)
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with respect to Aj(df). It is remarkable that the previous density (apparently) does
not depend on p.

In the previous form, we recognize the finite-dimensional marginals of Aldous’ con-
tinuum random tree [All]. To give a more explicit description, the discrete skeleton
T*(2e,t1,...,tp,) is distributed uniformly on the set of labelled rooted binary trees with
p leaves. (This set has b, elements, with b, = p! 2_(p_1)ap =1x3x---x(2p—3).)
Then, conditionally on the discrete skeleton, the heights h, are distributed with the
density

by () exp (— =)

2
i . . . 2p—1
(verify that this is a probability density on R~ 1).
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IV The Brownian snake

and quadratic superprocesses

In this chapter, we introduce the path-valued process called the Brownian snake and we
use this process to give a new construction of superprocesses with branching mechanism
¥(u) = Bu?. This construction will be applied to connections with partial differential
equations in the forthcoming chapters. The proof of the relationship between the Brown-
ian snake and superprocesses relies on our study of the genealogy of Brownian excursions
in the previous chapter. In the last sections, under stronger continuity assumptions on
the spatial motion, we use the Brownian snake approach to derive various properties of
superprocesses.

1 The Brownian snake

As in Chapter II, we consider a Markov process (&, I1,) with cadlag paths and values in
a Polish space F and we denote by §(z,y) the distance on E. For technical convenience,
we will assume a little more than the continuity in probability of £ under II, for every
x € E. Precisely, we assume that for every € > 0

(1) lim (sup Hm<sup 3z, &) > 5)) = 0.

t—=0\zecE r<t

Without the supremum in z, this is simply the right-continuity of paths. Here we require
uniformity in x.

Let us introduce the space of finite paths in E. If [ is an interval of R, we denote by
D(I, E) the Skorokhod space of cadlag mappings from I into E. We then set

W= JD(0,4,E)

>0
and if w € W, we write (, = t if w € D([0,¢t], E) ({w is called the lifetime of w). We

also use the notation w = w(({,) for the terminal point of w. The set W is equipped
with the distance

d(w7w/) = |<w - Cw’| + do (w( A Cw)7w/(' A Cw’)) )
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where dj is a distance defining the Skorokhod topology on ]D)([O, 00), E) It is easy to
verify that (W, d) is a Polish space. It will be convenient to view E as a subset of W, by
identifying a point x € E with the trivial path with initial point x and lifetime ¢ = 0.
For x € E, we denote by W, the set {w € W, w(0) = x}.

Let w € W and a € [0,(y], b > a. We define a probability measure R, ;(w,dw’) on W
by the following prescriptions:

(1) Cw = b, Rap(w,dw’) as.

(ii) w'(t) = w(t), for every t € [0, a], Ry p(w, dw’) as.

(iii) The law under R (w, dw’) of (w'(a+t), 0 < ¢t < b—a) is the law of (&, 0 < ¢t < b—a)

under Hw(a) .

Informally, the path w’ is obtained by first restricting w to the time interval [0, a] and
then extending the restricted path to [0, b] by using the law of £ between a and b.

Let (8s,s > 0) be a reflected linear Brownian motion (the modulus of a standard
linear Brownian motion) started at z. For every s > 0, we denote by 77 (dadb) the
joint distribution of the pair (info<,<s 3, 3s). The reflection principle easily gives the
explicit form of vZ(da db):

2(x 4+ b—2a) (x +b— 2a)?
(27s3)1/2 P 2s
(z +b)?
s

Vs (da db) = 1(0<a<b/\ac) da db

+ 2 (27s) Y2 exp — Lio<p)do(da) db.

Definition. The &-Brownian snake is the Markov process in W, denoted by (Wy, s > 0),
whose transition kernels Qg are given by the formula

@s(wadw/) = // ’ng (dCL db) Rayb(w,dw').

We will use the notation (s = Cw, for the lifetime of W.

Although the formula for Q4 looks complicated, the behavior of the process W can be
described in a simple way. Informally, W, is a path of ¢ started at x, with a random
lifetime (s evolving like reflected linear Brownian motion. When ( decreases the path
Wy is simply erased (or shortened) from its tip, and when (; increases the path is
extended using the law of ¢ for the extension. From the formula for Qj, it is also clear
that W(0) = Wy(0) a.s., so that the process W started at wp indeed takes values in
W, with x = w(0).

It is maybe not immediate that the collection of kernels Q5 forms a semigroup of transi-
tion kernels. (The previous intuitive interpretation should make this property obvious.)
We will leave the easy verification of this fact to the reader, and rather give a construc-
tion of W that we will use in the remainder of this chapter.
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This construction involves defining the conditional distributions of W given the “lifetime
process” ((s,s > 0). Fix a starting point wy € W and set (y = (u,. The process W
started at wg will be constructed on the canonical space C(Ry,Ry) x WR+. To this
end, denote by P, the law on C(Ry,R,) of reflected Brownian motion started at (.
Then, for f € C(R4,Ry) such that f(0) = (o, let ©f, (dw) be the law on W&+ of the
time-inhomogeneous Markov process in WV started at wg and whose transition kernel
between times s and s is

Rm(s,s’),f(s’) (w, dw/) y

where m(s, s') = infs<, <y f(s). Note that the existence of ©f, is an easy application of
the Kolmogorov extension theorem. Furthermore, if A is a measurable subset of W&+
depending on finitely many coordinates, it is straightforward to verify that the mapping
f— @{UO (A) is measurable. Thus it makes sense to consider the probability measure

P, (df dw) = P, (df)O1,, (dw).

The process W started at wy is defined under Py, (df dw) by Ws(f,w) = w(s).

A straightforward calculation of finite-dimensional marginals shows that (Wy,s > 0) is
under P, a (time-homogeneous) Markov process with transition kernels Q5. Note that
we have (s(f,w) = f(s), Py, a.s., so that the lifetime process is a reflected Brownian
motion. (This fact can also be deduced from the form of Qj.)

It is easy to verify that the kernels Qg are symmetric with respect to the (invariant)
measure

M (dw) = /0 " da 1% (duw) |

where II$(dw) = Ro,q(z,dw) is the law of the process £ started at x and stopped at
time a. We can thus apply to W the tools of the theory of symmetric Markov processes.
We will not give such applications here, but refer the interested reader to [L4] or [L7].

A major role in what follows will be played by the excursion measures of the Brownian
snake. For x € F, the excursion measure N, is the o-finite measure defined by

N, (df dw) = n(df)® (dw),

where n(df) is the Itd excursion measure as in Chapter III. We will see later (under
additional regularity assumptions) that the law of (W, s > 0) under N, is indeed the
excursion measure of the Brownian snake away from the trivial path x, in the sense of
excursion theory for Markov processes. The process W, can be described informally
under N, in the same way as under P,,, with the only difference that the lifetime
process (s is now distributed according to the Ito6 excursion measure.

Lemma 1. (i) For every e >0 and a > 0,

lim (sup Py (d(W, Wery) > 5)> =0

0 N\ s>n
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and the convergence is uniform in wy € W.

(ii) Let f € C(R4,Ry) with compact support and such that f(0) = 0. Then, for every
e >0,

. f _
lim (i?@ 07 (AW, Wysr) > 5)) 0.

The convergence is uniform in x € E, and its rate only depends on a modulus of conti-
nuity for f.

Remark. The first part of the lemma implies that the process (Ws, s > 0) is continuous
in probability under P,,,, except possibly at s = 0. On the other hand, it is easy to see
that if wp has a jump at (y,, then W will not be continuous in probability at s = 0
under P, .

Proof. We prove (i). Let 0 < s < ¢ and let f € C(R4,R;) be such that
m(0,s) < m(s,s’). Then, under ©f , W, and W, are two random paths with re-
spective lifetimes f(s) and f(s’), which coincide up to time m(s, s’) and then behave
independently according to the law of £&. Let € > 0 and n > 0. We can easily bound

Py, (sup S(Wa(t A C), Wo (A (o)) > 25)
t>0

< F,, (m(s, s') < m(0, s)) + P, (CS —m(s,s’) > 77) + P, (CS/ —mf(s,s’) > 7))

+ 2 EC“’O <1{m(073)sm(578/)}ﬂw0(m(ovs)) (Hgm(s,s’)—m(o,s) (Oilign(;(g()’ ST) > 6))) :

For any fixed n > 0, the first three terms of the right side will be small provided that
s’ — s is small enough and s > a > 0. On the other hand, the last term goes to 0 as
n — 0, uniformly in wy, thanks to our assumption (1). This completes the proof of (i).
The argument for (ii) is similar. O

As we did in Chapter II for superprocesses, we may use the previous lemma to construct
a measurable modification of W. We can choose an increasing sequence (D,,) of discrete
countable subsets of R, with union dense in Ry, in such a way that the following
properties hold. If d,,(s) = inf{r > s,r € D, }, the process

W, =

S

limy, oo Wy, (s) if the limit exists |,
W() if not s

satisfies both P, (W. # W,) = 0 for every s > 0, wo € W and ©f(W! # W,) = 0 for
every s > 0 and x € E, n(df) a.e. From now on we deal only with this modification and
systematically replace W by W’. Note that W’ is also a modification of W under N,
for every x € F.

As in Chapter III, we write 0 = o(f) under N,.
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2 Finite-dimensional marginals of the Brownian snake

In this section, we briefly derive a description of the finite-dimensional marginals of
the Brownian snake, in terms of the marked trees that were introduced in the previous
chapter.

Let § € 7, be a marked tree with p branches. We associate with 6 a probability measure
on (W,)? denoted by I1Z, which is defined inductively as follows.

If p = 1, then § = ({¢},h) for some h > 0 and we let I} = T be the law of
(&4,0 <t < h) under II,.

If p > 2, then we can write in a unique way
0=0x6",
h
where 0’ € T;, 0" € T,_;, and j € {1,...,p — 1}. We then define I1% by

/Hg(dwl,...,dwp)F(wl,...,wp)
:Hm<//l'[£;(dw’1,...,dw;)HSZ(dw'{,...,dwg_j)

F(&§o,n) ©whs -+ &o,n) © W)y o, @ Wy, -, €o,n) © w;)/—j)>

where £[g ;) © w denotes the concatenation (defined in an obvious way) of the paths
(&,0 <t < h)and (w(t),0 <t < (w).

Informally, I1? is obtained by running independent copies of & along the branches of the
tree 6.

Proposition 2. (i) Let f € C(R4,Ry) such that f(0) =0, and let 0 < t; <tg <--- <
tp. Then the law under ©f of (w(t1),...,w(ty)) is o bte)
(ii) For any F € BL(WP),

Nx(/ dtl...dth(th,...,th)) = 2P—1/Ap(d9) IT5(F) .
{0<t1<--<t,<o}

Proof. Assertion (i) follows easily from the definition of ©J and the construction of
the trees 0(f,t1,...,t,). A precise argument can be given using induction on p, but we
leave details to the reader. To get (ii), we write

Nx</ dhy ...ty F (Wi, W)
{0<t: <<ty <o}

:/n(df)/ dt1...dtp@£<F(th,...,th)>
{0<t,<--<t,<o}

=/n(df)/ dty ... dt, IO testo) ()
{0<t: <

<tp<o}

= or~1 / A, (dO) T (F).
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The first equality is the definition of N, the second one is part (i) of the proposition,
and the last one is Theorem III.4. O

The cases p = 1 and p = 2 of Proposition 2 (ii) will be used several times in what
follows. Let us rewrite the corresponding formulas in a special case. Recall the notation
w for the terminal point of w. For any g € By (FE), we have

([ dsai) =1 ([ deate).
([ asgr)) = am ([T (e ([ arote))).

These formulas are reminiscent of the moment formulas for superprocesses obtained in
Chapter II in the quadratic branching case. We will see in the next section that this
analogy is not a coincidence.

and

3 The connection with superprocesses
We start with a key technical result.

Proposition 3. Let g € By (R X E) such that g(t,y) =0 fort > A > 0. Then the
function

ut(x) = N, (1 - exp—/og dsg(t+ CS,WS)>

solves the integral equation

(1) up(x) + 211 (/too dr(ur(§r))2> =11 » </t<>0 dr g(r, fr)>

(recall that the process & starts from x at time t under the probability measure I1; ;).

Proof. For every integer p > 1, set

TPg(t,x) = ]%Nm«/oa dsg(t+ QS,WS))p> .

By the case p = 1 of Proposition 2 (ii), we have

o0

@) Tlg(t,z) =TI, (/0 drg(t +1.6,))
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Then let p > 2. Using Proposition 2 (ii) again we have

p
Tpg(t,l'):Nm</ dsl---dSpHg(t+CSi7WSi)>
{0<s1 < <sp <0} =1

p

— 2p_1/Ap(dQ)/Hg(dﬂh---dwp)Hg(t+Cwi’wi>

=1

— 2P—1§/000 dh // A;(d0")Ap—;(d0”)

J

Hw<(/Hg;(dw’1 cedwh) [T ot + b+ Gy i)

=1
7 p_j
X (/ th (dwlll A dw;;_‘]) H g(t + h + gwg’a w’;/))) :
=1

In the last equality we used the identity

p—1 )
AP:Z/ dhAj # Ay
j=1"90

together with the construction by induction of I1%. We thus get the recursive formula
(3) TPg(t,x) =2) 1I, ( / dhTIg(t + h,&n) TP/ g(t + h, fh)) :
0

For p =1, (2) gives the bound

T'g(t,x) < Clp,a(t) -

Recall from Chapter III the definition of the numbers a,, satisfying a, = Z?;i ajQp—;j.

From the bound for p = 1 and (3), we easily get TPg(t,xz) < (24)P~'CPa, 11 41(t) by
induction on p. Hence,
Tpg(t, :L’) < (Cl)pl[O’A] (t) .

It follows that, for 0 < A < \g := (C") 71,

(4) D NTPg(t,x) < K 10, a1(1),

p=1

for some constant K < oo.
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By expanding the exponential we get for A € (0, Ag)

[&.9]

u}(z) == N, (1 - exp(—)\/og ds g(t + (s, Ws))) = Z(_1)P+1)\PTPg(t,:z:) .

p=1

By (3), we have also

o1l (/Ooo dr(u,g\+r(£r))2> — oIl, (/OOO dr(i(—l)p“)\prg(t +r, 57«))2)

=1
—23 1)pApan(/ ArTg(t + 1. 6T g(t +7.&,))
p:2 j=1 0
_ DPAPTPg(t, ) .

(The use of Fubini’s theorem in the second equality is justified thanks to (4).) From
the last equality and the previous formula for u}(z), we get, for A € (0, \g),

o)+ 210 ([ (e (6))7) = ATgte0) = ([ drgta+re))

This is the desired integral equation, except that we want it for A = 1. Note however
that the function A — u)(z) is holomorphic on the domain {ReX > 0}. Thus, an
easy argument of analytic continuation shows that if the previous equation holds for
A € (0, ), it must hold for every A > 0. This completes the proof. O

Theorem 4. Let p € M(E) and let

Z 6(mi7fi7wi)

i€l

be a Poisson point measure with intensity pu(dz)Ng(df dw). Write Wi = W(fi,w;),
¢t = Cs(fi,wi) and o; = o(f;) for every i € I, s > 0. Then there erists a (€, 2u?)-
superprocess (Zy,t > 0) with Zy = pu such that for every h € By (R) and g € By (E),

/ h(t)(Zy, g)dt =) / ds .
0 el
More precisely, Z; can be defined for t > 0 by

(Zg) = / det(CHg(W?y

1€l
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where (") denotes the local time at level t and at time s of (C%,r > 0).
Remarks. (i) The local time £%(¢*) can be defined via the usual approximation

S

) ] .
G(¢) = il_{% c /s dr Lt e40)(Gr)s
and (£%(¢%),s > 0) is a continuous increasing function, for every i € I, a.s.

(ii) The superprocess Z has branching mechanism 24?2, but a trivial modification will
give a superprocess with branching mechanism Bu?, for any choice of 3 > 0. Simply
observe that, for every A > 0, the process (A\Z;,t > 0) is a (&, 2\u?)-superprocess.

Proof. Let £ denote the random measure on R; x E defined by

[ i) =3 / "R g yds

i€l

for h € By (Ry) and g € By (E). Suppose that h is compactly supported. By the
exponential formula for Poisson measures and then Proposition 3, we get

Blexp— [ Llarayhitlgly) = exp(~ [ udoi(—exp— [ dshic)g(7)))

0
= exp(—(p, u0))

where (ut(x), t>0,x € E) is the unique nonnegative solution of

wi(z) + 21, (/too dr(ur(6))") = e (/OO drh(r)g(,))

t

By comparing with Corollary I1.9, we see that the random measure £ has the same
distribution as
dt Z;(dy)

where Z' is a (&, 2u?)-superprocess with Z} = p.

Since Z’ is continuous in probability (Proposition I1.8) we easily obtain that, for every

t >0,
t+e

1
Z; = lim ~ Zdr ,
EJ,O g t

in probability. It follows that for every ¢ > 0 the limit

1 t+€
Zy(dy) = lim — L(dr dy)

Elo 15 t

exists in probability. Clearly the process Z has the same distribution as Z’ and is thus
also a (&, 2u?)-superprocess started at p.
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Then, if t > 0 and g € Cp4(E),

o1
(Zt,9) = 18%1 - L(dr dy)l[t,tJrs} (m)g(y)

(5)
_161&)16 Z/ ds 1[t t+€] ) (WZ)

Note that there is only a finite number of nonzero terms in the sum over i € I (for
t >0, Ny(sup(s > t) =n(supe(s) >t) < 0o). Furthermore, we claim that

o

= [ s 1@ = [ (Oa0T)

SLO g 0

in N -measure, for every x € E. To verify the claim, note that

/ det (O)g(W,) = / dr s, ooy gV,
0 0

1 (o R o0 .
! / ds Lis.10 (C)g (W) = / dr 1 cooyg(Wis).
0 0

€

where

1 S
7. = inf{s, 0% > r}, 7¢ = inf{s, B / dul 4y (Cu) > 1}
0

We know that 75 — 7, as ¢ — 0, N, a.e. on {7, < co}. From the continuity properties
of W (more specifically, from Lemma 1 (ii)), we get for every r > 0

Hm N (|g i) L r<oe) (Wﬂ)l{n@o}‘) =0

The claim follows, and the formula for Z; in the theorem is then a consequence of (5).
Finally, the first formula in the statement of Theorem 4 is a consequence of the formula
for Z; and the occupation time density formula for Brownian local times. 0

Let us comment on the representation provided by Theorem 4. Define under N, a
measure-valued process (Z;,¢ > 0) by the formula

(6) (Zt,9) = /0 ’ det($)g(Ws) .

The “law” of (Z;,t > 0) under N, is sometimes called the canonical measure (of the
(€, 2u?)-superprocess) with initial point x. Intuitively the canonical measure represents
the contributions to the superprocess of the descendants of one single “individual” alive
at time 0 at the point x. (This intuitive explanation could be made rigorous by an
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approximation by discrete branching particle systems in the spirit of Chapter II.) The
representation of the theorem can be written as

Zy=> Z

i€l

and means (informally) that the population at time ¢ is obtained by superimposing the
contributions of the different individuals alive at time O.

The canonical representation can be derived independently of the Brownian snake ap-
proach: Up to some point, it is a special case of the Lévy-Khintchine decomposition for
infinitely divisible random measures (see e.g. [Ka]). The advantage of the Brownian
snake approach is that it gives the explicit formula (6) for the canonical measure.

Another nice feature of this approach is the fact that it gives simultaneously the
associated historical superprocess. Recall from Chapter II that this is the (5, 2u?)-
superprocess, where ét = (&,0 <r <t) can be viewed as a Markov process with values
in W. In fact, with the notation of Theorem 4, the formula

2.6) =% [ anrcon)

el

defines a historical superprocess started at p. The proof of this fact is immediate from
Theorem 4 if one observes that the £&-Brownian snake and the £-Brownian snake are
related in a trivial way.

4 The case of continuous spatial motion

When the spatial motion & has (Holder) continuous sample paths, the Brownian snake
has also stronger continuity properties, and the Brownian snake representation of su-
perprocesses easily leads to certain interesting sample path properties.

Recall that 0(x,y) denotes the metric on E. In this section and the next one, we will
assume the following hypothesis, which is stronger than (1).

Assumption (C). There exist three constants C, p > 2, € > 0 such that, for every
x € E and for every t > 0,

Hm< sup 5(x,§r)p> < Ct?te

0<r<t

By the classical Kolmogorov lemma, this implies that the process £ has (Holder) con-
tinuous sample paths. Note that assumption (C) holds when ¢ is Brownian motion or
a nice diffusion process in R% or on a manifold.

It is then clear that we can construct the £&-Brownian snake as a process with values in
the space of (finite) continuous paths, rather than cadlag paths as in Section 1. With a
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slight abuse of notation, we now write W for the space of all F-valued finite continuous
paths and d for the metric on W defined by

d(w, w') = |Gu — Cur| + 3&185(%0(75 A Cuw)sw' (EA Cur)) -

Proposition 5. The process (Ws,s > 0) has a continuous modification under N, or
under Py, for every x € E, w e W.

Remark. We should say more accurately that the measurable modification constructed
in Section 1 has continous sample paths, P, a.s. or N, a.e.

Proof. Recall that paths of (reflected) linear Brownian motion are Holder continuous
with exponent 1/2 — g for every n > 0. Fix a function f € C(R4,R,) such that for
every T'> 0 and every n € (0,1/2), there exists a constant C, v with

1£(s) = f(s)| < Cprls— s>, Vs, s €0,T] .

Proposition 5 will follow if we can prove that the process (Ws, s > 0) has a continuous
modification under © , for any w such that ¢, = f(0).

Suppose first that f(0) = 0, and so w = z € E. By the construction of Section 1, the
joint distribution of (W, W, ) under O is

Hi(s) (dw>Rm(s,s’),f(S/) (’LU, dw/)
Then, for every s,s" € [0,T], s < &,

@£ (d(Wsa Ws’)p)

< ¢ (£(5) = ()" + 210, (Te, o sup 3(60:6)")) )

0<t<(f(s)Vf(s"))—m(s,s")

IN

o (14(5) = () +2C1(£(6) V F(5)) = m(s, ) )
< Cp (Cg,T ’S — S/|P(%—77) +20 0727,+T€ 5 — S/|(2+E)(%—n)) ’

where we used assumption (C) in the second inequality. We can choose n > 0 small
enough so that p(3 —n) > 1 and (24 ¢)(3 —7n) > 1. The desired result then follows
from the classical Kolmogorov lemma.

When f(0) > 0, the same argument gives the existence of a continuous modification
on every interval [a,b] such that f(s) > m(0,s) for every s € (a,b). More precisely,
the proof of the Kolmogorov lemma shows that this continuous modification satisfies
a Holder condition independent of [a,b] provided that b < K. On the other hand,
if s is such that f(s) = m(0,s) the construction of the Brownian snake shows that
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Wi(t) = w(t), Vt < f(s), ©f as. Replacing W by a modification, we may assume
that the latter property holds simultaneously for all s such that f(s) = m(0, s), O/ a.s.
Then, if s; < s9 are not in the same excursion interval of f(s) —m(0,s) away from 0,
we simply bound

d(W517 WSQ) S d(Wsl 9 Wbl) + d(Wb17 WCLQ) + d(Wa27 W82)7

where by = inf{r > sy, f(r) = m(0,7)}, ag = sup{r < s9, f(r) = m(0,7)}. The desired
result follows easily. ([l

From now on, we consider only the continuous modification of the process W provided
by Proposition 5. As a consequence of the sample path continuity, we obtain that P,
a.s. (or N, a.e.) for every s < s’ we have

W (t) = Wy (), for every t < inf (.

s<r<s’

For a fixed choice of s and s’, this is immediate from the construction of the Brownian
snake. The fact that this property holds simultaneously for all s < s’ then follows by
continuity. We will sometimes refer to the previous property as the snake property.

We now state the strong Markov property of W, which is very useful in applications.
We denote by F; the o-field generated by W,., 0 < r < s and as usual we take

For=[)Fr.

r>s

Theorem 6. The process (W, Py,) is strong Markov with respect to the filtration (Fsy).

Proof. Let T be a stopping time of the filtration (Fs) such that T < K for some
K < o0. Let F' be bounded and Fr4 measurable, and let ¥ be a bounded measurable
function on W. It is enough to prove that for every s > 0,

By (FU(Wry)) = By (FEy, (U(W,))).

We may assume that ¥ is continuous. Then,

Ey(FU(Wrys)) = lm Y By (Lpecqoreny FU(Wee, )
=0

In the first equality, we used the continuity of paths and in the second one the or-
dinary Markov property, together with the fact that 1y /n<r<(ks1)/ny F 18 Frt1)/n-
measurable. At this point, we need an extra argument. We claim that

(7) lim( sup  [Ew, (U(W,)) — By, (\II(WS))|> =0, P, as.
el0 \i<K t<r<t+e
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Clearly, the desired result follows from (7), because on the set {k/n < T < (k+1)/n}
we can bound

EWin (T(Wy) = Ewy, (Y(We))| < sup  [Ew, (¥(W5)) — Ew, (¥(W5))]-

t<Kt<r<t+i

To prove (7), we write down explicitly
Ey, (2(W,)) = / 26+ (da db) / Ran (W, du') ('),

and a similar expression holds for Ey, (¥(Wj)). Set

C(E) = sSup ’Cr - Ctl
t<K,t<r<t+e
and note that c¢(e) tends to 0 as ¢ — 0, P, a.s. Then observe that if ¢ < K and
t <r <r+eg, the paths W, and W; coincide at least up to time ({; — ¢(¢))+. There we
have
Ry p(Wy,dw') = Ry p(We, dw')

for every a < ((+ — ¢(€))+ and b > a. The claim (7) follows from this observation and
the known explicit form of 75~ (da db). O

Remark. The strong Markov property holds for W even if the underlying spatial
motion £ is not strong Markov.

Under the assumptions of this section, we now know that the process W is a continuous
strong Markov process. Furthermore, every point z € E is regular for W, in the
sense that P, (Tyy = 0) = 1if Ty, = inf{s > 0,W, = x}. (This is trivial from
the analogous property for reflected linear Brownian motion.) Thus it makes sense
to consider the excursion measure of W away from x, and this excursion measure is
immediately identified with N,.

It is then standard (see e.g. [Bl], Theorem 3.28) that the strong Markov property holds
under the excursion measure N, in the following form. Let S be a stopping time of
the filtration (Fsy) such that S > 0 N, a.e., let G be a nonnegative Fg-measurable
variable and let H be a nonnegative measurable function on C (R4, W,). Then

Ny (G H(Wgssrs > 0)) =N, (GEWS (HWarr,,, s > 0))).

5 Some sample path properties

In this section, we use the Brownian snake construction to derive certain sample path
properties of superprocesses. It is more convenient to consider first the excursion mea-
sures N,. Recall the definition under N, of the random measure Z;

(Zg) = [ a0,

0
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We let supp Z; denote the topological support of Z; and define the range R by

R = UsuppZt .

>0

Theorem 7. The following properties hold N, a.e. for every x € E:
(i) The process (Z,t > 0) has continuous sample paths.
(ii) For every t > 0, the set supp Z; is a compact subset of E. If £ is Brownian motion
in R?,
dim(supp Z;) =2 A d
a.e. on {Z; # 0}.

(iii) The set R is a connected compact subset of E. If & is Brownian motion in RY,

dim(R) =4 Ad .

Proof. (i) By the joint continuity of Brownian local times, the mapping ¢ — d¢%(() is
continuous from Ry into Mf(Ry), N, a.e. By Proposition 5, s — Wj is also continuous,
N, a.e. The desired result follows at once.

(ii) For every t > 0, supp Z; is contained in the set {WS, 0 < s < ¢} which is compact,
again by Proposition 5. Suppose then that ¢ is Brownian motion in R%. Note that,
from the definition of Z;, and the fact that s — ¢ increases only when (s = ¢, we have
N, a.e. for every ¢t > 0,

supp(Z;) C {Ws;s €10,0],¢( = t} )

It is well-known that dim{s € [0,0],{; =t} < 1/2 (the level sets of a linear Brownian
motion have dimension 1/2). Then observe that assumption (C) is satisfied for any
integer p > 4 with ¢ = £ — 2, so that the proof of Proposition 5 yields the bound

Of (d(W., We)P) < Cy(f) |s — /1277

for s, € [0,0(f)], n(df) a.e. From the classical Kolmogorov lemma, we get that
s — Wy is Holder continuous with exponent i — v for any v > 0. Obviously the same

holds for the mapping s — W, and we conclude from well-known properties of Hausdorff
dimension that

dim{Wy; s € [0,0],¢s =t} <4dim{s € [0,0],¢; =t} <2.

This gives the upper bound dim(supp Z;) < 2. The corresponding lower bound for
d > 2 was derived in an exercise of Chapter II (use also the relation between Z; and
the law of a (&, 2u?) superprocess at time t). Finally, the case d = 1 derives from the
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case d > 2 by an easy projection argument: If for d = 1 one had dim(supp Z;) < 1
with positive N, measure on {Z; # 0}, this would contradict the fact that, for d = 2,
dim(supp Z;) = 2 a.e. on {Z; # 0}.

(iii) We first verify that

(8) R={Wssec0,0]}, N, ae.

The inclusion C immediately follows from the fact that
supp Z; C {Ws;s €10,0],¢ =t}

for every t > 0, a.e. By known properties of local times, the support of the measure
dlt(¢) is exactly {s € [0,0],(s = t}, N, a.e., for any fixed ¢t > 0. Thus the previous
inclusion is indeed an equality for any fixed t > 0, N, a.e. Hence we have N, a.e.

R D {Ws;s € [O,O‘],CS € (0700) ﬂ@}

and the desired result follows since the set in the right side is easily seen to be dense in
{Ws;s €10,0]}.

From (8) we immediately obtain that R is compact and connected. Suppose then that
¢ is Brownian motion in R%. The same argument as for (ii) implies that

dim R <4dim[0,0] =4 .

To complete the proof when d > 4, introduce the total occupation measure

9= [ asai(= [ atzi.a)

which is obviously supported on R. Let G(x,y) = 4|y —x|>~¢ be the Green function of
Brownian motion in R¢. Using Proposition 2 (ii) and some straightforward calculations,
one easily verifies that for every K > 0, € > 0 and v > 0,

// J(dy )J(dz)>
(B, KN\B@e)? |y — 2"

ds ds’
I(/o /0 Wy — Wy |*7 1B($’K)\B<w,€><WS>1B<w,K>\B(m,E)(W5/))

= 4/ dz Gz, z)/ dydy' G(z,9)G(z,9') ly — y/|7—4’
R4 (B(z,K)\B(x,£))?

where B(x, K) = {y € R% |y — x| < K}. At this point, we need an elementary lemma,
whose proof is left to the reader.
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Lemma 8. For every 6 > 0, there exists a constant Cs such that, for every z,y,y’ € R?
with 6 < |y —z| <61, 6 < |y —z| <L

Cs(14+1logt +—17) ifd=4,

/ dzyz_x‘Z—d ]y—z\2_d\y'—zl2_d < ly—y’]
R Csly —y'[*~¢ ifd>5.

By applying Lemma 8 in the previous calculation, we get for every ¢ > 0, K > 0,

J(dy)J (dz
(/[ I _
(B(x,K)\B(z,)? |y — 2|

Frostman’s lemma then implies that
dim R > dim(supp J) > 4 .

Finally the case d < 3 is handled again by a projection argument. O

We now restate Theorem 7 in terms of superprocesses. For p € M¢(FE) let (Z;,t > 0)
denote a (&, Bu?) superprocess started at u, where 3 > 0.

Corollary 9. (i) The process (Zi,t > 0) has a continuous modification. (From now on
we only deal with this modification.)

(ii) A.s. for everyt > 0, supp Z; is a compact subset of E. If & is Brownian motion in
]Rd

Y

dim(supp Z;) =2Ad a.s. on {Z; #0}.

(iii) Let

RZ = U(U suppZt) .

e>0 t>e

Then, if &€ is Brownian motion in R?

dim RZ =4 Ad a.s.

Remark. The reason for the somewhat strange definition of RZ is that one does not
want supp ¢ to be automatically contained in RZ.

Proof. By a remark following Theorem 4, we may take § = 2. Then, most assertions
follow from Theorem 4 and Theorem 7: Use the representation provided by Theorem 4
and notice that, for every fixed t > 0, there are only a finite number of indices ¢ € T
such that Z} > 0 (or equivalently sup ¢’ > t). There is however a delicate point in the
proof of (i). Theorem 7 (i) gives the existence of a continuous modification of (Z;,t > 0),
but the right-continuity at ¢ = 0 is not immediate. We may argue as follows. Let g
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be a bounded nonnegative Lipschitz function on E, and let v;(z) be the (nonnegative)
solution of the integral equation

t
9 211, _o(€)%ds) =11, .
) (o) + 210 ([ o s(60ds) =T (0(60)
Then for every fixed ¢t > 0,

exp _<ZT’7 'Utf’r> = E(exp _<Zt7 g> |ZT)
is a martingale intexed by r € [0, t]. By standard results on martingales,

im(Zy, v;—p
i (Zy, ve—r)

exists a.s., at least along rationals. On the other hand, it easily follows from (9) and
assumption (C) that v;(x) converges to g(x) as t | 0, uniformly in = € E. Hence,

limsup(Z,, g) < limsup(Z,,v;_,) + &(t)
rl0,reQ rl0,reQ

with (t) — 0 as t | 0, and similarly for the lim inf. We conclude that

lim(Z,, g)

rl0

exists a.s. and the limit must be (i, g) by the continuity in probability. O

Let us conclude with some remarks. In the proof of Theorem 7, we noticed that
(10) supp Z, = {Wy;s € [0,0], ¢ =1}, N, ae.

for every fixed ¢ > 0. There are exceptional values of ¢ for which this equality fails and
supp Z; is a proper subset of {Ws;s € [0,0],(s = t}. These values of ¢ correspond to
local maxima of the function s — (5: See Exercise below for a typical example.

Identities (8) and (10) have proved extremely useful to get precise information on supp Z;
and RZ: See [LP] and [L12] for typical applications to the exact Hausdorff measure of
the range and the support of super-Brownian motion.

Exercise. (Estinction point of quadratic superprocesses) Let Z be as above a (£, 2u?)-
superprocess with initial value Zy = u. Set

T =inf{t, Z, = 0} = sup{t, Z; # 0}

(the second equality follows from the fact that (Z;,1) is a Feller diffusion, which is
absorbed at 0). Show that there exists an E-valued random variable U such that

I Z
im = a.s.
HTe<T (Zy, 1) 0
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[Hint: In the representation of Theorem 4, let j € I and S € [0,0;] be such that
(& = sup; SuPse(g ) Ch- Then U = W} and T = (4]
Observe that (10) fails for t =T

6 Integrated super-Brownian excursion

In this last section, which will not be used in the following chapters, we discuss the
random measure known as integrated super-Brownian excursion (ISE). The motivation
for studying this random measure comes from limit theorems showing that ISE arises
in the asymptotic behavior of certain models of statistical mechanics (cf Section 1.6).

We suppose that the spatial motion ¢ is Brownian motion in R¢. Recall from Section 5
the notation J for the total occupation measure of the Brownian snake under N,:

(T.g) = / Tdsg(W.) . geBy(RY,

Informally, ISE is J under No(- | o = 1).

To give a cleaner definition, recall the notation n) for the law of the normalized Brow-
nian excursion (cf Section II1.5). With the notation of Section 1, define a probability

measure Ny on C (Ry,Ry) x WR+ by setting
N (df dw) = na) (df) O (dw).

The argument of the proof of Proposition 5 shows that (Ws,0 < s < 1) has a continuous
modification under N(()l).

Definition. ISE is the random measure J on R? defined under Nél) by

(J,9) :/0 dsg(Ws), g€ By(RY).

From Theorem 7 (iii) and a scaling argument, it is straightforward to verify that
dim(suppJ) =4 A d a.s.

Analogously to Proposition 2, one can use Theorem III.6 to get an explicit formula for
the moments of ISE. These moment formulas are important in the proof of the limit
theorems involving ISE: See Derbez and Slade [DS].

Before stating the result, recall the notation II% introduced in Section 2 above. We use
the tree formalism described in Section III.2. In particular, a tree T is defined as the
set of its vertices, which are elements of U2 ,{1,2}". We denote by Ly the set of all
leaves of T and if v € T', v # ¢, we denote by v the father of v.
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Proposition 10. Let p > 1 be an integer and let F' € B (WP). Then,

N(gl)(/ dSl---dsPF(WS:L?"'?WSp))
0<s1<52< <5, <1}
— 210+1 /Ap(dg) L(Q) exp(—?L(Q)Q) Hg (F(’lUl, e ,wp)>.

Let g € BL(R%). Then,

N ((T,g)7) = pl2rt Y [T dno (3 ho)exp (=203 ho)?)

(11)

(12) TeT, Y R:)T jer veT veT
x / 1T dyv( 11 »n. (ya,yv)> IT 9(w),
RHT SeT veT vELT

where y; = 0 if v = ¢ by convention, and pi(y,y’) denotes the Brownian transition
density.

Proof. Formula (11) is an immediate consequence of Theorem III.6 and Proposition 2
(i), along the lines of the proof of Proposition 2 (ii). Formula (12) follows as a special
case (taking F(wi,...,w,) = g(i1)...g(,)) using the construction of IT§ and the
definition of A, (d#f). O

Formula (11) obviously contains more information than (12). For instance, it yields as
easily the moment functionals for space-time ISE, which is the random measure J* on
R, x R? defined under N(()l) as

1
<Jﬂm=[:wmgwnm g€ By (Ry x RY).

The analogue of (12) when J(dz1) ... J(dzy) is replaced by J*(dt1dxy) ... T*(dt,dzy,)
and g(x1,...,2z,) by g(t1,21,...,tn,x,), is obtained by replacing in the right side
9(yu;v € L) by g(Ly, yp;v € L), provided ¢, is defined by

lo=  hv,

v/ <v
where < denotes the genealogical order on the tree: If v = (i1,...,4,), v/ < v iff
v' = (i1,...,1) for some k € {0,1,...,n}.

Remark. The second formula of Proposition 10 can be rewritten in several equivalent
ways. Arguing as in the concluding remarks of Chapter III, we may replace the sum
over ordered binary trees with p leaves by a sum over (unordered) binary trees with
p labelled leaves. The formula is unchanged, except that the factor p! 2P*! is replaced
by 22P. In this way, we (almost) get the usual form of the moment functionals of ISE:
See Aldous [Al4] or Derbez and Slade [DS]. There are still some extra factors 2 due to
the fact that in the usual definition of ISE, n)(df) is replaced by its image under the
mapping f — 2f. To recover exactly the usual formula, simply replace pp, (Y5, y») by

P2h, (y;,, yv)-
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V Exit measures

and the nonlinear Dirichlet problem

In this chapter we use the Brownian snake approach of the previous chapter to construct
the exit measure of quadratic superprocesses. In the special case where the spatial
motion is Brownian motion in R¢, the exit measure yields a probabilistic solution of
the Dirichlet problem associated with the equation Au = u? in a regular domain. This
probabilistic solution plays a major role in further developments that will be presented
in the following chapters.

1 The construction of the exit measure

We consider the Brownian snake W of the previous chapter. We assume that the
underlying Markov process (&s,11,) satisfies the continuity assumption (C) of Section
IV.4, so that the process W has continuous sample paths with respect to the metric d.

Let D be an open set in E and fix x € D. For every w € W, set
T(w) = inf{t € [0, Cw), w(t) & D} ,
where inf ) = +o00. Define
EP ={W,(1(Wy));5 > 0,7(W,) < o0},

so that P is the set of all exit points from D of the paths W, for those paths that
do exit D. Our goal is to construct N, a.e. a random measure that is in some sense
uniformly spread over £P. To avoid trivial cases, we first assume that

(1) (3t >0,6 ¢ D)>0.

We start by constructing a continuous increasing process that increases only on the set
{s >0, 7(W) = (s}

Proposition 1. The formula

1
LY =lim= [ dr1
s 6111016 o T Lrw)<¢ - <r(W,)+e}
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defines a continuous increasing process (LP s > 0), N, a.e. orP,, a.s. for anyw € W,.
The process (LY, s > 0) is called the exit local time from D.

Proof. Since N, can be viewed as the excursion measure of W away from z, it is
enough to prove that the given statement holds under P,. Indeed, we know from
excursion theory that N, (-|sup (s > h) is the law under P, of the first excursion of W
away from z with “height” greater than A, and so the result under N, can be derived
from the case of P,.

We use the following lemma, where w € W, is fixed.
Lemma 2. Set v, = ({5 — 7'(1/1/5))Jr and o, = inf{v > 0, [ dr 1¢, >0y > s}. Then

os < 00 for every s > 0, P, a.s., and the process I's = ~,_ is under P, a reflected
Brownian motion started at ((y, — 7(w))™T.

Proposition 1 easily follows from Lemma 2: Denote by (45, s > 0) the local time at 0 of
I'. Then, P, a.s. for every s > 0,

1
fy = lim — dr 1 el
61_1% EyA T Lio<r,.<e}

Set A = [y dr 1(, >0y and LY =04 . We get

A s
s 1
LP =lim - dr 1 =lim- [ drl
s ;Fol A T Lio<r, <e} Elfgl c J, T o<y, <e} »
which is the desired result. O

Proof of Lemma 2. For every € > 0, introduce the stopping times
Si =inf{s >0,(, > 7(W,) +¢} T; = inf{s > S}, < 7(Wy)}
Spi1 = inf{s > T, (s > 7(Wy) +€} Thi1 = inf{s >S5 11,C < T(WS)} )

We first verify that the stopping times S; and 7 are finite P,, a.s. By applying the
strong Markov property at inf{s > 0,(s; = 0}, it is enough to consider the case when
w = x. Still another application of the strong Markov property shows that it is enough
to verify that S{ < co a.s. To this end, observe that P,(¢; > 7(Wi) +¢) > 0 (by (1)
and because, conditionally on (7, W7 is a path of £ with length () and apply the strong
Markov property at inf{s > 1, (s = 0}.

From the snake property and the continuity of s — (s, one easily gets that the mapping
s — 7s is also continuous. It follows that vse = ¢V ((w — 7(w)) and ys: = € for n > 2.

We then claim that, for every n > 1, we have

T; =inf{s > S5, (s =7(Ws:)} .
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Indeed the snake property implies that for S5 < r < inf {s > S8,(s = T(Wsi)}, the
paths W, and Ws- coincide for ¢t < 7(Ws: ), so that 7(W,.) = 7(Ws: ). This argument
also shows that v, = ¢, — 7(Ws:) for S5, <r < T}.

From the previous observations and the strong Markov property of the Brownian snake,
we see that the processes

(,7(5%4*7“)/\715 T2 0)

are independent and distributed according to the law of a linear Brownian motion
started at € (at € V (¢ — 7(w)) for n = 1) and stopped when it hits 0. Hence, if

oS = inf{s,/ Z Lise ey (u)du > r} ,
0 p=1

the process (72,7 > 0) is obtained by pasting together a linear Brownian motion started
at e V ((w — 7(w)) and stopped when it hits 0, with a sequence of independent copies
of the same process started at e. A simple coupling argument shows that (7., > 0)
converges in distribution as e — 0 to reflected Brownian motion started at (¢, —7(w))™.
The lemma follows since it is clear that o | o, a.s. for every r > 0. U

Definition. The exit measure ZP from D is defined under N, by the formula
(2°.9) = [ aLPo(v).
0

From Proposition 1 it is easy to obtain that LL increases only on the (closed) set
{s€[0,0],¢s = 7(Wy)}. Tt follows that ZP is (N, a.e.) supported on £P.

Let us consider the case when (1) does not hold. Then a first moment calculation using
the case p = 1 of Proposition IV.2 shows that

/0 ds 1{7-(WS)<oo} =0 5 Nm a.e.

Therefore the result of Proposition 1 still holds under N, with LY = 0 for every s > 0.
Consequently, we take ZP = 0 in that case.

We will need a first moment formula for L. With a slight abuse of notation, we also
denote by 7 the first exit time from D for &.

Proposition 3. Let 12 denote the law of (&.,0 < r < 7) under the subprobability
measure I, (- N {7 < oo}). Then, for every G € Byy(Ws),

N, (/J dLEG(WS)) —112(q) .
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In particular, for g € By (E),

Nx(<ZD,g>) =1L, (1{T<oo}g(€7')) :

Proof. We may assume that G is continuous and bounded, and G(w) = 0 if ¢, < K~!
or ¢, > K, for some K > 0. By Proposition 1,

g

(o ] 1
(2) /O ALy G(W) = Jim. ~ ; ds Lir(w.)<c.<r(wo)+ey G(Ws)

N, a.e. If we can justify the fact that the convergence (2) also holds in L'(N,), we will
get from the case p = 1 of Proposition IV.2 (ii):

1

7 D o L o o
Nm (/(; dLs G(Ws)> Eh_I):% c 0 dh Hm (1{T<h<T+E}G(€T‘7 O < r < h))

=T, (o) G(& 0 < 7 < 7))

It remains to justify the convergence in L'(N,). Because of our assumption on G we
may deal with the finite measure Nm(- N{sup(s > K *1}) and so it is enough to prove
that

1 [ 2
sup Nx((—/ A5 1r(w.) <, <rv) 22 GOVS))?)
€€(0,1) €Jo

is finite. This easily follows from the case p = 2 of Proposition IV.2 (ii), using now the
fact that G(w) =0 if {, > K. O

Remark. Proposition 3 will be considerably extended in Section 4 below.

Let us conclude this section with an important remark. Without any additional effort,
the previous construction applies to the more general case of a space-time open set
D C Ry x E, such that (0,z) € D. In this setting, Z¥ is a random measure on
0D C R x E such that for g € Cp4(0D)

o

1 R
<ZD79> = lim — : ds 1{T(W5)<C5<T(Ws)+s}g(C57WS)

e—0 ¢

where 7(w) = inf{t > 0, (t,w(t)) ¢ D}. To see that this more general case is in
fact contained in the previous construction, simply replace £ by the space-time process
& = (t,&), which also satisfies assumption (C), and note that the £’-Brownian snake
is related to the &-Brownian snake in a trivial manner. In the special case when D =
D, = [0,a) x E, it is easy to verify that ZP+ = §, ® Z,, where the measure Z, was
defined in Section IV 4.
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2 The Laplace functional of the exit measure

We will now derive an integral equation for the Laplace functional of the exit measure.
This result is the key to the connections with partial differential equations that will be
investigated later.

Theorem 4. For g € By (FE), set
u(z) =N, (1 —exp—(2P,9)), z€D.

The function u solves the integral equation
3) ) + 20 ([ a6 ds) =T (14 <oy (67) -

Our proof of Theorem 4 is based on a lemma of independent interest, which has many
other applications. Another more computational proof, in the spirit of the proof of
Proposition IV.3, would rely on calculations of moments of the exit measure (cf Section
4). Still another method would consist in writing (ZP,g) as a limit of integrals of
the form [ dt(Z;, he) (with (Z,t > 0) corresponding to the historical superprocess, as
in Section IV.3) and then using the form of the Laplace functional of these integrals
obtained in Chapter II.

Before stating our key lemma, we need some notation. We fix w € W, with (,, > 0 and
consider the Brownian snake under P,,. We set

To = inf{s > 0,(s; = 0}

and denote by (ay, 5;), i € I the excursion intervals of (; — infjg 4 ¢, before time Tp. In
other words, («;,3;), i € I are the connected components of the open set [0,7p] N {s >
0,¢s > infjg 5 (- }. Then, for every i € I we define W* € C(R4, W) by setting for every
s >0,

Wsz(t) = W(Oéi-i—s)/\ﬁi (CCYZ‘ + t) ’ 0<t< C; = C(ai+s)/\,6’i - Cai .

From the snake property we have in fact W € C(R, Waca.))-

Lemma 5. The point measure

D 0o,

i€l

is under P, a Poisson point measure on Ry x C(R4, W) with intensity

2 l[o’gw](t)dt Nw(t)(dw) .

Proof. A well known theorem of Lévy states that, if (8¢, ¢ > 0) is a linear Brownian
motion started at a, the process ; — inf|g 4 3, is a reflected Brownian motion whose
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local time at 0 is Q(a — infg @). From this and excursion theory, it follows that the

point measure

D 0arc)

icl
is under P,, a Poisson point measure with intensity

2 1[0,Cw](t>dt n(de) .
It remains to combine this result with the spatial displacements.
To this end, fix a function f € C'(R4+,Ry) such that f(0) = (w, To(f) := inf{¢, f(t) =
0} < oo and f is locally Holder with exponent % — ~ for every v > 0. Recall the
notation ©J from Chapter IV and note that ©/ can be viewed as a probability measure
on C(Ry, W) (see the proof of Proposition IV 5). Denote by e;,j € J the excursions of
f(s) —infjg 4 f(r) away from O before time To(f), by (aj,b;), j € J the corresponding
time intervals, and define for every j € J
WI(t) = Wia, ysynn; (Flag) +1) s 0<t < f((aj +5) Abj) = flay),

From the definition of ©/ , it is easily verified that the processes W7, j € J are inde-

pendent under O/, with respective distributions @Zf( Fa;)
J

Let F' € By (Ry x C(R4,W)) be such that F(t,w) = 0 if sup (s(w) < =, for some
~v > 0. Recall the notation P,(df) for the law of reflected Brownian motion started at
r. By using the last observation and then the beginning of the proof, we get

Bu(exp— Y F(Gors W) = [ P (PO (exp~ Y- P (7). 7))

iel jeJ

= /Pcw () [T O ptap (77

jedJ
C'LU
= exp —2/0 dt /n(de)@z}(t) (1- e*F(t”))

Cuw
= exp —2/ dt Noyp) (1 — e*F(t")) .
0

The third equality is the exponential formula for Poisson measures, and the last one is
the definition of N,. This completes the proof. OJ

Proof of Theorem 4. By the definition of Z”, we have
u(x) = N, (1 —exp — / dLSDg(Ws)>
0

— N, (/00 dLP g(Wy) exp(— /U dL?g(Wr))>

S

— /0 " ALP g(W)Euy, (exp — /0 " arpy(in)) )
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using the strong Markov property under N, in the last equality. Let w € W, be such
that ¢, = 7(w). From Lemma 5, we have

E, <exp — /OTO dL»ng(Wr)) =By <exp B Z /j

i€l i

Cu o A
= exp<—2/ dt N1y (1 — exp — / de?g(Wﬁ))
0 0

= eXp(—Z/ch dt u(w(t))) .

dLPg(,))

Hence,

o) =1 [ a2 ep(-2 [ aru( )
=1, (1{T<oo}g(é}) exp(—2 /T dt M&)))

0

by Proposition 3. The proof is now easily completed by the usual Feynman—-Kac argu-
ment:

(@) = Ty (L) 9(62)) — i (1 <oy a(67) (1 — exp 2 / dtu() )

0

=1L, (1 <00y 9(65)) = 2L (1 <o0 9(65) /OT dt u(&) exp (-2 /T dr u(e)))

t

ML (e 9(6) — 20 ([ a0, (Lpemyse) exp(=2 [ dru(s,)))

0 0

=1L (1{r<o0}9(&r)) — 21'[56(/(: dt u(&)?) . O

3 The probabilistic solution of the nonlinear Dirichlet problem

In this section, we assume that ¢ is Brownian motion in R?. The results however could
easily be extended to an elliptic diffusion process in R or on a manifold.

We say that y € 9D is regular for D¢ if
IT, (inf{t > 0, ¢ D} =0) = 1.
The open set D is called regular if every point y € 9D is regular for D¢. We say that a

real-valued function u defined on D solves Au = 4u? in D if u is of class C? on D and
the equality Au = 4u? holds pointwise on D.
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Theorem 6. Let D be a domain in R? and let g € By, (OD). For every x € D, set
u(x) = Ny (1—exp —(ZP,g)). Then u solves Au = 4u? in D. If in addition D is reqular
and g 1s continuous, then u solves the problem
Au=4u? in D
0 {ou
oD = 9

where the notation ujgp = g means that for every y € 0D,

li - .
pim u(z) = g(y)

Proof. First observe that, by (3),

u(:z:) <l (1{7-<oo}9(€7—)) < sup g(y) )
yeodD

so that u is bounded in D. Let B be a ball whose closure is contained in D, and denote
by 7p the first exit time from B. From (3) and the strong Markov property at time 75
we get for x € B

)+ 210 ([ w6 as) o (1, ([ ul6?ds)) = (e 1oy f6)

By combining this with formula (3) applied with x = &,,, we arrive at

(5) )+ 211 ([ w6 ds) = 1L (u(6ry)

The function h(z) = II, (u(&;,)) is harmonic in B, so that & is of class C? and Ah =0
in B. Set

fa) =1 ( [ u€2ds) = [ dvGtaputy?

where G is the Green function of Brownian motion in B. Since u is measurable and
bounded, Theorem 6.6 of [PS] shows that f is continuously differentiable in B, and so
is u since u = h — 2f. Then again by Theorem 6.6 of [PS], the previous formula for

f implies that f is of class C? in B and —%A f = u? in B, which leads to the desired
equation for u.

For the second part of the theorem, suppose first that D is bounded, and let y € 9D be
regular for D¢. Then, if g is continuous at y, it is well-known that

pim T (g(Br)) = g(y) -

On the other hand, we have also

lim sup IT,, (/T u(§3)2ds> < (sup u(x))zlimsupEm(T) =0.
0

Doz—y €D D3>x—vy
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Thus (3) implies that
lim T) = .
Dax yu( ) =9(y)

When D is unbounded, a similar argument applies after replacing D by D N B, where
B is now a large ball: Argue as in the derivation of (5) to verify that for z € D N B,

u(x) + 211, (/OTDNB u(€)’ds) =T (Lgrrp9(60) + T (1rp<ryu(6ey))

and then follow the same route as in the bounded case. O

The nonnegative solution of the problem (4) is always unique. When D is bounded, this

is a consequence of the following analytic lemma. (In the unbounded case, see exercise
below.)

Lemma 7. (Comparison principle) Let h : Ry — R4 be a monotone increasing func-
tion. Let D be a bounded domain in R® and let u,v be two nonnegative functions of
class C? on D such that Au > h(u) and Av < h(v). Suppose that for every y € 0D,

limsup(u(z) —v(z)) <0.
D3zx—vy

Then u < v.

Proof. Set f =u—wv and D' = {33 €D, f(x) > O}. If D’ is not empty, we have
Af(z) > h(u(z)) — h(v(z)) >0

for every x € D’. Furthermore, it follows from the assumption and the definition of D’
that

limsup f(z) <0
D'3zx—z

for every z € 9D’. Then the classical maximum principle implies that f < 0 on D’,
which is a contradiction. 0J

Corollary 8. Let D be a domain in R and let U be a bounded regular subdomain of

D whose closure is contained in D. Then, if u is a nonnegative solution of Au = 4u?
in D, we have for every x € U

u(z) =N, (1 —exp—(Z2Y,u)).

Proof. For every x € U, set

v(z) =Ny (1 —exp —(Z2Y,u)).
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By Theorem 6, v solves Av = 4v? in U with boundary value vjgu = ujpy- By Lemma
7, we must have v(z) = u(z) for every x € U. O

The last proposition of this section provides some useful properties of nonnegative so-
lutions of Au = 4u? in a domain. For z € R¢ and € > 0, we denote by B(z,¢) the open
ball of radius ¢ centered at z. Recall the notation R = {W,0 < s < ¢} from Chapter
IV.

Proposition 9. (i) There erists a positive constant cq such that for every x € R? and
e >0,
Ny (RN B(z,e)° #0) = cqe™? .

(ii) Let u be a nonnegative solution of Au = 4u® in the domain D. Then for every
reD,
u(z) < cq dist(x,0D) ™2 .

(iii) The set of all nonnegative solutions of Au = 4u? in D is closed under pointwise
convergence.

Proof. (i) By translation invariance we may assume that x = 0. We then use a scaling
argument. For A\ > 0, the law under n(de) of ex(s) = A7le(A2s) is A7In. It easily

follows that the law under Ny of WS(E)(t) = e 'W.ay(e2t) is e72Ny. Then, with an
obvious notation,

No(R N B(0,¢) # 0) = No(R® N B(0,1)° # 0)
=& ’No(RNB(0,1)° #0) .

It remains to verify that No(R N B(0,1)¢ # () < oco. If this were not true, excursion
theory would imply that Py a.s., infinitely many excursions of the Brownian snake exit
the ball B(0,1) before time 1. Clearly this would contradict the continuity of s — Wi
under Pg.
(i) Let € D and 7 > 0 be such that B(x,7) C D. By Corollary 8, we have for every
y € B(z,r)
u(y) = Ny (1 —exp —(ZB(I’T),U» :

In particular,

u(z) <N, (ZB(“") #0) <N (RNB(z,r)* #0) =cqr > .

In the second inequality we used the fact that Z2(") is supported on £ c RN
B(z,r)°.

(iii) Let (u,) be a sequence of nonnegative solutions of Au = 4u? in D such that
Up(x)—u(x) as n — oo for every x € D. Let U be an open ball whose closure is
contained in D. By Corollary 8, for every n > 1 and = € U,

un(z) =Ny (1 —exp —(Z2Y, u,)).
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Note that N,(ZY # 0) < oo (by (i)) and the functions wu, are uniformly bounded
on OU (by (ii)). Hence we can pass to the limit in the previous formula and get
u(x) =N, (1 —exp —(2Y, u>) for z € U. The desired result then follows from Theorem
6. O

Let us conclude this section with the following remark. Theorem 4 could be applied
as well to treat parabolic problems for the operator Au — 4u?. To this end we need
only replace the Brownian motion £ by the space-time process (¢,&;). If we make this
replacement and let D C R, x R? be a space-time domain, and g € By, (0D), the
formula

ut, ) =Ny (1—exp—(2°, g))

gives a solution of

ou 1

— 4+ -Au—-2u*=0

at 2
in D. Furthermore, u has boundary condition g under suitable conditions on D and g.
The proof proceeds from the integral equation (3) as for Theorem 4. In the following
chapters we will concentrate on elliptic equations, but most of the results have analogues

for parabolic problems.

Exercise. Prove that Theorem 4 remains true if g is unbounded, and even if g takes
values in [0, co] (the special case g = 400 will be relevant in the next chapter).

[Hint: Let g, = g A n and observe from Proposition 7 (ii) that the functions w,(z) =
N, (1 —exp —(ZP, g,)) are uniformly bounded on compact subsets of D. Then pass to
the limit n — oo in equation (5) written for u,,.]

Exercise. Prove that, provided D is regular and g is continuous, the uniqueness of the
nonnegative solution of (4) also holds when D is unbounded, even if ¢g is unbounded
(but finite-valued!).

[Hint: For every p > 1 set D, = D N B(0,p) and for z € D,,

up(z) =Ny (1 — (277, 19pg)) ,
Nz (1= (277, 1opg + lop,nop - 00)) -

4
i)
—

&
~

I

Then, if u solves (4), u, < u < v, in D,. Furthermore, v, — u, — 0 as p — co.]
4 Moments of the exit measure

In this section, we consider again a general Markov process ¢ satisfying the continu-
ity assumptions of Section IV.4. Our goal is to derive explicit formulas analogous to
Proposition IV.2 for the moments of the exit measures. These formula will be used in
the applications developed in Chapter VII.
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We start with some notation. We fix an integer p > 1. We slightly extend the definitions
of Section II1.4 by allowing the value +oo for the marks attached to the leaves of a
marked tree 0 € 7,. We then define a measure A;° on the set 7, by the formula

/Ag"(d&)@(@): Z/ IT dro [] 0sc(dhy) ®(T,{hy,v € T}),
TET, Y veT\Lr vELT

where Lt is the set of leaves of T'. In other words, we prescribe the value +oo for the
marks of all leaves, but keep Lebesgue measure for the other marks. Notice that the
construction of I1? in Section IV.2 still makes sense, now as a probability measure on
C(R4, E)P, when 6 is a marked tree such that the mark of every leaf is +oc.

Let 6 = (T, {hy,v € T'}) be a marked tree with p leaves and let vy, ..., v, be the leaves
of T listed in lexicographical order. For every i € {1,...,p}, set

Q; = E:: hv7

v=<v;,VF£V;

where < denotes as previously the genealogical order on the tree. Informally, «; is the
birth height of vertex v;. Finally, if D is an open set in £ and = € D, we let I1%” be
the subprobability measure on W2 defined as the law of

(w1 (8),0 <t < 7(wr)), .-, (wp(t),0 < ¢ < 7T(wp)))

under the measure

P
H Lo, <r(wi)<oo} 1% (dwy .. . dw,).

=1

Theorem 10. For any F € By (WP),
Nx</ dLP ... dLP F(Wsl,...7Wsp)> — op—1 /A;O(de) %2 (F) .
{0<s1<<s, <0} g
In particular, for any g € By (FE),

N, ((ZP,g)P) = 2p_1p!/A;°(d9)/Hg’D(dw1...dwp)g(wl)...g(zf)p).

Proof. We may assume that F is continuous and bounded and that F'(wy,...,w,) =0
if ¢, < 6 or (, > K for some i € {1,...,p} (here § and K are two positive constants).
By Proposition 1, we have

(6) / dLD ... dLY F(W,,,...,W, ) =1lim A., N, ae.
{0<s1 < <sp <o} ! e—0
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where

p
As =P /{0< ot zo} d81 cee dSp F(W517 ceey Wsp) H 1{T(WS7,‘)<CS7,'<T(WS7L)+€}'

=1

Using Proposition IV.2 and then the definition of AJ°, we have

2_(”_1)NI(A€)

p
=g P / Ap(de) /HZ (dw1 ... dwp) F(wl, e wp) H 1{T(wi)<<wi<7(wi)+5}

=1

:g—p/A;O(de)/Hg(dwl...dwp) / dhy ...dh,
[0,00)P

p
F(wi[0, a1 + hal, o, wp [0, + hp)) T Lirwn) <anths <r(uo)4e}

i=1
where w|0, t] stands for the restriction of w to [0, ¢]. For fixed 6 and wy, ..., w,, we have
P
lim - dhy ...dhy F(wr[0, 01 + b, .. wpl0, 0 + hp)) T Lirws)<anths<r(un) +e}
7EJ[0,00)P i=1
= F(wi[0,7(w1)],. ., wp[0, 7(wy)] H Lo <r(wi) <00}

1=1

We can then use dominated convergence to pass to the limit ¢ — 0 in the previous
formula for N, (A.). Note that the assumptions on F' allow us to restrict our attention
to the set {a; < K, 1 <i < p}, which has finite A;O—measure. Recalling the definition
of TI%P | we get

(7) lim N, (Ac) = 2pr—1 / A (dO)IEP (F).
In particular the collection (A, e € (0,1)) is bounded in L'(N,). By replacing p by 2p
we see similarly that this collection is bounded in L?(N,). Hence the convergence (6)
holds in L*(N,) (note that we can restrict our attention to the set {sup (; > &}, which
has finite N -measure). The first formula of the theorem follows from (6) and (7), and
the second formula is clearly a special case of the first one. 0

Remark. We could also have derived Theorem 10 from Theorem 4. The previous
approach is more appealing to intuition as it explains why the moment formulas involve
tree structures.

Exercise. Verify that for g € By (F), for every p > 2,

N, ((2P, 9)P) _22( ) x(/ dtNgt((ZD,g)j)Ngt(<ZD,g>p_j))

7j=1
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(compare with formula (3) of Chapter IV). Give another proof of Theorem 4 along the
lines of the proof of Proposition IV.3.
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VI Polar sets
and solutions with boundary blow-up

In this chapter, we consider the case when the spatial motion £ is Brownian motion in
R and we continue our investigation of the connections between the Brownian snake
and the partial differential equation Au = 4u?. In particular, we show that the maximal
nonnegative solution in a domain D can be interpreted as the hitting probability of D¢
for the Brownian snake. We then combine analytic and probabilistic techniques to give a
characterization of polar sets for the Brownian snake or equivalently for super-Brownian
motion. In the last two sections, we investigate two problems concerning solutions with
boundary blow-up. We first give a complete characterization of those domains in R in
which there exists a (nonnegative) solution which blows up everywhere at the boundary.
This analytic result is equivalent to a Wiener test for the Brownian snake or for super-
Brownian motion. Finally, in the case of a regular domain, we give sufficient conditions
that ensure the uniqueness of the solution with boundary blow-up.

1 Solutions with boundary blow-up

Throughout this chapter, the spatial motion ¢ is Brownian motion in R%. Let us sum-
marize some key results of the previous chapter (Theorem V.4, Theorem V.6, Lemma
V.7, Corollary V.8).

(A) If D is a domain in R%, and g € By, (0D), the function u(x) = N, (1—exp —(ZP, g)),
for x € D, solves the integral equation

(1) i) + 210 ([ (€ ds) =T (e 960)

(where 7 is the first exit time from D) and the differential equation Au = 4u? in D. If
in addition D is regular and g is continuous, u is the unique nonnegative solution of the
problem

Au=4u?, inD,

(2) _
Uop = 9 -

(B) If D is a domain in R? and U is a bounded regular subdomain of D, whose closure

is contained in D, then for any nonnegative solution u of Au = 4u? in D we have

u(z) = Ny(1 —exp—(ZY, 1)), 2€U.
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Proposition 1. Let D be a bounded reqular domain. Then ui(xr) = N, (ZP # 0),
x € D is the minimal nonnegative solution of the problem

Au = 4u? m D,
(3)

Ujgp = +00 .

Proof. First note that ui(x) < oo by Proposition V.9 (i). For every n > 1, set
vn(z) = Ny(1 —exp-—n(ZP,1)), » € D. By (A), v, solves (2) with ¢ = n. By
Proposition V.9 (iii), u; = lim 1 v, also solves Au = 4u? in D.

The condition uy|sp = oo is clear since u; > v,, and v,|sp = n. Finally if v is another
nonnegative solution of the problem (3), the comparison principle (Lemma V.7) implies
that v > v,, for every n and so v > u;. OJ

Proposition 2. Let D be any open set in R? and us(z) = N,(RN D¢ # 0) for x € D.
Then usy is the mazimal nonnegative solution of Au = 4u? in D (in the sense that
u < ug for any other nonnegative solution u in D).

Proof. Recall from Theorem IV.7 that R is connected N, a.e. It follows that we may
deal separately with each connected component of D, and thus assume that D is a
domain. Then we can easily construct a sequence (D,,) of bounded regular subdomains
of D, such that D =lim | D,, and D,, C D,,; for every n. Set

vp(z) = Ny (ZP" £0) , 0,(z) = N (RN DE # ()

for x € D,,. By the support property of the exit measure, it is clear that v, < v,,. We
also claim that 0,,11(z) < v,(x) for x € D,,. To verify this, observe that on the event
{RN DS, # 0} there exists a path Wy that hits Df ;. For this path Wy, we must
have 7p, (Ws) < (s, and it follows from the properties of the Brownian snake that

Ag = / dr 1{TDn(Wr)<Cr} >0 s
0

N; a.e. on {RN D, # 0}. However, from the construction of the exit measure
in Chapter V, (ZP» 1) is obtained as the local time at level 0 and at time A" of
a reflected Brownian motion started at 0. Since the local time at 0 of a reflected
Brownian motion started at 0 immediately becomes (strictly) positive, it follows that
{RND; , #0} C {ZP~ # 0} N, a.e., which gives the inequality O,+1(z) < v, ().

We have then for x € D

(4) ug(z) = lim | 9,(x) = lim | v,(z),

n—oo n—oo

This follows easily from the fact that the event {R N D¢ # 0} is equal N, a.e. to the
intersection of the events {R N DS # (}. By Proposition 1, v, solves Au = 4u? in D,,.
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It then follows from (4) and Proposition V.9 (iii) that us solves Au = 4u? in D. Finally,
if u is another nonnegative solution in D, the comparison principle implies that u < v,
in D,, and it follows that u < us. ]

Example. Let us apply the previous proposition to compute N, (0 € R) for x # 0. By
rotational invariance and the same scaling argument as in the proof of Proposition V.9
(i), we get N, (0 € R) = C|z|~2? with a nonnegative constant C. On the other hand, by
Proposition 2, we know that u(z) = N,(0 € R) solves Au = 4u? in R¥\{0}. A short
calculation, using the expression of the Laplacian for a radial function, shows that the
only possible values of C' are C' =0 and C = 2 — %. Since u is the maximal solution,
we conclude that if d < 3,

N,(0eR)=(2— %l)|g;|2

whereas N, (0 € R) = 0 if d > 4. In particular, points are polar (in a sense that will be
made precise in the next section) if and only if d > 4.

To conclude this section, let us briefly motivate the results that will be derived below.
First note that, if D is bounded and regular (the boundedness is superfluous here), the
function uy of Proposition 2 also satisfies us|sp = +oo. This is obvious since ug > .
We may ask the following two questions.

1. If D is regular, is it true that u; = us? (uniqueness of the solution with boundary
blow-up)
2. For a general domain D, when is it true that us|gp = +00? (existence of a solution

with boundary blow-up)

We will give a complete answer to question 2 in Section 3. It may well be that the
answer to 1 is always yes. We will prove a partial result in this direction in Section 4.
Let us however give a simple example of a (nonregular) domain D for which u; # uy. We
let D = B(0,1)\{0} be the punctured unit ball in R¢, for d = 2 or 3. From Proposition
V.3, it is immediate that

N, ((ZP,140y) > 0) =0

for every x € D. Hence
ui(z) = Ny (2P #0) =N, (2”(0B(0,1)) > 0)

is bounded above on B(0,1/2)\{0} by Proposition V.9. On the other hand

us(z) = Ny(RND® #£ 0) > N, (0 € R) = (2 - g) 2|72

Clearly, this implies w1 # us.
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2 Polar sets
Definition. A compact subset K of R? is called polar if Ny,(R N K # () = 0 for every
r € RA\K.

Because of the relations between the Brownian snake and superprocesses, this is equiv-
alent to the property P,(R? N K # () = 0 for every u € M;(R?) (here Z is under P, a
super-Brownian motion started at i, and the range R? was defined in Chapter IV).

By applying Proposition 2 to D = R?\ K, we immediately get the following result.

Proposition 3. K is polar if and only if there exists no nontrivial nonnegative solution
of Au = 4u? in RI\K.

In analytic terms, this corresponds to the notion of (interior) removable singularity for
the partial differential equation Au = 4u?.

If d > 4, we define the capacity Cy_4(K) by the formula

Caatk) = (_int [ [ viaywiaz)fally - 21))

wehere M (K) is the set of all probability measures on K, and

1+logtl ifd=4,
fd(T)={4_dg v
r ifd>5.

Theorem 4. If d < 3, there are no nonempty polar sets. If d > 4, K 1is polar if and
only if Cq_4(K) = 0.

Proof. The case d < 3 is trivial since we have already seen that points are not polar
in dimension d < 3. From now on, we suppose that d > 4.

First step. We first prove that K is not polar if Cy_4(K) > 0. By the definition of
Cy-4(K), we can find a probability measure v on K such that

[ [ vtdwtazsatiy = =0) < oo

Let h : R — R, be a radial (i. e h(x) = h(y) if |x| = |y|) continuous function with
compact support such that [o, h(y)dy = 1. For € > 0, set ho(x) = e~ %h(z/e).

Recall the notation J for the “total occupation measure” of the Brownian snake:

(7.9) = / " ds g(W,) |
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By Proposition IV.2, we can compute the first and second moments of (7, h. * ) under

Ng, x € R\K. If G(z,y) = Gly—x) = ya |y — z[*~? is the Green function of Brownian
motion in R, we have first

N, (7, he #v) =T ( /OOO i he v(&))
— /dy Gy — z)he xv(y)
_ / v(d>) / dy Gy — 2)he(y — 2)

and this quantity tends to [v(dz)G(z —x) > 0 as € goes to 0. In particular, there
exists a positive constant ¢; (depending on z and K) such that Ny ((7, he *v)) > ¢ for
e €(0,1].

Similarly, Proposition IV.2 allows us to compute the second moment

N, (7, he 1)?) = 4TI, (/OOO dt (Hgt (/O dr h. * y(&)))z)
:4/da G(a—az)(/dy G(y—a)hg*y(y)>2

— 4 [ [ vtz [ [ayayney - ony - 2)

X /da Gla— )Gy —a)G(y —a) .

oo

By our assumptions on h and the fact that the function G is superharmonic on R?, we
have

/dyhg(y —2)Gly—a) < G(z—a).
It follows that

N, ((J, he ¥ v)?) < 4// v(dz)v(dz") /da G(a—z)G(z — a)G(Z — a).
Then Lemma IV.8 gives
Nx(<J, he * 1/>2) < 4dey // v(dz)v(dz") fa(|z — 2'|)

with a constant cs depending on z and K. From our assumption on v we get

Nw(<j,ha*u>2) <e3 < 0.
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By the Cauchy-Schwarz inequality, it follows that

(N he s )2
N ((J, he xv)2) 3

where ¢4 depends on x and K but not on € € (0,1]. Let » > 0 be such that h(y) =0
if |y > r. Obviously h. * v is supported on K,. = {y,dist(y, K) < re}. Since J is
supported on R we get

Nm(<\77hs*y>>0)2 =c4 >0,

Nz(Rﬂ Krs 7£ Q)) > ¢y

and by letting € go to 0,
N (RNK #£0) > ey,

which proves that K is not polar.
Second step. We will now verify that K is polar if Cy_4(K) = 0. The proof is based on

an analytic lemma. If ¢ € C§°(RY), the Sobolev norm ||¢||2.2 is
0%
O0z;0xy ||y

Oy
Oz

|

||80||2 2= ||S0||2

and we introduce the capacity

co2(K) = inf{||go||§’2 ;0 € C°(RY) ,0 < ¢ < 1and ¢ =1 on a neighborhood of K} .

Lemma 5. There exist positive constants oy, as such that, for every compact subset H
of [~1,1]%, we have
arca2(H) < Cy_y(H) < azcao(H) .

Proof. Recall the definition of the Bessel kernel G (see [AH] p.10): For z € R¢,

mlz|? ot

Go(z) = (4m)~! /000 7% exp (— P E) dt.

Set

1
Co2(H)= sup +——5
pen (i) [1G2 * pll3

As a consequence of Theorem 2.2.7 and Corollary 3.3.4 in [AH], there exists a constant
A, depending only on d, such that

A_lcgyg(H) g szg(H) S ACQQ(H).

It remains to compare C3 2(H) and Cy_4(H). To this end, note that

|G % a2 = / / u(dy) p(dy’) Faly — o),
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with
Faly—y') = /d dzGa(z —y) Ga(z — y).
R

Notice that Ga(z) ~ c|z|>~% as z — 0. It is then elementary to verify that, for ¥,y €
[—1,1]%, the ratio

Fa(y —v')

fa(ly = y'1)
is bounded above and below by positive constants depending only on d. (Compare

with Lemma IV.8.) Lemma 5 now follows by comparing the definitions of Cy_4(H) and
02’2 (H) O]

Let us complete the proof of Theorem 4. Let K be a compact subset of the unit ball
B(0,1) (clearly we can restrict our attention to this case). Let ¢ € C$°(R?) be such
that 0 < ¢ <1 and ¢ = 1 on a neighborhood of K. Let R > 2 be such that ¢(y) = 0 if
ly] < R —1. Set
Dr = (-R,R)*
and 1 = 1—¢. Note that 1) = 1 on a neighborhood of D g and ¢ = 0 on a neighborhood
of K. Then set
Fr= |J @mR+K).
mezZd
By Proposition 2, the function

up(r) =N, (RNFr#0), xcRN\Fg
solves Au = 4u? in R?\ Fr. Furthermore, ugr has period 2R in every coordinate direc-
tion.
Recalling that v = 0 on a neighborhood of K, we get after two integrations by parts
4 @) ur@)idy= | @) Aur(y)dy= | AR (y)ur(y)dy .
Dgr Dgr Dgr

In the first integration by parts, we use the fact that v» = 1 on 0D and the periodicity
of ur. In the second one, we use the fact that Vi» = 0 on dDg. Then, by expanding
A(y*) we arrive at

1] 18w uedy

<3 w2|w|2uRdy+/ 0 |AY|up dy
Dgr Dg

§3</D ¢4u%tdy)1/2(/D \Vw!4dy>1/2+ </D w6u%dy)l/2</[) |A1,b|2dy>1/2

R

< ([ wtian) (3 el ([ 1awkan'?).

R
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using the trivial bound % < v* since 0 < v < 1. Note that Ay = —Ayp, Vi) = —V.
A simple integration by parts shows that

4 2 2 2
/ Vel*dy < C % llels = Cllgl2s

with a constant C' depending only on d. Combining the previous formulas gives

4| Py) ur(y)’dy = /

Dg Dg

1/2
AW Wun()dy < C el ([ v un?ay)
R
where the constant C’ only depends on d. Hence

(5) : V() ur(y)*dy < (C'/4? [lell3, -

Now suppose that Cy_4(K) = 0. By Lemma 5, c22(K) = 0 and so we can find a
sequence of functions ¢,, € C5°(R%) such that 0 < ¢, < 1, ¢, = 1 on a neighborhood
of K and

lim [gul,, =0.

Set ¢, = 1 — ¢, and choose R,, such that ¢, (z) =0 if |2| > R, — 1. Obviously we may
assume that R, T co. Also set

u(r) =N, (RN K #0), € RN\K

and note the trivial bound u(z) < ug, (x) for € Dg, \K. From the bound (5) applied
to ¢, instead of ¢, we get

: Un (1) u(y)?dy < ; Yn (@) ur, () dy < (C'/4)* [lonll, -

Since ¢, =1 — @, and |lon|ly < [[@nll 5 — 0, we get from the last bound and Fatou’s

lemma that
/ u(y)*dy = 0.
R\ K

It follows that K is polar, which completes the proof of Theorem 4. O

Remark. The second half of the previous proof strongly relies on analytic ingredients.
The existence of a probabilistic proof still remains an open problem.

3 Wiener’s test for the Brownian snake

In this section we will give a complete answer to a question which was raised in Section 1.
Precisely, we will characterize the domains D in R? in which there exists a nonnegative
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solution of Au = u? that blows up everywhere at the boundary. This characterization
will follow from a Wiener-type criterion for the Brownian snake, which is of independent
interest.

For y € R? and 0 < r < 7’ we denote by C(y,r,7’) the spherical shell
Cly;r,r') ={z e R%r <[z —y| <r'}.

We also define under N, R
R*={W,,0<s<o}.

Note that R = R* U {z}, N, a.e.

Theorem 6. Let F be a closed subset of R? and lety € F. Then N, (R*NF # ) = oo
holds if and only if d < 3, ord > 4 and

(6) Z 2n(d_2)Cd_4(F NC(y;27",27")) =00

n=1

From excursion theory, the property N, (R* N F # ()) = oo is equivalent to P, (Tp =
0) = 1, where )
Tr =inf{s > 0; W, € F and (; > 0} .

Alternatively, if Z is under Ps, a super-Brownian notion started at d,, the previous
properties are also equivalent to Ps, (Sp = 0) = 1, where

Sp =inf{t > 0;supp Z; N F # 0}.

This essentially follows from the relationship between the Brownian snake and super-
Brownian motion, as described in Chapter IV (see [DL] for details).

The previous remarks show that Theorem 6 is an analogue of the classical Wiener
criterion. In the same way as for the classical Wiener criterion, Theorem 6 has a
remarkable analytic counterpart.

Corollary 7. Let D be a domain in R%. The problem

1) { Au = 4u?

u|aD = +00
has a nonnegative solution if and only if d < 3, or d > 4 and (6) holds with F' = D¢ for
every y € 0D.

In dimension d > 4, the proof shows more precisely that the existence of a nonnegative
solution that blows up at a fixed point yo of 0D is equivalent to condition (6) with
y =19y and F' = D°.
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The key ingredient of the proof of Theorem 6 is the following proposition, which gives
precise estimates on hitting probabilities of compact sets and can be viewed as a rein-
forcement of Theorem 4. Under N, we set

M =sup{(s;0<s<o}.

Proposition 8. Suppose that d > 4. There exist two positive constants (31, B2 such that
for every compact subset K of C(0;1,2) and every x € B(0,1/2),

B1C1_4(K) < NLRNK #0;1 <M <2) <N, (RNK #0) < $2C4_4(K) .

Proof of the upper bound. By simple translation arguments, it is enough to prove
the given upper bound when K is a compact subset of B(0,1/2) and |x| > 1. By
Theorem 4, we may assume that Cy_4(K) > 0. We set

u(z) =N, (RNK #0), 2cRN\K.

From Lemma 5, we can find a function ¢ € C$°(R?) such that 0 < ¢ <1, o =1 on a
neighborhood of K and

oll2,2 < co Cq—a(K)

where the constant ¢y only depends on d. Multiplying ¢ by a function h € C§°(R?)
such that A = 1 on B(0,1/2), h = 0 on R\ B(0,3/4) and 0 < h < 1, we may assume
furthermore that ¢ vanishes outside B(0,3/4) (the value of the constant ¢y will be
changed but will still depend only on d). As previously, we set 1) =1 — .

Recall the notation Dg,ug from the proof of Theorem 4. By (5), we have for every R
large enough,

() ur(y)’dy < e el
Dgr

with a constant ¢; depending only on d. Observe that u < ugr and let R tend to oo to
get
2
) () uly)dy < e ol
R
From an intermediate bound of the proof of Theorem 4, we have also

/ AW urdy < c2 o],
Dpr

and the same argument gives

) 1Ay < e el
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By applying It6’s formula to £ under II,., we have II,. a.s.

(') (&) = /v ) dé + /Awuss

Let a > |z| and S, = inf{t > 0,|&| > a}. By applying the optional stopping theorem
at t A Sy, we get

IL ((¢'u)(éns,)) = u(z) + Hx</0tAsa A(¢4u)(§s)ds>

= u(z) + Hm</ot/\sa (V' Au+ 2V () - Vu+ Ay )u) (&) ds).

N = N

Since Au = 4u? > 0 on RY\ K, we have

1

tASq
u(e) < T ((6°0) (Ens, ) — 310 /0 (V") - Vu+ AW )u) (E,) ds).

Note that both functions V(%) and A(z)*) vanish outside B(0,3/4), and |u(y)| tends
to 0 as |y| tends to co. By letting ¢, and then a tend to oo, we get

1 o0
uz) < —sTL( [ (2V@Y) - Vu+ AWhu) (&) ds
» (] )

_¥ 9 2V(¥*) - Vu+ A )u) (y) |y — =>4 dy.

We will now bound the right side of (10). Since |z| > 1 and ¢ = 1 outside B(0,3/4),
we get

/ AWy =P~y <4772 [ [A@H0 @)y < 1 2elel
by (9
Then con51der the other term in the right side of (10). Observe that if hy(y) = |y —=z|?>~¢

we can find a constant ¢/, independent of the choice of z with |z| > 1, such that
|Vha(y)| < ¢ for every y € B(0,3/4). Then an integration by parts gives

[ 0w T
[ @@hiwy = tay+ [ (@out-vh)w dy'
R4 Rd

<ty + 4 [ we(Tuldy
R

d—2 2 / 2,4 1/2 2 1/2
<4 C2H<P||2,2 +4e u ™ dy IVip|=dy
Rd Rd

< (4d*202 + 40'01/2)
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by (8). Set c3 = v4(492%cy + 2¢/c1). By substituting the last two bounds in (10), we
arrive at

Ny (RNK #0) = u(z) < s [|¢l32 < cocs Ca—a(K),
which completes the proof of the upper bound.
Remark. To avoid using the It6 formula, one may try to bound u directly from (8) and
a suitable Harnack inequality. However, this only gives the bound u(z) < ¢ Cy_4(K)'/?,

which is weaker than the upper bound of Proposition 8.

Proof of the lower bound. We may assume that Cy_4(K) > 0. Then fix a probability
measure v on K such that

/ / v(dy)(dy’) fally — o)) < 2Ca_a(E) .

Let J,h, h. be as in the proof of Theorem 4. Then for every € € (0, 1), set

Ue = 1{M§2}/ ds he x V(W) lge 51y -
0

Note that U, < (7, he * v) and so, by an estimate of the proof of Theorem 4, we have
N.(2) <4 [ [ viayviay) [ daGla-2)Gly - a6l - a)

<c // v(dy)v(dy') fa(ly — ')
<2c Cq_yg(K)™H,

where the constant c¢; is independent of €,z and K provided that K C C(0;1,2), = €
B(0,1/2).

We then get a lower bound on N, (U.). By the Markov property under N, we have

A

N:r(UE) = / ds Nﬂc <1{CS>1}h€ * V(V[/vs)l{supr<5 Q«§2}1{supr>S §r§2})
0 < >

A

= / ds Nx<1{gs>1}h5 * V(W) {sup, - CTSQ}PWS(SE,IE ¢ < 2))
0 - r<T1p

[ee) R 2 — s
/ ds Nm <1{Cs>1}h€ * V(Ws)l{SUPrgs Cr§2}( 2 C ))
0

o R 2 — s
= Nx (/ ds hE * V(Ws)1{§5>1,suprgs CTSQ}( 2§ )) :
0
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In the third equality, we used the fact that ({5, s > 0) is under P, a reflected Brownian
motion started at (,,, together with a familiar property of linear Brownian motion. From
the invariance of the [t0 measure under time-reversal, it immediately follows that N, is
invariant under the mapping (W, s > 0) — (W(,_4)+,s > 0). Using this property, and
then the Markov property as previously, we get

ag " 2 _ s
N, (U:) =N, </o ds he * I/(Ws)l{<5>1,suprzscr§2}( 2C ))

o R 2_ s
=N, </ ds he * V(Ws)1{1<<352}( QC )2>
0

By the case p = 1 of Proposition IV.2 (ii), we have

N.(U.) =1L, (/12 dthe s v(€) (55)°)
:/y(dy)/dzhg(z—y)/jdtpt(z_x)(?)z

where p;(z) is the Brownian transition density. From this last formula it is now clear
that we can find a constant co > 0 independent of £,z and K, such that for every
e€(0,1),

Nx(U 5) Z Co .

By the Cauchy—Schwarz inequality, we obtain

(c2)?

C1

N, (U2 > 0) > ~2L 0y y(K) .

Notice that U, can be nonzero only on {1 < M < 2}. Letting € go to 0 as in the proof
of Theorem 4 yields the lower bound of Proposition 8. O

Proof of Theorem 6. Consider first the case d < 3. It is enough to prove that
Ny(y € R*) = 0o and we can take y = 0. A scaling argument shows that No(0 € R*) =
ANp(0 € R*) for every A > 0. Furthermore from the fact that points are not polar when
d < 3 (and using Lemma V.5 for instance) one easily obtains that No(0 € R*) > 0. The
desired result follows at once.

Suppose then that d > 4. For simplicity, we treat only the case d > 5 (the case d = 4
is similar with minor modifications). The polarity of points now implies that N, (y €
R*) = 0 (use Lemma V.5). Also notice the scaling property Cyq_4(AK) = A74Cy_4(K)
for A > 0.
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Assume first that (6) does not hold. Then, if F}, = {z —y; 2 € F'}, we have
N,(R* (1 F #0) = N, (R0 (F\{y}) #0)

< f: N, (R N(FNC(y; 27,2 ") £ @) +N, (RN By, 1)° # 0)

[
(e 1

No(R N (F, NC(0;27",27"1)) #0) + ¢

3
I
=

M

927N, <R N (2"F, NC(0;1,2)) # (2)) ny

3
I
—

< B2 Z 22" Cy_4(2"Fy NC(0;1,2)) + ¢

n=1

=3 Z orld=2c, (F NC(y;27", 2*’“1)) +ec

n=1

< 0.

We used successively the scaling property of Ny, Proposition 9 and the scaling property
of Cd_4.

Conversely, assume that (6) holds. Since the sets {272" < M < 27272} n > 1 are
disjoint, we get by similar arguments

WK

Ny(R*NF # 0) > N, (R N (F N C(y; 2_"72_”+1)) £ @;2—271 <M< 2—2n+2>

1

3
Il

o

927N, (R N(2"F,NC(0;1,2)) #0;1 < M < 4)
1

3
I

> 63 Z 22"Cy_4(2"F, NC(0;1,2))

n=1

=3 Z 2n<d_2)0d_4<F N C(y; 27", 2—n+1))

n=1

= O

by (6). This completes the proof of Theorem 6. O
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Proof of Corollary 7. The case d < 3 is again easy. We verify that the function
u(z) = Ny (R N D¢ # () solves (7). By Proposition 2, we already know that Au = 4u?
in D. Furthermore, for every y € 0D,

u(e) > Noly € R) = (2~ )y — ]

so that it is obvious that ujgp = co.

Suppose that d > 4. First assume that condition (6) holds for some y € 9D (with
F = D¢). We will verify that the maximal solution u(xz) = N, (R N D¢ # 0) blows up
at y. To this end, let N > 1 be an integer and consider z € B(y,2~V~1)N D. We have

N
u(@) = 3N (RO(FNC(y: 27", 277H) £ 052720 < M < 272042) |

n=1

By the same arguments as in the proof of Theorem 6, we get for n € {1,..., N},

No (R N(FNC(y;27™, 27" ) #£0;27°" < M < 2—2”+2>
Z ﬁ12n(d_2)cd—4 (F N C(y, 2—n’ 2—n+1))

and the desired result follows from (6).

Conversely, suppose that for some fixed y € 9D, the maximal solution u(z) = N, (R N
D¢ # () satisfies
lim wu(z) =+4o00.
Daz—y

We will then verify that (6) holds, or equivalently that N,(R* N D¢ # () = oo. Fix
N > 1 and choose « € (0,1) such that N, (RN D¢ # @) > N for every « € B(y,«a) N D.
Let € > 0 and T. = inf{s > 0,(; = €}. By using the strong Markov property at time
T. and then Lemma V.5, we get

Ny(R*ND*#0)> Ny<T€ < 00;(1—exp—2 /E dt Ny, 1) (RN D¢ # @)))
0

= (2¢)7'11, (1 — exp —2 /E dtNg, (RN D # @))
0

> (2¢) 71, (1 — exp —2N/0 dt 10,q) (1€ — yl)) -

In the second line, we used the equality N, (7. < oo) = (2¢)~! and the fact that Wr, is
distributed under Ny (- | 7, < 00) as a Brownian path started at y and stopped at time
e. By letting € go to 0, we get Ny, (R* N D¢ # ()) > N, which completes the proof since
N was arbitrary. O
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Remark. Until now, there exists no analytic approach to Corollary 7. Some partial
results have been obtained in particular by Marcus and Véron [MV1].

4 Uniqueness of the solution with boundary blow-up

We now want to address question 1 which was raised in Section 1. We will only obtain
a partial result, which (in the special case of equation Au = u?) is still stronger than
what has been done by analytic methods.

We assume that d > 2. If K is a compact subset of R?, we denote by Cy_o(K) the
Newtonian (logarithmic if d = 2) capacity of K. Recall from Section 1 the notation u;,
resp. ug, for the minimal, resp. maximal, nonnegative solution with infinite boundary
conditions in a bounded regular domain D.

Theorem 9. Let D be a bounded domain in RY, d > 2. Suppose that for every y € 0D
there exists a constant c(y) > 0 such that the inequality

Cia—2 (Dc N B(y7 2—n)) > C(y)cd—Q (B(y7 2—n))
holds for all n belonging to a sequence of positive density in N. Then u; = uq,

Remark. As an easy application of the classical Wiener test, the assumption of Theo-
rem 9 implies that D is regular.

For the proof of Theorem 9 we need a technical lemma which gives information on the
behavior of the paths W near their lifetime. We state this lemma but postpone its
proof to the end of the section.

Lemma 10. For every § > 0 we can choose A > 1 large enough so that N, a.e., for
every s € (0,0),

lim inf lCard{p < ng |[Wi(t) — W,| < A27P Vit € [(¢s —27%7)F, Qs}} >1-94.

n—oo N

Proof of Theorem 9. Consider the stopping times
T = inf{s >0,7(Ws) < Cs} , S = inf{s >0,7(Ws) < Cs} )

Then us(z) = N, (T < o0) and, from an argument used in the proof of Proposition 2,
it is easy to see that ui(z) = N, (S < 00). We will prove that {T' < oo} = {S < o0}
N, a.e. by applying the strong Markov property at T' (our argument shows in fact that
T=2S5,N; ae.).

Recall the notation Ty = inf{s > 0,(s = 0}. By the strong Markov property,

N (S < 00) = Ny (T < 00; Py, (S < 1)) -
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Fix a path w such that ¢, = 7(w). It follows from Lemma V.5 that
Cuw
P,(S <Tp) =1—exp —2/ dt Ny (S < 00)
0

Cuw
=1—exp —2/0 dt uy (w(t)) .

We see that the proof will be complete if we can verify that N, a.e. on {T < oo},

¢r
(11) /O dt u (Wi (1)) = oo .

From the assumption of Theorem 9 and Lemma 10, we can choose two (random) con-
stants ¢ > 0 and A < oo such that the properties

(i) Cd_g (B(WT, 2—p) N DC> > CTCd_Q (B(WT, 2—p))

(ii) \Wr(t) — Wr| < Ap27P, Yt € [¢r — 272, (7]

hold for infinitely many p > 1 with 2727 < (r.

Fix one such p and write a,, = Ap27" for simplicity. Also set T(,) = inf{s > 0,(; = ag}.
Then, if y € D, we have

u1(y) = Ny(S < 00) > N, (T(p) < OO,T(WT(p)) < ai) .

Notice that conditionally on {T{,) < oo}, Wr,, is a Brownian path in RY started at y
stopped at time ag. Hence,

N, (T(WT(p)) < af) | T < oo) =1I,(r < a]%).

We can now use (i) to get a lower bound on IL, (7 < a2) when |y — Wr| < a,. Suppose

first that d > 3, and denote by L the last hitting time of H := B(WT, 27P)N D¢ by the
Brownian motion £. Let ey be the capacitary measure of H. Then,

II, (1 < a?)) >I,(0< L < ai) = /eH(dz)/O ppt(z —y)dt,

where the last equality is the classical formula for the distribution of L (see [PS] p.62).
Note that the total mass of ey is Cy_o(H) and that Cyq_o(B(y,27")) = 27472,

2
Using the previous bound, (i) and a simple estimate for foap pi(z — y) dt, we get the
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existence of a (random) constant az > 0 depending only on ¢p and Ap such that, if
ly — WT‘ < ay,

Ny (r(Wr,,) < @ | Ty < 00) > ar .
In dimension d = 2, we can get the same bound by using the last exit time for planar
Brownian killed at an independent exponential time (we leave details to the reader).
It follows that ar

u1(y) > ar Ny(Tip) < o0) = 2422 %

We apply this to y = Wr(t) for ¢t € [CT — 272 (p — 2_27’_2}. We get

(r—272P72 3a
/C - dt uq (WT(t)) > é =:0r>0.
T—2-2p

Since this bound holds for infinitely many values of p, the proof of (11) is complete. [J

Remark. For every rational ¢ > 0, we can apply the argument of the previous proof
to the stopping time T(,) = inf{s > ¢, 7(W;) = (,} instead of T. It follows that the
support of the random measure dL? is exactly equal to the set {s > 0, 7(W,) = (,}.
As a consequence, the assumption of Theorem 9 implies that supp ZP = P, N, a.e.
The inclusion supp Z” C £P is always true but the converse may be false as we see
from the example of the punctured unit ball in R¢, d = 2 or 3.

Proof of Lemma 10. For every stopped path w, every A > 0 and every integer n > 1,
set

FA(w) = Card {p e{l,...,n}, lwit) —w| < A27P Vt € [(Cw — 2_2p)+,Cw]} )

n

We first state a simple large deviation estimate for standard Brownian motion, whose
easy proof is left to the reader. The notation | stands for the stopped path (&.,0 <
r <t).

Lemma 11. Let § > 0 and A > 0. We can choose A > 0 large enough so that, for
every n > 1 and every t > 0,

o (EM (€o.y) < (L—8)n) <e ™.

n

Then, for every n > 1, introduce the stopping times o}' defined inductively as follows:
op =0,  ofyy =inf{t >0}, [¢s— (on| =277}

Note that o} < oo if and only if o' < L,,, where L,, < 0o, N, a.e. Under N, (- | o] < 00),
the sequence (22”@,?,0 < i < L,) is distributed as the positive excursion of simple
random walk. By a well known result, we have for every k > 1,

00
Nx(z 1{U?<0°»Coﬂ=k272”}) = ZNm(O{L < OO) = 22",
=1
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On the other hand, under N, (- | 07" < c0) and conditionally on (s», W,n is distributed

as a Brownian path in R? started at x and with lifetime Con (this is so because o7 is a
measurable function of the lifetime process).

Let 6 > 0, A > 4 and choose A as in Lemma 11. By combining the previous observations
with this lemma, we get for every integer M > 1

2n 92n ,—An
No (D Lo <oo, Con <ty LF AW, <-0)ny) < M2 22 e,
=1

From the Borel-Cantelli lemma, we conclude that N, a.e. there exists an integer Ny(w)
such that for n > Ny(w),

(12) F(Won) > (1=8)n,  Vie{l,...,Ly}.

To complete the proof, we need to “interpolate” between o' and o}, ;. First note that
the law under N, (- | 07 < oo) of o', — o7 is the law of the first exit time from
[—2727 2727] of a linear Brownian motion started at 0. By standard estimates, it
follows that, for every n > 0, we have for n sufficiently large,

oy — ol <270=m i e {0, L, — 1}

On the other hand, we also know from Chapter IV that the mapping s — W is Holder
continuous with exponent i — ¢, for every € > 0. By combining this property with the
previous estimate, we get that N, a.e. for every € > 0, there exists an integer N (w)
such that for every n > Ny(w), every i € {0,..., L, — 1} and s € [0, 07", ],
(Wo(EAC) = Won(tAGon)| <277079) 0 e >0
Wy — Won| < 277079,
This implies for ¢ € [0, (]
W) = Wl < [Wa(t) = Wop (EA G )|+ [Wop (EA Gop) = Wop| + [Wop — Wil
<2270 4 (Won(E A Gop) — Worl.

Thanks to this bound and the trivial inequality (s — (on| < 272" for s € [07, 07" 4], it
is then elementary to verify that N, a.e. for all n sufficiently large, we have for every
i€{0,...,L, — 1} and every s € [0}, 07, ],

F2ATD(W,) > FA(Won) —en — 2.

From (12) we have then N, a.e. for every s € [0, o],

1
liminf = F2A+D (W) >1 -6 —e.

n—oo N

This completes the proof since ¢ and £ were arbitrary. 0
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VII The probabilistic representation

of positive solutions

In this chapter, we address the general problem of providing a probabilistic classification
of positive solutions to the partial differential equation Au = u? in a smooth domain.
We give a complete solution to this problem in the case of the planar unit disk. Precisely,
we show that solutions are in one-to-correspondence with their traces, where the trace
of a solution consists of a compact subset of the boundary and a Radon measure on the
complement of this compact subset in the boundary. Furthermore, we give an explicit
probabilistic formula for the solution associated with a given trace. At the end of the
chapter, we discuss extensions to higher dimensions or more general equations.

1 Singular solutions and boundary polar sets

In this chapter, the spatial motion ¢ is again Brownian motion in R, and D is a bounded
domain of class C2? in R?. In Chapter V, we considered solutions of Au = 4u? in D
which are of the form

ug<$):Nm(1_eXp_<ZD7g>) ’ I'ED,

where g € By (0D). Our first proposition provides another class of solutions. Recall
from Chapter V the notation £ for the set of exit points of the paths W from D.

Proposition 1. Let K be a compact subset of 0D. Then the function
ur (z) = NL(EP N K #0) , x €D,
is the maximal nonnegative solution of the problem

{Auzlluz7 in D,

UpD\K = 0.

Remark. When K = 9D, we recover a special case of Proposition VI.2.
Proof. We first verify that ux solves Au = 4u? in D. Fix e > 0 and set K. = {y €
0D, dist(y, K) < e}. By Theorem V.6, we know that for every n the function

ue(x):Nw(l—exp—<ZD,n1K8>) ) reD

n
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solves Au = 4u? in D. Clearly, ZP(K.) = 0 a.e. on the event {£PN K. = ()} and on the
other hand, by a remark following the proof of Theorem VI.9, we have also ZP(K_) > 0
a.e. on the event {EP N K. # 0}. It follows that

nh_)rréo ul (z) = Ny (EP N K. # 0) =: u®(z).

By Proposition V.9 (iii), we get that that u® solves Au = 4u? in D, and then that
ux = lim | u® is also a solution.

We then verify that ugsp\x = 0. Fix y € OD\K and choose 6 > 0 such that
dist(y, K) > 24. For every path w € W, set 7(5)(w) = inf{t > 0, |w(t) — w(0)| > J}.
Clearly, if x € D and |z — y| < J, we have

N, (EP N K #0) < Ny (3s >0 : 7(5)(Ws) < T(Wy)),

where 7 is as usual the first exit time from D. Therefore, it is enough to verify that the
quantity in the right side goes to 0 as x — y, x € D. To this end, write for every a > 0

Ny (3s >0 : 7(5)(Ws) < 7(W,)) <N, (Fs € [0,0] U [(0 — a), 0] : 7(5)(Ws) < o0)
+ Ny (0 >2a; 3s € [a,0 — o] : 7(5)(Wy) < 7(Wy)).

The first term in the right side does not depend on z and goes to 0 as « — 0 by
dominated convergence (recall that N, (3s > 0 : 75 (W) < o00) < oo by Proposition
V.9 (i)). Thus it suffices to verify that for every fixed o > 0 the second term tends to
0as x — y, x € D. To this end, use the snake property to observe that the paths Wi,
s € [a, 0 — a] all coincide up to time m, = infj, ,_q] (s > 0. By conditioning first with
respect to the lifetime process, we get

N, (0‘ >2a; 3ds € [a,0 —af @ 15y (Wy) < T(WS)) <N, (a > 20, 1L (7(5) A < T))

and the right side of the last formula goes to 0 as * — y by dominated convergence
(the smoothness of D implies that II, (7 > €) — 0 as x — y, for every ¢ > 0). This
completes the proof of the property uxsp\x = 0.

It remains to verify that ux is the maximal solution of the problem stated in Proposition
1. Let zo be a fixed point in D. For every 6 > 0, denote by D) the connected
component of the open set

{z € D,dist(z, K) > 6}

that contains x¢ (this makes sense if § is small enough). Note that D(s) is a regular
domain. Also set
Uy = 0D(5)\0D,

and, for every z € Dy,

() () = Ng (2P (Us)) # 0)
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Writing
u) (@) = lim TN, <1 —exp-n / ZP@ (dy) dist(y, 3D(5)\U(5)))7

and arguing as in the proof of Proposition VI.1, we easily get that us) solves Au = 4u?
in D5 and U(s)|U5) = OO-

Finally, let v be another nonnegative solution of the problem stated in Proposition 1.
The comparison principle (Lemma V.7) implies that v < u(5) on D sy. However,

u) (@) < No (79 N U #0)
and it is easy to check that, for every x € D,
%T%NA8D®rWU@)%®):uKQw.
The claim v < ug follows, and this completes the proof of Proposition 1. O

An informal guess is that any nonnegative solution of Au = 4u? in D could be obtained
as a “mixture” of (generalized forms of) solutions of the type u, and ug. In dimension
d = 2, this guess is correct and a precise statement will be given in Section 3 below in
the special case of the unit disk (see Theorem 5). In higher dimensions, the problem
becomes more complicated and is still the subject of active research (see the discussion
in Section 4).

To understand why dimension two (or one) is different, let us introduce the notion of
boundary polar set.

Definition. A compact subset K of 0D is called boundary polar if N, (EP NK # () =0
for every x € D.

Then K is boundary polar if and only if the problem stated in Proposition 1 has no non-
trivial nonnegative solution. In this sense, we may say that K is a boundary removable
singularity for Au = u? in D.

If d > 3, we define the capacity Cy_3(K) by the formula

QPAK):< inf (//ymwy@@%qy—dg_l

veM;(K)

where
1+logtd ifd=3,

r) =
9a(r) {r3_d ifd>4.

We state without proof the following theorem, which will not be used in the rest of this
chapter.



The probabilistic representation of positive solutions 101

Theorem 2. If d < 2, there are no nonempty boundary polar sets. If d > 3, K is
boundary polar if and only if Cq_3(K) = 0.

For d = 2, it is enough to verify that singletons are not boundary polar. The proof
of this fact is relatively easy by estimating the first and second moments of the exit
measure evaluated on a small ball on the boundary (cf (2) and (3) below), and then
using the Cauchy-Schwarz inequality to get a lower bound on the “probability” that £
intersects this ball. In the case of the unit disk, this can also be viewed as a by-product
of the (much stronger) Theorem 5.

A proof of Theorem 2 in dimension d > 3 can be given along the lines of the character-
ization of polar sets in Chapter VI. We refer to [L9] and [DK2]. The latter paper deals
with more general equations of the type Au=u* 1 < a < 2.

2 Some properties of the exit measure from the unit disk

In this section and the next one, we restrict our attention to the case when d = 2 and
D is the open unit disk. However, all results can be extended to a domain D of class
C? in the plane (see [L11]). We often identify R? with the complex plane C, and the
boundary 0D of D with T = R/27Z. Lebesgue measure on dD is denoted by 0(dz).

Let Gp(z,y), resp. Pp(x,z) be the Green function, resp. the Poisson kernel of D. Note
the explicit expressions:

1 7 —
GD(,CE,y>:—Ing, nyGD
m ly — |
. Pp(z, 2) L1-jof €D, z€dD
r,2)= — xr z
D&y 27T|Z—ZL'|2, ) ’

where § = y/|y|?.
We first propose to derive certain properties of the exit measure Z”. Let g € By, (0D).
By the cases p =1 and p = 2 of Theorem V.10, we have for x € D

2) TMGZDﬂ»=iAD9Mwa@JDMw,

3) NA@R@%=4/

: dy Gp(, w’)(/aD 0(dy) Pp(z',y) g(y))2~

Proposition 3. Let x € D. Then N, a.e., the measure ZP has a continuous density
zp(y), y € 0D with respect to 0(dz). Furthermore,

N (:p() = Po(@,9) . Na(2p(y)?) :4/DdaGD(x,a) Po(a, y)>.
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Proof. For every € > 0 and y € 9D, set

Z:(y) = (2¢)7' 27 (Ne(y)),

where N.(y) = {z € 0D, |z — y| < ¢}. By (3) and a polarization argument, we have for
every y,y € 9D,

NA(Z0)Z.00) = )7 [ o) v ),

where

¢m(z,z’):/DdaGD(ac,a)PD(a,z)PD(a,z’).

From the explicit expressions for Gp and Pp (which yield the easy bounds Pp(a, z) <
Cla—z|71, Gp(x,a) < C(z)dist(a, dD)) it is a simple exercise to verify that the function
1, is bounded and continuous over 0D x 0D. It follows that

lim N.(Z.(y)Z () = 44.(y, ),

e,e’—0

and the convergence is uniform when y and y’ vary over dD. By the Cauchy criterion,
it follows that Z.(y) converges in L?*(N,) as € — 0, uniformly in y € dD. Hence, we
can choose a sequence ¢,, decreasing to 0 so that Z., (y) converges N, a.e. for every
y € D. The process (zp(y),y € 0D) defined by

zp(y) = lim Z (y)

n—oo

(zp(y) = 0 if the limit does not exist) is measurable. Furthermore, for g € Cy4(0D),

[ 86 20w 900 = tim [ 0(d) 2. 9(0).

in L?(N,), and on the other hand
0(dy) Z. = [ ZP(dy) (2¢e)7 ! 0(dz) g(z) — (ZP, g).
[ 2w = [ 20 e [ otz oz) = (27.0)

Thus ZP(dy) = zp(y)0(dy), N, a.e.

It remains to verify that the process (zp(y),y € 90D) has a continuous modification.
The previous arguments immediately give the formula

No((zp(y) = 20(y))?) = 4(¥a(y,y) — 20 (y,y") + (YY)
- 4/DdaGD(a:,a) (Pp(a,y) — PD(a,y'))Q.
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From the explicit expressions for Gp and Pp, it is then a simple matter to derive the
bound

N ((2p(y) = 2p(y))?) < C(2) ly — ¥/,
with a finite constant C'(x) depending only on z. Unfortunately, this is not quite
sufficient for the existence of a continuous modification. One way out is to estimate
fourth moments. This is a bit more technical and we only sketch the proof, referring

to [L11] for a detailed argument. The fourth moment formula for the exit measure
(Theorem V.10) leads to

Nz ((2p(y) = 2p(¥'))") = 84 (Fi(y,¥') + 4 Fa(y,y)),

where

Fi(y,y) = /DS daydasdas Gp(x,a1)Gp(a1,a2)Gp(ai,as)
x (Pp(az,y) — Pp(a2,y'))*(Pp(as,y) — Pp(as,y))?,
F(y,y) = /D3 daydasdas Gp(x,a1)Gp(ar,az)Gp(az,as)
x (Pp(a1,y) — Pp(ar,y"))(Pp(az,y) — Pp(az,y))(Pplas,y) — Pp(as,y"))>.

From this explicit expression and after some lengthy calculations, one arrives at the
bound

(4) Na((zp(y) — 20 )*) < Cly -y,

with a finite constant C' that can be chosen independently of x provided that x varies
in a compact subset of D. The existence of a continuous modification of the process
(zp(y),y € 0D) is then a consequence of the classical Kolmogorov lemma.

Finally, the formula N, (2p(y)?) = 49, (y,y) is immediate from our approach and the
first moment formula for zp(y) is easy from (2). O

If D is replaced by D, = {y € R?,|y| < r}, the same method (or a scaling argument)
shows that, for every z € D,, the exit measure ZP" has (N, a.e.) a continuous density
zp, with respect to Lebesgue measure 6, on 0D,. We will need a weak continuity
property of zp  as a function of » > 0. To simplify notation, we write zp(r,y) = zp. (ry)
for y € 0D and r > 0.

Lemma 4. There exists a strictly increasing sequence (r,) converging to 1 such that,
for every x € D,

tim (sup |2p(ra,y) = 20 (y)]) =0, N, a.e.
n—oo \ yechp
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Proof. Let r € (0, 1] and let 7,- denote the exit time from D,.. From the method of proof
of Theorem V.10, it is easy to get for every z € D,., g € By (0D) and ¢’ € By4(D,),

(2792 ) = AT ([ detle (ol (6:.)
0
=4[ daGp, (2,0) [01d) Po (. )9(0) [ 0. Po, (0 (),
D,

where Pp, (a,y) = r 'Pp(%,%) and Gp, (a,y) = Gp(%, ) are respectively the Poisson
kernel and the Green function of D,. From the L? construction of zp, it follows that,
for every y,vy’ € 0D,

N, (20(y)zp(r.y)) = 4 /D da G, (,a) Pp(ay) Pp, (a,ry).
Hence,
Na((enly) ~ 20(r)?) =4 ( [ daGo(e.a) Pofa,y)?

D\D,.

_|_/D da (Gp(x,a) — Gp, (x,a))Pp(a, 9)2

r

—l—/D daGDT(x,a)(PD(a,y) —PDT(a,ry))2>.

r

From this explicit formula and elementary estimates (using the previously mentioned
bounds on Pp and Gp), one easily obtains that

(5) li ( sup Na ((p(0) = 20(r9))?)) = 0.

and the convergence is uniform when x varies over compact subsets of D.

Let K be a compact subset of D. By (4) and a scaling argument, the bound

N, ((zp(r,y) — zp(r,y')*) < Ck |y — o/

holds for every = € K and r sufficiently close to 1, with a constant Cx depending only
on K. Then, for every n > 1, p € Z/2"Z, set y;; = exp(2imp2~") € dD. Let v > 0.
The previous bound gives for k > 1 and p € Z/2*Z,

Nx(‘ZD(T', yI;) — ,ZD(T'7 y£+1)‘ > 2—’Yk) < 0/24’)’/62—216’
where C’ = 472C. We take v = 1/8, sum over p and then over k > n to get

(6) N, (3k >n, 3p: |zp(r,yk) — 2p(r,yk )| > 27%8) < ¢"27/2
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where C” = C'/(1 — 271/2). Denote by E,(r) the event
En(r) = {Vk > navpa |ZD(707 yl;) - ZD(T7 y]l;;+1)| < 2_k/8}'

The classical chaining argument of the proof of the Kolmogorov lemma shows that on
the set E,(r) we have for every y,y’ € 9D such that |y — y'| < 27277,

(7) l2p(r,y) — 2p(ry)| < cly — /|5,

for some universal constant ¢. On the other hand, by (5), we may choose a sequence
(r,,) that increases to 1 sufficiently fast so that, for every z € K,

2" —1

No Z Z (ZD(Tnvyg) - ZD(yS))z < 0.

{n,rn>[z|} p=0

The sequence (r,) can be chosen independently of the compact set K by extracting a
diagonal subsequence. It follows that

im  sup  |zp(r, ) — 20(u)| = 0, N, ace.
n/ooopLen—1

for every x € D. To complete the proof, notice that > Ng(E,(r,)¢) < oo by (6).
Therefore, the bound (7) holds with r» = r,, for all n sufficiently large, N, a.e. Lemma
4 follows by writing

sup |2p(rn,y) —2p(y)| < sup  |2p(rw,y,) — 2D(Y,)]
y€dD 0<p<2n—1

+  sup  |zp(tn,y) —2p(re,¥)|+  sup  |zp(y) — 2p(¥)|-
ly—y'| <272 ly—y’|<2m2—n

3 The representation theorem

We are now ready to state and prove the main result of this chapter. Recall the notation
N:(y) ={z € 9D,|z —y| <e}.

Theorem 5. Nonnegative solutions of equation Au = 4u? in D are in one-to-one
correspondence with pairs (K,v), where K is a compact subset of 0D and v is a Radon

measure on OD\K.
In this correspondence, the pair (K,v) is determined from wu by the formulas

(8) K ={ye€dD, lim 0(dz)u(rz) = oo, for every e > 0},
rTl,r<1 N.(y)
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and, for every g € Co(OD\K),

) g =t [ 0tdz)urz)g(2)

Conversely, for every x € D,

(1) ule) = No(EP MK #0) + Ny (Lgnre—py (1 - exp— / v(dy) 2n(y)) ).

The pair (K, v) is called the trace of the solution u. Roughly speaking, K corresponds
to a singular boundary set for w, and v to the boundary value of u on OD\K. As
special cases of formula (10), we get v = ug when v = 0, and u = uy when K = ()
and v(dy) = g(y)0(dy). In this sense, the general form of a solution is a mixture of the
formulas for ux and u,.

Proof. Step 1. We first verify that, for a given choice of K and v, the function u
determined by (10) solves Au = 4u? in D. This is analogous to the beginning of the
proof of Proposition 1. Recall the notation K. = {y € 9D, dist(y, K) < €}. We can
choose a sequence of functions g, € Cy(OD\K) such that the measures g,(y)0(dy)
converge vaguely to v(dy) as n — oo. Set h, = nlk. + gn. Then, for every n the
function

u (z) = Nu(1 — exp —(ZP, hy,)) | xeD

n

solves Au = 4u? in D. As in the proof of Proposition 1, we have lim,, o, (Z”, h,) = oo
a.e. on {EP N K. # 0}. On the other hand, on {£P N K. = (0}, the function zp(y)
has compact support in 0D\ K, and the vague convergence of g,,(y)0(dy) towards v(dy)
gives

lim (ZP,hy,) = lim (27, g,) = lim [ 6(dy) zp(y)gn(y) =/V(dy) zp(y)-

n—oo n—oo n—oo

By combining the previous observations, we get

n—oo

lim u(z) = N, (EP N K. # 0) + N, (1{5DQK8:@}(1 — exp —/ v(dy) zD(y))> =: u®(x).
By Proposition V.9 (iii), this implies that u® is a solution, and so is u = lim | u®.

Step 2. We now construct the pair (K, v) for a given solution. From now on until the
end of the proof, we fix a nonnegative solution u. We have to check that u can be
written in the form (10) and that the pair (K, v) is determined from u by the formulas
of Theorem 5.
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We choose a sequence (r,) converging to 1 so that the conclusion of Lemma 4 holds.
Then, for p,q € T = R/277Z, we set

an(p,q) = /( a3
p,q

(We use the obvious convention for intervals in T: If a, respectively b, is the represen-
tative of p, respectively ¢, in [0, 27), we take (p,q) = (a,b) if a < b, (p,q) = (a,b+ 27)
if a > b). Replacing (r,,) by a subsequence if necessary, we may assume that, for every
p,q € Ty :=TN27Q,

hrgo an(pa Q) = CL(p, Q) S R+ U {+OO}

Note that a(p,r) = a(p,q) + a(q,r) if p,q,7 € T1 and ¢ € (p,r). We set
K ={y €T, a(p,q) = oo whenever p,q € T; and y € (p,q)}.
Then K is a compact subset of T, which is identified to dD.
We also set O = T\ K and define a finite measure v, on O by
v (dB) = 10(3) u(r,e®) dp.
From the definition of K, we see that for every compact subset H of O,

sup v, (H) < 0.

n

Hence, by extracting again a subsequence, we may assume that the sequence (v,,) con-
verges vaguely in the space of Radon measures on O. Through the identification 9D = T,
the limiting measure v is a Radon measure on 0D\ K.

Step 3. We now prove that formula (10) holds for the given solution w and the pair
(K,v) introduced in Step 2. To simplify notation, we will write zp(r, 3) instead of
zp(r,e?) and zp(3) instead of zp (). By Corollary V.8, we have for = € D,.,

u(z) = N (1 — exp —<ZD’"n,u)) =N, (1 — exp —Ty / dBu(rne®) zp(rn, ﬁ))
T
Lemma 6. For every x € D, we have

(11) lim [ dBu(r,e®)) zp(rn, 3) = +00, N, a.e. on {EP NK # 0},

n—oo T

and

(12)  tim | dBu(rae®)) 2p(rm, B) :/Ty(dﬂ) 20(8), Ny ae. on {EP MK = 0}.

n—oo T
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Observe that formula (10) immediately follows from Lemma 6 by passing to the limit
n — oo in the preceding formula for u(xz). To complete Step 3, it remains to prove
Lemma 6.

Proof of Lemma 6. We first prove (12). For § > 0, denote by Us the open tubular
neighborhood of radius § of K in R2. Also introduce the random set

RP ={y=W,1#),0<5<0,0<t<{AT(W)}

Note that EP = RP N oD.

Since R is compact, on the set {£P N K = 0} we may find § = 6(w) > 0 so small that
RP NUs = (. Tt follows that zp(r,y) = 0 for every y € dD and r € (0, 1] such that
ry € Us. Choosing € = 0/2, we see that zp(r,y) = 0 for every y € K. and r € (1 —¢, 1].
From the definition of K we have

sup/ dBu(rpe™®) < co.
T\K.

n

Then Lemma 4 implies

lim [ dBu(rne”)|zp(rn, ) — 2p(B)| = 0,

n—oo T

N, a.e. on the set {EP N K = 0}. On the other hand, on the same event we have for n
large

/ dBu(rnc®) zp(6) = / va(dB) zp(5)
T

T

which converges to [, v(df3)zp(3) by the vague convergence of v, towards v. This
completes the proof of (12).

Unfortunately, the proof of (11) is more involved. We first introduce the stopping time
T = inf{s > 0, ¢, = 7(W,), W, € K},

in such a way that {EP N K # 0} = {T < oo}, a.e., and Wy € K a.e. on the event
{T < >0}. We will prove that

(13) zp(Wr) >0, N, ae. on{T < oo}.

Our claim (11) easily follows from (13): By Lemma 4 and the continuity of 2p(3),
we may find ¢ > 0 such that zp(rn, 8) > 32p(Wr) for every n sufficiently large and

|3 — Wr| < e. Thus, for n large,

/dﬂu(rnew) zp (T, B) > %ZD(WT)/ ) dﬁu(rneiﬁ)
T |B—Wrl|<e
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which tends to co by the property Wr € K and the definition of K.

In order to prove (13), we apply the strong Markov property to the Brownian snake
at time T and use Lemma V.5. We need to control the behavior of the path Wy near
its endpoint. To this end, we will use both Lemma VI.10 and another technical result
showing that the path Wy cannot be “too close” to the boundary immediately before

Cr =7(Wr).

Lemma 7. Let z € D. We can choose o > 0 so that N, a.e. for every s € (0,0) such
that T(Ws) > (s,

1 1
liminf —Card{p < m; Wi(t) € D1_aqo-»,Vt € [((s —272P) T, (¢, — 27271} > 5

m—oo M

We postpone the proof of Lemma 7 to the end of this section. As a consequence of
Lemma VI.10 and Lemma 7, the stopped path Wy satisfies the following two properties
N, a.e. on {T < oo}:

(a) T(Wy) = (p and Wy € K.
(b) There exist positive constants o and A such that the property

{(Wr(Cr —1),272P71 <t <272} C Dy_ag—» N B(Wyp, A27P)
holds for infinitely many p € N.

We now fix a stopped path w € W, such that (a) and (b) hold when Wr and (r are
replaced by w and (,, respectively . Write P}, for the law of the Brownian snake started
at w and stopped when its lifetime process vanishes. Lemma V.5 allows us to define
zp(y), y € D under P, via the formula zp(y) = >,c; zp(y)(W?). From Lemma V.5,
we have then

Cw
(14) P (20 () > 0) = 1 — exp —2/0 0t Noy(s) (2 (@) > 0).

However, for a € D,

(15) Ny (zp(w) > 0) >

using the Cauchy-Schwarz inequality and Proposition 3.

On one hand, easy calculations using the explicit formulas (1) give the existence of a
constant C' such that, for every a € D and z € 0D,

(16) /D dy Gp(a, ) Po(y, 2)? < C.
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On the other hand, if a € Dy_,o-» N B(w, A27P), we have

1 1—al? a

— 2P,
27 | — al? T 2w A2

PD<CL,’LZ)) =

By substituting these estimates in (15), we get that for every integer p such that 2727 <
Cw and
{w(Cw —1), 2771 <t <272} € Dy_n9-» N B(1, A27P),

we have

Cuw=277" 1 o 2
/Cw—zzp 4 Nu (o (zp () > 0) 2 80(27rA2> '

By (b) this lower bound holds for infinitely many values of p, and we conclude from (14)
that P! (zp(w) > 0) = 1. Our claim (13) now follows by applying the strong Markov
property at time 7'

Step 4. It remains to verify that K and v are determined from u by formulas (8) and
(9) of Theorem 5 (this will in particular give the uniqueness of the pair (K, v), which is
not clear from the previous construction). We rely on formula (10). First, if y € K, we
have for every x € D,

Pp(z,y)? - Pp(z,y)*

u@) 2 Naly € £7) 2 Nolan(y) > 0) 2 e s s 2 e

by the arguments we have just used in Step 3. The fact that K is contained in the set
in the right side of (8) immediately follows from this estimate. The converse inclusion
is clear from our definition of K.

Let us prove (9). Let g € Cp4(0D) be such that suppg is contained in 0D\ K. By
Proposition 1,

(17) lim [ 0(dy) g(y) N,y (EP N K #0) =

rTl,r<1

As a consequence of (10) and (17), we have

lim ‘/9 (dz)g(z)u(rz) /9 (dz)g(z) N, (1 —exp—/u(dy)zp(y))‘ = 0.

rTl,r<1

Let € > 0 be such that g = 0 on K.. Denote by v/ the restriction of v to K, ,, so that
V' is a finite measure and (V/, g) = (v, g). Furthermore,

‘/9 (dz)g(z) N, (1 — exp / (dy)zp(y /9 (dz)g(2) Ny2 (1 — exp —/y(dy)zp(y))‘

< /e(dz)g(z) sup N2 (EP N K.y #0),

z€0D\ K.



The probabilistic representation of positive solutions 111

and Proposition 1 again shows that the latter quantity goes to 0 as r T 1. In view of
these considerations, the proof of (9) reduces to checking that

(18) (V',g) = lim 0(dz)g(z) N, (1 —exp—/l/(dy)zp(y)).

rTl,r<l1

First note that
[0 [vinznw) = [0 [vianPoie)
[o@ise) [ v poiy.2)

(v, 9).

Thus,

/H(dZ)g(Z) N, (1 —exp —/V/(dy)zD(y)) < /9(d2)g(z) IM(/V’(dy)zD(y)) = (', 9).

On the other hand, we have for any n > 0,

[ 0@ N ([ V@200, f g om)
<o [oag e (( [ anzw))
< <V’71>771/9(d2)g(2) er(/l/(dy) zp(y)?)
=W [ o) [ v [ daGplra.a) Pofay)®

The last quantity tends to 0 as T 1 by dominated convergence, using (16) and the
(easy) fact that if z # y,

Ii da G .a) Pp(a,y)? =0.
rTll,rrn<1 i aGp(rz,a) Pp(a,y)

Then notice that, for every v > 0, we can choose 1 > 0 small enough so that
[0 81— o= [Vidn)zn()
> (1-9) [ 00d2)g() N ([ V)20 ayremirny)

and so it follows from the previous estimates that

liminf/H(dz)g(z) N,.(1— exp—/y'(dy)zp(y)) > (1—7)(,g).

rTl,r<1
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Since v was arbitrary, this completes the proof of (18) and of Theorem 5. O

Proof of Lemma 7. This is very similar to the proof of Lemma VI.10. We use
again the stopping times o' defined in this proof and start with the following simple
observation. Let s € (0,0) and n > 3 such that 2.272" < (,. Let k > 2 be such that
k272" < s < (k+1)272". There is a random integer j such that

inf{s' > s, (v = (k—1)27*"} = o7.

By the snake property, Wor is the restriction of Wy to the interval 0,(k—1)27"]. It
easily follows that, for every p € {1,...,n — 2},

{Wi(t), t€ (¢ —27P)", (¢ — 2721}
3

C {WU;’ (t)v te [(Ccrj" - 272p)+7 (Ccr;‘ - 5272p72)+]}'
As a consequence of this remark, the statement of the lemma will follow if we can prove
that for a suitable value of & > 0 we have N, a.e., for all n sufficiently large and all j
such that o} < oo and T(Wg?) = 09,

3
(19) Card{p <n; WO’? (t) € Di_q2-»,Vt € [((G;L - 2—2p)—|—7 (CU;L - 52—2p—2)+]} > g
For every stopped path w € W, set
1
Go(w) = %Card{p <n;w(t) € Di_por, Yt € [(Co —272P)F, (Cuw — ;2‘2p—2)+]}.

By the same arguments as in the proof of Lemma VI.10, our claim (19) will follow if we
can get a good estimate on Il (7 > t,G5(§j0,4) < n/2). Precisely, it is enough to show
that, for every A > 0, we can choose o > 0 sufficiently small so that, for every n > 2
and every t > 0,

(20) IL(1 > t,GY(€oy) < n/2) <e ™"

(compare with Lemma VI.11). Set m = [n/2] and observe that

(21) IL (7 > t,G%(€.) < n/2) < > L, (U, N ... OU,)

1<k1<ko<...<km<n
where for every p € {1,...,n}, U, denotes the event
U, :{fr €D, Vre[lt—272")" (t - 2_2p_2)+]}

{3 elt—277)", (6~ 227 )% : & ¢ Di_aar}.
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By applying the strong Markov property at
inf{r >t— 2_2km, & & Di_qo—km |y
we get

Hw(ukl n... ﬂukm)

STy NN, ) x sup (& € D, ¥r € 0,272 7%))
a€D\D

S C(Oé) Hx(uk1 n... QUkm_l)

1—a2—km

with a constant c¢(a) depending only on « and such that ¢(a) — 0 as @« — 0. By
iterating this argument, we arrive at the estimate

Hw(ukl n... ﬂZ/{km) < c(a)m = C(Oz)[n/Q}_

By susbtituting this estimate in (21), and choosing a suitable value of «, we get the
bound (20). This completes the proof of Lemma 7. O

4 Further developments

A number of recent papers have studied extensions of Theorem 5 to higher dimensions
and more general equations. The purpose of these papers is usually to define the trace
of a nonnegative solution (possibly belonging to a special class) and then to study the
properties of the map that associates with a solution its trace. In this section, we
briefly survey these recent developments. The word solution always means nonnegative
solution.

A solution v of Au = 4u? in a domain D is called moderate if it is bounded above by
a function harmonic in D. In the setting of Theorem 5, this corresponds to the case
K = () (which implies that v is finite), and the minimal harmonic majorant of wu is
then the function h(z) = [v(dy)Pp(z,y). For a general smooth domain in dimension
d, one can show [L9] that moderate solutions are in one-to-one correspondence with
finite measures v on 9D that do not charge boundary polar sets (this result had been
conjectured by Dynkin [D7]). This correspondence has been extended by Dynkin and
Kuznetsov [DK3] to the equation Au = uP, 1 < p <2 (in fact to Lu = uP for a general
elliptic operator L). In this more general setting, the notion of boundary polar sets
is defined in terms of the superprocess with branching mechanism ¢ (u) = «?, and an
analytic characterization analogous to Theorem 2 holds [DK2].

The analytic part of Theorem 5 has been extended by Marcus and Véron [MV2] to the
equation Au = uP (p > 1) in the unit ball of R¢, provided that d < z—i. In this case,
the so-called subcritical case, all assertions of Theorem 5 remain true, except of course
the probabilistic formula (10).
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The supercritical case d > ]’;—i (d > 3 when p = 2) is more difficult and more inter-
esting. Marcus and Véron [MV3]| and Dynkin and Kuznetsov [DK4] (see also [DK5]
for extensions to a general domain on a Riemannian manifold) have shown that it is
still possible to define the trace as a pair (K,v) as in Theorem 5. In fact, formulas (8)
and (9) can be used for this purpose, with obvious modifications when D is a general
smooth domain. There are however two essential differences with the subcritical case:

(i) Not all pairs (K,v) are admissible. For instance, if p = 2, the pair (K,0) is not
admissible when K is boundary polar. Dynkin and Kuznetsov [DK4] (in the case 1 <
p < 2) and Marcus and Véron [MV1] have independently described all possible traces.
When 1 < p < 2, a probabilistic formula analogous to (10) holds for the maximal
solution associated with a given trace.

(ii) Infinitely many solutions may have the same trace. Here is an example, adapted
from [L10], in the case when p = 2 and D is the unit ball in R?, d > 3. Let (y,) be a
dense sequence in 0D and, for every n, let (r2,p = 1,2,...) be a decreasing sequence
of positive numbers. Recall the notation N,(y) = {z € 0D, |z — y| < r} and, for every
p>1, set

Hy,= | Nz (yn)
n=1

uy(z) = N, (EP N H, #0) , z € D.

Then it is easy to see that, for every p > 1, u, is a solution with trace (0D,0). On
the other hand, the fact that singletons are boundary polar implies that u, | 0 as
p T oo, provided that the sequences (r?,p = 1,2, ...) decrease sufficiently fast. Therefore
infinitely many of the functions u, must be different.

In view of this nonuniqueness problem, Dynkin and Kuznetsov [Ku|, [DK6] have pro-
posed to use a finer definition of the trace, where the set K is no longer closed with
respect to the Euclidean topology. This finer definition leads to a one-to-one corre-
spondence between solutions and possible traces, provided that one considers only o-
moderate solutions: A solution is o-moderate if and only if it is the limit of an increasing
sequence of moderate solutions. An intriguing open problem is whether there exist so-
lutions that are not o-moderate.

We refer to the survey [DKS] for a more detailed account of the recent results and open
problems in this area.
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VIII Lévy processes and the genealogy
of general continuous-state

branching processes

The Brownian snake construction of quadratic superprocesses relies on the fact that
the genealogical structure of the Feller diffusion can be coded by reflected Brownian
motion. Our goal in this chapter is to explain a similar coding for the genealogy of
continuous-state branching processes with a general branching mechanism . The role
of reflected Brownian motion will be played by a certain functional of a Lévy process
with no negative jumps and Laplace exponent 1). We first explain the key underlying
ideas in a discrete setting.

1 The discrete setting

We consider an offspring distribution p, that is a probability measure on N = {0, 1,2, ...}.
We assume that (1) < 1 and that p is critical or subcritical: Y ku(k) < 1.

The law of the Galton—Watson tree with offspring distribution pu, in short the pu-Galton—
Watson tree, can then be realized as a probability distribution on the set of all finite
trees. Here, a (finite) tree is a finite subset 7 of |, ,(N*)" (where N* = {1,2,...} and
(N*)? = {¢}) which satisfies the obvious properties:

(i) ¢ € T (¢ is the root of T).

(ii) If (u1,...,upn) € T with n > 1, then (uy,...,u,—1) € 7.

(iii) If w = (uq,...,u,) € 7T, there exists an integer k,,(7°) > 0 such that (uq,...,u,, k) €
7 if and only if k < k(7).

If u € (N*)™, the generation of u is |u| = n.

Consider then a sequence 7y, 71, ..., 7, ... of independent u-Galton—Watson trees. We
can code this sequence by the following procedure. We consider a “particle” that visits
the vertices of 7y, ..., 7, ... according to the following rules:

e The particle starts at time n = 0 from the root of 7 then visits all other vertices of
7o, then the vertices of 77, and so on.

e For each tree, the particle visits its vertices successively in lexicographical order.
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Denote by H,, the generation of the vertex that is visited at time n. It is easy to see
that the function n — H,, provides a coding of the sequence of trees. We then want to
have a better probabilistic understanding of this coding.

Proposition 1. There exists a random walk V = (V,,,n > 0) on Z with jump distribu-
tion v(k) = pu(k+1), k=-1,0,1,... such that for every n >0

H, = Card{j € {0,1,...,n—1},V; = inf V,}.

J<k<n

Proposition 1 is elementary. Let us outline the ingredients of the proof. For ev-
ery j € {1,...,Hy,} let pj(n) be the number of “younger brothers” of the ances-
tor of the individual visited at time n in the j-th generation. More precisely, if
u(n) = (u1(n),...,um,(n)) is the vertex visited at time n, and 7y, is the tree to
which it belongs, we set for every j =1,..., H,,

p;j(n) = Card{k > u;j(n); (u1(n),...,uj—1(n),k) € Ty} -

Set p(n) = (p1(n),...,pu,(n)). When H,, =0, p(n) = 0 is the empty sequence. Then
it is easy to see that p(n) is a Markov chain in the set of finite sequences of nonnegative
integers, with transition kernel given as follows. For k£ > 0,

Plp(n+1) = (a1,...,0p,k) | p(n) = (a1,...,05)] = p(k +1)
and, if ¢ = sup{j, a;; > 0} (sup 0 = 0),

Plp(n+1) = (a1,...,0q = 1) | p(n) = (a1,...,05)] = p(0) ,

with the convention that (as,...,a; —1) =0 if ¢ = 0. The first formula corresponds
to the case when the individual (vertex) visited at time n has k + 1 children: Then the
individual visited at time n + 1 will be the first of these children. The second formula
corresponds to the case when the individual visited at time n has no child: Then the next
visited individual is the “first available brother”, namely (u1(n), ..., uq—1(n), uq(n)+1)
in the previous notation (if ¢ = 0 it is the root of the next tree). The Markov property
for (p(n),n > 0) comes from the fact that, at the time when we visit an individual,
the past gives us no information on the number of its children (this is so because of the
lexicographical order of visits).

The random walk (V;,,n > 0) can be defined in terms of (p(n),n > 0) by the formula

Hn Hn

Vi, = ij(n) —{4(n) = ij(n) — Card{k € {1,...,n},p(k)

j=1 j=1

0} .
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The fact that it has the desired distribution easily follows from the formulas for the
transition kernel of p(n). Also observe that

0<j<n

Hy,
(p(n),1) == pj(n) =V, — inf V]
j=1

is the reflected random walk.

Finally, the explicit formula for H in terms of V is easy to derive. Note that the
condition

Vj = inf Vk

j<k<n

holds iff n < inf{k > j, Vi < V;}. But the latter infimum is the first time of visit of
an individual that is not a descendant of u(j) (as long as we are visiting descendants of
u(j), the “total number of younger brothers” (p(k),1) is at least as large as (p(j), 1)).
Hence the condition n < inf{k > j, Vi < V;} holds iff u(n) is a descendant of u(j), or
equivalently u(j) is an ancestor of u(n). Therefore

Card{j € {0,1,...,n—1},V; :jglginvk}

is the number of ancestors of u(n), and is thus equal to H,.

Our main goal in the following sections will be to study a continuous analogue of the
previous coding. The role of the random walk (V,,,n > 0) will be played by a Lévy
process with no negative jumps.

Exercise. Verify that an invariant measure for (p(n),n > 0) is

M((as- . ) = lan) -~ i) where fi(j) = p((j,00)) -

2 Lévy processes

In this section we introduce the class of Lévy processes that will be relevant to our
purposes and we record some of their properties.
We start from a function ¢ of the type considered in Chapter 1I:

P(A) = aX + BN + /(0 )W(dr)(e_M —1+Ar)

where @ > 0, 8 > 0 and 7 is a o-finite measure on (0, o0) such that [ 7(dr)(r Ar?) < oo
(cf. Theorem II.1).
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Then there exists a Lévy process (real-valued process with stationary independent in-
crements) Y = (Y;,t > 0) started at Yy = 0, whose Laplace exponent is 1), in the sense

that for every t > 0, A > 0:
Ele= ] = V&)

The measure 7 is the Lévy measure of Y, 8 corresponds to its Brownian part, and —«
to a drift coefficient (after compensation of the jumps). Since 7 is supported on (0, c0),
Y has no negative jumps. In fact, under our assumptions, Y can be the most general
Lévy process without negative jumps that does not drift to 400 (i.e. we cannot have
Y; — o0 as t — 00, a.s.). This corresponds to the fact that we consider only critical or
subcritical branching.

The point 0 is always regular for (—oo, 0), with respect to Y, meaning that

P(inf{t >0,Y; <0} =0) =1.
It is not always true that 0 is regular for (0, c0), but this holds if

1
(1) ﬁ>0,0r6=0and/r7r(dr):oo.
0

From now on we will assume that (1) holds. This is equivalent to the property that the
paths of Y are a.s. of infinite variation. A parallel theory can be developed in the finite
variation case, but the cases of interest in relation with superprocesses (the stable case
where m(dr) = cr=27%r, 0 < a < 1) do satisfy (1).

Consider the maximum and minimum processes of Y:

Sy =supY,, I; =infY;.
s<t s<t

Both S — Y and Y — [ are Markov processes in R, (this is true indeed for any Lévy
process). From the previous remarks on the regularity of 0, it immediately follows that
0 is a regular point (for itself) with respect to both S —Y and Y — I. We can therefore
consider the (Markov) local time of both S —Y and Y — I at level 0.

It is easy to see that the process —I provides a local time at 0 for Y —I. We will denote
by N the associated excursion measure. By abuse of notation, we still denote by Y the
canonical process under N. Under N, Y takes nonnegative values and Y; > 0 if and
only if 0 <t < o, where o denotes the duration of the excursion.

We denote by L = (L;,t > 0) the local time at 0 of S — Y. Here we need to specify the
normalization of L. This can be done by the following approximation:

t

1
2 Ly =lim- | lis _y ods,
(2) t alff)lgo {Ss—Y,<e}a$
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in probability. If L=1(¢t) = inf{s, Ly > t} denotes the right-continuous inverse of L,
formula (2) follows from the slightly more precise result

1 L—l(t) 2
(2) iir%EKE/ lis,—v,<eyds — (“\L“’)) } =0
— 0

which can be derived from excursion theory for S —Y (after choosing the proper nor-
malization for L).

The process (Sp-1(),t > 0) is a subordinator (that is, a Lévy process with nondecreasing
paths) and a famous formula of fluctuation theory gives its Laplace transform

(3) E(exp—ASp-1(1)) = exp (— t@) :
Note that \ -
w :a+ﬁ/\+/0 drm((r,00))(1 —e ")

so that the subordinator (Sp-1¢),t > 0) has Lévy measure 77((7“, oo))dr, drift 8 and is
killed at rate a. In particular for every s > 0, if m denotes Lebesgue measure on R,
we have a.s.

m({Sp-1(;0 <7 < s, L7 (r) < oo}) = B(s A Luo)
from which it easily follows that

(4) m({S,,0 <r <t}) = gL, .

Note that when 3 > 0 this formula yields an explicit expression for L;.

3 The height process

Recall the formula of Proposition 1 above. If we formally try to extend this formula
to our continuous setting, replacing the random walk S by the Lévy process Y, we are
lead to define H; as the Lebesgue measure of the set {s <t,Y; = I}}, where

If = inf Y,.
s<r<t

Under our assumptions however, this Lebesgue measure is always zero (if s < ¢, we have
P(Yy = I}) = 0 because 0 is regular for (—o0,0)) and so we need to use some kind of
local time that will measure the size of the set in consideration. More precisely, for a
fixed t > 0, we introduce the time-reversed process

v =y, - Y-, 0<r <t (Yo— = 0 by convention)
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and its supremum process

S'ﬁt): sup Ys(t), 0<r<t.
0<s<r
Note that ()Aﬁn(t)75'7(~t); 0 < r < t) has the same distribution as (Y;,S,;0 < r <t). Via

time-reversal, the set {s <t, Yy = I7} corresponds to the set {s <, S = Ys(t)}. This
leads us to the following definition.

Definition. For every t > 0, we let Hy be the local time at 0, at time ¢, of the process
S® — vy The process (Hy,t > 0) is called the height process.

Obviously, the normalization of local time is the one that was described in Section 2.
From the previous definition it is not clear that the sample paths of (Hy,t > 0) have any
regularity property. In order to avoid technical difficulties, we will reinforce assumption
(1) by imposing that

(1) B>0.

We emphasize that (1)" is only for technical convenience and that all theorems and
propositions that follow hold under (1) (for a suitable choice of a modification of (Hy,t >

0)).

Under (1) we can get a simpler expression for H;. Indeed from (4) we have
1 A
H, = Bm({s,,(f),o <r<t}),
or equivalently,

1
(5) H; = Bm({I[,ogrgt}).
The right side of the previous formula obviously gives a continuous modification of H
(recall that Y has no negative jumps). From now on we deal only with this modification.

If ¥(u) = Bu?, Y is a (scaled) linear Brownian motion and has continuous paths. The
previous formula then implies that H; = %(Yt — I;) is a (scaled) reflected Brownian
motion, by a famous theorem of Lévy.

We can now state our main results. The key underlying idea is that H codes the geneal-
ogy of a 1-CSBP in the same way as reflected Brownian motion codes the genealogy of
the Feller diffusion. Our first theorem shows that the local time process of H (evaluated
at a suitable stopping time), as a function of the space variable, is a 1¥-CSBP.

Theorem 2. For every r > 0, set 7. = inf{t,I; = —r}. There exists a »-CSBP
X = (Xqa,a > 0) started at r, such that for every h € By (Ry),

/OOO dah(a)X, = /OTT ds h(H,) .
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Obviously X can be defined by

Tr

1
X, =lim- | dsi as.
elFOl e Jo S lla<H,<a+e}r @8

Remark. It is easy to verify that a.s. for every t > 0, H, = 0 iff Y; = I;. (The
implication Y; = I; = H; = 0 is trivial.) Since 7, is the inverse local time at 0 of
Y — I, we can also interpret 7, as the inverse local time at 0 of H. Indeed, Theorem 2
implies

1 [
= Xg = lim = ds1 8.
r 0 ;fglg ; S l{o<H,<e} » A8
from which it easily follows that for every ¢ > 0

t

1
lim — ds1 =—1 .S.
Elﬁ)lg ) S L{o<H<e} t, a.s

Using this remark, we see that the case 1)(u) = S u? of the previous theorem reduces to
a classical Ray-Knight theorem on the Markovian properties of Brownian local times.

Our second theorem gives a snake-like construction of (,1)-superprocesses. As in
Chapter IV we consider a Markov process £ with values in a Polish space F, satisfying
the assumptions in Section IV.1. We also fix a point x € E. We use the notation
introduced in Section IV.1.

We then construct a process (W, s > 0) with values in W,, whose law is characterized
by the following two properties:

(i) ¢s = Cw., s > 0 is distributed as the process Hs, s > 0.
(ii) Conditionally on (s = f(s), s > 0, the process W has distribution ©7.

Note that this is exactly similar to the construction of Chapter IV, but the role of
reflected Brownian motion is played by the processs H. There is another significant
difference. The process W is not Markovian, because H itself is not. This explains why
we constructed W started at the trivial path = and not with a general starting point
w € W, (this would not make sense, see however the comments in the next section).

Arguments similar to the proof of Lemma IV.1 show that W is continuous in probability

(see [LL2] for details). In particular we may and will choose a measurable modification
of W.

Theorem 3. There exists a (€,1))-superprocess Z = (Zg,a > 0), with Zy = rd,, such
that for every h € By (R4), g € Byt (E),

/ooo h(a)(Za, g)da = /0 " W(H)g(W.)ds
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This is clearly analogous to Theorem IV.4. Note however that we restricted our atten-
tion to a superprocess started at rd,. As in Theorem IV.4, we could have obtained a
general initial value for Z by introducing the excursion measures of W. These excursion
measures are easily defined from the excursion measure of H away from 0, which is itself
defined as the law of (Hg, s > 0) under the excursion measure N of ¥ — I.

4 The exploration process

Before we proceed to the proofs, we need to introduce a crucial tool. We noticed that H
is in general not a Markov process. For the calculations that will follow it is important
to consider another process which contains more information than H and is Markovian.

Definition. The exploration process (ps,t > 0) is the process with values in My(Ry)
defined by

<ptag> :/ dslf g(HS) )
[0,2]

for g € By (Ry). The integral in the right side is with respect to the increasing function
s — I},

We can easily obtain a more explicit formula for p;: A change of variables using (5)
shows that

(prg) = / do I3 (B~ m({I],r < s}))
- / 4. I3 g (5~ m({I}, 7 < 1)

Ht
iy / dagla)+ Y (I - Yi)g(H,)

s<t:Ys_<I}
so that
(6) pe(da) = Bl y()da+ Y (I; —Yio)om, (da)
s<t:Ys_<I}

From this formula it is clear that
supp p¢ = [0, Hy| , for every t >0, a.s.
The definition of p; also shows that
(pe, 1) =Yy — I .

The process (pt,t > 0) is the continuous analogue of the Markov chain (p(n),n > 0) of
Section 1.
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If p € M¢(R4) and a € R we define k,p € M¢(R4) by the formula

ka/""([o’ T]) = M([Ov ’I“]) A CL+ .

When a < 0, ko = 0, and when a > 0, k. can be interpreted as the measure u
“truncated at mass a”.

If o € M¢(R4) has compact support and v € M(R;), the concatenation [u,v] is
defined by

/ (1, ] (dr)h(r) = / w(dr)h(r) + / o(dr)h(H (1) + 1)
where H (1) = sup(supp p).

Proposition 4. The process (p:,t > 0) is a cadlag strong Markov process with values
in the space M¢(Ry) of all finite measures on Ry. If § € M¢(R,), the process started
at 6 can be defined by the explicit formula

P! = [kepi>41,0, pi).

Proof. The cadlag property of paths follows from the explicit formula (6). This formula
shows more precisely that ¢ is a discontinuity time for p iff it is so for Y, and p; =
pPr— + AY; ) H,-
Then, let T be a stopping time of the canonical filtration (F;):>0 of Y. Consider the
shifted process

Y\ =Yp, —Yr, t>0,

which has the same distribution as Y and is independent of Fr. Then, from the explicit
formulas for p and H, one easily verifies that, a.s. for every ¢ > 0,

T

with an obvious notation for p,ET) and It(T). The statement of Proposition 4 now follows

from the fact that (It(T) , pgT)) has the same distribution as (I, p;) and is independent
of FT. O

Remark. In view of applications to superprocesses (cf Theorem 3 above), the right
generalization of the Brownian snake of the previous chapters is the pair (p, W), which
is Markovian in contrast to the process W alone. The process (p, W) is called the
(&,1)-Lévy snake.

The following two propositions give properties of p that play a central role in the proof
of Theorems 2 and 3. The first proposition gives an explicit formula for the invariant
measure of p, and the second one describes the potential kernel of p killed when it hits
0.
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Before stating these results, we give some important remarks. Recall that N denotes
the excursion measure of Y — I away from 0. Formulas (5) and (6) providing explicit
expressions for the processes p and H still make sense under the excursion measure N.
Furthermore, these formulas show that both p; and H; depend only on the values taken
by Y — I on the excursion e; of Y — I that straddles ¢, and

Pt = Pt—a,(€t) Hy = H; 4, (et),

if a; denotes the starting time of this excursion. Since <,0t, 1> =Y; — I; the excursion
intervals of p away from 0 are the same as those of Y — I, and the “law” of (p;, ¢ > 0)
under N is easily identified with the excursion measure of the Markov process p away
from 0.

We set *(u) = 1(u) — au and denote by U = (U, t > 0) a subordinator with Laplace
exponent 1*, i.e. with drift 8 and Lévy measure m([r, c0))dr.

Proposition 5. For every nonnegative measurable function ® on M¢(R4),

N(/OG dt@(pﬂ) = /000 dae " E(®(J,)),

where Jo(dr) = 1[04 (1) dU,.

Proof. We may assume that ® is bounded and continuous. From excursion theory for
Y — I and the remarks preceding the proposition, we have for every € > 0, C' > 0,

3

o 1 Te
N</0 dt ®(py) 1{Ht§C}> = _E</o dt ®(pt) 1{Ht§C}>
1 oo
= 5/0 th(l{t<TE,HtSC}‘I’(Pt))-

Then, for every fixed ¢t > 0, we use time-reversal at time ¢. Recalling the definition of

H and p, we see that

~(t
pt=77§)

where ﬁ,gt) is defined by
() Lot i F
0. ) = [ a5 (L - 1)
0
and LV = 5—1m({5*§”, 0 <s<t})asin (4). Similarly,
{t<r H <Cy={8" v\ < [V <y
and so we can write

~(t
E(lptcr. m<cy®(pr) = E(l{ﬁﬁ”—?f”q,ii”gC}q)(mE ))) = E(1{s,-v,<e,L,<c1 (1))
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where .
<77t, f> = / dS, f(Li — L,).
0
Summarizing, we have for every € > 0

1

N(/OU dt ®(p;) 1{Ht§0}> = E(g /OOO dt 1{St—Yt<s,Lt§C}(p(77t)>'

Note from (2) that the random measures e~ '1g,_y, <-1dt converge in probability to the
measure dL;. Furthermore, (2)" allows us to pass to the limit under the expectation
sign and we arrive at

lim E(g /O dt l{St—Yt<€,LtSC}(I)(77t)> = E(/O st ]‘{Ltfc} (I)(nt)>

e—0
B[ davtso ),

We finally let C' tend to co to get

N [ao) =5 [ davinow)

Then note that, on the event {a < Lo},

L™Y(a) a
(M-, f) = /0 a5, f(a—L,) = / av. f(a - s),

0

where Vs = Sp-1(, is a subordinator with exponent @ (cf (3)). Hence, Pla < Loo] =
P[L7'(a) < oo] = e ** and conditionally on {L™'(a) < oo}, np-1(,) has the same
distribution as .J,, which completes the proof. O

We denote by M the measure on M (R, ) defined by:

(M, ®) :/ da e E(®(J,)).
0
It follows from Proposition 5 that the measure M is invariant for p (we will not need

this fact in what follows).

Proposition 6. Let § € M;(R.) and let p° be as in Proposition 4. Define TO(G) =
inf{s >0, p! = 0}. Then,

5( [ i tsa)) = [ ar [ M a(is0.00)

0
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Proof. First note that TO(G) = T<p,1> by an immediate application of the definition of ik
(notice that p,, =0 for every a > 0 a.s.). Then, denote by (a;,b;), j € J the excursion
intervals of Y — I away from 0 before time 74 1>, and by e;, 7 € J the corresponding
excursions. Note that {t > 0, Y; = I;} has zero Lebesgue measure a.s., since, for every
t >0, P(Y; = I;) = 0 by time-reversal and the regularity of 0 for (0, 00). As we observed
before Proposition 5, we have p, = ps_q, (e;) for every s € (a;,b;), j € J, a.s. It follows

that
(0

E(/OTO ds @(pi)) = E(Z/Objaj dr q)([k<971>+1aj Q,pr(ej)]))
jeJ

By excursion theory, the point measure

Z 01, e; (dude)

Jjed

is a Poisson point measure with intensity 1j_.4 1> 0](u)du N(de). Hence,

) 01> -
E(/OT0 ds@(pi)) :/0 " duN(/O drq)([kue,pr])>,

and the desired result follows from Proposition 5. 0
5 Proof of Theorem 2
We will now prove Theorem 2. Theorem 3 can be proved along the same lines (see

[LL2]).
Let h € Bpy (Ry) with compact support. It is enough to prove that

(7) E(exp—/OTrdsh(HSD :E<exp—/ooodah(a)Xa>,

where X is a ¢-CSBP with Xy = r. By Corollary I1.9 (specialized to the case f = 1), the
right side of (7) is equal to exp(—r w(0)), where the function w is the unique nonnegative
solution of the integral equation

(8) w(t) +/too dr p(w(r)) = /too dr h(r).

On the other hand, by excursion theory for the process Y — I and the remarks preceding
Proposition 5, we have

E[exp— /OTT ds h(HS)} = exp —rN(l —exp — /00 ds h(HS)>.
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Thus it suffices to verify that the function

w(t) = N(l —exp—/og dsh(t—i—Hs))

solves (8).

To this end, we will proceed in a way similar to the proof of Proposition IV.3 and expand
the exponential in the definition of w. This leads to the calculation of the moments

T"h(t) = lN((/OG dsh(t—l—Hs))n), n>1.

n!

Depending on the behavior of ¥ near oo, these moments may be infinite. Later we
will make an assumption on 1 that guarantees the finiteness of the moments and the
validity of the previously mentioned expansion. A suitable truncation can then be used
to handle the general case.

To begin with, we observe that

T h(t) = N(/{

Note that Hy, = H(py,), where H(u) = sup(supp p) as previously. The right-hand side
of the preceding formula can be evaluated thanks to the following lemma. To simplify
notation, we write |p| = (p, 1) for p € My(Ry).

dty ...dt, ﬁh(t n Hti)>.
1=1

0<t1<...<tn<o}

Lemma 7. For any nonnegative measurable functional F' on M¢(R)",

N(/ dtl...dtnF(ptl,...,ptn))
{0<t1<...<tp<o}

= /Q(")(d,ul coodppdag . oday) F(pa, ..y i),

where Q™) is the measure on M (R4)™ x R’}F_l which is defined by induction as follows.
First, QU = M, and then QY s the image of

Q™ (dus ... dundas . .. dan)1, |, (a)da M(d6)
under the mapping

(e ey oy G2y e vy Ay @y 0) — (i1« ooy iy [Kapin, 0], a2, . .. ap, a).
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Remark. This lemma is a generalization of Proposition II1.3: In the case ¥ (u) = Bu?,
p: is equal to S~ times Lebesgue measure on [0, Hy], and the law of (Hy,t > 0) under
N is the Ito measure of Brownian excursions, up to a trivial scaling transformation.

Proof. The case n = 1 is Proposition 5. The proof is then completed by induction on
n using the Markov property of p under N and Proposition 6. 0

By construction, the measures ju1,...,u, exhibit a branching structure under Q™
and the quantities as,...,a, determine the levels of branching. We will examine this
branching structure in detail and get a recursive relation between the measures Q).
which is the key to the proof of Theorem 2.

For every n > 1, we set O = M;(Ry)" x RT™! (O = M;(R,)) and we take
@ == U,,O.Lo:1®(n).
Let n > 2 and let (pq, ..., fn, G2, ...,a,) € O be such that a; < |u;_1| A |p;] and
Kajpj—1 = ka,p; for every j € {2,...,n} (these properties hold Q™ a.e.). We define
several quantities depending on (p1, ..., fin,as, ..., a,). First, we set

b:2§11;1£naj, h = H(kpp1).
Notice that kyu; = kppq for every j € {2,...,n}.

We then set b = p1([0,h)), by = p1([0,h]) and observe that b < b < by. We let
J1 < J2 < --- < jr—1 be the successive integers in {2,...,n} such that

aj, € [b—7b+]7 aj, € [b—ﬂah]: cee 0G5 € [b—ﬂajk—z]'

Here k is a (random) integer such that 2 < k < n and b = a;, , by construction. We
also take jo = 1, jr = n+ 1 by convention. Informally, the integer k corresponds to the
number of offsprings at the first branching, and A is the level of this branching.
We let vy be the restriction of pq (or of any p;) to [0, k), and for every j € {1,...,n},
we define v; € M¢(Ry) by taking v;([0,r]) = p;((h, h +7]).
Finally, for every [ € {1,...k}, we define
l l l l — g1

A = (ug),...,ugl)_jl_l,ag),...,ag-l)_jl_l) e QUI—ii-1)
by setting

uE” = Vji_1+i-1 1<i<j—Ji-1,

! S
ol = a; i1 —a 2<i< 1= Ji-1

where by convention a; = b.
The next lemma can be viewed as a generalization of Theorem III.4.
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Lemma 8. For every integer p € {2,...,n}, for every measurable subsets Ao, ..., A,
of ©, we have

QUM (k=pvy € Ag, A1 € Ay,..., A, € A)
= 7, M(Ao) > QU(Ay)...QM)(A),

ni+...+np=n,n; >1

where v, = flyp—oy + [ ?;)—Tw(dy).

Proof. We will derive Lemma 8 from a slightly more precise result, which is proved by
induction on n. We keep the previous notation and also set Ab =b, —b_, ¢; = a;, —b_
for 1 <i <k —1. Then, if B is a Borel subset of Rﬁ, we claim that

Q™ (k=p,(Ab,cr,...,cp1) € Byvg € Ag, A1 € Ay,..., A, € AY)

) Zp—2
= (ﬁl{p:2}13(0,0)+/%(dy)/0 le.../(; dzp—llB(yazly---;Zp—l))
x M(4g) Y. QU(A))...Q"(4,),

ni+...+np=n
TLiZl

(9)

where 7(dy) = 7([y, 00)) dy. Clearly, Lemma 8 follows from (9). Before proceeding to
the proof of (9), we state a lemma giving the “law” under M (du) of the splitting of
at a uniformly distributed mass level.

Lemma 9. If p € M¢Ry) and a € (0,|u|), define r = r(p,a) by r = H(kqu), and
then Tpp,orpn € My(Ry) by Topp = pyjo,ry, orpe([0,u]) = pu((r,r + ul) for every u > 0.
Then,

[ st | " da P 00 (), o]
= [ Mt a1 (5o, 0,00+ [ 7 [ e PG, 2))

0

Proof. As in Proposition 5, write U = (U;,t > 0) for a subordinator with drift 5 and
Lévy measure 7. For every a > 0, set 1, = inf{t, Uy > a}. By the definition of M, the
left-hand side of the formula of Lemma 9 can be written as

/ dte_at/ daE[l{a<Ut}F(l[o,na)(s)dUS;Una(l[o,t](s)dUS)7AUnava_Una—)]'
0 0
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We may assume that F' is of the form F'(uq1, o, u,v) = 1a, (p1)1a,(pu2)1p(u,v). Then
the strong Markov property of U at time 7, shows that the previous expression is also
equal to

bl /O da e 14, (10,1, ()AU)Lp(AU, .a — Uy, )] M(4)

AU,
= M(Ay) x (E[ Z e—at1A1(1[07t)(s)dUS)/O 15(AU, 2) dz}
t:AU+>0

+E[/0 daliay, —oye " 1a, (110, (s)dUs) 13(0,0)D.

The first term of the sum inside parentheses is equal to
00 N y
B / dt e 14, (110.0)(5)dU,) / #(dy) / 15 (y, 2)dz]
0 0
_ y
= ([ 7y [ 15.200z) 2,
0

whereas the change of variable s = 7, gives for the second term

E|:/ dUt 1{AUt:0}€7at1A1(1[07t)(8)dU5) 13(0, 0)] = ﬁ 13(0, 0) M(Al)
0

Lemma 9 follows. O
Proof of (9). First consider the case n = 2. Then necessarily k& = 2. Furthermore,
from the construction of Q(?), we have with the notation of Lemma 9,

Q(Q) (k‘ =2, (Ab, 01) € B,vg € Ag,v1 € Ay, 19 € Ag)

[ 1]
- / / M (dps) M (dy) / da 1 (u({r}), @ — [rept) Lag (o) Lay (042) Lty (1)

0

[l
= M(d) [ M) [ datprd)ea = frod) Lag (7000 L ()
= (815(0.0) +/7~r(dy) /Oy 4= 15(y. 2)) M(A0)M(A)M(Ay),

by Lemma 9. This gives the case n = 2.

To complete the proof, we argue by induction on n. Under Q1) we have p,41 =
(ka1 pin, 0] for some ant1 € [0, |unl], 0 € M(R,). To avoid confusion, write k™), b(™),
b(_n), etc. for the quantities defined at the order n. We need to treat separately the
following cases:
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o If ap1 > b, then k1) = k(™) and AE”H A(.") fori =1,...,k(™ —1, whereas

p(n) 18 obtained by adding one “branch” to A

k(n) -
o If b < a1 < b then kD = kM 41, AT = Al for i =1, k™ and

(n+1)
Ak<ﬂ>+1

consists of only one “branch”.

elfa, 1< b(_n), then k(1) =2 and Aénﬂ) consists of only one “branch”.

Starting from formula (9) at order n and examining carefully each of these cases one
arrives at the formula at order n 4+ 1. We leave details to the reader. O

We come back to the proof of Theorem 2. By Proposition 5,
(10) TUh(t) = /M(du) Wt + H()) = / dr e Bt + 7).
0

By using Lemma 7 and then Lemma 8, we get for n > 2:

n

T"h(t):/Q(")(dm...dundag...dan H (t+ H(u;))

k Ji—Ji—1

:/Q(")(dﬂl...dundag...dan H( H h(t + H(v) + H(p <z>>)>
=1 i=1

O RS HQ“”(HhHH )+ 1)

ni+.. +np_nnz>1 =1

= "% > T HT”lh) (t)
p=2 =1

ni+...+np,=n,n; >1

We have thus obtained the recursive relation:

n p
(11) T"h=> > T ([[T™n)
p=2 ni+...+np=n,n;>1 =1

(compare with formula (3) in Chapter IV).

To complete the proof, we first assume that suppm C [0, A] for some A < oco. This
implies that the numbers +, are finite. Furthermore, 9 is analytic on R, and

oo
u) =au+ Z(—l)p p uP.
p=2
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Let B > 0 be such that h(t) = 0 if ¢ > B. The recursive relation (11) implies the
existence of a constant C' < oo such that, for every n > 1,

(12) Th(t) < C™ 10,5 (t).

To prove this bound, introduce the nonnegative function v that solves the integral
equation

v(t) = 1y9,p(t) + /too P(v(s)) ds,

where ¥ (u) = au + Z;iz vpuP and § is a positive constant. Note that the function
v is well defined and bounded provided that ¢ is small enough. Choose € > 0 so that
eT'h < 4. An easy induction argument using (11) and the integral equation for v shows
that €™ T™h < v for every n > 1. The bound (12) follows.

By (12), we have for 0 < A < C~ 1

OO>\n

ZHN<</OUh(t+HS)dS>n> < 00.

n=1

If wy(t) = N(1 —exp—A [, dsh(t + Hy)), we obtain from Fubini’s theorem that, for
0<A<Ct,
(13) wx(t) =Y (=1)" P AT T"h(t).

n=1

Set ¢*(u) = ¥(u) —au =3 7, (=1)Py,uP. Again by Fubini’s theorem, we have

ki
N
3
I
—_

=D (D" > TYT™h...T"h)(t)

ni+...+np=n,n; >1

= N (D) AT TR,

n=2

using (11) in the last equality, and (10) in the previous one. Comparing with (13) gives

w,\(t)—i—/ooo dr =T (wa (£ 4 7)) = AT () = A /OOO dr e~ h(t + 7).
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It is then easy to verify that this equation is equivalent to

+/Ooow(w>\(t+r))dr:)\/Oooh(t+r)d7’.

The latter equation holds a priori for 0 < A\ < C~!. However an argument of analytic
continuation allows us to extend it to every A > 0. In particular, it holds for A = 1,
which gives the desired equation (8).

We finally explain the truncation procedure needed to get rid of our assumption that m
is supported on (0, A] for some A < co. For every integer k > 1, we let 7(%) denote the
restriction of 7 to (0, k], and we set

PO 0) = (at /( k rr(dr)) A+ B3 + / 7 (dr) (=™ — 1 4 rA).

Notice that ©)*) | ¢ as k T co. The Lévy process with exponent ¢(*) can be embedded in
the Lévy process with exponent v via a suitable time-change. To explain this embedding

,00)

(under the excursion measure), we introduce the stopping times U ](k), j >0 and Tj(k),
j > 1 defined inductively as follows:
Ut =0

. k ;
T =inf{s > UM, AY, >k}, j>1,

Uj(k) = inf{s > Tj(k), Y, = YTgk)_}; J=1

We then let I'®) be the random set

k k
k) — U [U( ) Tj(+)1

and define 17 fo Ipa (r)dr, § ) = = inf{r, 77T ) > s}. Then, it is easy to verify that

)

the process Ys( = Y’_y(k), s > 0 is distributed under N according to the excursion

measure of the Lévy process with Laplace exponent (*). Informally, Y*) is obtained
from Y by removing the jumps of size greater than k. Furthermore, our construction
immediately shows that H. S(k) = H’y(k) is the height process associated with Y (%),

Set o(k) = nc(,k). By the first part of the proof, we know that the function

o (k)

w® (t) = N(l —exp — / dsh(t + Hs(k))>
0
solves (8) with ¢ replaced by (%), On the other hand, it is immediate that

w® (£) = N(1 —exp —/Oads1p<k> (s)h(t + Hs)> 1 N(1 —exp —/Oadsh(t + Hs)> — wl(t)

as k T co. By simple monotonicity arguments, we conclude that w solves (8). U
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BIBLIOGRAPHICAL NOTES

CHAPTER 1

The classical books by Harris [Ha2|, Athreya and Ney [AN] and Jagers [Ja] contain
much about Galton-Watson branching processes and their generalizations. The idea
of considering branching processes whose state space is “continuous” appears in Jirina
[Ji]. Continuous-state branching processes and their connections with rescaled Galton-
Watson processes were studied in the late sixties by Lamperti [Lal], [La2] and Silverstein
[Si] in particular. The convergence of rescaled critical Galton-Watson processes with
finite variance towards the Feller diffusion had already been discussed by Feller [Fe].
Watanabe [Wa| used semigroup methods to construct a general class of measure-valued
branching processes (later called superprocesses by Dynkin) including the one considered
here. Watanabe also established a first result of approximation of supeprocesses by
branching particle systems. Similar approximations results have been obtained since
by a number of authors in different settings: See in particular [Dal], [EK] (Chapter 9),
[D3] and more recently [DHV]. For references concerning the other results mentioned in
Chapter I, see below the notes about the corresponding chapters.

CHAPTER I1

Theorem 1 is a special case of a result of Silverstein [Si] describing the general form of the
Laplace exponent of a continuous-state branching process. Our construction of super-
processes via an approximation by branching particle systems is in the spirit of Dynkin
[D3], [D4]. Lemma 6 is borrowed from [D3] (Lemma 3.1). Historical superprocesses
were constructed independently by Dawson and Perkins [DP1], Dynkin [D3], [D4] and
in a special case Le Gall [L3]. Regularity properties of superprocesses have been studied
by Fitzsimmons [Fil], [Fi2] via martingale methods (see also Dynkin [D2]). Proposition
7 and its proof are directly inspired from [D3] Lemma 4.1. The Laplace functional for
the “weighted occupation time” of superprocesses (Corollary 9) was used by Iscoe [Is]
to study properties of superprocesses in the quadratic branching case. Dawson’s Saint-
Flour lecture notes [Da2| provide a good survey of the literature about measure-valued
processes until 1992. Dynkin’s book [D8] gives a general presentation of the theory of
superprocesses.

CHAPTER III

This chapter follows closely [L5], with some simplifications from Serlet [Se2]. Excursion
theory was developed by Ito [It]. See the books [Bl], [RW] or [RY] for a detailed
presentation of the Itd excursion measure. Our formalism for trees is in the spirit of
Neveu [Ne|. The construction of branching trees embedded in linear Brownian motion or
random walks has been the subject of many investigations. Harris [Hal] first observed
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that the contour process of the critical geometric Galton-Watson tree is a positive
excursion of simple random walk (see also [Dw|). Rogers [Ro] and Le Gall [L1] gave
applications of this fact to properties of linear Brownian motion and its local times.
Brownian analogues of Harris’ observation were provided by Neveu and Pitman [NP1],
[INP2], Le Gall [L.2] and Abraham [Ab]. The coding of trees by functions was formalized
by Aldous [Al3] (see also [L3]). Aldous’ CRT was introduced and studied in [All] (see
also [Al2] and [Al3]). The connection between the CRT and the normalized Brownian
excursion (Theorem 6) was first obtained in [Al3], with a different method involving an
approximation by conditioned Galton-Watson trees.

CHAPTER IV

The Brownian snake construction of superprocesses was first developed in [L3] with a
slightly different approach. Our presentation here is more in the spirit of [L4] or [L6].
Proposition 2 giving the moment functionals for the Brownian snake was one of the
motivation for the results of [L5] presented in Chapter III. Via the connection between
the Brownian snake and quadratic superprocesses, these moment formulas also appear as
consequences of the calculations in Dynkin [D1] (Theorem 1.1). Dynkin and Kuznetsov
[DK1] used the main result of [L5] (our Theorem IV .4) to prove an isomorphism theorem
between Brownian snakes and superprocesses which is more precise than Theorem V .4.
The fact that a superprocess started at a general initial value can be written as a Poisson
sum whose intensity involves the so-called “excursion measures” was observed in [EKR]
and used in particular in [DP1] (Chapter 3). Many remarkable sample path properties
of super-Brownian motion (much more precise than Corollary 9) have been established
by Perkins and others: See e.g. [Su], [Pel], [Pe2], [Pe3], [DIP], [Trl], [AL], [Sel], [Se2],
[LP], [DL2], [L12], [De]. The result of the exercise at the end of Section 5 is due to
Tribe [Tr2]. Integrated super-Brownian excursion was discussed by Aldous [Al4] as a
tree-based model for random distribution of mass.

CHAPTER V

Exit measures of superprocesses were introduced and studied by Dynkin [D3], [D4] for
superprocesses with a general branching mechanism. In particular, the basic Theorem
4 is a special case of Dynkin’s results. Our presentation follows [L6], which gives the
very useful Lemma 5. This lemma also plays an important role in the obtention of
sample path properties of super-Brownian motion: See in particular [LP]| and [L12].
The probabilistic solution of the nonlinear problem (again for more general branching
mechanisms) was derived in Dynkin [D5] (see also [D6] for analogous results in the
parabolic setting). Lemma 7 is borrowed from the appendix to [D5], and Corollary 8 is
(a special case of) the “mean value property” observed by Dynkin. The analytic part
of Proposition 9 is not a difficult result and had been known for a long time, but the
probabilistic approach is especially simple.
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CHAPTER VI

The probabilistic representations of solutions with boundary blow-up (Propositions 1
and 2) are due to Dynkin [D5] (see also [D6] and [D7] for many related results including
the parabolic setting). The existence of such solutions had been known for a long time
by analytic methods: See Keller [Ke] and Osserman [Os]. The question of characterizing
polar sets was first addressed by Perkins [Pe3|, who showed that a set is not polar if
it has nonzero capacity. The first part of the proof of Theorem 4 is an adaptation
of Perkins’ argument (see [L4] for a more elegant approach using the potential theory
of symmetric Markov processes). The converse was obtained by Dynkin [D5], who
generalized the result to the case of stable branching mechanism. Dynkin’s approach
consists in observing that polar sets exactly correspond to removable singularities for
the associated partial differential equation, and then using the characterization due to
Baras and Pierre [BP|. The key duality argument of the proof presented here is also
taken from [BP]. See Adams and Hedberg [AH]| for a thorough discussion of Sobolev
capacities and equivalent definitions. Results analogous to Theorem 4 in the parabolic
setting are presented in [D6] and [D7]. The paper [L7] gives explicit calculations of
certain capacitary distributions for the Brownian snake, which yield in particular the
law of the process at the first time when it hits a nonpolar compact subset K (this
law is described as the distribution of the solution to a certain stochastic differential
equation). Section 3 is adapted from [DL1] with some simplifications. The problem of
finding sufficient conditions for the existence of solutions of Au = w” with boundary
blow-up has been tackled by several authors in the analytic literature: See in particular
[BM], [V1] and [MV1]. Theorem 6 and Corollary 7 have been extended by Delmas and
Dhersin [DD] to a parabolic setting. Theorem 9 is an improvement of a result in [L6],
along the lines of [Dh], Chapter 3. Lemma 10 was proved in [L8] and applied there to
certain estimates of hitting probabilities for super-Brownian motion. See [MV1] for an
analytic approach to the uniqueness of the nonnegative solution of Au = u? in a domain
(until now, this analytic approach requires more stringent conditions than the one of
Theorem 9). The recent book by Véron [V2] is a good source of analytic references for
the problems treated in this chapter and the next one.

CHAPTER VII

Proposition 1 is taken from [L7] (Proposition 4.4). Theorem II.8.1 of [D7] is a closely
related result valid for the more general equation Au = u®, 1 < a < 2. Theorem 2
characterizing boundary polar sets was conjectured by Dynkin [D7] and proved in [L7]
(for the “easy” part) and [L9]. Some partial analytic results in this direction had been
obtained previously by Gmira and Véron [GV] and Sheu [Sh1]. Dynkin and Kuznetsov
[DK2] have extended Theorem 2 to equation Au = u®, 1 < a < 2. Sections 2 and 3
follow closely [L11], except for Lemma 7 which was proved in [AL]. In the special case
of equation Au = u?, Theorem 5 explains a phenomenon of nonuniqueness observed
by Kondratyev and Nikishkin [KN] for singular solutions of Au = u® in a domain.
References to the more recent work on trace problems for Au = u® in a domain of R¢
are given in Section VII.4.
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CHAPTER VIII

This chapter is based on the papers [LL1], [LL2]. Bertoin’s book [Be] (especially Chapter
VII) contains the basic facts about Lévy processes that are used in this chapter, with
the exception of (2) or (2)’ that can be found in [Dul]. The discrete construction
of Section 1 is adapted from [LL1], but several other papers present closely related
results, and use the random walk representation to get information on the asymptotic
behavior of Galton-Watson processes: See in particular Borovkov and Vatutin [BV]
and Bennies and Kersting [BK]. Theorem 3 is proved in detail in [LL2], where the
details of the proof of Lemma 8 can also be found. Another more ancient connection
between the 1-continuous-state branching process and the Lévy process with Laplace
exponent ¢ had been observed by Lamperti [La2]. The paper [BLL] presents a different
approach (based on subordination) to a snake-like construction of superprocesses with
a general branching mechanism. Still another approach to the genealogical structure
of superprocesses, and more general measure-valued processes, has been developed by
Donnelly and Kurtz [DK1], [DK2]. The monograph [DuL] will give various applications
of the results of this chapter.
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