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Foreword v

Foreword
In these lectures, we give an account of certain recent developments of the theory of
spatial branching processes. These developments lead to several remarkable probabilistic
objects, which combine spatial motion with a continuous branching phenomenon and
are closely related to certain semilinear partial differential equations.
Our first objective is to give a short self-contained presentation of the measure-valued
branching processes called superprocesses, which have been studied extensively in the
last twelve years. We then want to specialize to the important class of superprocesses
with quadratic branching mechanism and to explain how a concrete and powerful rep-
resentation of these processes can be given in terms of the path-valued process called
the Brownian snake. To understand this representation as well as to apply it, one needs
to derive some remarkable properties of branching trees embedded in linear Brownian
motion, which are of independent interest. A nice application of these developments is
a simple construction of the random measure called ISE, which was proposed by Aldous
as a tree-based model for random distribution of mass and seems to play an important
role in asymptotics of certain models of statistical mechanics.
We use the Brownian snake approach to investigate connections between superprocesses
and partial differential equations. These connections are remarkable in the sense that
almost every important probabilistic question corresponds to a significant analytic prob-
lem. As Dynkin wrote in one of his first papers in this area, “it seems that both theories
can gain from an interplay between probabilistic and analytic methods”. A striking ex-
ample of an application of analytic methods is the description of polar sets, which can
be derived from the characterization of removable singularities for the corresponding
partial differential equation. In the reverse direction, Wiener’s test for the Brownian
snake yields a characterization of those domains in which there exists a positive solution
of ∆u = u2 with boundary blow-up. Both these results are presented in Chapter VI.
Although much of this book is devoted to the quadratic case, we explain in the last
chapter how the Brownian snake representation can be extended to a general branching
mechanism. This extension depends on certain remarkable connections with the theory
of Lévy processes, which would have deserved a more thorough treatment.
Let us emphasize that this work does not give a comprehensive treatment of the theory
of superprocesses. Just to name a few missing topics, we do not discuss the martin-
gale problems for superprocesses, which are so important when dealing with regularity
properties or constructing more complicated models, and we say nothing about catalytic
superprocesses or interacting measure-valued processes. Even in the area of connections
between superprocesses and partial differential equations, we leave aside such important
tools as the special Markov property.
On the other hand, we have made our best to give a self-contained presentation and
detailed proofs, assuming however some familiarity with Brownian motion and the basic
facts of the theory of stochastic processes. Only in the last two chapters, we skip some
technical parts of the arguments, but even there we hope that the important ideas will
be accessible to the reader.
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There is essentially no new result, even if we were able in a few cases to simplify the
existing arguments. The bibliographical notes at the end of the book are intended to
help the reader find his way through the literature. There is no claim for exhaustivity
and we apologize in advance for any omission.
I would like to thank all those who attended the lectures, in particular Amine Asselah,
Freddy Delbaen, Barbara Gentz, Uwe Schmock, Mario Wüthrich, Martin Zerner, and
especially Alain Sznitman for several useful comments and for his kind hospitality at
ETH. Mrs Boller did a nice job typing the first version of the manuscript. Finally, I am
indebted to Eugene Dynkin for many fruitful discussions about the results presented
here.

Paris, February 4, 1999
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Notation ix

Frequently used notation

B(E) Borel σ-algebra on E.
Bb(E) Set of all real-valued bounded measurable functions on E.
B+(E) Set of all nonnegative Borel measurable functions on E.
Bb+(E) Set of all nonnegative bounded Borel measurable functions on E.
C(E) Set of all real-valued continuous functions on E.
C0(E) Set of all real-valued continuous functions with compact support on E.
Cb+(E) Set of all nonnegative bounded continuous functions on E.
C(E,F ) Set of all continuous functions from E into F .
C∞0 (Rd) Set of all C∞-functions with compact support on Rd.

Mf (E) Set of all finite measures on E.
M1(E) Set of all probability measures on E.
suppµ Topological support of the measure µ.

dim A Hausdorff dimension of the set A ⊂ Rd.
B(x, r) Open ball of radius r centered at x.
B̄(x, r) Closed ball of radius r centered at x.

〈µ, f〉 =
∫
f dµ for f ∈ B+(E), µ ∈Mf (E).

dist(x,A) = inf{|y − x|, y ∈ A}, x ∈ Rd, A ⊂ Rd.

pt(x, y) = pt(y − x) = (2πt)−d/2 exp
(
− |y − x|

2

2t
)
, x, y ∈ Rd, t > 0.

G(x, y) = G(y − x) =
∫∞

0
pt(x, y) dt = γd|y − x|2−d, x, y ∈ Rd, d ≥ 3.

The letters C, c, c1, c2 etc. are often used to denote positive constants whose exact
value is not specified.
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I An overview

This first chapter gives an overview of the topics that will be treated in greater detail
later, with pointers to the following chapters. We also discuss some recent related results
which provide an a posteriori motivation for our investigations.

1 Galton-Watson processes and continuous-state
branching processes

1.1 Galton-Watson processes are the simplest branching processes. They describe
the evolution in discrete time of a population of individuals who reproduce themselves
according to an offspring distribution µ. More precisely, starting from a probability
measure µ on N = {0, 1, 2, . . .}, the associated Galton-Watson process is the Markov
chain (Nk, k ≥ 0) with values in N such that, conditionally on Nn,

Nn+1
(d)
=

Nn∑
i=1

ξi ,

where the variables ξi are i.i.d. with distribution µ and the symbol
(d)
= means equality

in distribution.

Notice the obvious additivity (or branching) property: If (Nk, k ≥ 0) and (N ′k, k ≥ 0)
are two independent Galton-Watson processes with offspring distribution µ, then so is
(Nk +N ′k, k ≥ 0).
In what follows, we will concentrate on the critical or subcritical case, that is we assume

∞∑
k=0

kµ(k) ≤ 1 .

Then it is well known that the population becomes extinct in finite time: Nk = 0 for k
large, a.s. (we exclude the trivial case when µ = δ1 is the Dirac mass at 1).
The genealogy of a Galton-Watson process starting with 1 (resp. m) individuals at time
0 is obviously described by a random tree (resp. by m independent random trees). We
will use the standard labelling of vertices (= individuals) of the tree. The ancestor is
denoted by φ, the children of the ancestor by 1, 2, 3, . . . , the children of 1 by 11, 12, 13, . . .
and so on.
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In view of forthcoming developments, it is important to realize that the knowledge of
the tree provides more information than that of the associated Galton-Watson process
(which corresponds to counting the number of individuals at every generation). For
instance, a quantity such as the generation of the last common ancestor to individuals
of the generation p is well defined in terms of the tree but not in terms of the process
(Nk, k ≥ 0).

1.2 Continuous-state branching processes are continuous analogues of the Galton-
Watson branching processes. Roughly speaking, they describe the evolution in continu-
ous time of a “population” with values in the positive real line R+. More precisely, we
consider a Markov process (Yt, t ≥ 0) with values in R+, whose sample paths are càdlàg,
i.e. right-continuous with left limits. We say that Y is a continuous-state branching
process (in short, a CSBP) if the transition kernels Pt(x, dy) of Y satisfy the basic
additivity property

Pt(x+ x′, ·) = Pt(x, ·) ∗ Pt(x′, ·) .

If we restrict ourselves to the critical or subcritical case (that is
∫
Pt(x, dy) y ≤ x), one

can then prove (Theorem II.1) that the Laplace transform of the transition kernel must
be of the form ∫

Pt(x, dy)e−λy = e−xut(λ)

where the function ut(λ) is the unique nonnegative solution of the integral equation

ut(λ) +
∫ t

0

ψ
(
us(λ)

)
ds = λ

and ψ is a function of the following type

(1) ψ(u) = αu+ βu2 +
∫

(0,∞)

π(dr)
(
e−ru − 1 + ru

)
where α ≥ 0, β ≥ 0 and π is a σ-finite measure on (0,∞) such that

∫
π(dr)(r∧r2) <∞.

Conversely, for every function ψ of the previous type, there exists a (unique in law)
continuous-state branching process Y associated with ψ (in short, a ψ-CSBP). The
function ψ is called the branching mechanism of Y . In the formula for ψ(u), the term
αu corresponds to a killing at rate α (if ψ(u) = αu, it is easy to see that Yt = Y0e

−αt),
the measure π takes account of the jumps of Y (these jumps can only be positive), and
the quadratic term βu2 corresponds to a diffusion part.

In the special case when ψ(u) = βu2 (quadratic branching mechanism), it is easy to
compute

ut(λ) =
λ

1 + βtλ
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and the process Y can be constructed as the solution of the stochastic differential
equation

dYt =
√

2βYt dBt

where B is a one-dimensional Brownian motion (the well known Yamada-Watanabe
criterion shows that for every y ≥ 0 the previous s.d.e. has a unique strong solution
started at y, which is a continuous Markov process with values in R+). In this special
case, Y is the so-called Feller diffusion, also known as the zero-dimensional squared
Bessel process.

1.3 Continuous-state branching processes may also be obtained as weak limits of
rescaled Galton-Watson processes. Suppose that, for every k ≥ 1, we consider a Galton-
Watson process (Nk

n , n ≥ 0) with initial value nk and offspring distribution µk possibly
depending on k. If there exists a sequence of constants ak ↑ ∞ such that the rescaled
processes ( 1

ak
Nk

[kt], t ≥ 0
)

converge to a limiting process (Yt, t ≥ 0), at least in the sense of weak convergence of the
finite-dimensional marginals, then the process Y must be a continuous-state branching
process. Conversely, any continuous-state branching process can be obtained in this
way (see Lamperti [La1] for both these results).

Of special interest is the case when µk = µ for every k. Suppose first that µ is critical
(
∑
kµ(k) = 1) with finite variance σ2. Then the previous convergence holds with

ak = k for every k, provided that k−1nk −→ x for some x ≥ 0. Furthermore, the
limiting process is then a Feller diffusion, with ψ(u) = 1

2σ
2u2. This result is known as

the Feller approximation for branching processes.

More generally, when µk = µ for every k, the limiting process Y (if it exists) must be
of the stable branching type, meaning that

ψ(u) = cuγ

for some γ ∈ (1, 2]. For 1 < γ < 2, this corresponds to the choice α = β = 0,
π(dr) = c′r−1−γdr in the previous formula for ψ.

1.4 We observed that the genealogy of a Galton-Watson process is described by a tree,
or a finite collection of trees. A natural and important question is to get a similar de-
scription for the genealogy of a continuous-state branching process, which should involve
some sort of continuous random tree. Furthermore, one expects that the genealogical
trees of a sequence of Galton-Watson processes which converge after rescaling towards a
continuous-state branching process should also converge in some sense towards the cor-
responding continuous genealogical structure. These questions will be discussed below.
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2 Spatial branching processes and superprocesses

2.1 Spatial branching processes are obtained by combining the branching phenomenon
with a spatial motion, which is usually given by a Markov process ξ with values in
a Polish space E. In the discrete setting, the branching phenomenon is a Galton-
Watson process, the individuals of generation n move between time n and time n + 1
independently according to the law of ξ. At time n+ 1 the newly born individuals start
moving from the final position of their father, and so on.
In the continuous setting, the branching phenomenon is a continuous-state branching
process with branching mechanism ψ. The construction of the spatial motions is less
easy but may be understood via the following approximation. As previously, consider
a sequence Nk, k ≥ 1 of Galton-Watson processes such that

(2)
( 1
ak
Nk

[kt], t ≥ 0
)

(f.d.)−→
(
Yt, t ≥ 0

)
where Y is a ψ-CSBP, and the symbol

(f.d.)−→ means weak convergence of finite-
dimensional marginals.

More precisely, we need for every k the genealogical trees associated with Nk. Then
if Nk

0 = nk, we consider nk points xk1 , . . . , x
k
nk

in E. We assume that the nk initial
individuals start respectively at xk1 , . . . , x

k
nk

and then move independently according to
the law of ξ between times t = 0 and t = 1

k . At time t = 1
k each of these individuals is

replaced by his children, who also move between times t = 1
k and t = 2

k according to
the law of ξ, independently of each other, and so on.
Then, for every t ≥ 0, let ξk,it , i ∈ I(k, t) be the positions in E of the individuals alive
at time t. Consider the random measure Zkt defined by

Zkt =
1
ak

∑
i

δξk,it
.

Then Zkt is a random element of the space Mf (E) of finite measures on E, which is
equipped with the topology of weak convergence.
By construction the total mass of Zkt is

〈Zkt , 1〉 =
1
ak
Nk

[kt] ,

which by (2) converges to a ψ-CSBP.
Suppose that the initial values of Zk converge as k →∞:

Zk0 =
1
ak

∑
i

δxk
i
−→ θ ∈Mf (E).
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Then, under adequate regularity assumptions on the spatial motion ξ (satisfied for
instance if ξ is Brownian motion in Rd), there will exist an Mf (E)-valued Markov
process Z such that

(Zkt , t ≥ 0)−→(Zt, t ≥ 0)

in the sense of weak convergence of finite-dimensional marginals. The transition kernels
of Z are characterized as follows. For f ∈ Bb+(E), and s < t,

E
[
exp−〈Zt, f〉|Zs

]
= exp−〈Zs, vt−s〉 ,

where
(
vt(x), t ≥ 0, x ∈ E

)
is the unique nonnegative solution of the integral equation

vt(x) + Πx

(∫ t

0

ψ
(
vt−s(ξs)

)
ds
)

= Πx

(
f(ξt)

)
where we write Πx for the probability measure under which ξ starts at x, and ΠxU for
the expectation of U under Πx.

The process Z is called the (ξ, ψ)-superprocess. When ξ is Brownian motion in Rd and
ψ(u) = βu2, Z is called super-Brownian motion.
If ξ is a diffusion process in Rd with generator L, the integral equation for vt is the
integral form of the p.d.e.

∂vt
∂t

= Lvt − ψ(vt) .

This provides a first connection between Z and p.d.e.’s associated with Lu− ψ(u).

From our construction, or from the formula for the Laplace functional, it is clear that
the total mass process 〈Zt, 1〉 is a ψ-CSBP.

2.2 What are the motivations for studying superprocesses?

In a sense, superprocesses are prototypes of infinite-dimensional Markov processes, for
which many explicit calculations, concerning for instance hitting probabilities or mo-
ment functionals, are possible. The rich structure of superprocesses has allowed the
derivation of many detailed sample path properties. A small sample of these will be
given in Chapter IV.

There are interesting connections between superprocesses and stochastic partial differ-
ential equations. When ξ is linear Brownian motion and ψ(u) = βu2, the measure Zt
has a density zt(x) (w.r.t. Lebesgue measure), which solves the equation

∂zt
∂t

=
1
2

∆zt +
√

2βzt Ẇt

where W is space-time white noise (Konno and Shiga [KS], Reimers [R]). More general
superprocesses with varying branching intensity can be used to construct solutions of
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more general s.p.d.e.’s (see Mueller and Perkins [MP], and the survey paper [DP2] for
additional references).

The connections between superprocesses and partial differential equations associated
with the operator Lu−ψ(u) have been known for a long time and used in particular to
understand the asymptotic behavior of superprocesses. In the beginning of the nineties,
the introduction by Dynkin of exit measures, followed by the probabilistic solution of a
nonlinear Dirichlet problem, lead to a considerable progress in this area, which is still
the object of active research. The connections between superprocesses and partial dif-
ferential equations were initially used to get probabilistic information on superprocesses,
but more recently they made it possible to prove new analytic results. This topic is
treated in detail in Chapters V,VI,VII below.

One important initial motivation for superprocesses was the modelling of spatial popu-
lations. For this purpose it is often relevant to consider models with interactions. The
construction of these more complicated models makes a heavy use of the technology de-
veloped to study superprocesses (see the survey paper [DP3] and the references therein).
Catalytic superprocess, for which the branching phenomenon only occurs on a subset
of the state space called the catalyst, can be thought of as modelling certain biological
phenomena and have been studied extensively in the last few years (see the references
in [DP3]).

Finally, remarkable connections have been obtained recently between superprocesses
(especially super-Brownian motion) and models from statistical mechanics (lattice trees
[DS], percolation clusters [HS]) or infinite particle systems (contact process [DuP], voter
model [CDP], [BCL]). See the discussion in Section 6 below. This suggests that, like
ordinary Brownian motion, super-Brownian motion is a universal object which arises in
a variety of different contexts.

3 Quadratic branching and the Brownian snake

3.1 In the discrete setting we can construct the spatial branching process by first
prescribing the branching structure (the genealogical trees) and then choosing the spatial
motions (running independent copies of the process ξ along the branches of the tree).
In order to follow the same route in the continuous setting, we need to describe the
genealogical structure of a ψ-CSBP. We consider here the quadratic branching case
ψ(u) = βu2 and, to motivate the following construction, we recall a result due to
Aldous.

We start from an offspring distribution µ which is critical and with finite variance,
so that the corresponding Galton-Watson process suitably rescaled will converge to a
CSBP with ψ(u) = βu2. Under a mild assumption on µ, we can for every n sufficiently
large define the law of the Galton-Watson tree with offspring distribution µ, conditioned
to have a total population equal to n.
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Aldous [Al3] proved that, provided that we rescale the lengths of the branches by the
factor c√

n
(for a suitable choice of c > 0), these conditioned trees converge to the

so-called continuum random tree (CRT).
To explain this result, we need
(A) to say what the CRT is;
(B) to say in which sense the convergence holds.

To begin with (A), we briefly explain how a continuous tree can be coded by a function.
We consider a continuous function e : [0, σ]→ R+ such that e(0) = e(σ) = 0.
The key idea is that each s ∈ [0, σ] corresponds to a vertex of the associated tree, but
we identify s and t (s ∼ t) if

e(s) = e(t) = inf
[s,t]

e(r)

(in particular 0 ∼ σ).
The quotient set [0, σ]/∼ is the set of vertices. It is equipped with the partial order
s ≺ t (s is an ancestor of t) iff

e(s) = inf
[s,t]

e(r)

and with the distance
d(s, t) = e(s) + e(t)− inf

[s,t]
e(r) .

Finally, the generation of the vertex s is d(0, s) = e(s).
The set of ancestors of a given vertex s is then isometric to the line segment [0, e(s)].
If 0 ≤ s ≤ t ≤ σ, the lines of ancestors of s and t have a common part isometric to the
segment [0, inf [s,t] e(r)] and then separate, etc.

By definition, the CRT is the random tree obtained via the previous coding when e
is chosen according to the law of the normalized Brownian excursion (i.e. the positive
excursion of linear Brownian motion conditioned to have duration 1).

Concerning question (B), the convergence holds in the sense of convergence of the finite-
dimensional marginals. For p ≥ 1 fixed, the marginal of order p of a discrete tree is the
law of the reduced tree consisting only of the ancestors of p individuals chosen uniformly
(and independently) on the tree. Similarly, for the limiting tree CRT, the marginal of
order p consists of the reduced tree associated with p instants t1, . . . , tp chosen uniformly
and independently over [0, σ].

A more concrete way to express the convergence is to say that the (scaled) contour
process of the discrete tree converges in distribution towards the normalized Brownian
excursion. The contour process of the discrete tree is defined in the obvious way and it
is scaled so that it takes a time 1

2n to visit any given edge.

A thorough discussion of the genealogical structure associated with Brownian excursions
is presented in Chapter III.
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3.2 The previous results strongly suggest that the genealogical structure of the Feller
diffusion can be coded by Brownian excursions. This fact is illustrated by the Brownian
snake construction of superprocesses with quadratic branching mechanism. The first
step of this construction is to choose a collection of Brownian excursions, which will
code the genealogical trees of the “population”. In the second step, one constructs the
spatial motions by attaching to each “individual” in these trees a path of the process ξ, in
such a way that the paths of two individuals are the same up to the level corresponding
to the generation of their last common ancestor.
To be specific, start from a reflected Brownian motion (ζs, s ≥ 0) (ζ is distributed as the
modulus of a standard linear Brownian motion started at 0). For every a ≥ 0, denote
by (Las , s ≥ 0) the local time of ζ at level a. Then set η1 = inf{s ≥ 0, L0

s > 1}. We will
consider the values of ζ over the time interval [0, η1]. By excursion theory, this means
that we look at a Poisson collection of positive Brownian excursions.
Fix a point y ∈ E. Conditionally on (ζs, s ≥ 0), we construct a collection (Ws, s ≥ 0)
of finite paths in E so that the following holds.
(i) For every s ≥ 0, Ws is a finite path in E started at y and defined on the time interval
[0, ζs]. (In particular W0 is the trivial path consisting only of the starting point y.)
(ii) The mapping s→Ws is Markovian and if s < s′,

• Ws′(t) = Ws(t) if t ≤ inf [s,s′] ζr =: m(s, s′) ;

• conditionally on Ws

(
m(s, s′)

)
, the path

(
Ws′

(
m(s, s′) + t

)
, 0 ≤ t ≤ ζs′ −m(s, s′)

)
is

independent of Ws and distributed as the process ξ started at Ws

(
m(s, s′)

)
, stopped at

time ζs′ −m(s, s′).

Property (ii) is easy to understand if we think of s and s′ as labelling two individuals in
the tree who have the same ancestors up to generation m(s, s′): Their spatial motions
must be the same up to level m(s, s′), and then behave independently.

At an informal level one should view Ws as a path of the spatial motion ξ with a random
lifetime ζs evolving like (reflecting) linear Brownian motion. The path gets “erased”
when ζs decreases, and is extended when ζs increases.
The next theorem again requires some regularity of the spatial motion. A precise and
more general statement is given in Chapter IV.

Theorem. For every a ≥ 0 let Za be the random measure on E defined by

〈Za, f〉 =
∫ η1

0

dLasf
(
Ws(a)

)
where in the right side we integrate with respect to the increasing function s→ Las . The
process (Za, a ≥ 0) is a (ξ, ψ)-superprocess started at δy, with ψ(u) = 2u2.

To interpret this theorem, we may say that the paths Ws, 0 ≤ s ≤ η1, are the “historical”
paths of the “individuals” in a superprocess Z started at δy. For each a ≥ 0, the support
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of Za is the set {Ws(a), 0 ≤ s ≤ η1} of positions of these paths at time a. The local
time measure dLas is used to construct Za as a measure “uniformly spread” over this
set.
The process (Ws, s ≥ 0) is called the ξ-Brownian snake with initial point y. In what
follows we will have to consider various choices of the initial point and we will use the
notation Py for the probability under which the initial point is y.

4 Some connections with partial differential equations

We will now discuss certain connections between superprocesses and a class of semilinear
partial differential equations. We will assume that the spatial motion ξ is Brownian
motion in Rd and we will rely on the Brownian snake construction.

Let D be a bounded domain in Rd and y ∈ D. If w is a finite path started at y, we set

τ(w) = inf{t ≥ 0, w(t) 6∈ D} ≤ ∞ .

In a way analogous to the classical connections between Brownian motion and the
Laplace equation ∆u = 0, we are interested in the set of exit points

ED = {Ws(τ(Ws)) ; 0 ≤ s ≤ η1 , τ(Ws) <∞} .

Our first task is to construct a random measure that is in some sense uniformly dis-
tributed over ED.

Proposition. Py a.s. the formula

〈ZD, f〉 = lim
ε↓0

1
ε

∫ η1

0

f(Ws(τ(Ws)))1{τ(Ws)<ζs<τ(Ws)+ε} ds , f ∈ C(∂D)

defines a random measure on ∂D called the exit measure from D.

The exit measure leads to the solution of the Dirichlet problem for the operator ∆u−u2

due to Dynkin (cf Chapter V for a proof, and Chapter VI for a number of applications).
Note that we give in Chapter V a slightly different formulation in terms of excursion
measures of the Brownian snake (a similar remark applies to the other results of this
section).

Theorem. Assume that ∂D is smooth and that f is continuous and nonnegative on
∂D. Then

u(y) = − log Ey(exp−〈ZD, f〉) , y ∈ D

is the unique nonnegative solution of the problem{
1
2∆u = 2u2 in D ,

u|∂D = f .
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This theorem is the key to many other connections between super-Brownian motion or
the Brownian snake and positive solutions of the p.d.e. ∆u = u2. We will state here
two of the corresponding results, which both lead to new analytic statements. The first
theorem provides a classification of all positive solutions of ∆u = u2 in a smooth planar
domain. A proof is provided in Chapter VII in the case when D is the unit disk.

Theorem. Assume that d = 2 and ∂D is smooth. There is a 1 − 1 correspondence
between
• nonnegative solutions of ∆u = 4u2 in D

• pairs (K, ν), where K is a compact subset of ∂D and ν is a Radon measure on ∂D\K.
If u is given,

K =
{
x ∈ ∂D , lim sup

D3y→x
dist(y, ∂D)2u(y) > 0

}
and

〈ν, f〉 = lim
r↓0

∫
∂D\K

σ(dx)f(x)u(x+ rNx) , f ∈ C0(∂D\K),

where σ(dx) denotes Lebesgue measure on ∂D, and Nx is the inward-pointing unit nor-
mal to ∂D at x. Conversely,

u(y) = − log Ey
(

1{ED∩K=φ} exp
(
−
∫
ν(dx)zD(x)

))
where

(
zD(x), x ∈ ∂D

)
is the continuous density of ZD with respect to σ(dx).

In higher dimensions (d ≥ 3) things become more complicated. One can still define the
trace (K, ν) of a solution but there is no longer a one-to-one correspondence between a
solution and its trace. Interesting results in this connection have been obtained recently
by Dynkin and Kuznetsov (see the discussion at the end of Chapter VII). The previous
theorem (except for the probabilistic representation) has been rederived by analytic
methods, and extended to the equation ∆u = up, provided that d ≤ d0(p), by Marcus
and Véron [MV2].

It has been known for a long time that if ∂D is smooth and p > 1 there exists a positive
solution of ∆u = up in D that blows up everywhere at the boundary. One may ask
whether this remains true for a general domain D. Our next result gives a complete
answer when p = 2. If r < r′ we set

C(x, r, r′) = {y ∈ Rd, r ≤ |y − x| ≤ r′} .

For every compact subset K of Rd, we also define the capacity

c2,2(K) = inf{‖ϕ‖22,2 ; ϕ ∈ C∞c (Rd) , 0 ≤ ϕ ≤ 1 and ϕ = 1 on a neighborhood of K
}
,

where ‖ϕ‖2,2 is the norm in the Sobolev space W 2,2(Rd). The following theorem is
proved in Chapter VI.
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Theorem. Let D be a domain in Rd. The following statement are equivalent.
(i) There exists a positive solution u of the problem{

∆u = u2 in D ,

u|∂D = +∞ .

(ii) d ≤ 3, or d ≥ 4 and for every x ∈ ∂D

∞∑
n=1

2n(d−2)c2,2
(
∂D ∩ C(x, 2−n, 2−n+1)

)
=∞ .

(iii) If T = inf{s ≥ 0 ; Ws(t) /∈ D for some t > 0}, then Px(T = 0) = 1 for every
x ∈ ∂D.

From a probabilistic point of view, the previous theorem should be interpreted as a
Wiener criterion for the Brownian snake: It gives a necessary and sufficient condition
for the Brownian snake (or super-Brownian motion) started at a point x ∈ ∂D to
immediately exit D. Until today, there is no direct analytic proof of the equivalence
between (i) and (ii) (some sufficient conditions ensuring (i) have been obtained by
Marcus and Véron).

To conclude this section, let us emphasize that Chapters V,VI,VII are far from giving
an exhaustive account of the known connections between superprocesses (or Brownian
snakes) and partial differential equations: See in particular Dynkin and Kuznetsov
[DK7], Etheridge [Et], Iscoe and Lee [IL], Lee [Le] and Sheu [Sh2],[Sh3] for interesting
contributions to this area, which will not be discussed here.

5 More general branching mechanisms

The Brownian snake construction described in the previous sections relied on the cod-
ing of the genealogical structure of a CSBP with ψ(u) = βu2 in terms of Brownian
excursions. Our goal is now to extend this construction to more general branching
mechanisms, of the type described above in Section 1.
To explain this extension, it is useful to start again from the discrete setting of Galton-
Watson trees. Let µ be an offspring distribution and consider a sequence of independent
Galton-Watson trees with offspring distribution µ. Then imagine a particle that “visits”
successively all individuals of the different trees. For a given tree, individuals are visited
in the lexicographical order. When the particle has visited all individuals of the first
tree, it jumps to the ancestor of the second tree, and so on. For every n ≥ 0 denote by
the Hn the generation of the individual that is visited at time n.

The process n → Hn is called the height process corresponding to the offspring distri-
bution µ. It is easy to see that the sequence of trees is completely determined by the
function n → Hn. In this sense we have described a coding of the sequence of trees
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(this coding is closely related, although different, to the contour process mentioned in
Section 3).
At first glance, the previous coding does not seem particularly interesting, because the
process Hn does not have nice properties (in particular it is usually not Markovian).
The next proposition shows, however, that the height process is a simple functional of
a random walk.

Proposition. There exists a random walk on Z, denoted by (Sn, n ≥ 0), with jump
distribution ν(k) = µ(k + 1), k = −1, 0, 1, 2, . . . , such that for every n ≥ 0,

Hn = Card
{
j ∈ {0, 1, . . . , n− 1}, Sj = inf

j≤k≤n
Sk
}
.

(Hint: On the interval of visit of the m-th tree, the random walk S is defined by
Sn = Un−(m−1), where Un is the total number of “younger” brothers of the individual
visited at time n and all his ancestors.)
Then let ψ be a branching mechanism function of the type (1), and let (µk) be a sequence
of offspring distributions such that the corresponding Galton-Watson processes, suitably
rescaled, converge in distribution towards the ψ-CSBP: As in Section 1, we assume that,
if Nk is a Galton-Watson process with offspring distribution µk, started say at Nk

0 = ak,
the convergence (2) holds and Y is a ψ-CSBP started at 1. For every k, let Hk be the
height process corresponding to µk. We ask about the convergence of the (rescaled)
processes Hk. The formula of the previous proposition suggests that the possible limit
could be expressed in terms of the continuous analogue of the random walk S, that is
a Lévy process with no negative jumps (observe that S has negative jumps only of size
−1).

Let X be a Lévy process (real-valued process with stationary independent increments,
started at 0) with Laplace exponent ψ:

E[exp−λXt] = exp
(
tψ(λ)

)
, λ ≥ 0

(although X takes negative values, the Laplace transform E[exp−λXt] is finite for a
Lévy process without negative jumps). Under our assumptions on ψ (cf (1)), X can be
the most general Lévy process without negative jumps that does not drift to +∞ as
t→ +∞.

We assume that the coefficient β of the quadratic part of ψ is strictly positive. For
0 ≤ r ≤ t, we set

Irt = inf
r≤s≤t

Xs.

Theorem. ([LL1],[DuL]) Under the previous assumptions, we have also(1
k
Hk

[kakt]
, t ≥ 0

) (f.d.)→
k→∞

(Ht, t ≥ 0)
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where the limiting process H is defined in terms of the Lévy process X by the formula

Ht = β−1m({Irt ; 0 ≤ r ≤ t})

if m denotes Lebesgue measure on R.

The process Ht is called the (continuous) height process. The formula for Ht is obviously
a continuous analogue of the formula of the previous proposition. The theorem suggests
that H codes the genealogy of the ψ-CSBP in the same way as reflected Brownian
motion does when ψ(u) = βu2. Indeed, we can observe that, when ψ(u) = βu2, X is a
(scaled) linear Brownian motion and

Ht =
1
β

(
Xt − inf

o≤s≤t
Xs

)
is a reflected Brownian motion, by a famous theorem of Lévy.

The Brownian snake construction of Section 3 extends to a general ψ, simply by re-
placing reflected Brownian motion by the process H. This extension is discussed in
Chapter VIII. In the same spirit, one can use H to define a ψ-continuous random tree
analogous to the CRT briefly described in Section 3. The finite-dimensional marginals
of the ψ-continuous random tree can be computed explicitly in the stable case [DuL].

The convergence of finite-dimensional marginals in the previous theorem can be im-
proved to a convergence in the functional sense, under suitable regularity assumptions.
This makes it possible [DuL] to derive limit theorems for quantities depending on the
genealogy of the Galton-Watson processes (for instance, the reduced tree consisting of
ancestors of individuals of generation k). In this sense, the previous theorem shows that
whenever a sequence of (rescaled) Galton-Watson processes converges, their genealogy
also converges to the genealogy of the limiting CSBP.

6 Connections with statistical mechanics and interacting
particle systems

In this last section, we briefly present two recent results which show that super-Brownian
motion arises in a variety of different settings.

6.1 Lattice trees. A d-dimensional lattice tree with n bonds is a connected subgraph
of Zd with n bonds and n+ 1 vertices in which there are no loops.

Let Qn(dω) be the uniform probability measure on the set of all lattice trees with n
bonds that contain the origin. For every tree ω, let Xn(ω) be the probability measure
on Rd obtained by putting mass 1

n+1 to each vertex of the rescaled tree cn−1/4ω. Here
c = c(d) is a positive constant that must be fixed properly for the following to hold.

Following a conjecture of Aldous [Al4], Derbez and Slade [DS] proved that if d is large
enough (d > 8 should be the right condition) the law of Xn under Qn converges weakly
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as n→∞ to the law of the random measure J called ISE (Integrated Super-Brownian
Excursion) which can be defined as follows.

Recall the Brownian snake construction of Section 3, in the special case when the
spatial motion is d-dimensional Brownian motion and the initial point is 0. We use
this construction, with the only difference that the lifetime process (ζs, 0 ≤ s ≤ 1) is a
normalized Brownian excursion rather than reflected Brownian motion. If (Ws, 0 ≤ s ≤
1) is the resulting path-valued process, J may be defined by

〈J , f〉 =
∫ 1

0

ds f
(
Ws(ζs)

)
.

Alternatively, ISE can be viewed as combining a branching structure given by Aldous’
CRT with Brownian motion in Rd. A detailed discussion of ISE is presented in Chapter
IV.

The proof of the Derbez-Slade result uses the lace expansion method developed by
Brydges and Spencer. A work in progress of Hara and Slade [HS] also indicates that
ISE arises as a scaling limit of the incipient infinite percolation cluster at the critical
probability, again in high dimensions.

6.2 The voter model and coalescing random walks. The voter model is one of
the most classical interacting particle systems. At each site x ∈ Zd sits an individual
who can have two possible opinions, say 0 or 1. At rate 1, each individual forgets
his opinion and gets a new one by choosing one of his nearest neighbors uniformly at
random, and taking his opinion. Our goal is to understand the way opinions propagate
in space. For simplicity, we consider only the case d ≥ 3.

Start from the simple situation where all individuals have type (opinion) 0 at the initial
time, except for the individual at the origin who has type 1. Then with a high prob-
ability, type 1 will disappear. More precisely, if Ut denotes the set of individuals who
have type 1 at time t, Bramson and Griffeath [BG] proved that

P [Ut 6= ∅] ∼
C

t

as t → ∞. One may then ask about the shape of the set Ut conditional on the event
{Ut 6= ∅}. To state the result, let Ut be the random measure on Rd defined by

Ut =
1
t

∑
x∈Ut

δx/
√
t .

Then [BCL] the law of Ut conditionally on {Ut 6= ∅} converges as t→∞ to the law of cH,
where c > 0 and H is a random measure which is most conveniently described in terms
of the Brownian snake as follows. Consider again the Brownian snake of Section 3 (with
ξ Brownian motion in Rd, initial point 0), but now assuming that the lifetime process
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(ζs, 0 ≤ s ≤ σ) is a Brownian excursion conditioned to hit level 1 (sup0≤s≤σ ζs > 1).
Then

〈H, f〉 =
∫ σ

0

dL1
sf
(
Ws(1)

)
,

where L1
s is as previously the local time process of (ζs, 0 ≤ s ≤ σ) at level 1.

Alternatively, H can be described as super-Brownian motion at time 1 under its canon-
ical measure. Closely related results showing that super-Brownian motion is the limit
of rescaled voter models have been obtained by Cox, Durrett and Perkins [CDP].

A possible approach to the previous statement about the voter model is to use du-
ality with a system of coalescing random walks. As a matter of fact, the result can
be reformulated in terms of such a system. Suppose we start independent (simple)
continuous-time random walks at every point x of Zd, and that any two random walks
coalesce when they are at the same point at the same time. Let Ũt be the set of all
x ∈ Zd such that the walk started at x is at 0 at time t (again Ũt will be empty with a
high probability) and let Ũt be the random measure

Ũt =
1
t

∑
x∈Ũt

δx/
√
t .

Then, the law of Ũt conditionally on {Ũt 6= ∅} converges as t→∞ to the law of cH.

A direct proof of the last result involves a careful analysis of the tree of coalescence for p
coalescent random walks starting at different points of Zd. It turns out that the limiting
behavior of this tree of coalescence can be described in terms of the genealogical structure
of the Feller diffusion. This leads to the connection with super-Brownian motion or the
Brownian snake.
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II Continuous-state branching processes
and superprocesses

In this chapter, we first obtain the general form of the Laplace functional of continuous-
state branching processes, in the critical or subcritical case. We then provide a con-
struction of these processes via an approximation by continuous-time Galton–Watson
processes. If the branching phenomenon is combined with a spatial motion, a similar
approximation leads to the measure valued processes called superprocesses. In the last
two sections, we derive some basic properties of superprocesses.

1 Continuous-state branching processes

We consider a measurable family
(
Pt(x, dy), t > 0, x ∈ R+

)
of transition kernels on the

positive real line R+. This means that, for every t > 0 and x ∈ R+, Pt(x, dy) is a
probability measure on R+, the mapping (t, x)→ Pt(x,A) is measurable for any Borel
subset A of R+, and finally the Chapman–Kolmogorov equation Pt+s = PtPs holds for
every t, s > 0. We are interested in such families that satisfy the additivity or branching
property Pt(x, ·) ∗ Pt(x′, ·) = Pt(x + x′, ·). The following theorem is a special case of a
result due to Silverstein [Si].

Theorem 1. Suppose that the family
(
Pt(x, dy), t > 0, x ∈ R+

)
satisfies the following

properties:

(i) Pt(x, ·) ∗ Pt(x′, ·) = Pt(x+ x′, ·) for every t > 0, x, x′ ∈ R+.

(ii)
∫
Pt(x, dy) y ≤ x for every t > 0, x ∈ R+.

Then, if we exclude the trivial case where Pt(x, ·) = δ0 for every t > 0 and x ∈ R+, the
Laplace functional of Pt(x, dy) must be of the form∫

Pt(x, dy)e−λy = e−xut(λ) , λ ≥ 0 ,

and the function
(
ut(λ), t ≥ 0, λ ≥ 0

)
is the unique nonnegative solution of the integral

equation

ut(λ) +
∫ t

0

dsψ
(
us(λ)

)
= λ ,
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with a function ψ of the form

ψ(u) = αu+ βu2 +
∫
π(dr)(e−ru − 1 + ru) ,

where α ≥ 0, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫
π(dr)(r∧r2) <∞.

Remark. A function ψ of the form given in the theorem is nonnegative and Lipschitz
on compact subsets of R+. These properties play an important role in what follows.

Obviously if ψ is given, there is at most one associated family
(
Pt(x, dy)

)
. We will see

later that there is in fact exactly one.

Condition (ii) means that we consider only the critical or subcritical case. If we remove
this condition, the theorem remains essentially true, with a more general form of ψ, but
there are technical problems due to the possibility of explosion in finite time (for this
reason, it is more convenient to consider transition kernels in R̄+ = R+ ∪ {+∞}, see
[Si]).

Proof. Assumption (i) implies that, for every fixed t > 0,
(
Pt(x, ·), x ∈ R+

)
form a

semigroup of infinitely divisible distributions on R+. By the Lévy–Khintchine formula,
there exist at ≥ 0 and a σ-finite measure nt on R+, with

∫
nt(dr)(1∧ r) <∞, such that∫

Pt(x, dy)e−λy = e−xut(λ) ,

and

ut(λ) = atλ+
∫
nt(dr)(1− e−λr) .

From (ii) and the Jensen inequality we have ut(λ) ≤ λ. By letting λ→ 0 we get

at +
∫
nt(dr)r ≤ 1 .

From the Chapman–Kolmogorov identity, we have also ut+s = ut ◦us. Since ut(λ) ≤ λ,
we see that for every λ ≥ 0 the mapping t → ut(λ) is nonincreasing. By a standard
differentiability theorem, the derivative

(1) lim
s→0

ut+s(λ)− ut(λ)
s

exists for almost every t > 0, for every λ ≥ 0.

We assumed that for some t, x, Pt(x, ·) 6= δ0. It follows that, for this value of t, ut(λ) > 0.
Using the relation ut+s = ut ◦us, we easily obtain that ut(λ) > 0 for every t > 0, λ > 0.



18 Continuous-state branching processes and superprocesses

By Fubini’s theorem, we can pick t0 > 0 such that the limit (1) exists for t = t0 for
a.a. λ > 0. Using the relation ut0+s(λ) = us

(
ut0(λ)

)
and the continuity of the mapping

λ→ ut0(λ) we get that

(2) lim
s↓0

us(γ)− γ
s

exists for γ belonging to a dense subset of (0, γ0], where γ0 = ut0(1) > 0.
Fix any such γ, and observe that

γ − us(γ)
s

=
(
1− as −

∫
r ns(dr)

)γ
s

+
1
s

∫
(e−γr − 1 + γr)ns(dr) .

Notice that both terms in the right hand side are nonnegative. The existence of the
limit (2) implies that these terms are bounded when s varies over (0, 1]. It follows that
there exists a constant C such that for every s ∈ (0, 1],

1
s

∫
(r ∧ r2)ns(dr) ≤ C ,

1
s

(
1− as −

∫
r ns(dr)

)
≤ C .

By a standard compactness argument, there exists a sequence sk ↓ 0 such that the
measures

(3)
1
sk

(r ∧ r2)nsk(dr) +
1
sk

(
1− ask −

∫
r nsk(dr)

)
δ∞(dr)

converge weakly to a finite measure η(dr) on [0,∞].
Writing

γ − usk(γ)
sk

=
(
1− ask −

∫
r nsk(dr)

) γ
sk

+
1
sk

∫
e−γr − 1 + γr

r ∧ r2
(r ∧ r2)nsk(dr)

we get from weak convergence that for every γ > 0

lim
k→∞

γ − usk(γ)
sk

= αγ + βγ2 +
∫

(e−γr − 1 + γr)π(dr)

where α = η(∞), β = η(0)
2 and π(dr) = 1(0,∞)(r)(r ∧ r2)−1η(dr). Let ψ(γ) denote the

limit in the last displayed formula. Note that α = ψ′(0), and for γ > 0,

ψ(γ) = αγ +
(
β +

∫ ∞
0

e−γrh(r) dr
)
γ2,

where h(r) =
∫∞
r
π([u,∞)) du is monotone decreasing and locally integrable over R+.
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If we change the sequence (sk), the limit ψ(γ) must remain the same for γ belonging
to a dense subset of (0, γ0], by (2). By standard arguments of analytic continuation, it
follows that h, and then ψ and η, do not depend on the choice of the sequence (sk).
Therefore the convergence of the measures (3) holds as s ↓ 0 and not only along the
subsequence (sk). We then conclude that, for every γ ≥ 0,

lim
s↓0

us(γ)− γ
s

= −ψ(γ)

and the limit is uniform when γ varies over compact subsets of R+. From the identity
ut+s(λ) = us

(
ut(λ)

)
we see that the (right) derivative of s → us(λ) at t is −ψ

(
ut(λ)

)
,

and the integral equation of the theorem now follows easily. �

Exercise. With the notation of the previous proof, verify that at+s = atas. Then show
that at = 0 for every t > 0 except possibly in the case when β = 0 and

∫
rπ(dr) < ∞

[Hint: Assuming that at > 0 write

us(γ)− 1
s

=
(as − 1

s

)
γ +

1
s

∫
(1− e−γr)ns(dr)

and use the form of as to argue in a way similar to the proof of the theorem.]

We will now obtain the converse of Theorem 1. We fix a function ψ of the type intro-
duced in Theorem 1, corresponding to the parameters α, β and ψ, and we will construct
the associated family of transition kernels. To this end, we will use an approximation
by continuous-time Galton–Watson processes. This approximation is useful to under-
stand the behaviour of the Markov process associated with Pt(x, dy), and especially the
meaning of the parameters α, β and π.

We consider a Galton–Watson process in continuous time Xε = (Xε
t , t ≥ 0) where

individuals die at rate ρε = αε + βε + γε (the parameters αε, βε, γε ≥ 0 will be fixed
later). When an individual dies, three possibilities may occur:
• with probability αε/ρε, the individual dies without descendants;
• with probability βε/ρε, the individual gives rise to 0 or 2 children with probability
1/2;
• with probability γε/ρε, the individual gives rise to a random number of offsprings
which is distributed as follows: Let V be a random variable distributed according to

πε(dv) = π
(
(ε,∞)

)−11{v>ε}π(dv) ;

then, conditionally on V , the number of offsprings is Poisson with parameter mεV ,
where mε > 0 is a parameter that will be fixed later.

In other words, the generating function of the branching distribution is:

ϕε(r) =
αε

αε + βε + γε
+

βε
αε + βε + γε

(1 + r2

2

)
+

γε
αε + βε + γε

∫
πε(dv)e−mεv(1−r) .
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We set gε(r) = ρε
(
ϕε(r) − r

)
= αε(1 − r) + βε

2 (1 − r)2 + γε(
∫
πε(dv)e−mεv(1−r) − r).

Write Pk for the probability measure under which Xε starts at k. By standard results
of the theory of branching processes (see e.g. Athreya-Ney [AN]), we have for r ∈ [0, 1],

E1

[
rX

ε
t
]

= vεt (r)

where

vεt (r) = r +
∫ t

0

gε
(
vεs(r)

)
ds .

We are interested in scaling limits of the processes Xε: We will start Xε with Xε
0 =

[mεx], for some fixed x > 0, and study the behaviour of m−1
ε Xε

t . Thus we consider for
λ ≥ 0

E[mεx]

[
e−λm

−1
ε Xεt

]
= vεt

(
e−λ/mε

)[mεx]
= exp

(
[mεx] log vεt (e

−λ/mε)
)
.

This suggests to define uεt (λ) = mε

(
1−vεt (e−λ/mε)

)
. The function uεt solves the equation

(4) uεt (λ) +
∫ t

0

ψε
(
uεs(λ)

)
ds = mε(1− e−λ/mε) ,

where ψε(u) = mε gε(1−m−1
ε u).

From the previous formulas, we have

ψε(u) = αεu+m−1
ε βε

u2

2
+mεγε

∫
πε(dr)(e−ru − 1 +m−1

ε u)

=
(
αε −mεγε

∫
πε(dr)r + γε

)
u+m−1

ε βε
u2

2

+mεγεπ
(
(ε,∞)

)−1
∫

(ε,∞)

π(dr)(e−ru − 1 + ru) .

At the present stage we want to choose the parameters αε, βε, γε and mε so that

(i) limε↓0mε = +∞.

(ii) If π 6= 0, limε↓0mεγεπ
(
(ε,∞)

)−1 = 1. If π = 0, γε = 0.
(iii) limε↓0

1
2m
−1
ε βε = β.

(iv) limε↓0
(
αε −mεγε

∫
πε(dr)r+ γε

)
= α, and αε −mεγε

∫
πε(dr)r+ γε ≥ 0, for every

ε > 0.

Obviously it is possible, in many different ways, to choose αε, βε, γε and mε such that
these properties hold.

Proposition 2. Suppose that properties (i) – (iv) hold. Then, for every t > 0, x ≥ 0,
the law of m−1

ε Xε
t under P[mεx] converges as ε → 0 to a probability measure Pt(x, dy).
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Furthermore, the kernels
(
Pt(x, dy), t > 0, x ∈ R+

)
are associated with the function ψ

in the way described in Theorem 1.

Proof. From (i) – (iv) we have

(5) lim
ε↓0

ψε(u) = ψ(u)

uniformly over compact subsets of R+. Let ut(λ) be the unique nonnegative solution of

(6) ut(λ) +
∫ t

0

ψ
(
us(λ)

)
ds = λ

(ut(λ) may be defined by:
∫ λ
ut(λ)

ψ(v)−1dv = t when λ > 0; this definition makes sense
because ψ(v) ≤ Cv for v ≤ 1, so that

∫
0+
ψ(v)−1dv = +∞).

We then make the difference between (4) and (6), and use (5) and the fact that ψ is
Lipschitz over [0, λ] to obtain

|ut(λ)− uεt (λ)| ≤ Cλ
∫ t

0

|us(λ)− uεs(λ)| ds+ a(ε, λ)

where a(ε, λ) → 0 as ε → 0, and the constant Cλ is the Lipschitz constant for ψ on
[0, λ]. We conclude from Gronwall’s lemma that for every λ ≥ 0,

lim
ε↓0

uεt (λ) = ut(λ)

uniformly on compact sets in t.

Coming back to a previous formula we have

lim
ε→0

E[mεx]

[
e−λm

−1
ε Xεt

]
= e−xut(λ)

and the first assertion of the proposition follows from a classical statement about Laplace
transforms.

The end of the proof is straightforward. The Chapman–Kolmogorov relation for
Pt(x, dy) follows from the identity ut+s = ut ◦ us, which is easy from (6). The ad-
ditivity property is immediate since∫

Pt(x+ x′, dy)e−λy = e−(x+x′)ut(λ) =
(∫

Pt(x, dy)e−λy
)(∫

Pt(x′, dy)e−λy
)
.

The property
∫
Pt(x, dy)y ≤ x follows from the fact that lim supλ→0 λ

−1ut(λ) ≤ 1.
Finally the kernels Pt(x, dy) are associated with ψ by construction. �
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Definition. The ψ-continuous state branching process (in short, the ψ-CSBP) is the
Markov process in R+ (Xt, t ≥ 0) whose transition kernels Pt(x, dy) are associated
with the function ψ by the correspondence of Theorem 1. The function ψ is called the
branching mechanism of X.

Examples.
(i) If ψ(u) = αu, Xt = X0e

−αt

(ii) If ψ(u) = βu2 one can compute explicitely ut(λ) = λ
1+βλt . The corresponding

process X is called the Feller diffusion, for reasons that are explained in the exercise
below.
(iii) By taking α = β = 0, π(dr) = c dr

r1+b
with 1 < b < 2, one gets ψ(u) = c′ub. This is

called the stable branching mechanism.

From the form of the Laplace functionals, it is very easy to see that the kernels Pt(x, dy)
satisfy the Feller property, as defined in [RY] Chapter III (use the fact that linear
combinations of functions e−λx are dense in the space of continuous functions on R+

that tend to 0 at infinity). By standard results, every ψ-CSBP has a modification whose
paths are right-continuous with left limits, and which is also strong Markov.

Exercise. Verify that the Feller diffusion can also be obtained as the solution to the
stochastic differential equation

dXt =
√

2βXtdBt

where B is a one-dimensional Brownian motion [Hint: Apply Itô’s formula to see that

exp
(
− λXs

1 + βλ(t− s)

)
, 0 ≤ s ≤ t

is a martingale.]

Exercise. (Almost sure extinction) Let X be a ψ-CSBP started at x > 0, and let
T = inf{t ≥ 0, Xt = 0}. Verify that Xt = 0 for every t ≥ T , a.s. (use the strong
Markov property). Prove that T <∞ a.s. if and only if∫ ∞ du

ψ(u)
<∞.

(This is true in particular for the Feller diffusion.) If this condition fails, then T = ∞
a.s.

2 Superprocesses

In this section we will combine the continuous-state branching processes of the previous
section with spatial motion, in order to get the so-called superprocesses. The spatial
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motion will be given by a Markov process (ξs, s ≥ 0) with values in a Polish space E.
We assume that the paths of ξ are càdlàg (right-continuous with left limits) and so ξ
may be defined on the canonical Skorokhod space D(R+, E). We write Πx for the law
of ξ started at x. The mapping x → Πx is measurable by assumption. We denote by
Bb+(E) (resp. Cb+(E)) the set of all bounded nonnegative measurable (resp. bounded
nonnegative continuous) functions on E.

In the spirit of the previous section, we use an approximation by branching particle
systems. Recall the notation ρε, mε, ϕε of the previous section. We suppose that, at
time t = 0, we have Nε particles located respectively at points xε1, . . . , x

ε
Nε

in E. These
particles move independently in E according to the law of the spatial motion ξ. Each
particle dies at rate ρε and gives rise to a random number of offsprings according to
the distribution with generating function ϕε. Let Zεt be the random measure on E
defined as the sum of the Dirac masses at the positions of the particles alive at t. Our
goal is to investigate the limiting behavior of m−1

ε Zεt , for a suitable choice of the initial
distribution.

The process (Zεt , t ≥ 0) is a Markov process with values in the set Mp(E) of all point
measures on E. We write Pεθ for the probability measure under which Zε starts at θ.

Fix a Borel function f on E such that c ≤ f ≤ 1 for some c > 0. For every x ∈ E, t ≥ 0
set

wεt (x) = Eεδx
(
exp〈Zεt , log f〉

)
where we use the notation 〈µ, f〉 =

∫
f dµ. Note that the quantity exp〈Zεt , log f〉 is the

product of the values of f evaluated at the particles alive at t.

Proposition 3. The function wεt (x) solves the integral equation

wεt (x)− ρεΠx

(∫ t

0

ds
(
ϕε(wεt−s(ξs))− wεt−s(ξs)

))
= Πx

(
f(ξt)

)
.

Proof. Since the parameter ε is fixed for the moment, we omit it, only in this proof.
Note that we have for every positive integer n

Enδx(exp〈Zt, log f〉) = wt(x)n .

Under Pδx the system starts with one particle located at x. Denote by T the first
branching time and by M the number of offsprings of the initial particle. Let also
PM (dm) be the law of M (the generating function of PM is ϕ). Then

(7)

wt(x) = Eδx
(
1{T>t} exp〈Zt, log f〉

)
+ Eδx

(
1{T≤t} exp〈Zt, log f〉

)
= e−ρtΠx

(
f(ξt)

)
+ ρΠx ⊗ PM

(∫ t

0

ds e−ρsEmδξs
(
exp〈Zt−s, log f〉

))
= e−ρtΠx

(
f(ξt)

)
+ ρΠx

(∫ t

0

ds e−ρsϕ
(
wt−s(ξs)

))
.
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The integral equation of the proposition is easily derived from this identity: From (7)
we have

ρΠx

(∫ t

0

dswt−s(ξs)
)

= ρΠx

(∫ t

0

ds e−ρsΠξs

(
f(ξt−s)

))
+ ρ2Πx

(∫ t

0

dsΠξs

(∫ t−s

0

dr e−ρrϕ
(
wt−s−r(ξr)

)))
= ρ

∫ t

0

ds e−ρsΠx

(
f(ξt)

)
+ ρ2

∫ t

0

ds

∫ t

s

dr e−ρ(r−s)Πx

(
Πξs

(
ϕ(wt−r(ξr−s))

))
= (1− e−ρt)Πx

(
f(ξt)

)
+ ρΠx

(∫ t

0

dr(1− e−ρr)ϕ
(
wt−r(ξr)

))
.

By adding this equality to (7) we get Proposition 3. �

We now fix a function g ∈ Bb+(E), then take f = e−m
−1
ε g in the definition of wεt (x) and

set
uεt (x) = mε

(
1− wεt (x)

)
= mε

(
1− Eεδx

(
e−m

−1
ε 〈Z

ε
t ,g〉
))

.

From Proposition 3, it readily follows that

(8) uεt (x) + Πx

(∫ t

0

dsψε
(
uεt−s(ξs)

))
= mεΠx

(
1− e−m

−1
ε g(ξt)

)
where the function ψε is as in Section 1.

Lemma 4. Suppose that conditions (i) – (iv) before Proposition 2 hold. Then, the limit

lim
ε→0

uεt (x) =: ut(x)

exists for every t ≥ 0 and x ∈ E, and the convergence is uniform on the sets [0, T ]×E.
Furthermore, ut(x) is the unique nonnegative solution of the integral equation

(9) ut(x) + Πx

(∫ t

0

dsψ
(
ut−s(ξs)

))
= Πx

(
g(ξt)

)
.

Proof. From our assumptions, ψε ≥ 0, and so it follows from (8) that uεt (x) ≤ λ :=
supx∈E g(x). Also note that

lim
ε→0

mεΠx

(
1− e−m

−1
ε g(ξt)

)
= Πx

(
g(ξt)

)
uniformly in (t, x) ∈ R+×E (indeed the rate of convergence only depends on λ). Using
the uniform convergence of ψε towards ψ on [0, λ] (and the Lipschitz property of ψ as
in the proof of Proposition 2), we get for ε > ε′ > 0 and t ∈ [0, T ],

|uεt (x)− uε
′

t (x)| ≤ Cλ
∫ t

0

ds sup
y∈E
|uεs(y)− uε

′

s (y)|+ b(ε, T, λ)



Continuous-state branching processes and superprocesses 25

where b(ε, T, λ)→ 0 as ε→ 0. From Gronwall’s lemma, we obtain that uεt (x) converges
uniformly on the sets [0, T ]×E. Passing to the limit in (8) shows that the limit satisfies
(9). Finally the uniqueness of the nonnegative solution of (9) is also a consequence of
Gronwall’s lemma. �

We are now ready to state our basic construction theorem for superprocesses. We denote
by Mf (E) the space of all finite measures on E, which is equipped with the topology
of weak convergence.

Theorem 5. For every µ ∈Mf (E) and every t > 0, there exists a (unique) probability
measure Qt(µ, dν) on Mf (E) such that for every g ∈ Bb+(E),

(10)
∫
Qt(µ, dν)e−〈ν,g〉 = e−〈µ,ut〉

where
(
ut(x), x ∈ E

)
is the unique nonnegative solution of (9). The collection Qt(µ, dν),

t > 0, µ ∈ Mf (E) is a measurable family of transition kernels on Mf (E), which
satisfies the additivity property

Qt(µ, ·) ∗Qt(µ′, ·) = Qt(µ+ µ′, ·) .

The Markov process Z in Mf (E) corresponding to the transition kernels Qt(µ, dν) is
called the (ξ, ψ)-superprocess. By specializing the key formula (10) to constant functions,
one easily sees that the “total mass process” 〈Z, 1〉 is a ψ-CSBP. When ξ is Brownian
motion in Rd and ψ(u) = βu2 (quadratic branching mechanism), the process Z is called
super-Brownian motion.

Proof. Consider the Markov process Zε in the case when its initial value Zε0 is dis-
tributed according to the law of the Poisson point measure on E with intensity mεµ.
By the exponential formula for Poisson measures, we have for g ∈ Bb+(E),

E
[
e−〈m

−1
ε Zεt ,g〉

]
= E

[
exp
(∫

Zε0(dx) log Eεδx
(
e−〈m

−1
ε Zεt ,g〉

))]
= exp

(
−mε

∫
µ(dx)

(
1− Eεδx

(
e−〈m

−1
ε Zεt ,g〉

)))
= exp(−〈µ, uεt 〉) .

From Lemma 4 we get

lim
ε↓0

E
(
e−〈m

−1
ε Zεt ,g〉

)
= exp(−〈µ, ut〉) .

Furthermore we see from the proof of Lemma 4 that the convergence is uniform when
g varies in the set {g ∈ Bb+(E), 0 ≤ g ≤ λ} =: Hλ.
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Lemma 6. Suppose that Rn(dν) is a sequence of probability measures on Mf (E) such
that, for every g ∈ Bb+(E),

lim
n→∞

∫
Rn(dν)e−〈ν,g〉 = L(g)

with a convergence uniform on the sets Hλ. Then there exists a probability measure
R(dν) on Mf (E) such that ∫

R(dν)e−〈ν,g〉 = L(g)

for every g ∈ Bb+(E).

We postpone the proof of Lemma 6 and complete the proof of Theorem 5. The first
assertion is a consequence of Lemma 6 and the beginning of the proof. The uniqueness
of Qt(µ, dν) follows from the fact that a probability measure R(dν) on Mf (E) is de-
termined by the quantities

∫
R(dν) exp(−〈ν, g〉) for g ∈ Bb+(E) (or even g ∈ Cb+(E)).

To see this, use standard monotone class arguments to verify that the closure under
bounded pointwise convergence of the subspace of Bb

(
Mf (E)

)
generated by the func-

tions ν → exp(−〈ν, g〉), g ∈ Bb+(E), is Bb
(
Mf (E)

)
.

For the sake of clarity, write u(g)
t for the solution of (9) corresponding to the function

g. The Chapman–Kolmogorov equation Qt+s = QtQs follows from the identity

u
(u(g)
s )

t = u
(g)
t+s ,

which is easily checked from (9). The measurability of the family of kernels Qt(µ, ·) is a
consequence of (10) and the measurability of the functions ut(x). Finally, the additivity
property follows from (10). �

Proof of Lemma 6. By a standard result on Polish spaces (see e.g. Parthasarathy
[Pa], Chapter 1) we may assume that E is a Borel subset of a compact metric space
K. If g ∈ Bb+(K) we write L(g) = L(g|E). Also Mf (E) can obviously be viewed as a
subset of Mf (K). Denote by M1(K) the set of all probability measures on K, and fix
µ0 ∈M1(K). Consider then the one-to-one mapping

J :Mf (K)→ [0,∞]×M1(K)

defined by J (ν) =
(
〈ν, 1〉, ν

〈ν,1〉
)

if ν 6= 0 and J (0) = (0, µ0).

Let R̃n denote the image of Rn under J . Then R̃n ∈ M1

(
[0,∞] ×M1(K)

)
, which is

a compact metric space. Hence there exists a subsequence R̃nk which converges weakly
to R̃ ∈M1

(
[0,∞]×M1(K)

)
. By our assumption, for every ε > 0,

(11)
∫
R̃n(d`dµ)e−ε` =

∫
Rn(dν)e−ε〈ν,1〉 −→

n→∞
L(ε)
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and because the function (`, µ)→ e−ε` is bounded and continuous on [0,∞]×M1(K)
we get ∫

R̃(d`dµ)e−ε` = L(ε) .

On the other hand we have also for every n

(12)
∫
R̃n(d`dµ)e−ε` =

∫
Rn(dν)e−ε〈ν,1〉 −→

ε↓0
1 .

Since the convergence (11) is uniform when ε varies over (0, 1), we easily conclude from
(11) and (12) that

lim
ε↓0

∫
R̃(d`dµ)e−ε` = lim

ε↓0
L(ε) = 1 .

It follows that R̃ is in fact supported on [0,∞)×M1(K).

Let R(dν) be the image of R̃(d`dµ) under the mapping (`, µ)→ `µ. For g ∈ Cb+(K),∫
R(dν)e−〈µ,g〉 =

∫
R̃(d`dµ)e−`〈µ,g〉 = lim

k→∞

∫
R̃nk(d`dµ)e−`〈µ,g〉

= lim
k→∞

∫
Rnk(dν)e−〈ν,g〉 = L(g) .

(Note that the function (`, µ) → e−`〈µ,g〉 is continuous on [0,∞) × M1(K)). The
uniform convergence assumption ensures that the mapping g → L(g) is continuous
under bounded pointwise convergence: If gn ∈ Bb+(K), gn ≤ C and gn → g pointwise,
then L(gn)→ L(g). Thus, the set

{
g ∈ Bb+(K),

∫
R(dν)e−〈ν,g〉 = L(g)

}
contains Cb+(K) and is stable under bounded pointwise convergence. By a standard
lemma (see e.g. [EK], p. 111) this set must be Bb+(K).

Finally, by taking g = 1K\E in the equality
∫
R(dν)e−〈ν,g〉 = L(g) we see that, R(dν)

a.e., ν is supported on E. Therefore we can also view R as a probability measure on
Mf (E). �

We will write Z = (Zt, t ≥ 0) for the (ξ, ψ)-superprocess whose existence follows from
Theorem 6. For µ ∈ Mf (E), we denote by Pµ the probability measure under which
Z starts at µ. From an intuitive point of view, the measure Zt should be interpreted
as uniformly spread over a cloud of infinitesimal particles moving independently in E
according to the spatial motion ξ, and subject continuously to a branching phenomenon
governed by ψ.
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Remark. For many applications it is important to consider, in addition to the (ξ, ψ)-
superprocess Z, the associated historical superprocess which is defined as follows. We
replace ξ by the process

ξ̃t = (ξs, 0 ≤ s ≤ t) .

Then ξ̃t is a Markov process with values in the space W of finite (càdlàg) paths in E.
Note that W is again a Polish space for an appropriate choice of a distance (based on
the Skorokhod metric on càdlàg functions) and that E can be viewed as a subset of W,
by identifying a point x with a trivial path with length 0.

The historical superprocess Z̃ is then simply the (ξ̃, ψ)-superprocess. If we start from Z̃
started at Z̃0 = µ, for µ ∈Mf (E) ⊂Mf (W), we can reconstruct a (ξ, ψ)-superprocess
Z started at µ via the formula

〈Zt, f〉 =
∫
Z̃t(dw)f

(
w(t)

)
.

This identification is immediate from the formula for the Laplace functional of the
transition kernels.

Informally, if we view Zt as supported on the positions at time t of a set of “infinites-
imal particles”, Z̃t is the corresponding measure on the set of “historical paths” of
these particles. We refer to the monograph [DP] for various applications of historical
superprocesses.

3 Some properties of superprocesses

Theorem 6 gives no information about the regularity of the sample paths of Z. Such
regularity questions are difficult in our general setting (Fitzsimmons [Fi1],[Fi2] gives
fairly complete answers). In the present section, we will use elementary methods to
derive some weak information on the sample paths of Z. We will rely on the integral
equation (9) and certain extensions of this formula that are presented below.

It will be convenient to denote by Πs,x the probability measure under which the spatial
motion ξ starts from x at time s. Under Πs,x, ξt is only defined for t ≥ s. We will make
the convention that Πs,x

(
f(ξt)

)
= 0 if t < s.

Proposition 7. Let 0 ≤ t1 < t2 < · · · < tp and let f1, . . . , fp ∈ Bb+(E). Then,

Eµ
(
exp−

p∑
i=1

〈Zti , fi〉
)

= exp(−〈µ,w0〉)

where the function
(
wt(x), t ≥ 0, x ∈ E) is the unique nonnegative solution of the integral

equation

(13) wt(x) + Πt,x

(∫ ∞
t

ψ
(
ws(ξs)

)
ds
)

= Πt,x

( p∑
i=1

fi(ξti)
)
.
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Note that, since ψ is nonnegative, formula (13) and the previous convention imply that
wt(x) = 0 for t > tp.
Proof. We argue by induction on p. When p = 1, (13) is merely a rewriting of (9): Let
ut(x) be the solution of (9) with g = f1, then

wt(x) = 1{t≤t1}ut1−t(x)

solves (13) and

Eµ(exp−〈Zt1 , f1〉) = exp−〈µ, ut1〉 = exp−〈µ,w0〉 .

Let p ≥ 2 and assume that the result holds up to the order p − 1. By the Markov
property at time t1,

Eµ
(
exp−

p∑
i=1

〈Zti , fi〉
)

= Eµ
(

exp(−〈Zt1 , f1〉)EZt1 (exp−
p∑
i=2

〈Zti−t1 , fi〉)
)

= Eµ(exp(−〈Zt1 , f1〉 − 〈Zt1 , w̃0〉)

where w̃ solves

w̃t(x) + Πt,x

(∫ ∞
t

ψ
(
w̃s(ξs)

)
ds
)

= Πt,x

( p∑
i=2

fi
(
ξti−t1

))
.

By the case p = 1 we get

Eµ
(

exp−
p∑
i=1

〈Zti , fi〉
)

= exp−〈µ, w̄0〉 ,

with
w̄t(x) + Πt,x

(∫ ∞
t

ψ
(
w̄s(ξs)

)
ds
)

= Πt,x

(
f1(ξt1) + w̃0(ξt1)

)
.

We complete the induction by observing that the function wt(x) defined by

wt(x) = 1{t≤t1}w̄t(x) + 1{t>t1}w̃t−t1(x)

solves (13).
Finally the uniqueness of the nonnegative solution of (13) easily follows from Gronwall’s
lemma (note that any nonnegative solution w of (13) is automatically bounded and such
that wt(x) = 0 for t > tp). �

Remark. The same proof shows that

exp−〈µ,wt〉 = Et,µ
(

exp−
p∑
i=1

〈Zti , fi〉
)

= Eµ
(

exp−
p∑
i=1
ti≥t

〈Zti−t, fi〉
)
.
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From now on, we assume that t → ξt is continuous in probability under Πx, for every
x ∈ E.

Proposition 8. For every µ ∈ Mf (E), the process (Zs, s ≥ 0) is continuous in
probability under Pµ.

Proof. Recall (see e.g. [Pa]) that the topology on Mf (E) may be defined by a metric
of the form

d(µ, µ′) =
∞∑
n=0

(
|〈µ, fn〉 − 〈µ′, fn〉| ∧ 2−n

)
where (fn) is a suitably chosen sequence in Cb+(E). Because of this observation it
is enough to prove that for every f ∈ Cb+(E), 〈Zs, f〉 is continuous in probability.
Equivalently, we have to prove that for every r ≥ 0 and λ, γ ≥ 0

lim
r′→r

Eµ
(
exp(−λ〈Zr, f〉 − γ〈Zr′ , f〉)

)
= Eµ

(
exp−(λ+ γ)〈Zr, f〉

)
.

By Proposition 7, the expectations in the previous displayed formula are computed in
terms of the functions wrt (x), vr,r

′

t (x) that solve the integral equations

wrt (x) + Πt,x

(∫ ∞
t

ψ
(
wrs(ξs)

)
ds
)

= (λ+ γ)Πt,x

(
f(ξr)

)
,

vr,r
′

t (x) + Πt,x

(∫ ∞
t

ψ
(
vr,r

′

s (ξs)
)
ds
)

= λΠt,x

(
f(ξr)

)
+ γΠt,x

(
f(ξr′)

)
.

The proof of Proposition 8 then reduces to checking that vr,r
′

t (x) → wrt (x) as r′ → r.
However, from the previous integral equations we get

|vr,r
′

t (x)− wrt (x)| ≤ CΠt,x

(∫ r∨r′

t

|vr,r
′

s (ξs)− wrs(ξs)|ds
)

+Hr,r′

t (x) ,

where Hr,r′

t (x) = γ
∣∣Πt,x

(
f(ξr)− f(ξr′)

)∣∣ tends to 0 as r′ → r, except possibly for t = r,
and is also uniformly bounded. By iterating the previous bound, as in the proof of the
Gronwall lemma, we easily conclude that |vr,r

′

t (x)− wrt (x)| goes to 0 as r′ → r. �

It follows from Proposition 8 that we can choose a measurable modification of the process
Z (meaning that (t, ω) → Zt(ω) is measurable). Precisely, we can find an increasing
sequence (Dn) of discrete countable subsets of R+ such that, if dn(t) = inf{r > t, r ∈
Dn}, the process

Z ′t =
{

limn→∞ Zdn(t) if the limit exists ,

0 if not ,

is such that Z ′t = Zt a.s. for every t ≥ 0 (and Z ′ is clearly measurable).
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From now on, we systematically replace Z by Z ′. Recall from Section 1 that the total
mass process 〈Z, 1〉, which is a ψ-CSBP, has a modification with càdlàg paths, hence
is a.s. bounded over any bounded countable subset of R+. From our choice of the
measurable modification, it follows that (〈Zt, 1〉, t ∈ [0, T ]) is a.s. bounded, for any
T > 0.
The measurability property allows us to consider integrals of the form

∫∞
0
dt h(t)〈Zt, f〉,

where h and f are nonnegative and measurable on R+ and E respectively.

Corollary 9. Let f ∈ Bb+(E) and h ∈ Bb+(R+). Assume that h has compact support.
Then

Eµ
(

exp−
∫ ∞

0

dt h(t)〈Zt, f〉
)

= exp−〈µ,w0〉

where w is the unique nonnegative solution of the integral equation

(14) wt(x) + Πt,x

(∫ ∞
t

ψ
(
ws(ξs)

)
ds
)

= Πt,x

(∫ ∞
t

h(s)f(ξs)ds
)
.

Proof. We first assume that both f and h are continuous. Then, Proposition 8 implies
that, for every K > 0,

lim
n→∞

Eµ
(∫ ∞

0

dt
(∣∣h(t)〈Zt, f〉 − h(n−1[nt])〈Zn−1[nt], f〉

∣∣ ∧K)) = 0.

Since the process 〈Z, 1〉 is locally bounded, it follows that∫ ∞
0

dt h(t)〈Zt, f〉 = lim
n→∞

1
n

∞∑
i=0

h
( i
n

)
〈Zi/n, f〉 ,

in Pµ-probability.
By Proposition 7,

(15) Eµ
(

exp− 1
n

∞∑
i=0

h
( i
n

)
〈Zi/n, f〉

)
= exp−〈µ,wn0 〉

where

wnt (x) + Πt,x

(∫ ∞
t

ψ
(
wns (ξs)

)
ds
)

= Πt,x

( 1
n

∞∑
i=0

h
( i
n

)
f(ξi/n)

)
=: gn(t, x) .

The functions gn(t, x) are uniformly bounded, and converge pointwise to g(t, x) =
Πt,x

(∫∞
t
ds h(s)f(ξs)

)
. By the remark following the proof of Proposition 7, we also

know that

wnt (x) = − log Et,δx
(

exp−
∞∑
i=0

h
( i
n

)
〈Zi/n, f〉

)
.
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Hence wt(x) converges as n→∞ to wt(x) = − log Et,δx
(
exp−

∫∞
t
ds h(s)〈Zs, f〉

)
. We

can then pass to the limit in the integral equation for wn to get that w satisfies (14) (and
is the unique nonnegative solution by Gronwall’s lemma). The desired result follows by
passing to the limit n → ∞ in (15), in the case when f and h are continuous. In the
general case, we use the fact that the property of Corollary 9 is stable under bounded
pointwise convergence. �

4 Calculations of moments

Recall that α ≥ 0 is the coefficient of the linear part in ψ. To simplify notation we write
Ttf(x) = Πx

(
f(ξt)

)
for the semigroup of ξ.

Proposition 10. For every f ∈ Bb+(E), t ≥ 0,

Eµ(〈Zt, f〉) = e−αt〈µ, Ttf〉 .

Proof. First observe that ψ is differentiable at 0 and ψ′(0) = α. Then

Eµ(〈Zt, f〉) = lim
λ↓0
↑ 1− Eµ(exp−λ〈Zt, f〉)

λ
= lim

λ↓0
↑ 1− e−〈µ,vλt 〉

λ

where vλt (x) = − log Eδx(exp−λ〈Xt, f〉) solves

vλt (x) + Πx

(∫ t

0

ψ
(
vλt−s(ξs)

)
ds
)

= λΠx

(
f(ξt)

)
.

From the Hölder inequality, the function λ→ vλt (x) is concave. It follows that the limit

ht(x) = lim
λ↓0
↑ v

λ
t (x)
λ

exists and this limit is obviously bounded above by Πx

(
f(ξt)

)
. By passing to the limit

in the integral equation for vλt we get

ht(x) + αΠx

(∫ t

0

ht−s(ξs) ds
)

= Πx

(
f(ξt)

)
.

However, it is easy to see that the unique solution to this integral equation is ht(x) =
e−αtΠx

(
f(ξt)

)
. The desired result follows. �

Moments of higher order need not exist in general. However, they do exist when π = 0,
in particular in the case of the quadratic branching mechanism ψ(u) = βu2. These
moments can be computed from our formulas for the Laplace functionals. To illustrate
the method we consider the case of second moments in the next proposition.
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Proposition 11. Suppose that ψ(u) = βu2. Then,

Eµ(〈Zt, f〉2) = 〈µ, Ttf〉2 + 2β
∫ t

0

〈µ, Ts
(
(Tt−sf)2

)
〉ds

and more generally

Eµ(〈Zt, f〉〈Zt′ , g〉) = 〈µ, Ttf〉〈µ, Tt′g〉+ 2β
∫ t∧t′

0

〈µ, Ts
(
(Tt−sf)(Tt′−sg)

)
〉ds .

Proof. First observe that

(16) Eµ
(
e−λ〈Zt,f〉 − 1 + λ〈Zt, f〉

)
= e−〈µ,v

λ
t 〉 − 1 + λ〈µ, Ttf〉

where

vλt (x) + β

∫ t

0

Ts
(
(vλt−s)

2
)
(x)ds = λTtf(x) .

It readily follows from the last equation that as λ→ 0,

vλt (x) = λTtf(x)− λ2β

∫ t

0

Ts
(
(Tt−sf)2

)
(x)ds+O(λ3)

with a remainder uniform in x ∈ E. Since

〈Zt, f〉2 = lim
λ↓0

2
λ2

(
e−λ〈Zt,f〉 − 1 + λ〈Zt, f〉

)
it follows from (16) and Fatou’s lemma that Eµ(〈Zt, f〉2) <∞, and then by dominated
convergence that

Eµ(〈Zt, f〉2) = lim
λ↓0

2
λ2

(
e−〈µ,v

λ
t 〉 − 1 + λ〈µ, Ttf〉

)
= 〈µ, Ttf〉2 + 2β

∫ t

0

〈µ, Ts
(
(Tt−sf)2

)
〉ds

By polarization we easily get

Eµ
(
〈Zt, f〉〈Zt, g〉

)
= 〈µ, Ttf〉〈µ, Ttg〉+ 2β

∫ t

0

〈µ, Ts
(
(Tt−sf)(Tt−sg)

)
〉ds .

Finally, if t ≤ t′, the Markov property and Proposition 10 give

Eµ(〈Zt, f〉〈Zt, g〉) = Eµ
(
〈Zt, f〉EZt(〈Zt′−t, g〉)

)
= Eµ(〈Zt, f〉〈Zt, Tt′−tg〉) .

The desired result follows. �
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Exercise. From Proposition 11 one also easily obtains that

Eµ
(∫ ∫

Zt(dy)Zt(dy′)ψ(y, y′)
)

=
∫ ∫

µTt(dy)µTt(dy′)ψ(y, y′)

+ 2β
∫ t

0

ds

∫
µTs(dz)

∫ ∫
Tt−s(z, dy)Tt−s(z, dy′)ψ(y, y′) .

Use this to verify that for super-Brownian motion in Rd (d ≥ 2), for t > 0 and ε ∈ (0, 1)

(17) Eµ
(∫ ∫ Zt(dy)Zt(dy′)

|y − y′|2−ε
)
<∞ .

[Hint: If pt(x, y) is the Brownian transition density, verify that for a fixed t > 0

∫ t

0

ds

∫
dz ps(x, z)pt−s(z, y)pt−s(z, y′) ≤

{
C(1 + log+

1
|y−y′| ) if d = 2

C(|y − y′|2−d + 1) if d ≥ 3

where the constant C depends only on t.]
The bound (17) and an application of the classical Frostman lemma imply that

dim supp(Zt) ≥ 2 a.s. on {Zt 6= 0} ,

where dim A denotes the Hausdorff dimension of A. We will see later that this lower
bound is sharp (it is obviously when d = 2!).
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III The genealogy

of Brownian excursions

We briefly explained in Chapter I that the genealogical structure of the superprocess
with branching mechanism ψ(u) = βu2 can be coded by Brownian excursions. Our
main goal in this chapter is to explain how one can define random trees associated with
a Brownian excursion and to give explicit formulas for the distribution of these random
trees. As a corollary of our results, we also recover the finite-dimensional marginals of
Aldous’ continuum random tree.

1 The Itô excursion measure

We denote by (Bt, t ≥ 0) a linear Brownian motion, which starts at x under the prob-
ability measure Px. We also set T0 = inf{t ≥ 0, Bt = 0}. For x > 0, the density of the
law of T0 under Px is

qx(t) =
x√
2πt3

e−
x2
2t .

A major role in what follows will be played by the Itô measure n(de) of positive excur-
sions. This is an infinite measure on the set E0 of excursions, that is of continuous map-
pings e : R+ −→ R+ such that e(s) > 0 if and only if s ∈ (0, σ), for some σ = σ(e) > 0
called the length or duration of the excursion e.
For most of our purposes in this chapter, it will be enough to know that n(de) has the
following two (characteristic) properties:
(i) For every t > 0, and every measurable function f : R+ −→ R+ such that f(0) = 0,

(1)
∫
n(de) f(e(t)) =

∫ ∞
0

dx qx(t) f(x).

(ii) Let t > 0 and let Φ and Ψ be two nonnegative measurable functions defined respec-
tively on C([0, t],R+) and C(R+,R+). Then,∫

n(de) Φ(e(r), 0 ≤ r ≤ t)Ψ(e(t+ r), r ≥ 0)

=
∫
n(de) Φ(e(r), 0 ≤ r ≤ t) Ee(t)

(
Ψ(Br∧T0 , r ≥ 0)

)
.
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Note that (i) implies n(σ > t) = n(e(t) > 0) = (2πt)−1/2 <∞. Property (ii) means that
the process (e(t), t > 0) is Markovian under n with the transition kernels of Brownian
motion absorbed at 0.
Let us also recall the useful formula n

(
sups≥0 e(s) > ε

)
= (2ε)−1 for ε > 0.

Lemma 1. If f ∈ B+(R+) and f(0) = 0,

n
(∫ ∞

0

dt f(e(t))
)

=
∫ ∞

0

dx f(x).

Proof. This is a simple consequence of (1). �

For every t ≥ 0, we set It = inf0≤s≤tBs.

Lemma 2. If f ∈ B+(R3) and x ≥ 0,

(2) Ex

(∫ T0

0

dt f(t, It, Bt)
)

= 2
∫ x

0

dy

∫ ∞
y

dz

∫ ∞
0

dt qx+z−2y(t) f(t, y, z).

In particular, if g ∈ B+(R2),

(3) Ex

(∫ T0

0

dt g(It, Bt)
)

= 2
∫ x

0

dy

∫ ∞
y

dz g(y, z).

Proof. Since

Ex

(∫ T0

0

dt f(t, It, Bt)
)

=
∫ ∞

0

dtEx
(
f(t, It, Bt) 1{It>0}

)
,

the lemma follows from the explicit formula

Ex
(
g(It, Bt)

)
=
∫ x

−∞

∫ ∞
y

dz
2(x+ z − 2y)√

2πt3
e−

(x+z−2y)2

2t g(y, z)

which is itself a consequence of the reflection principle for linear Brownian motion. �

2 Binary trees

We will consider ordered rooted binary trees. Such a tree describes the genealogy of a
population starting with one ancestor (the root φ), where each individual can have 0
or 2 children, and the population becomes extinct after a finite number of generations
(the tree is finite). The tree is ordered, which means that we put an order on the two
children of each individual.

Formally we may and will define a tree as a finite subset T of ∪∞n=0{1, 2}n (with {1, 2}0 =
{φ}) satisfying the obvious conditions:
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(i) φ ∈ T ;
(ii) if (i1, . . . , in) ∈ T with n ≥ 1, then (i1, . . . , in−1) ∈ T ;
(iii) if (i1, . . . , in) ∈ T , then either (i1, . . . , in, 1) ∈ T and (i1, . . . , in, 2) ∈ T , or
(i1, . . . , in, 1) /∈ T and (i1, . . . , in, 2) /∈ T .

The elements of T are the vertices (or individuals in the branching process terminology)
of the tree. Individuals without children are called leaves. If T and T ′ are two trees,
the concatenation of T and T ′, denoted by T ∗ T ′, is defined in the obvious way: For
n ≥ 1, (i1, . . . , in) belongs to T ∗ T ′ if and only if i1 = 1 and (i2, . . . , in) belongs to T ,
or i1 = 2 and (i2, . . . , in) belongs to T ′. Note that T ∗ T ′ 6= T ′ ∗ T in general.

For p ≥ 1, we denote by Tp the set of all (ordered rooted binary) trees with p leaves. It
is easy to compute ap = Card Tp. Obviously a1 = 1 and if p ≥ 2, decomposing the tree
at the root shows that ap =

∑p−1
j=1 ajap−j . It follows that

ap =
1× 3× . . .× (2p− 3)

p!
2p−1.

A marked tree is a pair (T, {hv, v ∈ T}), where hv ≥ 0 for every v ∈ T . Intuitively, hv
represents the lifetime of individual v.
We denote by Tp the set of all marked trees with p leaves. Let θ = (T, {hv, v ∈ T}) ∈ Tp,
θ′ = (T ′, {h′v, v ∈ T ′)}) ∈ Tp′ , and h ≥ 0. the concatenation

θ ∗
h
θ′

is the element of Tp+p′ whose “skeleton” is T ∗ T ′ and such that the marks of vertices
in T , respectively in T ′, become the marks of the corresponding vertices in T ∗ T ′, and
finally the mark of φ in T ∗ T ′ is h.

3 The tree associated with an excursion

Let e : [a, b] −→ R+ be a continuous function defined on a subinterval [a, b] of R+. For
every a ≤ u ≤ v ≤ b, we set

m(u, v) = inf
u≤t≤v

e(t).

Let t1, . . . , tp ∈ R+ be such that a ≤ t1 ≤ t2 ≤ · · · ≤ tp ≤ b. We will now construct a
marked tree

θ(e, t1, . . . , tp) = (T (e, t1, . . . , tp), {hv(e, t1, . . . , tp), v ∈ T}) ∈ Tp

associated with the function e and the times t1, . . . , tp. We proceed by induction on p.
If p = 1, T (e, t1) is the unique element of T1, and hφ(e, t1) = e(t1). If p = 2, T (e, t1, t2)
is the unique element of T2, hφ = m(t1, t2), h1 = e(t1)−m(t1, t2), h2 = e(t2)−m(t1, t2).
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Then let p ≥ 3 and suppose that the tree has been constructed up to the order p − 1.
Let j = inf{i ∈ {1, . . . , p− 1},m(ti, ti+1) = m(t1, tp)}. Define e′ and e′′ by the formulas

e′(t) = e(t)−m(t1, tp), t ∈ [t1, tj ],
e′′(t) = e(t)−m(t1, tp), t ∈ [tj+1, tp].

By the induction hypothesis, we can associate with e′ and t1, . . . , tj , respectively with
e′′ and tj+1, . . . , tp, a tree θ(e′, t1, . . . , tj) ∈ Tj , resp. θ(e′′, tj+1, . . . , tp) ∈ Tp−j . We set

θ(e, t1, . . . , tp) = θ(e′, t1, . . . , tj) ∗
m(t1,tp)

θ(e′′, tj+1, . . . , tp).

4 The law of the tree associated with an excursion

Our goal is now to determine the law of the tree θ(e, t1, . . . , tp) when e is chosen according
to the Itô measure of excursions, and (t1, . . . , tp) according to Lebesgue measure on
[0, σ(e)]p.

Proposition 3. For f ∈ B+(R2p−1
+ ),

n
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp f
(
m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp)

))
= 2p−1

∫
R2p−1

+

dα1 . . . dαp−1dβ1 . . . dβp

( p−1∏
i=1

1[0,βi∧βi+1](αi)
)
f(α1, . . . , αp−1, β1, . . . , βp).

Proof. This is a simple consequence of Lemmas 1 and 2. For p = 1, the result is exactly
Lemma 1. We proceed by induction on p using property (ii) of the Itô measure and
then (3):

n
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp f(m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp))
)

= n
(∫
{0≤t1≤···≤tp−1≤σ}

dt1 . . . dtp−1

Ee(tp−1)

(∫ T0

0

dt f(m(t1, t2), . . . ,m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt)
))

= 2n
(∫
{0≤t1≤···≤tp−1≤σ}

dt1 . . . dtp−1∫ e(tp−1)

0

dαp−1

∫ ∞
αp−1

dβp f(m(t1, t2), . . . ,m(tp−2, tp−1), αp−1, e(t1), . . . , e(tp−1), βp)
)
.

The proof is then completed by using the induction hypothesis. �
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The uniform measure Λp on Tp is defined by∫
Λp(dθ)F (θ) =

∑
T∈Tp

∫ ∏
v∈T

dhv F (T, {hv, v ∈ T}).

Theorem 4. The law of the tree θ(e, t1, . . . , tp) under the measure

n(de) 1{0≤t1≤···≤tp≤σ(e)}dt1 . . . dtp

is 2p−1Λp.

Proof. From the construction in Section 3, we have

θ(e, t1, . . . , tp) = Γp(m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp)),

where Γp is a measurable function from R2p−1
+ into Tp. Denote by ∆p the measure on

R2p−1
+ defined by

∆p(dα1 . . . dαp−1dβ1 . . . dβp) =
( p−1∏
i=1

1[0,βi∧βi+1](αi)
)
dα1 . . . dαp−1dβ1 . . . dβp.

In view of Proposition 3, the proof of Theorem 4 reduces to checking that Γp(∆p) = Λp.
For p = 1, this is obvious.
Let p ≥ 2 and suppose that the result holds up to order p−1. For every j ∈ {1, . . . , p−1},
let Hj be the subset of R2p−1

+ defined by

Hj = {(α1, . . . , αp−1, β1, . . . , βp); αj < αi for every i 6= j}.

Then,

∆p =
p−1∑
j=1

1Hj ·∆p.

On the other hand, it is immediate to verify that 1Hj ·∆p is the image of the measure

∆j(dα′1 . . . dβ
′
j)⊗ 1(0,∞)(h)dh⊗∆p−j(dα′′1 . . . dβ

′′
p−j)

under the mapping Φ : (α′1, . . . , β
′
j , h, α

′′
1 . . . , β

′′
p−j) −→ (α1, . . . , βp) defined by

αj = h,
αi = α′i + h for 1 ≤ i ≤ j − 1,
βi = β′i + h for 1 ≤ i ≤ j,
αi = α′′i−j + h for j + 1 ≤ i ≤ p− 1,
βi = β′′i−j + h for j + 1 ≤ i ≤ p.
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The construction by induction of the tree θ(e, t1, . . . , tp) exactly shows that

Γp ◦ Φ(α′1, . . . , β
′
j , h, α

′′
1 . . . , β

′′
p−j) = Γj(α′1, . . . , β

′
j) ∗

h
Γp−j(α′′1 . . . , β

′′
p−j).

Together with the induction hypothesis, the previous observations imply that for any
f ∈ B+(Tp),∫

∆p(du) 1Hj (u) f(Γp(u)) =
∫ ∞

0

dh

∫ ∫
∆j(du′)∆p−j(du′′) f

(
Γp(Φ(u′, h, u′′))

)
=
∫ ∞

0

dh

∫ ∫
∆j(du′)∆p−j(du′′) f

(
Γj(u′) ∗

h
Γp−j(u′′)

)
=
∫ ∞

0

dh

∫
Λj ∗

h
Λp−j(dθ) f(θ)

where we write Λj ∗
h

Λp−j for the image of Λj(dθ)Λp−j(dθ′) under the mapping

(θ, θ′) −→ θ ∗
h
θ′. To complete the proof, simply note that

Λp =
p−1∑
j=1

∫ ∞
0

dhΛj ∗
h

Λp−j .

�

5 The normalized excursion and Aldous’ continuum
random tree

In this section, we propose to calculate the law of the tree θ(e, t1, . . . , tp) when e is chosen
according to the law of the Brownian excursion conditioned to have duration 1, and
t1, . . . , tp are chosen according to the probability measure p!1{0≤t1≤···≤tp≤1}dt1 . . . dtp.
In contrast with the measure Λp of Theorem 4, we get for every p a probability measure
on Tp. These probability measures are compatible in a certain sense and they can be
identified with the finite-dimensional marginals of Aldous’ continuum random tree (this
identification is obvious if the CRT is described by the coding explained in Chapter I).
We first recall a few basic facts about the normalized Brownian excursion. There exists
a unique collection of probability measures (n(s), s > 0) on E0 such that the following
properties hold:
(i) For every s > 0, n(s)(σ = s) = 1.

(ii) For every λ > 0 and s > 0, the law under n(s)(de) of eλ(t) =
√
λe(t/λ) is n(λs).

(iii) For every Borel subset A of E0,

n(A) =
1
2

(2π)−1/2

∫ ∞
0

s−3/2 n(s)(A) ds.
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The measure n(1) is called the law of the normalized Brownian excursion.

Our first goal is to get a statement more precise than Theorem 4 by considering the
pair (θ(e, t1, . . . , tp), σ) instead of θ(e, t1, . . . , tp). If θ = (T, {hv, v ∈ T}) is a marked
tree, the length of θ is defined in the obvious way by

L(θ) =
∑
v∈T

hv.

Proposition 5. The law of the pair (θ(e, t1, . . . , tp), σ) under the measure

n(de) 1{0≤t1≤···≤tp≤σ(e)}dt1 . . . dtp

is
2p−1 Λp(dθ) q2L(θ)(s)ds.

Proof. Recall the notation of the proof of Theorem 4. We will verify that, for f ∈
B+(R3p

+ ),

(4)

n
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp

f
(
m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , σ − tp

))
= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫
Rp+1

+

ds1 . . . dsp+1 qβ1(s1)qβ1+β2−2α1(s2) . . .

. . . qβp−1+βp−2αp−1(sp)qβp(sp+1) f(α1, . . . , αp−1, β1, . . . , βp, s1, . . . , sp+1).

Suppose that (4) holds. It is easy to check (for instance by induction on p) that

2L(Γp(α1, . . . , αp−1, β1, . . . , βp)) = β1 +
p−1∑
i=1

(βi + βi−1 − 2αi) + βp.

Using the convolution identity qx ∗ qy = qx+y, we get from (4), for f ∈ B+(R2p),

n
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp f
(
m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp), σ

))
= 2p−1

∫
∆p(dα1 . . . dαp−1dβ1 . . . dβp)

∫ ∞
0

dt q2L(Γp(α1,...,βp))(t) f(α1, . . . , βp, t).

As in the proof of Theorem 4, the statement of Proposition 5 follows from this last
identity and the equality Γp(∆p) = Λp.
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It remains to prove (4). The case p = 1 is easy: By using property (ii) of the Itô
measure, then the definition of the function qx and finally (1), we get∫

n(de)
∫ σ

0

dt f(e(t), t, σ − t) =
∫
n(de)

∫ σ

0

dtEe(t)
(
f(e(t), t, T0)

)
=
∫
n(de)

∫ σ

0

dt

∫ ∞
0

dt′ qe(t)(t′)f(e(t), t, t′)

=
∫ ∞

0

dx

∫ ∞
0

dt qx(t)
∫ ∞

0

dt′ qx(t′) f(x, t, t′).

Let p ≥ 2. Applying the Markov property under n successively at tp and at tp−1, and
then using (2), we obtain

n
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp

× f
(
m(t1, t2), . . . ,m(tp−1, tp), e(t1), . . . , e(tp), t1, t2 − t1, . . . , σ − tp

))
=n
(∫
{0≤t1≤···≤tp−1≤σ}

dt1 . . . dtp−1Ee(tp−1)

(∫ T0

0

dt

∫ ∞
0

ds qBt(s)

× f
(
m(t1, t2), . . . ,m(tp−2, tp−1), It, e(t1), . . . , e(tp−1), Bt, t1, . . . , tp−1 − tp−2, t, s

)))
=2n

(∫
{0≤t1≤···≤tp−1≤σ}

dt1 . . . dtp−1

∫ e(tp−1)

0

dy

∫ ∞
y

dz

∫ ∞
0

dt

∫ ∞
0

ds qe(tp−1)+z−2y(t)qz(s)

× f
(
m(t1, t2), . . . ,m(tp−2, tp−1), y, e(t1), . . . , e(tp−1), z, t1, . . . , tp−1 − tp−2, t, s

))
.

It is then straightforward to complete the proof by induction on p. �

We can now state and prove the main result of this section.

Theorem 6. The law of the tree θ(e, t1, . . . , tp) under the probability measure

p! 1{0≤t1≤···≤tp≤1}dt1 . . . dtp n(1)(de)

is
p! 2p+1 L(θ) exp

(
− 2L(θ)2

)
Λp(dθ).

Proof. We equip Tp with the obvious product topology. Let F ∈ Cb+(Tp) and h ∈
Bb+(R+). By Proposition 5,∫

n(de)h(σ)
∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp F
(
θ(e, t1, . . . , tp)

)
= 2p−1

∫ ∞
0

ds h(s)
∫

Λp(dθ) q2L(θ)(s)F (θ).
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On the other hand, using the properties of the definition of the measures n(s), we have
also∫

n(de)h(σ)
∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp F
(
θ(e, t1, . . . , tp)

)
=

1
2

(2π)−1/2

∫ ∞
0

ds s−3/2 h(s)
∫
n(s)(de)

∫
{0≤t1≤···≤tp≤s}

dt1 . . . dtp F (θ(e, t1, . . . , tp)).

By comparing with the previous identity, we get for a.a. s > 0,∫
n(s)(de)

∫
{0≤t1≤···≤tp≤s}

dt1 . . . dtp F (θ(e, t1, . . . , tp))

= 2p+1

∫
Λp(dθ)L(θ) exp

(
− 2L(θ)2

s

)
F (θ).

Both sides of the previous equality are continuous functions of s (use the scaling property
of n(s) for the left side). Thus the equality holds for every s > 0, and in particular for
s = 1. This completes the proof. �

Concluding remarks. If we pick t1, . . . , tp independently according to Lebesgue mea-
sure on [0,1], we can consider the increasing rearrangement t′1 ≤ t′2 ≤ · · · ≤ t′p of
t1, . . . , tp and define θ(e, t1, . . . , tp) = θ(e, t′1, . . . , t

′
p). We can also keep track of the

initial ordering and consider the tree θ̃(e, t1, . . . , tp) defined as the tree θ(e, t1, . . . , tp)
where leaves are labelled 1, . . . , p, the leaf corresponding to time ti receiving the label
i. (This labelling has nothing to do with the ordering of the tree.) Theorem 6 implies
that the law of the tree θ̃(e, t1, . . . , tp) under the probability measure

1[0,1]p(t1, . . . , tp)dt1 . . . dtp n(1)(de)

has density
2p+1L(θ) exp(−2L(θ)2)

with respect to Λ̃p(dθ), the uniform measure on the set of labelled marked trees.

We can then “forget” the ordering. Define θ∗(e, t1, . . . , tp) as the tree θ̃(e, t1, . . . , tp)
without the order structure. Since there are 2p−1 possible orderings for a given labelled
tree, we get that the law (under the same measure) of the tree θ∗(e, t1, . . . , tp) has
density

22pL(θ) exp(−2L(θ)2)

with respect to Λ∗p(dθ), the uniform measure on the set of labelled marked unordered
trees.
For convenience, replace the excursion e by 2e (this simply means that all heights are
multiplied by 2). We obtain that the law of the tree θ∗(2e, t1, . . . , tp) has density

L(θ) exp(−L(θ)2

2
)
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with respect to Λ∗p(dθ). It is remarkable that the previous density (apparently) does
not depend on p.
In the previous form, we recognize the finite-dimensional marginals of Aldous’ con-
tinuum random tree [Al1]. To give a more explicit description, the discrete skeleton
T ∗(2e, t1, . . . , tp) is distributed uniformly on the set of labelled rooted binary trees with
p leaves. (This set has bp elements, with bp = p! 2−(p−1)ap = 1 × 3 × · · · × (2p − 3).)
Then, conditionally on the discrete skeleton, the heights hv are distributed with the
density

bp
(∑

hv
)

exp
(
−
(∑

hv
)2

2
)

(verify that this is a probability density on R2p−1
+ !).
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IV The Brownian snake
and quadratic superprocesses

In this chapter, we introduce the path-valued process called the Brownian snake and we
use this process to give a new construction of superprocesses with branching mechanism
ψ(u) = βu2. This construction will be applied to connections with partial differential
equations in the forthcoming chapters. The proof of the relationship between the Brown-
ian snake and superprocesses relies on our study of the genealogy of Brownian excursions
in the previous chapter. In the last sections, under stronger continuity assumptions on
the spatial motion, we use the Brownian snake approach to derive various properties of
superprocesses.

1 The Brownian snake

As in Chapter II, we consider a Markov process (ξt,Πx) with càdlàg paths and values in
a Polish space E and we denote by δ(x, y) the distance on E. For technical convenience,
we will assume a little more than the continuity in probability of ξ under Πx for every
x ∈ E. Precisely, we assume that for every ε > 0

(1) lim
t→0

(
sup
x∈E

Πx

(
sup
r≤t

δ(x, ξr) > ε
))

= 0.

Without the supremum in x, this is simply the right-continuity of paths. Here we require
uniformity in x.

Let us introduce the space of finite paths in E. If I is an interval of R+, we denote by
D(I, E) the Skorokhod space of càdlàg mappings from I into E. We then set

W =
⋃
t≥0

D([0, t], E)

and if w ∈ W, we write ζw = t if w ∈ D([0, t], E) (ζw is called the lifetime of w). We
also use the notation ŵ = w(ζw) for the terminal point of w. The set W is equipped
with the distance

d(w,w′) = |ζw − ζw′ |+ d0

(
w(. ∧ ζw), w′(. ∧ ζw′)

)
,
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where d0 is a distance defining the Skorokhod topology on D
(
[0,∞), E

)
. It is easy to

verify that (W, d) is a Polish space. It will be convenient to view E as a subset ofW, by
identifying a point x ∈ E with the trivial path with initial point x and lifetime ζ = 0.
For x ∈ E, we denote by Wx the set {w ∈ W, w(0) = x}.

Let w ∈ W and a ∈ [0, ζw], b ≥ a. We define a probability measure Ra,b(w, dw′) on W
by the following prescriptions:

(i) ζw′ = b, Ra,b(w, dw′) a.s.
(ii) w′(t) = w(t), for every t ∈ [0, a], Ra,b(w, dw′) a.s.
(iii) The law under Ra,b(w, dw′) of

(
w′(a+t), 0 ≤ t ≤ b−a

)
is the law of (ξt, 0 ≤ t ≤ b−a)

under Πw(a).

Informally, the path w′ is obtained by first restricting w to the time interval [0, a] and
then extending the restricted path to [0, b] by using the law of ξ between a and b.

Let (βs, s ≥ 0) be a reflected linear Brownian motion (the modulus of a standard
linear Brownian motion) started at x. For every s > 0, we denote by γxs (da db) the
joint distribution of the pair (inf0≤r≤s βr, βs). The reflection principle easily gives the
explicit form of γxs (da db):

γxs (da db) =
2(x+ b− 2a)

(2πs3)1/2
exp− (x+ b− 2a)2

2s
1(0<a<b∧x) da db

+ 2 (2πs)−1/2 exp− (x+ b)2

2s
1(0<b)δ0(da) db.

Definition. The ξ-Brownian snake is the Markov process inW, denoted by (Ws, s ≥ 0),
whose transition kernels Qs are given by the formula

Qs(w, dw′) =
∫ ∫

γζws (da db)Ra,b(w, dw′).

We will use the notation ζs = ζWs
for the lifetime of Ws.

Although the formula for Qs looks complicated, the behavior of the process W can be
described in a simple way. Informally, Ws is a path of ξ started at x, with a random
lifetime ζs evolving like reflected linear Brownian motion. When ζs decreases the path
Ws is simply erased (or shortened) from its tip, and when ζs increases the path is
extended using the law of ξ for the extension. From the formula for Qs, it is also clear
that Ws(0) = W0(0) a.s., so that the process W started at w0 indeed takes values in
Wx with x = w0(0).

It is maybe not immediate that the collection of kernels Qs forms a semigroup of transi-
tion kernels. (The previous intuitive interpretation should make this property obvious.)
We will leave the easy verification of this fact to the reader, and rather give a construc-
tion of W that we will use in the remainder of this chapter.
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This construction involves defining the conditional distributions of W given the “lifetime
process” (ζs, s ≥ 0). Fix a starting point w0 ∈ W and set ζ0 = ζw0 . The process W
started at w0 will be constructed on the canonical space C(R+,R+) × WR+ . To this
end, denote by Pζ0 the law on C(R+,R+) of reflected Brownian motion started at ζ0.
Then, for f ∈ C(R+,R+) such that f(0) = ζ0, let Θf

w0
(dω) be the law on WR+ of the

time-inhomogeneous Markov process in W started at w0 and whose transition kernel
between times s and s′ is

Rm(s,s′),f(s′)(w, dw′) ,

where m(s, s′) = infs≤r≤s′ f(s). Note that the existence of Θf
w0

is an easy application of
the Kolmogorov extension theorem. Furthermore, if A is a measurable subset of WR+

depending on finitely many coordinates, it is straightforward to verify that the mapping
f −→ Θf

w0
(A) is measurable. Thus it makes sense to consider the probability measure

Pw0(df dω) = Pζ0(df)Θf
w0

(dω).

The process W started at w0 is defined under Pw0(df dω) by Ws(f, ω) = ω(s).

A straightforward calculation of finite-dimensional marginals shows that (Ws, s ≥ 0) is
under Pw0 a (time-homogeneous) Markov process with transition kernels Qs. Note that
we have ζs(f, ω) = f(s), Pw0 a.s., so that the lifetime process is a reflected Brownian
motion. (This fact can also be deduced from the form of Qs.)

It is easy to verify that the kernels Qs are symmetric with respect to the (invariant)
measure

M(dw) =
∫ ∞

0

daΠa
x(dw) ,

where Πa
x(dw) = R0,a(x, dw) is the law of the process ξ started at x and stopped at

time a. We can thus apply to W the tools of the theory of symmetric Markov processes.
We will not give such applications here, but refer the interested reader to [L4] or [L7].

A major role in what follows will be played by the excursion measures of the Brownian
snake. For x ∈ E, the excursion measure Nx is the σ-finite measure defined by

Nx(df dω) = n(df)Θf
x(dω),

where n(df) is the Itô excursion measure as in Chapter III. We will see later (under
additional regularity assumptions) that the law of (Ws, s ≥ 0) under Nx is indeed the
excursion measure of the Brownian snake away from the trivial path x, in the sense of
excursion theory for Markov processes. The process Ws can be described informally
under Nx in the same way as under Pw0 , with the only difference that the lifetime
process ζs is now distributed according to the Itô excursion measure.

Lemma 1. (i) For every ε > 0 and α > 0,

lim
r↓0

(
sup
s≥α

Pw0(d(Ws,Ws+r) > ε)
)

= 0
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and the convergence is uniform in w0 ∈ W.
(ii) Let f ∈ C(R+,R+) with compact support and such that f(0) = 0. Then, for every
ε > 0,

lim
r↓0

(
sup
s≥0

Θf
x(d(Ws,Ws+r) > ε)

)
= 0.

The convergence is uniform in x ∈ E, and its rate only depends on a modulus of conti-
nuity for f .

Remark. The first part of the lemma implies that the process (Ws, s ≥ 0) is continuous
in probability under Pw0 , except possibly at s = 0. On the other hand, it is easy to see
that if w0 has a jump at ζw0 , then Ws will not be continuous in probability at s = 0
under Pw0 .

Proof. We prove (i). Let 0 < s < s′ and let f ∈ C(R+,R+) be such that
m(0, s) ≤ m(s, s′). Then, under Θf

w0
, Ws and Ws′ are two random paths with re-

spective lifetimes f(s) and f(s′), which coincide up to time m(s, s′) and then behave
independently according to the law of ξ. Let ε > 0 and η > 0. We can easily bound

Pw0

(
sup
t≥0

δ
(
Ws(t ∧ ζs),Ws′(t ∧ ζs′)

)
> 2ε

)
≤ Pζw0

(
m(s, s′) < m(0, s)

)
+ Pζw0

(
ζs −m(s, s′) > η

)
+ Pζw0

(
ζs′ −m(s, s′) > η

)
+ 2Eζw0

(
1{m(0,s)≤m(s,s′)}Πw0(m(0,s))

(
Πξm(s,s′)−m(0,s)

(
sup

0≤r≤η
δ(ξ0, ξr) > ε

)))
.

For any fixed η > 0, the first three terms of the right side will be small provided that
s′ − s is small enough and s ≥ α > 0. On the other hand, the last term goes to 0 as
η → 0, uniformly in w0, thanks to our assumption (1). This completes the proof of (i).
The argument for (ii) is similar. �

As we did in Chapter II for superprocesses, we may use the previous lemma to construct
a measurable modification of W . We can choose an increasing sequence (Dn) of discrete
countable subsets of R+, with union dense in R+, in such a way that the following
properties hold. If dn(s) = inf{r ≥ s, r ∈ Dn}, the process

W ′s =
{

limn→∞Wdn(s) if the limit exists ,

W0 if not ,

satisfies both Pw0(W ′s 6= Ws) = 0 for every s ≥ 0, w0 ∈ W and Θf
x(W ′s 6= Ws) = 0 for

every s ≥ 0 and x ∈ E, n(df) a.e. From now on we deal only with this modification and
systematically replace W by W ′. Note that W ′ is also a modification of W under Nx,
for every x ∈ E.

As in Chapter III, we write σ = σ(f) under Nx.
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2 Finite-dimensional marginals of the Brownian snake

In this section, we briefly derive a description of the finite-dimensional marginals of
the Brownian snake, in terms of the marked trees that were introduced in the previous
chapter.

Let θ ∈ Tp be a marked tree with p branches. We associate with θ a probability measure
on (Wx)p denoted by Πθ

x, which is defined inductively as follows.

If p = 1, then θ =
(
{φ}, h

)
for some h ≥ 0 and we let Πθ

x = Πh
x be the law of

(ξt, 0 ≤ t ≤ h) under Πx.

If p ≥ 2, then we can write in a unique way
θ = θ′ ∗

h
θ′′ ,

where θ′ ∈ Tj , θ′′ ∈ Tp−j , and j ∈ {1, . . . , p− 1}. We then define Πθ
x by∫

Πθ
x(dw1, . . . , dwp)F (w1, . . . , wp)

= Πx

(∫ ∫
Πθ′

ξh
(dw′1, . . . , dw

′
j)Π

θ′′

ξh
(dw′′1 , . . . , dw

′′
p−j)

F (ξ[0,h] � w′1, . . . , ξ[0,h] � w′j , ξ[0,h] � w′′1 , . . . , ξ[0,h] � w′′p−j)
)

where ξ[0,h] � w denotes the concatenation (defined in an obvious way) of the paths
(ξt, 0 ≤ t ≤ h) and

(
w(t), 0 ≤ t ≤ ζw

)
.

Informally, Πθ
x is obtained by running independent copies of ξ along the branches of the

tree θ.

Proposition 2. (i) Let f ∈ C(R+,R+) such that f(0) = 0, and let 0 ≤ t1 ≤ t2 ≤ · · · ≤
tp. Then the law under Θf

x of
(
ω(t1), . . . , ω(tp)

)
is Πθ(f,t1,...,tp)

x .
(ii) For any F ∈ B+(Wp

x),

Nx
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp F
(
Wt1 , . . . ,Wtp

))
= 2p−1

∫
Λp(dθ) Πθ

x(F ) .

Proof. Assertion (i) follows easily from the definition of Θf
x and the construction of

the trees θ(f, t1, . . . , tp). A precise argument can be given using induction on p, but we
leave details to the reader. To get (ii), we write

Nx
(∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp F
(
Wt1 , . . . ,Wtp

))
=
∫
n(df)

∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp Θf
x

(
F
(
Wt1 , . . . ,Wtp

))
=
∫
n(df)

∫
{0≤t1≤···≤tp≤σ}

dt1 . . . dtp Πθ(f,t1,...,tp)
x (F )

= 2p−1

∫
Λp(dθ) Πθ

x(F ).
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The first equality is the definition of Nx, the second one is part (i) of the proposition,
and the last one is Theorem III.4. �

The cases p = 1 and p = 2 of Proposition 2 (ii) will be used several times in what
follows. Let us rewrite the corresponding formulas in a special case. Recall the notation
ŵ for the terminal point of w. For any g ∈ B+(E), we have

Nx
(∫ σ

0

ds g(Ŵs)
)

= Πx

(∫ ∞
0

dt g(ξt)
)
,

and

Nx
((∫ σ

0

ds g(Ŵs)
)2)

= 4 Πx

(∫ ∞
0

dt
(

Πξt

(∫ ∞
0

dr g(ξr)
))2)

.

These formulas are reminiscent of the moment formulas for superprocesses obtained in
Chapter II in the quadratic branching case. We will see in the next section that this
analogy is not a coincidence.

3 The connection with superprocesses

We start with a key technical result.

Proposition 3. Let g ∈ Bb+(R+ × E) such that g(t, y) = 0 for t ≥ A > 0. Then the
function

ut(x) = Nx
(

1− exp−
∫ σ

0

ds g(t+ ζs, Ŵs)
)

solves the integral equation

(1) ut(x) + 2 Πt,x

(∫ ∞
t

dr
(
ur(ξr)

)2) = Πt,x

(∫ ∞
t

dr g(r, ξr)
)

(recall that the process ξ starts from x at time t under the probability measure Πt,x).

Proof. For every integer p ≥ 1, set

T pg(t, x) =
1
p!

Nx
((∫ σ

0

ds g(t+ ζs, Ŵs)
)p)

.

By the case p = 1 of Proposition 2 (ii), we have

(2) T 1g(t, x) = Πx

(∫ ∞
0

dr g(t+ r, ξr)
)
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Then let p ≥ 2. Using Proposition 2 (ii) again we have

T pg(t, x) = Nx
(∫
{0≤s1≤···≤sp≤σ}

ds1 . . . dsp

p∏
i=1

g(t+ ζsi , Ŵsi)
)

= 2p−1

∫
Λp(dθ)

∫
Πθ
x(dw1 . . . dwp)

p∏
i=1

g(t+ ζwi , ŵi)

= 2p−1

p−1∑
j=1

∫ ∞
0

dh

∫ ∫
Λj(dθ′)Λp−j(dθ′′)

Πx

((∫
Πθ′

ξh
(dw′1 · · · dw′j)

j∏
i=1

g(t+ h+ ζw′
i
, ŵ′i)

)
×
(∫

Πθ′′

ξh
(dw′′1 · · · dw′′p−j)

p−j∏
i=1

g(t+ h+ ζw′′
i
, ŵ′′i )

))
.

In the last equality we used the identity

Λp =
p−1∑
j=1

∫ ∞
0

dhΛj ∗
h

Λp−j

together with the construction by induction of Πθ
x. We thus get the recursive formula

(3) T pg(t, x) = 2
p−1∑
j=1

Πx

(∫ ∞
0

dhT jg(t+ h, ξh)T p−jg(t+ h, ξh)
)
.

For p = 1, (2) gives the bound

T 1g(t, x) ≤ C1[0,A](t) .

Recall from Chapter III the definition of the numbers ap satisfying ap =
∑p−1
j=1 ajap−j .

From the bound for p = 1 and (3), we easily get T pg(t, x) ≤ (2A)p−1Cpap 1[0,A](t) by
induction on p. Hence,

T pg(t, x) ≤ (C ′)p1[0,A](t) .

It follows that, for 0 < λ < λ0 := (C ′)−1,

(4)
∞∑
p=1

λpT pg(t, x) ≤ K 1[0,A](t),

for some constant K <∞.
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By expanding the exponential we get for λ ∈ (0, λ0)

uλt (x) := Nx
(

1− exp
(
−λ
∫ σ

0

ds g(t+ ζs, Ŵs)
))

=
∞∑
p=1

(−1)p+1λpT pg(t, x) .

By (3), we have also

2Πx

(∫ ∞
0

dr
(
uλt+r(ξr)

)2) = 2Πx

(∫ ∞
0

dr
( ∞∑
p=1

(−1)p+1λpT pg(t+ r, ξr)
)2)

= 2
∞∑
p=2

(−1)pλp
p−1∑
j=1

Πx

(∫ ∞
0

drT jg(t+ r, ξr)T p−jg(t+ r, ξr)
)

=
∞∑
p=2

(−1)pλpT pg(t, x) .

(The use of Fubini’s theorem in the second equality is justified thanks to (4).) From
the last equality and the previous formula for uλt (x), we get, for λ ∈ (0, λ0),

uλt (x) + 2Πx

(∫ ∞
0

dr
(
uλt+r(ξr)

)2) = λT 1g(t, x) = λΠx

(∫ ∞
0

dr g(t+ r, ξr)
)
.

This is the desired integral equation, except that we want it for λ = 1. Note however
that the function λ −→ uλt (x) is holomorphic on the domain {Reλ > 0}. Thus, an
easy argument of analytic continuation shows that if the previous equation holds for
λ ∈ (0, λ0), it must hold for every λ > 0. This completes the proof. �

Theorem 4. Let µ ∈Mf (E) and let∑
i∈I

δ(xi,fi,ωi)

be a Poisson point measure with intensity µ(dx)Nx(df dω). Write W i
s = Ws(fi, ωi),

ζis = ζs(fi, ωi) and σi = σ(fi) for every i ∈ I, s ≥ 0. Then there exists a (ξ, 2u2)-
superprocess (Zt, t ≥ 0) with Z0 = µ such that for every h ∈ Bb+(R+) and g ∈ Bb+(E),∫ ∞

0

h(t)〈Zt, g〉dt =
∑
i∈I

∫ σi

0

h(ζis)g(Ŵ i
s)ds .

More precisely, Zt can be defined for t > 0 by

〈Zt, g〉 =
∑
i∈I

∫ σi

0

d`ts(ζ
i)g(Ŵ i

s) ,
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where `ts(ζ
i) denotes the local time at level t and at time s of (ζir, r ≥ 0).

Remarks. (i) The local time `ts(ζ
i) can be defined via the usual approximation

`ts(ζ
i) = lim

ε→0

1
ε

∫ s

0

dr 1(t,t+ε)(ζir),

and (`ts(ζ
i), s ≥ 0) is a continuous increasing function, for every i ∈ I, a.s.

(ii) The superprocess Z has branching mechanism 2u2, but a trivial modification will
give a superprocess with branching mechanism β u2, for any choice of β > 0. Simply
observe that, for every λ > 0, the process (λZt, t ≥ 0) is a (ξ, 2λu2)-superprocess.

Proof. Let L denote the random measure on R+ × E defined by∫
L(dt dy)h(t)g(y) =

∑
i∈I

∫ σi

0

h(ζis)g(Ŵ i
s)ds ,

for h ∈ Bb+(R+) and g ∈ Bb+(E). Suppose that h is compactly supported. By the
exponential formula for Poisson measures and then Proposition 3, we get

E
(
exp−

∫
L(dt dy)h(t)g(y)

)
= exp

(
−
∫
µ(dx)Nx

(
1− exp−

∫ σ

0

ds h(ζs)g(Ŵs)
))

= exp(−〈µ, u0〉)

where
(
ut(x), t ≥ 0, x ∈ E

)
is the unique nonnegative solution of

ut(x) + 2Πt,x

(∫ ∞
t

dr
(
ur(ξr)

)2) = Πt,x

(∫ ∞
t

dr h(r)g(ξr)
)
.

By comparing with Corollary II.9, we see that the random measure L has the same
distribution as

dtZ ′t(dy)

where Z ′ is a (ξ, 2u2)-superprocess with Z ′0 = µ.

Since Z ′ is continuous in probability (Proposition II.8) we easily obtain that, for every
t ≥ 0,

Z ′t = lim
ε↓0

1
ε

∫ t+ε

t

Z ′rdr ,

in probability. It follows that for every t ≥ 0 the limit

Zt(dy) := lim
ε↓0

1
ε

∫ t+ε

t

L(dr dy)

exists in probability. Clearly the process Z has the same distribution as Z ′ and is thus
also a (ξ, 2u2)-superprocess started at µ.
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Then, if t > 0 and g ∈ Cb+(E),

(5)

〈Zt, g〉 = lim
ε↓0

1
ε

∫
L(dr dy)1[t,t+ε](r)g(y)

= lim
ε↓0

1
ε

∑
i∈I

∫ σi

0

ds 1[t,t+ε](ζis)g(Ŵ i
s) .

Note that there is only a finite number of nonzero terms in the sum over i ∈ I (for
t > 0, Nx(sup ζs ≥ t) = n(sup e(s) ≥ t) <∞). Furthermore, we claim that

lim
ε↓0

1
ε

∫ σ

0

ds 1[t,t+ε](ζs)g(Ŵs) =
∫ σ

0

d`ts(ζ)g(Ŵs)

in Nx-measure, for every x ∈ E. To verify the claim, note that∫ σ

0

d`ts(ζ)g(Ŵs) =
∫ ∞

0

dr 1{τr<∞}g(Ŵτr ),

1
ε

∫ σ

0

ds 1[t,t+ε](ζs)g(Ŵs) =
∫ ∞

0

dr 1{τεr<∞}g(Ŵτεr
),

where
τr = inf{s, `ts > r}, τεr = inf{s, 1

ε

∫ s

0

du 1(t,t+ε)(ζu) > r}.

We know that τεr −→ τr as ε→ 0, Nx a.e. on {τr <∞}. From the continuity properties
of W (more specifically, from Lemma 1 (ii)), we get for every r > 0

lim
ε→0

Nx
(∣∣g(Ŵτεr

)1{τεr<∞} − g(Ŵτr )1{τr<∞}
∣∣) = 0.

The claim follows, and the formula for Zt in the theorem is then a consequence of (5).
Finally, the first formula in the statement of Theorem 4 is a consequence of the formula
for Zt and the occupation time density formula for Brownian local times. �

Let us comment on the representation provided by Theorem 4. Define under Nx a
measure-valued process (Zt, t > 0) by the formula

(6) 〈Zt, g〉 =
∫ σ

0

d`ts(ζ)g(Ŵs) .

The “law” of (Zt, t > 0) under Nx is sometimes called the canonical measure (of the
(ξ, 2u2)-superprocess) with initial point x. Intuitively the canonical measure represents
the contributions to the superprocess of the descendants of one single “individual” alive
at time 0 at the point x. (This intuitive explanation could be made rigorous by an
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approximation by discrete branching particle systems in the spirit of Chapter II.) The
representation of the theorem can be written as

Zt =
∑
i∈I
Zit

and means (informally) that the population at time t is obtained by superimposing the
contributions of the different individuals alive at time 0.

The canonical representation can be derived independently of the Brownian snake ap-
proach: Up to some point, it is a special case of the Lévy-Khintchine decomposition for
infinitely divisible random measures (see e.g. [Ka]). The advantage of the Brownian
snake approach is that it gives the explicit formula (6) for the canonical measure.

Another nice feature of this approach is the fact that it gives simultaneously the
associated historical superprocess. Recall from Chapter II that this is the (ξ̃, 2u2)-
superprocess, where ξ̃t = (ξr, 0 ≤ r ≤ t) can be viewed as a Markov process with values
in W. In fact, with the notation of Theorem 4, the formula

〈Z̃t, G〉 =
∑
i∈I

∫ σi

0

d`ts(ζ
i)G(W i

s)

defines a historical superprocess started at µ. The proof of this fact is immediate from
Theorem 4 if one observes that the ξ-Brownian snake and the ξ̃-Brownian snake are
related in a trivial way.

4 The case of continuous spatial motion

When the spatial motion ξ has (Hölder) continuous sample paths, the Brownian snake
has also stronger continuity properties, and the Brownian snake representation of su-
perprocesses easily leads to certain interesting sample path properties.

Recall that δ(x, y) denotes the metric on E. In this section and the next one, we will
assume the following hypothesis, which is stronger than (1).

Assumption (C). There exist three constants C, p > 2, ε > 0 such that, for every
x ∈ E and for every t ≥ 0,

Πx

(
sup

0≤r≤t
δ(x, ξr)p

)
≤ C t2+ε .

By the classical Kolmogorov lemma, this implies that the process ξ has (Hölder) con-
tinuous sample paths. Note that assumption (C) holds when ξ is Brownian motion or
a nice diffusion process in Rd or on a manifold.

It is then clear that we can construct the ξ-Brownian snake as a process with values in
the space of (finite) continuous paths, rather than càdlàg paths as in Section 1. With a
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slight abuse of notation, we now write W for the space of all E-valued finite continuous
paths and d for the metric on W defined by

d(w,w′) = |ζw − ζw′ |+ sup
t≥0

δ
(
w(t ∧ ζw), w′(t ∧ ζw′)

)
.

Proposition 5. The process (Ws, s ≥ 0) has a continuous modification under Nx or
under Pw for every x ∈ E, w ∈ W.

Remark. We should say more accurately that the measurable modification constructed
in Section 1 has continous sample paths, Pw a.s. or Nx a.e.
Proof. Recall that paths of (reflected) linear Brownian motion are Hölder continuous
with exponent 1/2 − η for every η > 0. Fix a function f ∈ C(R+,R+) such that for
every T > 0 and every η ∈ (0, 1/2), there exists a constant Cη,T with

|f(s)− f(s′)| ≤ Cη,T |s− s′|
1/2−η

, ∀s, s′ ∈ [0, T ] .

Proposition 5 will follow if we can prove that the process (Ws, s ≥ 0) has a continuous
modification under Θf

w, for any w such that ζw = f(0).
Suppose first that f(0) = 0, and so w = x ∈ E. By the construction of Section 1, the
joint distribution of (Ws,Ws′) under Θf

x is

Πf(s)
x (dw)Rm(s,s′),f(s′)(w, dw′).

Then, for every s, s′ ∈ [0, T ], s ≤ s′,

Θf
x

(
d(Ws,Ws′)p

)
≤ cp

(
|f(s)− f(s′)|p + 2 Πx

(
Πξm(s,s′)

(
sup

0≤t≤(f(s)∨f(s′))−m(s,s′)

δ(ξ0, ξt)p
)))

≤ cp
(
|f(s)− f(s′)|p + 2C |(f(s) ∨ f(s′))−m(s, s′)|2+ε

)
≤ cp

(
Cpη,T |s− s

′|p(
1
2−η) + 2C C2+ε

η,T |s− s
′|(2+ε)( 1

2−η)
)
,

where we used assumption (C) in the second inequality. We can choose η > 0 small
enough so that p( 1

2 − η) > 1 and (2 + ε)( 1
2 − η) > 1. The desired result then follows

from the classical Kolmogorov lemma.

When f(0) > 0, the same argument gives the existence of a continuous modification
on every interval [a, b] such that f(s) > m(0, s) for every s ∈ (a, b). More precisely,
the proof of the Kolmogorov lemma shows that this continuous modification satisfies
a Hölder condition independent of [a, b] provided that b ≤ K. On the other hand,
if s is such that f(s) = m(0, s) the construction of the Brownian snake shows that
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Ws(t) = w(t), ∀t ≤ f(s), Θf
w a.s. Replacing W by a modification, we may assume

that the latter property holds simultaneously for all s such that f(s) = m(0, s), Θf
w a.s.

Then, if s1 < s2 are not in the same excursion interval of f(s) −m(0, s) away from 0,
we simply bound

d(Ws1 ,Ws2) ≤ d(Ws1 ,Wb1) + d(Wb1 ,Wa2) + d(Wa2 ,Ws2),

where b1 = inf{r ≥ s1, f(r) = m(0, r)}, a2 = sup{r ≤ s2, f(r) = m(0, r)}. The desired
result follows easily. �

From now on, we consider only the continuous modification of the process W provided
by Proposition 5. As a consequence of the sample path continuity, we obtain that Pw
a.s. (or Nx a.e.) for every s < s′ we have

Ws(t) = Ws′(t), for every t ≤ inf
s≤r≤s′

ζr.

For a fixed choice of s and s′, this is immediate from the construction of the Brownian
snake. The fact that this property holds simultaneously for all s < s′ then follows by
continuity. We will sometimes refer to the previous property as the snake property.
We now state the strong Markov property of W , which is very useful in applications.
We denote by Fs the σ-field generated by Wr, 0 ≤ r ≤ s and as usual we take

Fs+ =
⋂
r>s

Fr .

Theorem 6. The process (Ws,Pw) is strong Markov with respect to the filtration (Fs+).

Proof. Let T be a stopping time of the filtration (Fs+) such that T ≤ K for some
K <∞. Let F be bounded and FT+ measurable, and let Ψ be a bounded measurable
function on W. It is enough to prove that for every s > 0,

Ew
(
F Ψ(WT+s)

)
= Ew

(
F EWT

(Ψ(Ws))
)
.

We may assume that Ψ is continuous. Then,

Ew
(
F Ψ(WT+s)

)
= lim
n→∞

∞∑
k=0

Ew
(
1{ kn≤T< k+1

n }
F Ψ(W k+1

n +s)
)

= lim
n→∞

∞∑
k=0

Ew
(
1{ kn≤T< k+1

n }
F EW k+1

n

(Ψ(Ws))
)
.

In the first equality, we used the continuity of paths and in the second one the or-
dinary Markov property, together with the fact that 1{k/n≤T<(k+1)/n} F is F(k+1)/n-
measurable. At this point, we need an extra argument. We claim that

(7) lim
ε↓0

(
sup

t≤K,t≤r≤t+ε
|EWr

(
Ψ(Ws)

)
− EWt

(
Ψ(Ws)

)
|
)

= 0, Pw a.s.
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Clearly, the desired result follows from (7), because on the set {k/n ≤ T < (k + 1)/n}
we can bound

|EW k+1
n

(
Ψ(Ws)

)
− EWT

(
Ψ(Ws)

)
| ≤ sup

t≤K,t≤r≤t+ 1
n

|EWr

(
Ψ(Ws)

)
− EWt

(
Ψ(Ws)

)
|.

To prove (7), we write down explicitly

EWr

(
Ψ(Ws)

)
=
∫
γζrs (da db)

∫
Ra,b(Wr, dw

′) Ψ(w′),

and a similar expression holds for EWt

(
Ψ(Ws)

)
. Set

c(ε) = sup
t≤K,t≤r≤t+ε

|ζr − ζt|

and note that c(ε) tends to 0 as ε → 0, Pw a.s. Then observe that if t ≤ K and
t ≤ r ≤ r+ ε, the paths Wr and Wt coincide at least up to time (ζt − c(ε))+. There we
have

Ra,b(Wr, dw
′) = Ra,b(Wt, dw

′)

for every a ≤ (ζt − c(ε))+ and b ≥ a. The claim (7) follows from this observation and
the known explicit form of γζrs (da db). �

Remark. The strong Markov property holds for W even if the underlying spatial
motion ξ is not strong Markov.

Under the assumptions of this section, we now know that the process W is a continuous
strong Markov process. Furthermore, every point x ∈ E is regular for W , in the
sense that Px(T{x} = 0) = 1 if T{x} = inf{s > 0,Ws = x}. (This is trivial from
the analogous property for reflected linear Brownian motion.) Thus it makes sense
to consider the excursion measure of W away from x, and this excursion measure is
immediately identified with Nx.
It is then standard (see e.g. [Bl], Theorem 3.28) that the strong Markov property holds
under the excursion measure Nx in the following form. Let S be a stopping time of
the filtration (Fs+) such that S > 0 Nx a.e., let G be a nonnegative FS+-measurable
variable and let H be a nonnegative measurable function on C(R+,Wx). Then

Nx
(
GH(WS+s, s ≥ 0)

)
= Nx

(
GEWS

(
H(Ws∧T{x} , s ≥ 0)

))
.

5 Some sample path properties

In this section, we use the Brownian snake construction to derive certain sample path
properties of superprocesses. It is more convenient to consider first the excursion mea-
sures Nx. Recall the definition under Nx of the random measure Zt

〈Zt, g〉 =
∫ σ

0

d`ts(ζ)g(Ŵs) .
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We let suppZt denote the topological support of Zt and define the range R by

R =
⋃
t≥0

suppZt .

Theorem 7. The following properties hold Nx a.e. for every x ∈ E:
(i) The process (Zt, t ≥ 0) has continuous sample paths.
(ii) For every t > 0, the set suppZt is a compact subset of E. If ξ is Brownian motion
in Rd,

dim(suppZt) = 2 ∧ d

a.e. on {Zt 6= 0}.
(iii) The set R is a connected compact subset of E. If ξ is Brownian motion in Rd,

dim(R) = 4 ∧ d .

Proof. (i) By the joint continuity of Brownian local times, the mapping t → d`ts(ζ) is
continuous from R+ intoMf (R+), Nx a.e. By Proposition 5, s→ Ŵs is also continuous,
Nx a.e. The desired result follows at once.

(ii) For every t > 0, suppZt is contained in the set {Ŵs, 0 ≤ s ≤ σ} which is compact,
again by Proposition 5. Suppose then that ξ is Brownian motion in Rd. Note that,
from the definition of Zt, and the fact that s→ `ts increases only when ζs = t, we have
Nx a.e. for every t > 0,

supp(Zt) ⊂
{
Ŵs; s ∈ [0, σ], ζs = t

}
.

It is well-known that dim
{
s ∈ [0, σ], ζs = t

}
≤ 1/2 (the level sets of a linear Brownian

motion have dimension 1/2). Then observe that assumption (C) is satisfied for any
integer p > 4 with ε = p

2 − 2, so that the proof of Proposition 5 yields the bound

Θf
x

(
d(Ws,Ws′)p

)
≤ Cη(f) |s− s′|

p
2 ( 1

2−η)

for s, s′ ∈ [0, σ(f)], n(df) a.e. From the classical Kolmogorov lemma, we get that
s → Ws is Hölder continuous with exponent 1

4 − γ for any γ > 0. Obviously the same
holds for the mapping s→ Ŵs and we conclude from well-known properties of Hausdorff
dimension that

dim
{
Ŵs; s ∈ [0, σ], ζs = t

}
≤ 4 dim

{
s ∈ [0, σ], ζs = t

}
≤ 2 .

This gives the upper bound dim(suppZt) ≤ 2. The corresponding lower bound for
d ≥ 2 was derived in an exercise of Chapter II (use also the relation between Zt and
the law of a (ξ, 2u2) superprocess at time t). Finally, the case d = 1 derives from the
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case d ≥ 2 by an easy projection argument: If for d = 1 one had dim(suppZt) < 1
with positive Nx measure on {Zt 6= 0}, this would contradict the fact that, for d = 2,
dim(suppZt) = 2 a.e. on {Zt 6= 0}.

(iii) We first verify that

(8) R =
{
Ŵs; s ∈ [0, σ]

}
, Nx a.e.

The inclusion ⊂ immediately follows from the fact that

suppZt ⊂
{
Ŵs; s ∈ [0, σ], ζs = t

}
for every t ≥ 0, a.e. By known properties of local times, the support of the measure
d`ts(ζ) is exactly

{
s ∈ [0, σ], ζs = t

}
, Nx a.e., for any fixed t > 0. Thus the previous

inclusion is indeed an equality for any fixed t > 0, Nx a.e. Hence we have Nx a.e.

R ⊃
{
Ŵs; s ∈ [0, σ], ζs ∈ (0,∞) ∩Q

}
and the desired result follows since the set in the right side is easily seen to be dense in
{Ŵs; s ∈ [0, σ]}.
From (8) we immediately obtain that R is compact and connected. Suppose then that
ξ is Brownian motion in Rd. The same argument as for (ii) implies that

dim R ≤ 4 dim[0, σ] = 4 .

To complete the proof when d ≥ 4, introduce the total occupation measure

〈J , g〉 =
∫ σ

0

ds g(Ŵs)
(

=
∫ ∞

0

dt〈Zt, g〉
)

which is obviously supported on R. Let G(x, y) = γd|y−x|2−d be the Green function of
Brownian motion in Rd. Using Proposition 2 (ii) and some straightforward calculations,
one easily verifies that for every K > 0, ε > 0 and γ > 0,

Nx
(∫ ∫

(B(x,K)\B(x,ε))2

J (dy)J (dz)
|y − z|4−γ

)
= Nx

(∫ σ

0

∫ σ

0

ds ds′

|Ws −Ws′ |4−γ
1B(x,K)\B(x,ε)(Ws)1B(x,K)\B(x,ε)(Ws′)

)
= 4

∫
Rd
dz G(x, z)

∫
(B(x,K)\B(x,ε))2

dy dy′G(z, y)G(z, y′) |y − y′|γ−4,

where B(x,K) = {y ∈ Rd; |y − x| < K}. At this point, we need an elementary lemma,
whose proof is left to the reader.
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Lemma 8. For every δ > 0, there exists a constant Cδ such that, for every x, y, y′ ∈ Rd
with δ < |y − x| < δ−1, δ < |y′ − x| < δ−1,

∫
Rd
dz |z − x|2−d |y − z|2−d |y′ − z|2−d ≤

{
Cδ(1 + log+ 1

|y−y′| ) if d = 4 ,

Cδ|y − y′|4−d if d ≥ 5 .

By applying Lemma 8 in the previous calculation, we get for every ε > 0, K > 0,

Nx
(∫ ∫

(B(x,K)\B(x,ε))2

J (dy)J (dz)
|y − z|4−γ

)
<∞.

Frostman’s lemma then implies that

dim R ≥ dim(suppJ ) ≥ 4 .

Finally the case d ≤ 3 is handled again by a projection argument. �

We now restate Theorem 7 in terms of superprocesses. For µ ∈ Mf (E) let (Zt, t ≥ 0)
denote a (ξ, βu2) superprocess started at µ, where β > 0.

Corollary 9. (i) The process (Zt, t ≥ 0) has a continuous modification. (From now on
we only deal with this modification.)

(ii) A.s. for every t > 0, suppZt is a compact subset of E. If ξ is Brownian motion in
Rd,

dim(suppZt) = 2 ∧ d a.s. on {Zt 6= 0} .

(iii) Let

RZ =
⋃
ε>0

(⋃
t≥ε

suppZt
)
.

Then, if ξ is Brownian motion in Rd

dim RZ = 4 ∧ d a.s.

Remark. The reason for the somewhat strange definition of RZ is that one does not
want suppµ to be automatically contained in RZ .

Proof. By a remark following Theorem 4, we may take β = 2. Then, most assertions
follow from Theorem 4 and Theorem 7: Use the representation provided by Theorem 4
and notice that, for every fixed t > 0, there are only a finite number of indices i ∈ T
such that Zit > 0 (or equivalently sup ζis > t). There is however a delicate point in the
proof of (i). Theorem 7 (i) gives the existence of a continuous modification of (Zt, t > 0),
but the right-continuity at t = 0 is not immediate. We may argue as follows. Let g



62 The Brownian snake and quadratic superprocesses

be a bounded nonnegative Lipschitz function on E, and let vt(x) be the (nonnegative)
solution of the integral equation

(9) vt(x) + 2Πx

(∫ t

0

vt−s(ξs)2ds
)

= Πx

(
g(ξt)

)
.

Then for every fixed t > 0,

exp−〈Zr, vt−r〉 = E
(
exp−〈Zt, g〉|Zr

)
is a martingale intexed by r ∈ [0, t]. By standard results on martingales,

lim
r↓0
〈Zr, vt−r〉

exists a.s., at least along rationals. On the other hand, it easily follows from (9) and
assumption (C) that vt(x) converges to g(x) as t ↓ 0, uniformly in x ∈ E. Hence,

lim sup
r↓0, r∈Q

〈Zr, g〉 ≤ lim sup
r↓0, r∈Q

〈Zr, vt−r〉+ ε(t)

with ε(t)→ 0 as t ↓ 0, and similarly for the lim inf. We conclude that

lim
r↓0
〈Zr, g〉

exists a.s. and the limit must be 〈µ, g〉 by the continuity in probability. �

Let us conclude with some remarks. In the proof of Theorem 7, we noticed that

(10) suppZt = {Ŵs; s ∈ [0, σ], ζs = t}, Nx a.e.

for every fixed t > 0. There are exceptional values of t for which this equality fails and
suppZt is a proper subset of {Ŵs; s ∈ [0, σ], ζs = t}. These values of t correspond to
local maxima of the function s→ ζs: See Exercise below for a typical example.
Identities (8) and (10) have proved extremely useful to get precise information on suppZt
and RZ : See [LP] and [L12] for typical applications to the exact Hausdorff measure of
the range and the support of super-Brownian motion.

Exercise. (Extinction point of quadratic superprocesses) Let Z be as above a (ξ, 2u2)-
superprocess with initial value Z0 = µ. Set

T = inf{t, Zt = 0} = sup{t, Zt 6= 0}

(the second equality follows from the fact that 〈Zt, 1〉 is a Feller diffusion, which is
absorbed at 0). Show that there exists an E-valued random variable U such that

lim
t↑T,t<T

Zt
〈Zt, 1〉

= δU , a.s.
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[Hint: In the representation of Theorem 4, let j ∈ I and S ∈ [0, σj ] be such that
ζjS = supi sups∈[0,σi] ζ

i
s. Then U = Ŵ j

S and T = ζjS .]

Observe that (10) fails for t = T .

6 Integrated super-Brownian excursion

In this last section, which will not be used in the following chapters, we discuss the
random measure known as integrated super-Brownian excursion (ISE). The motivation
for studying this random measure comes from limit theorems showing that ISE arises
in the asymptotic behavior of certain models of statistical mechanics (cf Section I.6).

We suppose that the spatial motion ξ is Brownian motion in Rd. Recall from Section 5
the notation J for the total occupation measure of the Brownian snake under Nx:

〈J , g〉 =
∫ σ

0

ds g(Ŵs) , g ∈ B+(Rd).

Informally, ISE is J under N0(· | σ = 1).

To give a cleaner definition, recall the notation n(1) for the law of the normalized Brow-
nian excursion (cf Section III.5). With the notation of Section 1, define a probability
measure N(1)

x on C(R+,R+)×WR+ by setting

N(1)
x (df dω) = n(1)(df) Θf

x(dω).

The argument of the proof of Proposition 5 shows that (Ws, 0 ≤ s ≤ 1) has a continuous
modification under N(1)

0 .

Definition. ISE is the random measure J on Rd defined under N(1)
0 by

〈J , g〉 =
∫ 1

0

ds g(Ŵs) , g ∈ B+(Rd).

From Theorem 7 (iii) and a scaling argument, it is straightforward to verify that
dim(suppJ ) = 4 ∧ d a.s.

Analogously to Proposition 2, one can use Theorem III.6 to get an explicit formula for
the moments of ISE. These moment formulas are important in the proof of the limit
theorems involving ISE: See Derbez and Slade [DS].

Before stating the result, recall the notation Πθ
x introduced in Section 2 above. We use

the tree formalism described in Section III.2. In particular, a tree T is defined as the
set of its vertices, which are elements of ∪∞n=0{1, 2}n. We denote by LT the set of all
leaves of T and if v ∈ T , v 6= φ, we denote by ṽ the father of v.
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Proposition 10. Let p ≥ 1 be an integer and let F ∈ B+(Wp). Then,

(11)
N(1)

0

(∫
0≤s1≤s2≤···≤sp≤1}

ds1 . . . dsp F (Ws1 , . . . ,Wsp)
)

= 2p+1

∫
Λp(dθ)L(θ) exp(−2L(θ)2) Πθ

0

(
F (w1, . . . , wp)

)
.

Let g ∈ B+(Rd). Then,

(12)

N(1)
0

(
〈J , g〉p

)
= p! 2p+1

∑
T∈Tp

∫
(R+)T

∏
v∈T

dhv (
∑
v∈T

hv) exp
(
− 2(

∑
v∈T

hv)2
)

×
∫

(Rd)T

∏
v∈T

dyv

( ∏
v∈T

phv (yṽ, yv)
) ∏

v∈LT

g(yv),

where yṽ = 0 if v = φ by convention, and pt(y, y′) denotes the Brownian transition
density.

Proof. Formula (11) is an immediate consequence of Theorem III.6 and Proposition 2
(i), along the lines of the proof of Proposition 2 (ii). Formula (12) follows as a special
case (taking F (w1, . . . , wp) = g(ŵ1) . . . g(ŵp)) using the construction of Πθ

0 and the
definition of Λp(dθ). �

Formula (11) obviously contains more information than (12). For instance, it yields as
easily the moment functionals for space-time ISE, which is the random measure J ∗ on
R+ × Rd defined under N(1)

0 as

〈J ∗, g〉 =
∫ 1

0

ds g(ζs, Ŵs) , g ∈ B+(R+ × Rd).

The analogue of (12) when J (dx1) . . .J (dxn) is replaced by J ∗(dt1dx1) . . .J ∗(dtndxn)
and g(x1, . . . , xn) by g(t1, x1, . . . , tn, xn), is obtained by replacing in the right side
g(yv; v ∈ LT ) by g(`v, yv; v ∈ LT ), provided `v is defined by

`v =
∑
v′≺v

hv′ ,

where ≺ denotes the genealogical order on the tree: If v = (i1, . . . , in), v′ ≺ v iff
v′ = (i1, . . . , ik) for some k ∈ {0, 1, . . . , n}.
Remark. The second formula of Proposition 10 can be rewritten in several equivalent
ways. Arguing as in the concluding remarks of Chapter III, we may replace the sum
over ordered binary trees with p leaves by a sum over (unordered) binary trees with
p labelled leaves. The formula is unchanged, except that the factor p! 2p+1 is replaced
by 22p. In this way, we (almost) get the usual form of the moment functionals of ISE:
See Aldous [Al4] or Derbez and Slade [DS]. There are still some extra factors 2 due to
the fact that in the usual definition of ISE, n(1)(df) is replaced by its image under the
mapping f → 2f . To recover exactly the usual formula, simply replace phv (yṽ, yv) by
p2hv (yṽ, yv).
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V Exit measures
and the nonlinear Dirichlet problem

In this chapter we use the Brownian snake approach of the previous chapter to construct
the exit measure of quadratic superprocesses. In the special case where the spatial
motion is Brownian motion in Rd, the exit measure yields a probabilistic solution of
the Dirichlet problem associated with the equation ∆u = u2 in a regular domain. This
probabilistic solution plays a major role in further developments that will be presented
in the following chapters.

1 The construction of the exit measure

We consider the Brownian snake W of the previous chapter. We assume that the
underlying Markov process (ξs,Πx) satisfies the continuity assumption (C) of Section
IV.4, so that the process W has continuous sample paths with respect to the metric d.

Let D be an open set in E and fix x ∈ D. For every w ∈ Wx set

τ(w) = inf
{
t ∈ [0, ζw], w(t) 6∈ D

}
,

where inf ∅ = +∞. Define

ED =
{
Ws

(
τ(Ws)

)
; s ≥ 0, τ(Ws) <∞

}
,

so that ED is the set of all exit points from D of the paths Ws, for those paths that
do exit D. Our goal is to construct Nx a.e. a random measure that is in some sense
uniformly spread over ED. To avoid trivial cases, we first assume that

(1) Πx(∃t ≥ 0, ξt 6∈ D) > 0 .

We start by constructing a continuous increasing process that increases only on the set
{s ≥ 0, τ(Ws) = ζs}.

Proposition 1. The formula

LDs = lim
ε↓0

1
ε

∫ s

0

dr 1{τ(Wr)<ζr<τ(Wr)+ε}
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defines a continuous increasing process (LDs , s ≥ 0), Nx a.e. or Pw a.s. for any w ∈ Wx.
The process (LDs , s ≥ 0) is called the exit local time from D.

Proof. Since Nx can be viewed as the excursion measure of W away from x, it is
enough to prove that the given statement holds under Pw. Indeed, we know from
excursion theory that Nx(·| sup ζs > h) is the law under Px of the first excursion of W
away from x with “height” greater than h, and so the result under Nx can be derived
from the case of Px.

We use the following lemma, where w ∈ Wx is fixed.

Lemma 2. Set γs =
(
ζs − τ(Ws)

)+ and σs = inf{v ≥ 0,
∫ v

0
dr 1{γr>0} > s}. Then

σs < ∞ for every s ≥ 0, Pw a.s., and the process Γs = γσs is under Pw a reflected
Brownian motion started at (ζw − τ(w))+.

Proposition 1 easily follows from Lemma 2: Denote by (`s, s ≥ 0) the local time at 0 of
Γ. Then, Px a.s. for every s ≥ 0,

`s = lim
ε→0

1
ε

∫ s

0

dr 1{0<Γr<ε}.

Set As =
∫ s

0
dr 1{γr>0} and LDs = `As . We get

LDs = lim
ε↓0

1
ε

∫ As

0

dr 1{0<Γr<ε} = lim
ε↓0

1
ε

∫ s

0

dr 1{0<γr<ε} ,

which is the desired result. �

Proof of Lemma 2. For every ε > 0, introduce the stopping times

Sε1 = inf
{
s ≥ 0, ζs ≥ τ(Ws) + ε

}
T ε1 = inf

{
s ≥ Sε1 , ζs ≤ τ(Ws)

}
Sεn+1 = inf

{
s ≥ T εn, ζs ≥ τ(Ws) + ε

}
T εn+1 = inf

{
s ≥ Sεn+1, ζs ≤ τ(Ws)

}
.

We first verify that the stopping times Sεn and T εn are finite Pw a.s. By applying the
strong Markov property at inf{s ≥ 0, ζs = 0}, it is enough to consider the case when
w = x. Still another application of the strong Markov property shows that it is enough
to verify that Sε1 < ∞ a.s. To this end, observe that Px

(
ζ1 ≥ τ(W1) + ε

)
> 0 (by (1)

and because, conditionally on ζ1, W1 is a path of ξ with length ζ1) and apply the strong
Markov property at inf{s ≥ 1, ζs = 0}.
From the snake property and the continuity of s→ ζs, one easily gets that the mapping
s→ γs is also continuous. It follows that γSε1 = ε ∨ (ζw − τ(w)) and γSεn = ε for n ≥ 2.
We then claim that, for every n ≥ 1, we have

T εn = inf
{
s ≥ Sεn, ζs = τ(WSεn

)
}
.
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Indeed the snake property implies that for Sεn ≤ r ≤ inf
{
s ≥ Sεn, ζs = τ(WSεn

)
}

, the
paths Wr and WSεn

coincide for t ≤ τ(WSεn
), so that τ(Wr) = τ(WSεn

). This argument
also shows that γr = ζr − τ(WSεn

) for Sεn ≤ r ≤ T εn.

From the previous observations and the strong Markov property of the Brownian snake,
we see that the processes (

γ(Sεn+r)∧T εn , r ≥ 0
)

are independent and distributed according to the law of a linear Brownian motion
started at ε (at ε ∨ (ζw − τ(w)) for n = 1) and stopped when it hits 0. Hence, if

σεr = inf
{
s,

∫ s

0

∞∑
n=1

1[Sεn,T
ε
n)(u)du > r

}
,

the process (γσεr , r ≥ 0) is obtained by pasting together a linear Brownian motion started
at ε ∨ (ζw − τ(w)) and stopped when it hits 0, with a sequence of independent copies
of the same process started at ε. A simple coupling argument shows that (γσεr , r ≥ 0)
converges in distribution as ε→ 0 to reflected Brownian motion started at (ζw−τ(w))+.
The lemma follows since it is clear that σεr ↓ σr a.s. for every r ≥ 0. �

Definition. The exit measure ZD from D is defined under Nx by the formula

〈ZD, g〉 =
∫ σ

0

dLDs g(Ŵs) .

From Proposition 1 it is easy to obtain that LDs increases only on the (closed) set
{s ∈ [0, σ], ζs = τ(Ws)}. It follows that ZD is (Nx a.e.) supported on ED.
Let us consider the case when (1) does not hold. Then a first moment calculation using
the case p = 1 of Proposition IV.2 shows that∫ ∞

0

ds 1{τ(Ws)<∞} = 0 , Nx a.e.

Therefore the result of Proposition 1 still holds under Nx with LDs = 0 for every s ≥ 0.
Consequently, we take ZD = 0 in that case.

We will need a first moment formula for LD. With a slight abuse of notation, we also
denote by τ the first exit time from D for ξ.

Proposition 3. Let ΠD
x denote the law of (ξr, 0 ≤ r ≤ τ) under the subprobability

measure Πx(· ∩ {τ <∞}). Then, for every G ∈ Bb+(Wx),

Nx
(∫ σ

0

dLDs G(Ws)
)

= ΠD
x (G) .
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In particular, for g ∈ Bb+(E),

Nx
(
〈ZD, g〉

)
= Πx

(
1{τ<∞}g(ξτ )

)
.

Proof. We may assume that G is continuous and bounded, and G(w) = 0 if ζw ≤ K−1

or ζw ≥ K, for some K > 0. By Proposition 1,

(2)
∫ σ

0

dLDs G(Ws) = lim
ε→0

1
ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε}G(Ws)

Nx a.e. If we can justify the fact that the convergence (2) also holds in L1(Nx), we will
get from the case p = 1 of Proposition IV.2 (ii):

Nx
(∫ σ

0

dLDs G(Ws)
)

= lim
ε→0

1
ε

∫ ∞
0

dh Πx

(
1{τ<h<τ+ε}G(ξr, 0 ≤ r ≤ h)

)
= Πx

(
1{τ<∞}G(ξr, 0 ≤ r ≤ τ)

)
.

It remains to justify the convergence in L1(Nx). Because of our assumption on G we
may deal with the finite measure Nx

(
· ∩ {sup ζs > K−1}

)
and so it is enough to prove

that
sup

ε∈(0,1)

Nx
((1
ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε}G(Ws)
)2)

is finite. This easily follows from the case p = 2 of Proposition IV.2 (ii), using now the
fact that G(w) = 0 if ζw ≥ K. �

Remark. Proposition 3 will be considerably extended in Section 4 below.

Let us conclude this section with an important remark. Without any additional effort,
the previous construction applies to the more general case of a space-time open set
D ⊂ R+ × E, such that (0, x) ∈ D. In this setting, ZD is a random measure on
∂D ⊂ R+ × E such that for g ∈ Cb+(∂D)

〈ZD, g〉 = lim
ε→0

1
ε

∫ σ

0

ds 1{τ(Ws)<ζs<τ(Ws)+ε}g(ζs, Ŵs)

where τ(w) = inf
{
t ≥ 0, (t, w(t)) /∈ D

}
. To see that this more general case is in

fact contained in the previous construction, simply replace ξ by the space-time process
ξ′t = (t, ξt), which also satisfies assumption (C), and note that the ξ′-Brownian snake
is related to the ξ-Brownian snake in a trivial manner. In the special case when D =
Da = [0, a) × E, it is easy to verify that ZDa = δa ⊗ Za, where the measure Za was
defined in Section IV.4.
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2 The Laplace functional of the exit measure

We will now derive an integral equation for the Laplace functional of the exit measure.
This result is the key to the connections with partial differential equations that will be
investigated later.

Theorem 4. For g ∈ Bb+(E), set

u(x) = Nx
(
1− exp−〈ZD, g〉

)
, x ∈ D .

The function u solves the integral equation

(3) u(x) + 2Πx

(∫ τ

0

u(ξs)2ds
)

= Πx

(
1{τ<∞}g(ξτ )

)
.

Our proof of Theorem 4 is based on a lemma of independent interest, which has many
other applications. Another more computational proof, in the spirit of the proof of
Proposition IV.3, would rely on calculations of moments of the exit measure (cf Section
4). Still another method would consist in writing 〈ZD, g〉 as a limit of integrals of
the form

∫
dt〈Z̃t, hε〉 (with (Z̃t, t ≥ 0) corresponding to the historical superprocess, as

in Section IV.3) and then using the form of the Laplace functional of these integrals
obtained in Chapter II.

Before stating our key lemma, we need some notation. We fix w ∈ Wx with ζw > 0 and
consider the Brownian snake under Pw. We set

T0 = inf{s ≥ 0, ζs = 0}

and denote by (αi, βi), i ∈ I the excursion intervals of ζs − inf [0,s] ζr before time T0. In
other words, (αi, βi), i ∈ I are the connected components of the open set [0, T0] ∩ {s ≥
0, ζs > inf [0,s] ζr}. Then, for every i ∈ I we define W i ∈ C(R+,W) by setting for every
s ≥ 0,

W i
s(t) = W(αi+s)∧βi(ζαi + t) , 0 ≤ t ≤ ζis := ζ(αi+s)∧βi − ζαi .

From the snake property we have in fact W i ∈ C(R+,Ww(ζαi )
).

Lemma 5. The point measure ∑
i∈I

δ(ζαi ,W i)

is under Pw a Poisson point measure on R+ × C(R+,W) with intensity

2 1[0,ζw](t)dt Nw(t)(dω) .

Proof. A well known theorem of Lévy states that, if (βt, t ≥ 0) is a linear Brownian
motion started at a, the process βt − inf [0,t] βr is a reflected Brownian motion whose
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local time at 0 is 2
(
a − inf [0,t] βr

)
. From this and excursion theory, it follows that the

point measure ∑
i∈I

δ(ζαi ,ζi)

is under Pw a Poisson point measure with intensity

2 1[0,ζw](t)dt n(de) .

It remains to combine this result with the spatial displacements.

To this end, fix a function f ∈ C(R+,R+) such that f(0) = ζw, T0(f) := inf{t, f(t) =
0} < ∞ and f is locally Hölder with exponent 1

2 − γ for every γ > 0. Recall the
notation Θf

w from Chapter IV and note that Θf
w can be viewed as a probability measure

on C(R+,W) (see the proof of Proposition IV 5). Denote by ej , j ∈ J the excursions of
f(s) − inf [0,s] f(r) away from 0 before time T0(f), by (aj , bj), j ∈ J the corresponding
time intervals, and define for every j ∈ J

W j
s (t) = W(aj+s)∧bj

(
f(aj) + t

)
, 0 ≤ t ≤ f

(
(aj + s) ∧ bj

)
− f(aj) ,

From the definition of Θf
w, it is easily verified that the processes W j , j ∈ J are inde-

pendent under Θf
w, with respective distributions Θej

w(f(aj))
.

Let F ∈ Bb+
(
R+ × C(R+,W)

)
be such that F (t, ω) = 0 if sup ζs(ω) ≤ γ, for some

γ > 0. Recall the notation Pr(df) for the law of reflected Brownian motion started at
r. By using the last observation and then the beginning of the proof, we get

Ew
(
exp−

∑
i∈I

F (ζαi ,W
i)
)

=
∫
Pζw(df)Θf

w

(
exp−

∑
j∈J

F
(
f(aj),W j

))
=
∫
Pζw(df)

∏
j∈J

Θej
w(f(aj))

(
e−F (f(aj),·)

)
= exp−2

∫ ζw

0

dt

∫
n(de)Θe

w(t)

(
1− e−F (t,·))

= exp−2
∫ ζw

0

dtNw(t)

(
1− e−F (t,·)) .

The third equality is the exponential formula for Poisson measures, and the last one is
the definition of Nx. This completes the proof. �

Proof of Theorem 4. By the definition of ZD, we have

u(x) = Nx
(

1− exp−
∫ σ

0

dLDs g(Ŵs)
)

= Nx
(∫ σ

0

dLDs g(Ŵs) exp
(
−
∫ σ

s

dLDr g(Ŵr)
))

= Nx
(∫ σ

0

dLDs g(Ŵs)EWs

(
exp−

∫ T0

0

dLDr g(Ŵr)
))
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using the strong Markov property under Nx in the last equality. Let w ∈ Wx be such
that ζw = τ(w). From Lemma 5, we have

Ew
(

exp−
∫ T0

0

dLDr g(Ŵr)
)

= Ew
(

exp−
∑
i∈I

∫ βi

αi

dLDr g(Ŵr)
)

= exp
(
−2
∫ ζw

0

dt Nw(t)

(
1− exp−

∫ σ

0

dLDr g(Ŵr)
))

= exp
(
−2
∫ ζw

0

dt u
(
w(t)

))
.

Hence,

u(x) = Nx
(∫ σ

0

dLDs g(Ŵs) exp
(
−2
∫ ζs

0

dt u
(
Ws(t)

)))
= Πx

(
1{τ<∞}g(ξτ ) exp

(
−2
∫ τ

0

dt u(ξt)
))

by Proposition 3. The proof is now easily completed by the usual Feynman–Kac argu-
ment:

u(x) = Πx

(
1{τ<∞}g(ξτ )

)
−Πx

(
1{τ<∞}g(ξτ )

(
1− exp−2

∫ τ

0

dt u(ξt)
))

= Πx

(
1{τ<∞}g(ξτ )

)
− 2Πx

(
1{τ<∞}g(ξτ )

∫ τ

0

dt u(ξt) exp
(
−2
∫ τ

t

dr u(ξr)
))

= Πx

(
1{τ<∞}g(ξτ )

)
− 2Πx

(∫ τ

0

dt u(ξt)Πξt

(
1{τ<∞}g(ξτ ) exp

(
−2
∫ τ

0

dr u(ξr)
)))

= Πx

(
1{τ<∞}g(ξτ )

)
− 2Πx

(∫ τ

0

dt u(ξt)2
)
. �

3 The probabilistic solution of the nonlinear Dirichlet problem

In this section, we assume that ξ is Brownian motion in Rd. The results however could
easily be extended to an elliptic diffusion process in Rd or on a manifold.

We say that y ∈ ∂D is regular for Dc if

Πy

(
inf{t > 0, ξt 6∈ D} = 0

)
= 1 .

The open set D is called regular if every point y ∈ ∂D is regular for Dc. We say that a
real-valued function u defined on D solves ∆u = 4u2 in D if u is of class C2 on D and
the equality ∆u = 4u2 holds pointwise on D.
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Theorem 6. Let D be a domain in Rd and let g ∈ Bb+(∂D). For every x ∈ D, set
u(x) = Nx(1−exp−〈ZD, g〉). Then u solves ∆u = 4u2 in D. If in addition D is regular
and g is continuous, then u solves the problem

(4)
{

∆u = 4u2 in D
u|∂D = g

where the notation u|∂D = g means that for every y ∈ ∂D,

lim
D3x→y

u(x) = g(y) .

Proof. First observe that, by (3),

u(x) ≤ Πx

(
1{τ<∞}g(ξτ )

)
≤ sup
y∈∂D

g(y) ,

so that u is bounded in D. Let B be a ball whose closure is contained in D, and denote
by τB the first exit time from B. From (3) and the strong Markov property at time τB
we get for x ∈ B

u(x) + 2Πx

(∫ τB

0

u(ξs)2ds
)

+ 2Πx

(
ΠξτB

(∫ τ

0

u(ξs)2ds
))

= Πx

(
ΠξτB

(1{τ<∞}g(ξτ ))
)
.

By combining this with formula (3) applied with x = ξτB , we arrive at

(5) u(x) + 2Πx

(∫ τB

0

u(ξs)2ds
)

= Πx

(
u(ξτB )

)
.

The function h(x) = Πx

(
u(ξτB )

)
is harmonic in B, so that h is of class C2 and ∆h = 0

in B. Set
f(x) := Πx

(∫ τB

0

u(ξ)2ds
)

=
∫
B

dy GB(x, y)u(y)2

where GB is the Green function of Brownian motion in B. Since u is measurable and
bounded, Theorem 6.6 of [PS] shows that f is continuously differentiable in B, and so
is u since u = h − 2f . Then again by Theorem 6.6 of [PS], the previous formula for
f implies that f is of class C2 in B and − 1

2∆f = u2 in B, which leads to the desired
equation for u.

For the second part of the theorem, suppose first that D is bounded, and let y ∈ ∂D be
regular for Dc. Then, if g is continuous at y, it is well-known that

lim
D3x→y

Πx

(
g(Bτ )

)
= g(y) .

On the other hand, we have also

lim sup
D3x→y

Πx

(∫ τ

0

u(ξs)2ds
)
≤
(
sup
x∈D

u(x)
)2 lim sup

D3x→y
Ex(τ) = 0 .
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Thus (3) implies that
lim

D3x→y
u(x) = g(y) .

When D is unbounded, a similar argument applies after replacing D by D ∩ B, where
B is now a large ball: Argue as in the derivation of (5) to verify that for x ∈ D ∩B,

u(x) + 2Πx

(∫ τD∩B

0

u(ξs)2ds
)

= Πx

(
1{τ≤τB}g(ξτ )

)
+ Πx

(
1{τB<τ}u(ξτB )

)
and then follow the same route as in the bounded case. �

The nonnegative solution of the problem (4) is always unique. When D is bounded, this
is a consequence of the following analytic lemma. (In the unbounded case, see exercise
below.)

Lemma 7. (Comparison principle) Let h : R+ → R+ be a monotone increasing func-
tion. Let D be a bounded domain in Rd and let u, v be two nonnegative functions of
class C2 on D such that ∆u ≥ h(u) and ∆v ≤ h(v). Suppose that for every y ∈ ∂D,

lim sup
D3x→y

(
u(x)− v(x)

)
≤ 0 .

Then u ≤ v.

Proof. Set f = u− v and D′ =
{
x ∈ D, f(x) > 0

}
. If D′ is not empty, we have

∆f(x) ≥ h
(
u(x)

)
− h
(
v(x)

)
≥ 0

for every x ∈ D′. Furthermore, it follows from the assumption and the definition of D′

that
lim sup
D′3x→z

f(x) ≤ 0

for every z ∈ ∂D′. Then the classical maximum principle implies that f ≤ 0 on D′,
which is a contradiction. �

Corollary 8. Let D be a domain in Rd and let U be a bounded regular subdomain of
D whose closure is contained in D. Then, if u is a nonnegative solution of ∆u = 4u2

in D, we have for every x ∈ U

u(x) = Nx
(
1− exp−〈ZU , u〉

)
.

Proof. For every x ∈ U , set

v(x) = Nx
(
1− exp−〈ZU , u〉

)
.
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By Theorem 6, v solves ∆v = 4v2 in U with boundary value v|∂U = u|∂U . By Lemma
7, we must have v(x) = u(x) for every x ∈ U . �

The last proposition of this section provides some useful properties of nonnegative so-
lutions of ∆u = 4u2 in a domain. For x ∈ Rd and ε > 0, we denote by B(x, ε) the open
ball of radius ε centered at x. Recall the notation R = {Ŵs, 0 ≤ s ≤ σ} from Chapter
IV.

Proposition 9. (i) There exists a positive constant cd such that for every x ∈ Rd and
ε > 0,

Nx
(
R∩B(x, ε)c 6= ∅

)
= cd ε

−2 .

(ii) Let u be a nonnegative solution of ∆u = 4u2 in the domain D. Then for every
x ∈ D,

u(x) ≤ cd dist(x, ∂D)−2 .

(iii) The set of all nonnegative solutions of ∆u = 4u2 in D is closed under pointwise
convergence.

Proof. (i) By translation invariance we may assume that x = 0. We then use a scaling
argument. For λ > 0, the law under n(de) of eλ(s) = λ−1e(λ2s) is λ−1n. It easily
follows that the law under N0 of W (ε)

s (t) = ε−1Wε4s(ε2t) is ε−2N0. Then, with an
obvious notation,

N0

(
R∩B(0, ε)c 6= ∅

)
= N0

(
R(ε) ∩B(0, 1)c 6= ∅

)
= ε−2N0

(
R∩B(0, 1)c 6= ∅

)
.

It remains to verify that N0

(
R ∩ B(0, 1)c 6= ∅

)
< ∞. If this were not true, excursion

theory would imply that P0 a.s., infinitely many excursions of the Brownian snake exit
the ball B(0, 1) before time 1. Clearly this would contradict the continuity of s → Ws

under P0.
(ii) Let x ∈ D and r > 0 be such that B̄(x, r) ⊂ D. By Corollary 8, we have for every
y ∈ B(x, r)

u(y) = Ny
(
1− exp−〈ZB(x,r), u〉

)
.

In particular,

u(x) ≤ Nx
(
ZB(x,r) 6= 0

)
≤ Nx

(
R∩B(x, r)c 6= ∅

)
= cd r

−2 .

In the second inequality we used the fact that ZB(x,r) is supported on EB(x,r) ⊂ R ∩
B(x, r)c.
(iii) Let (un) be a sequence of nonnegative solutions of ∆u = 4u2 in D such that
un(x)−→u(x) as n → ∞ for every x ∈ D. Let U be an open ball whose closure is
contained in D. By Corollary 8, for every n ≥ 1 and x ∈ U ,

un(x) = Nx
(
1− exp−〈ZU , un〉

)
.
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Note that Nx(ZU 6= 0) < ∞ (by (i)) and the functions un are uniformly bounded
on ∂U (by (ii)). Hence we can pass to the limit in the previous formula and get
u(x) = Nx

(
1− exp−〈ZU , u〉

)
for x ∈ U . The desired result then follows from Theorem

6. �

Let us conclude this section with the following remark. Theorem 4 could be applied
as well to treat parabolic problems for the operator ∆u − 4u2. To this end we need
only replace the Brownian motion ξ by the space-time process (t, ξt). If we make this
replacement and let D ⊂ R+ × Rd be a space-time domain, and g ∈ Bb+(∂D), the
formula

u(t, x) = Nt,x
(
1− exp−〈ZD, g〉

)
gives a solution of

∂u

∂t
+

1
2

∆u− 2u2 = 0

in D. Furthermore, u has boundary condition g under suitable conditions on D and g.
The proof proceeds from the integral equation (3) as for Theorem 4. In the following
chapters we will concentrate on elliptic equations, but most of the results have analogues
for parabolic problems.

Exercise. Prove that Theorem 4 remains true if g is unbounded, and even if g takes
values in [0,∞] (the special case g = +∞ will be relevant in the next chapter).

[Hint: Let gn = g ∧ n and observe from Proposition 7 (ii) that the functions un(x) =
Nx(1− exp−〈ZD, gn〉) are uniformly bounded on compact subsets of D. Then pass to
the limit n→∞ in equation (5) written for un.]

Exercise. Prove that, provided D is regular and g is continuous, the uniqueness of the
nonnegative solution of (4) also holds when D is unbounded, even if g is unbounded
(but finite-valued!).

[Hint: For every p ≥ 1 set Dp = D ∩B(0, p) and for x ∈ Dp,

up(x) = Nx
(
1− 〈ZDp , 1∂Dg〉

)
,

vp(x) = Nx
(
1− 〈ZDp , 1∂Dg + 1∂Dp\∂D · ∞〉

)
.

Then, if u solves (4), up ≤ u ≤ vp in Dp. Furthermore, vp − up → 0 as p→∞.]

4 Moments of the exit measure

In this section, we consider again a general Markov process ξ satisfying the continu-
ity assumptions of Section IV.4. Our goal is to derive explicit formulas analogous to
Proposition IV.2 for the moments of the exit measures. These formula will be used in
the applications developed in Chapter VII.
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We start with some notation. We fix an integer p ≥ 1. We slightly extend the definitions
of Section III.4 by allowing the value +∞ for the marks attached to the leaves of a
marked tree θ ∈ Tp. We then define a measure Λ∞p on the set Tp by the formula∫

Λ∞p (dθ) Φ(θ) =
∑
T∈Tp

∫ ∏
v∈T\LT

dhv
∏
v∈LT

δ∞(dhv) Φ(T, {hv, v ∈ T}),

where LT is the set of leaves of T . In other words, we prescribe the value +∞ for the
marks of all leaves, but keep Lebesgue measure for the other marks. Notice that the
construction of Πθ

x in Section IV.2 still makes sense, now as a probability measure on
C(R+, E)p, when θ is a marked tree such that the mark of every leaf is +∞.

Let θ = (T, {hv, v ∈ T}) be a marked tree with p leaves and let v1, . . . , vp be the leaves
of T listed in lexicographical order. For every i ∈ {1, . . . , p}, set

αi =
∑

v≺vi,v 6=vi

hv ,

where ≺ denotes as previously the genealogical order on the tree. Informally, αi is the
birth height of vertex vi. Finally, if D is an open set in E and x ∈ D, we let Πθ,D

x be
the subprobability measure on Wp

x defined as the law of(
(w1(t), 0 ≤ t ≤ τ(w1)), . . . , (wp(t), 0 ≤ t ≤ τ(wp))

)
under the measure

p∏
i=1

1{αi≤τ(wi)<∞} Πθ
x(dw1 . . . dwp).

Theorem 10. For any F ∈ B+(Wp
x),

Nx
(∫
{0≤s1≤···≤sp≤σ}

dLDs1 . . . dL
D
sp F

(
Ws1 , . . . ,Wsp

))
= 2p−1

∫
Λ∞p (dθ) Πθ,D

x (F ) .

In particular, for any g ∈ B+(E),

Nx
(
〈ZD, g〉p

)
= 2p−1p!

∫
Λ∞p (dθ)

∫
Πθ,D
x (dw1 . . . dwp) g(ŵ1) . . . g(ŵp).

Proof. We may assume that F is continuous and bounded and that F (w1, . . . , wp) = 0
if ζwi ≤ δ or ζwi ≥ K for some i ∈ {1, . . . , p} (here δ and K are two positive constants).
By Proposition 1, we have

(6)
∫
{0≤s1≤···≤sp≤σ}

dLDs1 . . . dL
D
sp F

(
Ws1 , . . . ,Wsp

)
= lim
ε→0

Aε, Nx a.e.
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where

Aε = ε−p
∫
{0≤s1≤···≤sp≤σ}

ds1 . . . dsp F
(
Ws1 , . . . ,Wsp

) p∏
i=1

1{τ(Wsi
)<ζsi<τ(Wsi

)+ε}.

Using Proposition IV.2 and then the definition of Λ∞p , we have

2−(p−1)Nx(Aε)

= ε−p
∫

Λp(dθ)
∫

Πθ
x(dw1 . . . dwp)F (w1, . . . , wp)

p∏
i=1

1{τ(wi)<ζwi<τ(wi)+ε}

= ε−p
∫

Λ∞p (dθ)
∫

Πθ
x(dw1 . . . dwp)

∫
[0,∞)p

dh1 . . . dhp

F (w1[0, α1 + h1], . . . , wp[0, αp + hp])
p∏
i=1

1{τ(wi)<αi+hi<τ(wi)+ε}

where w[0, t] stands for the restriction of w to [0, t]. For fixed θ and w1, . . . , wp, we have

lim
ε→0

∫
[0,∞)p

dh1 . . . dhp F (w1[0, α1 + h1], . . . , wp[0, αp + hp])
p∏
i=1

1{τ(wi)<αi+hi<τ(wi)+ε}

= F (w1[0, τ(w1)], . . . , wp[0, τ(wp)])
p∏
i=1

1{αi≤τ(wi)<∞}.

We can then use dominated convergence to pass to the limit ε → 0 in the previous
formula for Nx(Aε). Note that the assumptions on F allow us to restrict our attention
to the set {αi ≤ K, 1 ≤ i ≤ p}, which has finite Λ∞p -measure. Recalling the definition
of Πθ,D

x , we get

(7) lim
ε→0

Nx(Aε) = 2p−1

∫
Λ∞p (dθ)Πθ,D

x (F ).

In particular the collection (Aε, ε ∈ (0, 1)) is bounded in L1(Nx). By replacing p by 2p
we see similarly that this collection is bounded in L2(Nx). Hence the convergence (6)
holds in L1(Nx) (note that we can restrict our attention to the set {sup ζs ≥ δ}, which
has finite Nx-measure). The first formula of the theorem follows from (6) and (7), and
the second formula is clearly a special case of the first one. �

Remark. We could also have derived Theorem 10 from Theorem 4. The previous
approach is more appealing to intuition as it explains why the moment formulas involve
tree structures.

Exercise. Verify that for g ∈ B+(E), for every p ≥ 2,

Nx
(
〈ZD, g〉p

)
= 2

p−1∑
j=1

(
p
j

)
Πx

(∫ τ

0

dtNξt
(
〈ZD, g〉j

)
Nξt
(
〈ZD, g〉p−j

))
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(compare with formula (3) of Chapter IV). Give another proof of Theorem 4 along the
lines of the proof of Proposition IV.3.



Polar sets and solutions with boundary blow-up 79

VI Polar sets
and solutions with boundary blow-up

In this chapter, we consider the case when the spatial motion ξ is Brownian motion in
Rd and we continue our investigation of the connections between the Brownian snake
and the partial differential equation ∆u = 4u2. In particular, we show that the maximal
nonnegative solution in a domain D can be interpreted as the hitting probability of Dc

for the Brownian snake. We then combine analytic and probabilistic techniques to give a
characterization of polar sets for the Brownian snake or equivalently for super-Brownian
motion. In the last two sections, we investigate two problems concerning solutions with
boundary blow-up. We first give a complete characterization of those domains in Rd in
which there exists a (nonnegative) solution which blows up everywhere at the boundary.
This analytic result is equivalent to a Wiener test for the Brownian snake or for super-
Brownian motion. Finally, in the case of a regular domain, we give sufficient conditions
that ensure the uniqueness of the solution with boundary blow-up.

1 Solutions with boundary blow-up

Throughout this chapter, the spatial motion ξ is Brownian motion in Rd. Let us sum-
marize some key results of the previous chapter (Theorem V.4, Theorem V.6, Lemma
V.7, Corollary V.8).

(A) If D is a domain in Rd, and g ∈ Bb+(∂D), the function u(x) = Nx(1−exp−〈ZD, g〉),
for x ∈ D, solves the integral equation

(1) u(x) + 2Πx

(∫ τ

0

u(ξs)2ds
)

= Πx

(
1{τ<∞} g(ξτ )

)
,

(where τ is the first exit time from D) and the differential equation ∆u = 4u2 in D. If
in addition D is regular and g is continuous, u is the unique nonnegative solution of the
problem

(2)

{
∆u = 4u2 , in D ,

u|∂D = g .

(B) If D is a domain in Rd and U is a bounded regular subdomain of D, whose closure
is contained in D, then for any nonnegative solution u of ∆u = 4u2 in D we have

u(x) = Nx(1− exp−〈ZU , u〉) , x ∈ U .
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Proposition 1. Let D be a bounded regular domain. Then u1(x) = Nx(ZD 6= 0),
x ∈ D is the minimal nonnegative solution of the problem

(3)

{
∆u = 4u2 , in D ,

u|∂D = +∞ .

Proof. First note that u1(x) < ∞ by Proposition V.9 (i). For every n ≥ 1, set
vn(x) = Nx(1 − exp−n〈ZD, 1〉), x ∈ D. By (A), vn solves (2) with g = n. By
Proposition V.9 (iii), u1 = lim ↑ vn also solves ∆u = 4u2 in D.
The condition u1|∂D =∞ is clear since u1 ≥ vn and vn|∂D = n. Finally if v is another
nonnegative solution of the problem (3), the comparison principle (Lemma V.7) implies
that v ≥ vn for every n and so v ≥ u1. �

Proposition 2. Let D be any open set in Rd and u2(x) = Nx(R∩Dc 6= ∅) for x ∈ D.
Then u2 is the maximal nonnegative solution of ∆u = 4u2 in D (in the sense that
u ≤ u2 for any other nonnegative solution u in D).

Proof. Recall from Theorem IV.7 that R is connected Nx a.e. It follows that we may
deal separately with each connected component of D, and thus assume that D is a
domain. Then we can easily construct a sequence (Dn) of bounded regular subdomains
of D, such that D = lim ↑ Dn and D̄n ⊂ Dn+1 for every n. Set

vn(x) = Nx(ZDn 6= 0) , ṽn(x) = Nx(R∩Dc
n 6= ∅)

for x ∈ Dn. By the support property of the exit measure, it is clear that vn ≤ ṽn. We
also claim that ṽn+1(x) ≤ vn(x) for x ∈ Dn. To verify this, observe that on the event
{R ∩ Dc

n+1 6= ∅} there exists a path Ws that hits Dc
n+1. For this path Ws, we must

have τDn(Ws) < ζs, and it follows from the properties of the Brownian snake that

Anσ :=
∫ σ

0

dr 1{τDn (Wr)<ζr} > 0 ,

Nx a.e. on {R ∩ Dc
n+1 6= ∅}. However, from the construction of the exit measure

in Chapter V, 〈ZDn , 1〉 is obtained as the local time at level 0 and at time Anσ of
a reflected Brownian motion started at 0. Since the local time at 0 of a reflected
Brownian motion started at 0 immediately becomes (strictly) positive, it follows that
{R ∩Dc

n+1 6= ∅} ⊂ {ZDn 6= 0} Nx a.e., which gives the inequality ṽn+1(x) ≤ vn(x).

We have then for x ∈ D

(4) u2(x) = lim
n→∞

↓ ṽn(x) = lim
n→∞

↓ vn(x) ,

This follows easily from the fact that the event {R ∩ Dc 6= ∅} is equal Nx a.e. to the
intersection of the events {R ∩Dc

n 6= ∅}. By Proposition 1, vn solves ∆u = 4u2 in Dn.
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It then follows from (4) and Proposition V.9 (iii) that u2 solves ∆u = 4u2 in D. Finally,
if u is another nonnegative solution in D, the comparison principle implies that u ≤ vn
in Dn and it follows that u ≤ u2. �

Example. Let us apply the previous proposition to compute Nx(0 ∈ R) for x 6= 0. By
rotational invariance and the same scaling argument as in the proof of Proposition V.9
(i), we get Nx(0 ∈ R) = C|x|−2 with a nonnegative constant C. On the other hand, by
Proposition 2, we know that u(x) = Nx(0 ∈ R) solves ∆u = 4u2 in Rd\{0}. A short
calculation, using the expression of the Laplacian for a radial function, shows that the
only possible values of C are C = 0 and C = 2 − d

2 . Since u is the maximal solution,
we conclude that if d ≤ 3,

Nx(0 ∈ R) =
(
2− d

2
)
|x|−2

whereas Nx(0 ∈ R) = 0 if d ≥ 4. In particular, points are polar (in a sense that will be
made precise in the next section) if and only if d ≥ 4.

To conclude this section, let us briefly motivate the results that will be derived below.
First note that, if D is bounded and regular (the boundedness is superfluous here), the
function u2 of Proposition 2 also satisfies u2|∂D = +∞. This is obvious since u2 ≥ u1.
We may ask the following two questions.

1. If D is regular, is it true that u1 = u2? (uniqueness of the solution with boundary
blow-up)

2. For a general domain D, when is it true that u2|∂D = +∞? (existence of a solution
with boundary blow-up)

We will give a complete answer to question 2 in Section 3. It may well be that the
answer to 1 is always yes. We will prove a partial result in this direction in Section 4.
Let us however give a simple example of a (nonregular) domain D for which u1 6= u2. We
let D = B(0, 1)\{0} be the punctured unit ball in Rd, for d = 2 or 3. From Proposition
V.3, it is immediate that

Nx
(
〈ZD, 1{0}〉 > 0

)
= 0

for every x ∈ D. Hence

u1(x) = Nx(ZD 6= 0) = Nx
(
ZD(∂B(0, 1)) > 0

)
is bounded above on B(0, 1/2)\{0} by Proposition V.9. On the other hand

u2(x) = Nx(R∩Dc 6= ∅) ≥ Nx(0 ∈ R) =
(

2− d

2

)
|x|−2

.

Clearly, this implies u1 6= u2.
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2 Polar sets

Definition. A compact subset K of Rd is called polar if Nx(R∩K 6= ∅) = 0 for every
x ∈ Rd\K.

Because of the relations between the Brownian snake and superprocesses, this is equiv-
alent to the property Pµ(RZ ∩K 6= ∅) = 0 for every µ ∈Mf (Rd) (here Z is under Pµ a
super-Brownian motion started at µ, and the range RZ was defined in Chapter IV).

By applying Proposition 2 to D = Rd\K, we immediately get the following result.

Proposition 3. K is polar if and only if there exists no nontrivial nonnegative solution
of ∆u = 4u2 in Rd\K.

In analytic terms, this corresponds to the notion of (interior) removable singularity for
the partial differential equation ∆u = 4u2.

If d ≥ 4, we define the capacity Cd−4(K) by the formula

Cd−4(K) =
(

inf
ν∈M1(K)

∫ ∫
ν(dy)ν(dz)fd(|y − z|)

)−1

wehere M1(K) is the set of all probability measures on K, and

fd(r) =
{

1 + log+ 1
r if d = 4 ,

r4−d if d ≥ 5 .

Theorem 4. If d ≤ 3, there are no nonempty polar sets. If d ≥ 4, K is polar if and
only if Cd−4(K) = 0.

Proof. The case d ≤ 3 is trivial since we have already seen that points are not polar
in dimension d ≤ 3. From now on, we suppose that d ≥ 4.

First step. We first prove that K is not polar if Cd−4(K) > 0. By the definition of
Cd−4(K), we can find a probability measure ν on K such that∫ ∫

ν(dy)ν(dz)fd(|y − z|) <∞ .

Let h : Rd → R+ be a radial (i.e. h(x) = h(y) if |x| = |y|) continuous function with
compact support such that

∫
Rd h(y)dy = 1. For ε > 0, set hε(x) = ε−dh(x/ε).

Recall the notation J for the “total occupation measure” of the Brownian snake:

〈J , g〉 =
∫ σ

0

ds g(Ŵs) .
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By Proposition IV.2, we can compute the first and second moments of 〈J , hε ∗ν〉 under
Nx, x ∈ Rd\K. If G(x, y) = G(y−x) = γd |y − x|2−d is the Green function of Brownian
motion in Rd, we have first

Nx
(
〈J , hε ∗ ν〉

)
= Πx

(∫ ∞
0

dt hε ∗ ν(ξt)
)

=
∫
dy G(y − x)hε ∗ ν(y)

=
∫
ν(dz)

∫
dy G(y − x)hε(y − z)

and this quantity tends to
∫
ν(dz)G(z − x) > 0 as ε goes to 0. In particular, there

exists a positive constant c1 (depending on x and K) such that Nx
(
〈J , hε ∗ ν〉

)
≥ c1 for

ε ∈ (0, 1].

Similarly, Proposition IV.2 allows us to compute the second moment

Nx
(
〈J , hε ∗ ν〉2

)
= 4 Πx

(∫ ∞
0

dt
(

Πξt

(∫ ∞
0

dr hε ∗ ν(ξr)
))2)

= 4
∫
da G(a− x)

(∫
dy G(y − a)hε ∗ ν(y)

)2

= 4
∫ ∫

ν(dz)ν(dz′)
∫ ∫

dy dy′hε(y − z)hε(y′ − z′)

×
∫
da G(a− x)G(y − a)G(y′ − a) .

By our assumptions on h and the fact that the function G is superharmonic on Rd, we
have ∫

dy hε(y − z)G(y − a) ≤ G(z − a) .

It follows that

Nx
(
〈J , hε ∗ ν〉2

)
≤ 4

∫ ∫
ν(dz)ν(dz′)

∫
daG(a− x)G(z − a)G(z′ − a).

Then Lemma IV.8 gives

Nx
(
〈J , hε ∗ ν〉2

)
≤ 4c2

∫ ∫
ν(dz)ν(dz′)fd(|z − z′|)

with a constant c2 depending on x and K. From our assumption on ν we get

Nx
(
〈J , hε ∗ ν〉2

)
≤ c3 <∞ .
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By the Cauchy-Schwarz inequality, it follows that

Nx
(
〈J , hε ∗ ν〉 > 0

)
≥ (Nx(〈J , hε ∗ ν〉))2

Nx(〈J , hε ∗ ν〉2)
≥ c21
c3

= c4 > 0 ,

where c4 depends on x and K but not on ε ∈ (0, 1]. Let r > 0 be such that h(y) = 0
if |y| ≥ r. Obviously hε ∗ ν is supported on Krε = {y,dist(y,K) ≤ rε}. Since J is
supported on R we get

Nx(R∩Krε 6= ∅) ≥ c4
and by letting ε go to 0,

Nx(R∩K 6= ∅) ≥ c4 ,

which proves that K is not polar.

Second step. We will now verify that K is polar if Cd−4(K) = 0. The proof is based on
an analytic lemma. If ϕ ∈ C∞0 (Rd), the Sobolev norm ‖ϕ‖2,2 is

‖ϕ‖2,2 = ‖ϕ‖2 +
d∑
j=1

∥∥∥∥ ∂ϕ∂xj
∥∥∥∥

2

+
d∑

j,k=1

∥∥∥∥ ∂2ϕ

∂xj∂xk

∥∥∥∥
2

and we introduce the capacity

c2,2(K) = inf
{
‖ϕ‖22,2 ;ϕ ∈ C∞0 (Rd) , 0 ≤ ϕ ≤ 1 and ϕ = 1 on a neighborhood of K

}
.

Lemma 5. There exist positive constants α1, α2 such that, for every compact subset H
of [−1, 1]d, we have

α1c2,2(H) ≤ Cd−4(H) ≤ α2 c2,2(H) .

Proof. Recall the definition of the Bessel kernel G2 (see [AH] p.10): For x ∈ Rd,

G2(x) = (4π)−1

∫ ∞
0

t−
d
2 exp

(
−π|x|

2

t
− t

4π
)
dt.

Set
C2,2(H) = sup

µ∈M1(H)

1
‖G2 ∗ µ‖22

.

As a consequence of Theorem 2.2.7 and Corollary 3.3.4 in [AH], there exists a constant
A, depending only on d, such that

A−1C2,2(H) ≤ c2,2(H) ≤ AC2,2(H).

It remains to compare C2,2(H) and Cd−4(H). To this end, note that

‖G2 ∗ µ‖22 =
∫ ∫

µ(dy)µ(dy′)Fd(y − y′),
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with
Fd(y − y′) =

∫
Rd
dz G2(z − y)G2(z − y′).

Notice that G2(z) ∼ c|z|2−d as z → 0. It is then elementary to verify that, for y, y′ ∈
[−1, 1]d, the ratio

Fd(y − y′)
fd(|y − y′|)

is bounded above and below by positive constants depending only on d. (Compare
with Lemma IV.8.) Lemma 5 now follows by comparing the definitions of Cd−4(H) and
C2,2(H). �

Let us complete the proof of Theorem 4. Let K be a compact subset of the unit ball
B̄(0, 1) (clearly we can restrict our attention to this case). Let ϕ ∈ C∞0 (Rd) be such
that 0 ≤ ϕ ≤ 1 and ϕ = 1 on a neighborhood of K. Let R > 2 be such that ϕ(y) = 0 if
|y| ≤ R− 1. Set

DR = (−R,R)d

and ψ = 1−ϕ. Note that ψ = 1 on a neighborhood of ∂DR and ψ = 0 on a neighborhood
of K. Then set

FR =
⋃
m∈Zd

(2mR+K) .

By Proposition 2, the function

uR(x) = Nx(R∩ FR 6= ∅) , x ∈ Rd\FR
solves ∆u = 4u2 in Rd\FR. Furthermore, uR has period 2R in every coordinate direc-
tion.

Recalling that ψ = 0 on a neighborhood of K, we get after two integrations by parts

4
∫
DR

ψ(y)4uR(y)2dy =
∫
DR

ψ(y)4∆uR(y)dy =
∫
DR

∆(ψ4)(y)uR(y)dy .

In the first integration by parts, we use the fact that ψ = 1 on ∂DR and the periodicity
of uR. In the second one, we use the fact that ∇ψ = 0 on ∂DR. Then, by expanding
∆(ψ4) we arrive at

1
4

∫
DR

∣∣∆(ψ4)
∣∣uR dy

≤ 3
∫
DR

ψ2 |∇ψ|2 uR dy +
∫
DR

ψ3 |∆ψ|uR dy

≤ 3
(∫

DR

ψ4u2
Rdy

)1/2(∫
DR

|∇ψ|4 dy
)1/2

+
(∫

DR

ψ6u2
Rdy

)1/2(∫
DR

|∆ψ|2 dy
)1/2

≤
(∫

DR

ψ4u2
Rdy

)1/2(
3
(∫
DR

|∇ψ|4 dy
)1/2 +

(∫
DR

|∆ψ|2 dy
)1/2)

,
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using the trivial bound ψ6 ≤ ψ4 since 0 ≤ ψ ≤ 1. Note that ∆ψ = −∆ϕ, ∇ψ = −∇ϕ.
A simple integration by parts shows that∫

|∇ϕ|4 dy ≤ C ‖ϕ‖2∞ ‖ϕ‖
2
2,2 = C ‖ϕ‖22,2

with a constant C depending only on d. Combining the previous formulas gives

4
∫
DR

ψ(y)4uR(y)2dy =
∫
DR

∆(ψ4)(y)uR(y)dy ≤ C ′ ‖ϕ‖2,2
(∫

DR

ψ(y)4uR(y)2dy
)1/2

,

where the constant C ′ only depends on d. Hence

(5)
∫
DR

ψ(y)4uR(y)2dy ≤ (C ′/4)2 ‖ϕ‖22,2 .

Now suppose that Cd−4(K) = 0. By Lemma 5, c2,2(K) = 0 and so we can find a
sequence of functions ϕn ∈ C∞0 (Rd) such that 0 ≤ ϕn ≤ 1, ϕn = 1 on a neighborhood
of K and

lim
n→∞

‖ϕn‖2,2 = 0 .

Set ψn = 1−ϕn and choose Rn such that ϕn(z) = 0 if |z| > Rn− 1. Obviously we may
assume that Rn ↑ ∞. Also set

u(x) = Nx(R∩K 6= ∅), x ∈ Rd\K

and note the trivial bound u(x) ≤ uRn(x) for x ∈ DRn\K. From the bound (5) applied
to ϕn instead of ϕ, we get∫

DRn

ψn(y)4u(y)2dy ≤
∫
DRn

ψn(y)4uRn(y)2dy ≤ (C ′/4)2 ‖ϕn‖22,2 .

Since ψn = 1− ϕn and ‖ϕn‖2 ≤ ‖ϕn‖2,2 → 0, we get from the last bound and Fatou’s
lemma that ∫

Rd\K
u(y)2dy = 0.

It follows that K is polar, which completes the proof of Theorem 4. �

Remark. The second half of the previous proof strongly relies on analytic ingredients.
The existence of a probabilistic proof still remains an open problem.

3 Wiener’s test for the Brownian snake

In this section we will give a complete answer to a question which was raised in Section 1.
Precisely, we will characterize the domains D in Rd in which there exists a nonnegative
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solution of ∆u = u2 that blows up everywhere at the boundary. This characterization
will follow from a Wiener-type criterion for the Brownian snake, which is of independent
interest.

For y ∈ Rd and 0 ≤ r < r′ we denote by C(y, r, r′) the spherical shell

C(y; r, r′) = {z ∈ Rd; r ≤ |z − y| ≤ r′} .

We also define under Nx
R∗ = {Ŵs, 0 < s < σ} .

Note that R = R∗ ∪ {x}, Nx a.e.

Theorem 6. Let F be a closed subset of Rd and let y ∈ F . Then Ny(R∗ ∩F 6= ∅) =∞
holds if and only if d ≤ 3, or d ≥ 4 and

(6)
∞∑
n=1

2n(d−2)Cd−4

(
F ∩ C(y; 2−n, 2−n+1)

)
=∞ .

From excursion theory, the property Ny(R∗ ∩ F 6= ∅) = ∞ is equivalent to Py(TF =
0) = 1, where

TF = inf{s ≥ 0; Ŵs ∈ F and ζs > 0} .

Alternatively, if Z is under Pδy a super-Brownian notion started at δy, the previous
properties are also equivalent to Pδy (SF = 0) = 1, where

SF = inf{t > 0; suppZt ∩ F 6= ∅}.

This essentially follows from the relationship between the Brownian snake and super-
Brownian motion, as described in Chapter IV (see [DL] for details).
The previous remarks show that Theorem 6 is an analogue of the classical Wiener
criterion. In the same way as for the classical Wiener criterion, Theorem 6 has a
remarkable analytic counterpart.

Corollary 7. Let D be a domain in Rd. The problem

(7)
{

∆u = 4u2

u|∂D = +∞

has a nonnegative solution if and only if d ≤ 3, or d ≥ 4 and (6) holds with F = Dc for
every y ∈ ∂D.

In dimension d ≥ 4, the proof shows more precisely that the existence of a nonnegative
solution that blows up at a fixed point y0 of ∂D is equivalent to condition (6) with
y = y0 and F = Dc.
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The key ingredient of the proof of Theorem 6 is the following proposition, which gives
precise estimates on hitting probabilities of compact sets and can be viewed as a rein-
forcement of Theorem 4. Under Nx, we set

M = sup{ζs; 0 ≤ s ≤ σ} .

Proposition 8. Suppose that d ≥ 4. There exist two positive constants β1, β2 such that
for every compact subset K of C(0; 1, 2) and every x ∈ B(0, 1/2),

β1Cd−4(K) ≤ Nx(R∩K 6= ∅ ; 1 < M ≤ 2) ≤ Nx(R∩K 6= ∅) ≤ β2Cd−4(K) .

Proof of the upper bound. By simple translation arguments, it is enough to prove
the given upper bound when K is a compact subset of B(0, 1/2) and |x| > 1. By
Theorem 4, we may assume that Cd−4(K) > 0. We set

u(x) = Nx(R∩K 6= ∅), x ∈ Rd\K.

From Lemma 5, we can find a function ϕ ∈ C∞0 (Rd) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on a
neighborhood of K and

‖ϕ‖2,2 ≤ c0 Cd−4(K)

where the constant c0 only depends on d. Multiplying ϕ by a function h ∈ C∞0 (Rd)
such that h = 1 on B̄(0, 1/2), h = 0 on Rd\B(0, 3/4) and 0 ≤ h ≤ 1, we may assume
furthermore that ϕ vanishes outside B(0, 3/4) (the value of the constant c0 will be
changed but will still depend only on d). As previously, we set ψ = 1− ϕ.
Recall the notation DR, uR from the proof of Theorem 4. By (5), we have for every R
large enough, ∫

DR

ψ(y)4uR(y)2dy ≤ c1 ‖ϕ‖22,2

with a constant c1 depending only on d. Observe that u ≤ uR and let R tend to ∞ to
get

(8)
∫

Rd
ψ(y)4u(y)2dy ≤ c1 ‖ϕ‖22,2 .

From an intermediate bound of the proof of Theorem 4, we have also∫
DR

|∆(ψ4)|uR dy ≤ c2 ‖ϕ‖22,2 ,

and the same argument gives

(9)
∫

Rd
|∆(ψ4)|u dy ≤ c2 ‖ϕ‖22,2 .



Polar sets and solutions with boundary blow-up 89

By applying Itô’s formula to ξ under Πx, we have Πx a.s.

(ψ4u)(ξt) = u(x) +
∫ t

0

∇(ψ4u)(ξs) · dξs +
1
2

∫ t

0

∆(ψ4u)(ξs) ds.

Let a > |x| and Sa = inf{t ≥ 0, |ξt| ≥ a}. By applying the optional stopping theorem
at t ∧ Sa, we get

Πx

(
(ψ4u)(ξt∧Sa)

)
= u(x) +

1
2

Πx

(∫ t∧Sa

0

∆(ψ4u)(ξs) ds
)

= u(x) +
1
2

Πx

(∫ t∧Sa

0

(
ψ4∆u+ 2∇(ψ4) · ∇u+ ∆(ψ4)u

)
(ξs) ds

)
.

Since ∆u = 4u2 ≥ 0 on Rd\K, we have

u(x) ≤ Πx

(
(ψ4u)(ξt∧Sa)

)
− 1

2
Πx

(∫ t∧Sa

0

(
2∇(ψ4) · ∇u+ ∆(ψ4)u

)
(ξs) ds

)
.

Note that both functions ∇(ψ4) and ∆(ψ4) vanish outside B(0, 3/4), and |u(y)| tends
to 0 as |y| tends to ∞. By letting t, and then a tend to ∞, we get

(10)
u(x) ≤ −1

2
Πx

(∫ ∞
0

(
2∇(ψ4) · ∇u+ ∆(ψ4)u

)
(ξs) ds

)
= −γd

2

∫
Rd

(
2∇(ψ4) · ∇u+ ∆(ψ4)u

)
(y) |y − x|2−d dy.

We will now bound the right side of (10). Since |x| > 1 and ψ = 1 outside B(0, 3/4),
we get∫

Rd
|(∆(ψ4)u)(y)| |y − x|2−d dy ≤ 4d−2

∫
Rd
|(∆(ψ4)u)(y)| dy ≤ 4d−2c2‖ϕ‖22,2,

by (9).
Then consider the other term in the right side of (10). Observe that if hd(y) = |y−x|2−d
we can find a constant c′, independent of the choice of x with |x| > 1, such that
|∇hd(y)| ≤ c′ for every y ∈ B(0, 3/4). Then an integration by parts gives∣∣∣∣∫

Rd

(
∇(ψ4) · ∇u

)
(y) |y − x|2−d dy

∣∣∣∣
=
∣∣∣∣∫

Rd
(∆(ψ4)u)(y) |y − x|2−d dy +

∫
Rd

(
u∇ψ4 · ∇hd

)
(y) dy

∣∣∣∣
≤ 4d−2c2‖ϕ‖22,2 + 4c′

∫
Rd
uψ3|∇ψ|dy

≤ 4d−2c2‖ϕ‖22,2 + 4c′
(∫

Rd
u2ψ4 dy

)1/2(∫
Rd
|∇ψ|2dy

)1/2

≤ (4d−2c2 + 4c′c1/21 ) ‖ϕ‖22,2
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by (8). Set c3 = γd(4d−2c2 + 2c′c1). By substituting the last two bounds in (10), we
arrive at

Nx(R∩K 6= ∅) = u(x) ≤ c3 ‖ϕ‖22,2 ≤ c0c3 Cd−4(K),

which completes the proof of the upper bound.

Remark. To avoid using the Itô formula, one may try to bound u directly from (8) and
a suitable Harnack inequality. However, this only gives the bound u(x) ≤ cCd−4(K)1/2,
which is weaker than the upper bound of Proposition 8.

Proof of the lower bound. We may assume that Cd−4(K) > 0. Then fix a probability
measure ν on K such that∫ ∫

ν(dy)ν(dy′)fd(|y − y′|) ≤ 2Cd−4(K)−1 .

Let J , h, hε be as in the proof of Theorem 4. Then for every ε ∈ (0, 1), set

Uε = 1{M≤2}

∫ σ

0

ds hε ∗ ν(Ŵs)1{ζs>1} .

Note that Uε ≤ 〈J , hε ∗ ν〉 and so, by an estimate of the proof of Theorem 4, we have

Nx(U2
ε ) ≤ 4

∫ ∫
ν(dy)ν(dy′)

∫
daG(a− x)G(y − a)G(y′ − a)

≤ c1
∫ ∫

ν(dy)ν(dy′)fd(|y − y′|)

≤ 2c1 Cd−4(K)−1 ,

where the constant c1 is independent of ε, x and K provided that K ⊂ C(0; 1, 2), x ∈
B(0, 1/2).

We then get a lower bound on Nx(Uε). By the Markov property under Nx, we have

Nx(Uε) =
∫ ∞

0

dsNx
(

1{ζs>1}hε ∗ ν(Ŵs)1{supr≤s ζr≤2}1{supr≥s ζr≤2}

)
=
∫ ∞

0

dsNx
(

1{ζs>1}hε ∗ ν(Ŵs)1{supr≤s ζr≤2}PWs
( sup
r≤T0

ζr ≤ 2)
)

=
∫ ∞

0

dsNx
(

1{ζs>1}hε ∗ ν(Ŵs)1{supr≤s ζr≤2}
(2− ζs

2
))

= Nx
(∫ σ

0

ds hε ∗ ν(Ŵs)1{ζs>1,supr≤s ζr≤2}
(2− ζs

2
))

.
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In the third equality, we used the fact that (ζs, s ≥ 0) is under Pw a reflected Brownian
motion started at ζw, together with a familiar property of linear Brownian motion. From
the invariance of the Itô measure under time-reversal, it immediately follows that Nx is
invariant under the mapping (Ws, s ≥ 0)→ (W(σ−s)+ , s ≥ 0). Using this property, and
then the Markov property as previously, we get

Nx(Uε) = Nx
(∫ σ

0

ds hε ∗ ν(Ŵs)1{ζs>1,supr≥s ζr≤2}
(2− ζs

2
))

= Nx
(∫ σ

0

ds hε ∗ ν(Ŵs)1{1<ζs≤2}
(2− ζs

2
)2)

By the case p = 1 of Proposition IV.2 (ii), we have

Nx(Uε) = Πx

(∫ 2

1

dt hε ∗ ν(ξt)
(2− t

2
)2)

=
∫
ν(dy)

∫
dz hε(z − y)

∫ 2

1

dt pt(z − x)
(2− t

2
)2

where pt(z) is the Brownian transition density. From this last formula it is now clear
that we can find a constant c2 > 0 independent of ε, x and K, such that for every
ε ∈ (0, 1),

Nx(Uε) ≥ c2 .

By the Cauchy–Schwarz inequality, we obtain

Nx(Uε > 0) ≥ (c2)2

c1
Cd−4(K) .

Notice that Uε can be nonzero only on {1 < M ≤ 2}. Letting ε go to 0 as in the proof
of Theorem 4 yields the lower bound of Proposition 8. �

Proof of Theorem 6. Consider first the case d ≤ 3. It is enough to prove that
Ny(y ∈ R∗) =∞ and we can take y = 0. A scaling argument shows that N0(0 ∈ R∗) =
λN0(0 ∈ R∗) for every λ > 0. Furthermore from the fact that points are not polar when
d ≤ 3 (and using Lemma V.5 for instance) one easily obtains that N0(0 ∈ R∗) > 0. The
desired result follows at once.

Suppose then that d ≥ 4. For simplicity, we treat only the case d ≥ 5 (the case d = 4
is similar with minor modifications). The polarity of points now implies that Ny(y ∈
R∗) = 0 (use Lemma V.5). Also notice the scaling property Cd−4(λK) = λd−4Cd−4(K)
for λ > 0.
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Assume first that (6) does not hold. Then, if Fy = {z − y; z ∈ F}, we have

Ny(R∗ ∩ F 6= ∅) = Ny
(
R∩ (F\{y}) 6= ∅

)
≤
∞∑
n=1

Ny
(
R∩

(
F ∩ C(y; 2−n, 2−n+1)

)
6= ∅
)

+ Ny
(
R∩B(y, 1)c 6= ∅

)

=
∞∑
n=1

N0

(
R∩

(
Fy ∩ C(0; 2−n, 2−n+1)

)
6= ∅
)

+ c

=
∞∑
n=1

22nN0

(
R∩

(
2nFy ∩ C(0; 1, 2)

)
6= ∅
)

+ c

≤ β2

∞∑
n=1

22nCd−4

(
2nFy ∩ C(0; 1, 2)

)
+ c

= β2

∞∑
n=1

2n(d−2)Cd−4

(
F ∩ C(y; 2−n, 2−n+1)

)
+ c

<∞ .

We used successively the scaling property of N0, Proposition 9 and the scaling property
of Cd−4.

Conversely, assume that (6) holds. Since the sets {2−2n < M ≤ 2−2n+2}, n ≥ 1 are
disjoint, we get by similar arguments

Ny(R∗ ∩ F 6= ∅) ≥
∞∑
n=1

Ny
(
R∩

(
F ∩ C(y; 2−n, 2−n+1)

)
6= ∅ ; 2−2n < M ≤ 2−2n+2

)

=
∞∑
n=1

22nN0

(
R∩

(
2nFy ∩ C(0; 1, 2)

)
6= ∅ ; 1 < M ≤ 4

)

≥ β1

∞∑
n=1

22nCd−4

(
2nFy ∩ C(0; 1, 2)

)

= β1

∞∑
n=1

2n(d−2)Cd−4

(
F ∩ C(y; 2−n, 2−n+1)

)
=∞

by (6). This completes the proof of Theorem 6. �
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Proof of Corollary 7. The case d ≤ 3 is again easy. We verify that the function
u(x) = Nx(R ∩Dc 6= ∅) solves (7). By Proposition 2, we already know that ∆u = 4u2

in D. Furthermore, for every y ∈ ∂D,

u(x) ≥ Nx(y ∈ R) = (2− d

2
) |y − x|−2

so that it is obvious that u|∂D =∞.

Suppose that d ≥ 4. First assume that condition (6) holds for some y ∈ ∂D (with
F = Dc). We will verify that the maximal solution u(x) = Nx(R ∩Dc 6= ∅) blows up
at y. To this end, let N ≥ 1 be an integer and consider x ∈ B(y, 2−N−1)∩D. We have

u(x) ≥
N∑
n=1

Nx
(
R∩

(
F ∩ C(y; 2−n, 2−n+1)

)
6= ∅ ; 2−2n < M ≤ 2−2n+2

)
.

By the same arguments as in the proof of Theorem 6, we get for n ∈ {1, . . . , N},

Nx
(
R∩

(
F ∩ C(y; 2−n, 2−n+1)

)
6= ∅ ; 2−2n < M ≤ 2−2n+2

)
≥ β12n(d−2)Cd−4

(
F ∩ C(y; 2−n, 2−n+1)

)
and the desired result follows from (6).

Conversely, suppose that for some fixed y ∈ ∂D, the maximal solution u(x) = Nx(R ∩
Dc 6= ∅) satisfies

lim
D3x→y

u(x) = +∞ .

We will then verify that (6) holds, or equivalently that Ny(R∗ ∩ Dc 6= ∅) = ∞. Fix
N ≥ 1 and choose α ∈ (0, 1) such that Nx(R∩Dc 6= ∅) ≥ N for every x ∈ B(y, α) ∩D.
Let ε > 0 and Tε = inf{s ≥ 0, ζs = ε}. By using the strong Markov property at time
Tε and then Lemma V.5, we get

Ny(R∗ ∩Dc 6= ∅) ≥ Ny
(
Tε <∞ ;

(
1− exp−2

∫ ε

0

dtNWTε (t)(R∩Dc 6= ∅)
))

= (2ε)−1Πy

(
1− exp−2

∫ ε

0

dtNξt(R∩Dc 6= ∅)
)

≥ (2ε)−1Πy

(
1− exp−2N

∫ ε

0

dt 1(0,α)(|ξt − y|)
)
.

In the second line, we used the equality Nx(Tε <∞) = (2ε)−1 and the fact that WTε is
distributed under Ny(· | Tε <∞) as a Brownian path started at y and stopped at time
ε. By letting ε go to 0, we get Ny(R∗ ∩Dc 6= ∅) ≥ N , which completes the proof since
N was arbitrary. �
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Remark. Until now, there exists no analytic approach to Corollary 7. Some partial
results have been obtained in particular by Marcus and Véron [MV1].

4 Uniqueness of the solution with boundary blow-up

We now want to address question 1 which was raised in Section 1. We will only obtain
a partial result, which (in the special case of equation ∆u = u2) is still stronger than
what has been done by analytic methods.
We assume that d ≥ 2. If K is a compact subset of Rd, we denote by Cd−2(K) the
Newtonian (logarithmic if d = 2) capacity of K. Recall from Section 1 the notation u1,
resp. u2, for the minimal, resp. maximal, nonnegative solution with infinite boundary
conditions in a bounded regular domain D.

Theorem 9. Let D be a bounded domain in Rd, d ≥ 2. Suppose that for every y ∈ ∂D
there exists a constant c(y) > 0 such that the inequality

Cd−2

(
Dc ∩ B̄(y, 2−n)

)
≥ c(y)Cd−2

(
B̄(y, 2−n)

)
holds for all n belonging to a sequence of positive density in N. Then u1 = u2,

Remark. As an easy application of the classical Wiener test, the assumption of Theo-
rem 9 implies that D is regular.

For the proof of Theorem 9 we need a technical lemma which gives information on the
behavior of the paths Ws near their lifetime. We state this lemma but postpone its
proof to the end of the section.

Lemma 10. For every δ > 0 we can choose A > 1 large enough so that Nx a.e., for
every s ∈ (0, σ),

lim inf
n→∞

1
n

Card
{
p ≤ n; |Ws(t)− Ŵs| ≤ A2−p ,∀t ∈

[
(ζs − 2−2p)+, ζs

]}
≥ 1− δ .

Proof of Theorem 9. Consider the stopping times

T = inf
{
s ≥ 0 , τ(Ws) ≤ ζs

}
, S = inf

{
s ≥ 0 , τ(Ws) < ζs

}
.

Then u2(x) = Nx(T < ∞) and, from an argument used in the proof of Proposition 2,
it is easy to see that u1(x) = Nx(S < ∞). We will prove that {T < ∞} = {S < ∞}
Nx a.e. by applying the strong Markov property at T (our argument shows in fact that
T = S, Nx a.e.).

Recall the notation T0 = inf{s ≥ 0 , ζs = 0}. By the strong Markov property,

Nx(S <∞) = Nx
(
T <∞; PWT

(S < T0)
)
.
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Fix a path w such that ζw = τ(w). It follows from Lemma V.5 that

Pw(S < T0) = 1− exp−2
∫ ζw

0

dt Nw(t)(S <∞)

= 1− exp−2
∫ ζw

0

dt u1

(
w(t)

)
.

We see that the proof will be complete if we can verify that Nx a.e. on {T <∞},

(11)
∫ ζT

0

dt u1

(
WT (t)

)
=∞ .

From the assumption of Theorem 9 and Lemma 10, we can choose two (random) con-
stants cT > 0 and AT <∞ such that the properties

(i) Cd−2

(
B(ŴT , 2−p) ∩Dc

)
≥ cTCd−2

(
B(ŴT , 2−p)

)
(ii) |WT (t)− ŴT | ≤ AT 2−p , ∀t ∈

[
ζT − 2−2p, ζT

]
hold for infinitely many p ≥ 1 with 2−2p ≤ ζT .

Fix one such p and write ap = AT 2−p for simplicity. Also set T(p) = inf{s ≥ 0, ζs = a2
p}.

Then, if y ∈ D, we have

u1(y) = Ny(S <∞) ≥ Ny
(
T(p) <∞, τ(WT(p)) < a2

p

)
.

Notice that conditionally on {T(p) < ∞}, WT(p) is a Brownian path in Rd started at y
stopped at time a2

p. Hence,

Ny
(
τ(WT(p)) < a2

p | T(p) <∞
)

= Πy(τ < a2
p).

We can now use (i) to get a lower bound on Πy(τ < a2
p) when |y − ŴT | ≤ ap. Suppose

first that d ≥ 3, and denote by L the last hitting time of H := B̄(ŴT , 2−p)∩Dc by the
Brownian motion ξ. Let eH be the capacitary measure of H. Then,

Πy(τ < a2
p) ≥ Πy(0 < L < a2

p) =
∫
eH(dz)

∫ a2
p

0

pt(z − y) dt,

where the last equality is the classical formula for the distribution of L (see [PS] p.62).
Note that the total mass of eH is Cd−2(H) and that Cd−2

(
B̄(y, 2−n)) = c2−n(d−2).

Using the previous bound, (i) and a simple estimate for
∫ a2

p

0
pt(z − y) dt, we get the
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existence of a (random) constant αT > 0 depending only on cT and AT such that, if
|y − ŴT | ≤ ap,

Ny
(
τ(WT(p)) < a2

p

∣∣ T(p) <∞
)
≥ αT .

In dimension d = 2, we can get the same bound by using the last exit time for planar
Brownian killed at an independent exponential time (we leave details to the reader).
It follows that

u1(y) ≥ αT Ny(T(p) <∞) =
αT

2A2
T 2−2p

.

We apply this to y = WT (t) for t ∈
[
ζT − 2−2p, ζT − 2−2p−2

]
. We get∫ ζT−2−2p−2

ζT−2−2p
dt u1

(
WT (t)

)
≥ 3αT

8A2
T

=: βT > 0 .

Since this bound holds for infinitely many values of p, the proof of (11) is complete. �

Remark. For every rational q ≥ 0, we can apply the argument of the previous proof
to the stopping time T(q) = inf{s ≥ q, τ(Ws) = ζs} instead of T . It follows that the
support of the random measure dLDs is exactly equal to the set {s ≥ 0, τ(Ws) = ζs}.
As a consequence, the assumption of Theorem 9 implies that suppZD = ED, Nx a.e.
The inclusion suppZD ⊂ ED is always true but the converse may be false as we see
from the example of the punctured unit ball in Rd, d = 2 or 3.

Proof of Lemma 10. For every stopped path w, every A > 0 and every integer n ≥ 1,
set

FAn (w) = Card
{
p ∈ {1, . . . , n}, |w(t)− ŵ| ≤ A 2−p, ∀t ∈ [(ζw − 2−2p)+, ζw]

}
.

We first state a simple large deviation estimate for standard Brownian motion, whose
easy proof is left to the reader. The notation ξ[0,t] stands for the stopped path (ξr, 0 ≤
r ≤ t).
Lemma 11. Let δ > 0 and λ > 0. We can choose A > 0 large enough so that, for
every n ≥ 1 and every t > 0,

Π0

(
FAn (ξ[0,t]) < (1− δ)n

)
≤ e−λn.

Then, for every n ≥ 1, introduce the stopping times σni defined inductively as follows:

σn0 = 0, σni+1 = inf{t ≥ σni , |ζs − ζσni | = 2−2n}.

Note that σni <∞ if and only if σni < Ln, where Ln <∞, Nx a.e. Under Nx(· | σn1 <∞),
the sequence (22nζσn

i
, 0 ≤ i ≤ Ln) is distributed as the positive excursion of simple

random walk. By a well known result, we have for every k ≥ 1,

Nx
( ∞∑
i=1

1{σn
i
<∞, ζσn

i
=k2−2n}

)
= 2 Nx(σn1 <∞) = 22n.
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On the other hand, under Nx(· | σni <∞) and conditionally on ζσn
i

, Wσn
i

is distributed
as a Brownian path in Rd started at x and with lifetime ζσn

i
(this is so because σni is a

measurable function of the lifetime process).
Let δ > 0, λ > 4 and choose A as in Lemma 11. By combining the previous observations
with this lemma, we get for every integer M ≥ 1

Nx
( ∞∑
i=1

1{σn
i
<∞, ζσn

i
≤M}1{FAn (Wσn

i
)<(1−δ)n}

)
≤M22n 22n e−λn.

From the Borel-Cantelli lemma, we conclude that Nx a.e. there exists an integer N0(ω)
such that for n ≥ N0(ω),

(12) FAn (Wσn
i

) ≥ (1− δ)n , ∀i ∈ {1, . . . , Ln}.

To complete the proof, we need to “interpolate” between σni and σni+1. First note that
the law under Nx(· | σni < ∞) of σni+1 − σni is the law of the first exit time from
[−2−2n, 2−2n] of a linear Brownian motion started at 0. By standard estimates, it
follows that, for every η > 0, we have for n sufficiently large,

σni+1 − σni ≤ 2−4n(1−η) ,∀i ∈ {0, . . . , Ln − 1}.

On the other hand, we also know from Chapter IV that the mapping s −→Ws is Hölder
continuous with exponent 1

4 − ε, for every ε > 0. By combining this property with the
previous estimate, we get that Nx a.e. for every ε > 0, there exists an integer N1(ω)
such that for every n ≥ N1(ω), every i ∈ {0, . . . , Ln − 1} and s ∈ [σni , σ

n
i+1],

|Ws(t ∧ ζs)−Wσn
i

(t ∧ ζσn
i

)| ≤ 2−n(1−ε), ∀t ≥ 0

|Ŵs − Ŵσn
i
| ≤ 2−n(1−ε).

This implies for t ∈ [0, ζs]

|Ws(t)− Ŵs| ≤ |Ws(t)−Wσn
i

(t ∧ ζσn
i

)|+ |Wσn
i

(t ∧ ζσn
i

)− Ŵσn
i
|+ |Ŵσn

i
− Ŵs|

≤ 2 · 2−n(1−ε) + |Wσn
i

(t ∧ ζσn
i

)− Ŵσn
i
|.

Thanks to this bound and the trivial inequality |ζs − ζσn
i
| ≤ 2−2n for s ∈ [σni , σ

n
i+1], it

is then elementary to verify that Nx a.e. for all n sufficiently large, we have for every
i ∈ {0, . . . , Ln − 1} and every s ∈ [σni , σ

n
i+1],

F 2(A+1)
n (Ws) ≥ FAn (Wσn

i
)− εn− 2.

From (12) we have then Nx a.e. for every s ∈ [0, σ],

lim inf
n→∞

1
n
F 2(A+1)
n (Ws) ≥ 1− δ − ε.

This completes the proof since δ and ε were arbitrary. �
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VII The probabilistic representation

of positive solutions

In this chapter, we address the general problem of providing a probabilistic classification
of positive solutions to the partial differential equation ∆u = u2 in a smooth domain.
We give a complete solution to this problem in the case of the planar unit disk. Precisely,
we show that solutions are in one-to-correspondence with their traces, where the trace
of a solution consists of a compact subset of the boundary and a Radon measure on the
complement of this compact subset in the boundary. Furthermore, we give an explicit
probabilistic formula for the solution associated with a given trace. At the end of the
chapter, we discuss extensions to higher dimensions or more general equations.

1 Singular solutions and boundary polar sets

In this chapter, the spatial motion ξ is again Brownian motion in Rd, and D is a bounded
domain of class C2 in Rd. In Chapter V, we considered solutions of ∆u = 4u2 in D
which are of the form

ug(x) = Nx(1− exp−〈ZD, g〉) , x ∈ D,

where g ∈ Bb+(∂D). Our first proposition provides another class of solutions. Recall
from Chapter V the notation ED for the set of exit points of the paths Ws from D.

Proposition 1. Let K be a compact subset of ∂D. Then the function

uK(x) = Nx(ED ∩K 6= ∅) , x ∈ D,

is the maximal nonnegative solution of the problem{
∆u = 4u2 , in D ,

u|∂D\K = 0 .

Remark. When K = ∂D, we recover a special case of Proposition VI.2.

Proof. We first verify that uK solves ∆u = 4u2 in D. Fix ε > 0 and set Kε = {y ∈
∂D, dist(y,K) < ε}. By Theorem V.6, we know that for every n the function

uεn(x) = Nx(1− exp−〈ZD, n 1Kε〉) , x ∈ D
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solves ∆u = 4u2 in D. Clearly, ZD(Kε) = 0 a.e. on the event {ED∩Kε = ∅} and on the
other hand, by a remark following the proof of Theorem VI.9, we have also ZD(Kε) > 0
a.e. on the event {ED ∩Kε 6= ∅}. It follows that

lim
n→∞

uεn(x) = Nx(ED ∩Kε 6= ∅) =: uε(x).

By Proposition V.9 (iii), we get that that uε solves ∆u = 4u2 in D, and then that
uK = lim ↓ uε is also a solution.

We then verify that uK|∂D\K = 0. Fix y ∈ ∂D\K and choose δ > 0 such that
dist(y,K) > 2δ. For every path w ∈ W, set τ(δ)(w) = inf{t ≥ 0, |w(t) − w(0)| ≥ δ}.
Clearly, if x ∈ D and |x− y| < δ, we have

Nx(ED ∩K 6= ∅) ≤ Nx
(
∃s ≥ 0 : τ(δ)(Ws) < τ(Ws)

)
,

where τ is as usual the first exit time from D. Therefore, it is enough to verify that the
quantity in the right side goes to 0 as x→ y, x ∈ D. To this end, write for every α > 0

Nx
(
∃s ≥ 0 : τ(δ)(Ws) < τ(Ws)

)
≤ Nx

(
∃s ∈ [0, α] ∪ [(σ − α)+, σ] : τ(δ)(Ws) <∞

)
+ Nx

(
σ ≥ 2α ; ∃s ∈ [α, σ − α] : τ(δ)(Ws) < τ(Ws)

)
.

The first term in the right side does not depend on x and goes to 0 as α → 0 by
dominated convergence (recall that Nx

(
∃s ≥ 0 : τ(δ)(Ws) < ∞

)
< ∞ by Proposition

V.9 (i)). Thus it suffices to verify that for every fixed α > 0 the second term tends to
0 as x→ y, x ∈ D. To this end, use the snake property to observe that the paths Ws,
s ∈ [α, σ − α] all coincide up to time mα = inf [α,σ−α] ζs > 0. By conditioning first with
respect to the lifetime process, we get

Nx
(
σ ≥ 2α ; ∃s ∈ [α, σ − α] : τ(δ)(Ws) < τ(Ws)

)
≤ Nx

(
σ ≥ 2α, Πx(τ(δ) ∧mα < τ)

)
and the right side of the last formula goes to 0 as x → y by dominated convergence
(the smoothness of D implies that Πx(τ > ε) → 0 as x → y, for every ε > 0). This
completes the proof of the property uK|∂D\K = 0.

It remains to verify that uK is the maximal solution of the problem stated in Proposition
1. Let x0 be a fixed point in D. For every δ > 0, denote by D(δ) the connected
component of the open set

{x ∈ D,dist(x,K) > δ}

that contains x0 (this makes sense if δ is small enough). Note that D(δ) is a regular
domain. Also set

U(δ) = ∂D(δ)\∂D,

and, for every x ∈ D(δ),

u(δ)(x) = Nx(ZD(δ)(U(δ)) 6= 0).
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Writing

u(δ)(x) = lim
n→∞

↑ Nx
(

1− exp−n
∫
ZD(δ)(dy) dist(y, ∂D(δ)\U(δ))

)
,

and arguing as in the proof of Proposition VI.1, we easily get that u(δ) solves ∆u = 4u2

in D(δ) and u(δ)|U(δ)
=∞.

Finally, let v be another nonnegative solution of the problem stated in Proposition 1.
The comparison principle (Lemma V.7) implies that v ≤ u(δ) on D(δ). However,

u(δ)(x) ≤ Nx(ED(δ) ∩ U(δ) 6= ∅)

and it is easy to check that, for every x ∈ D,

lim
δ→0

Nx(ED(δ) ∩ U(δ) 6= ∅) = uK(x).

The claim v ≤ uK follows, and this completes the proof of Proposition 1. �

An informal guess is that any nonnegative solution of ∆u = 4u2 in D could be obtained
as a “mixture” of (generalized forms of) solutions of the type ug and uK . In dimension
d = 2, this guess is correct and a precise statement will be given in Section 3 below in
the special case of the unit disk (see Theorem 5). In higher dimensions, the problem
becomes more complicated and is still the subject of active research (see the discussion
in Section 4).

To understand why dimension two (or one) is different, let us introduce the notion of
boundary polar set.

Definition. A compact subset K of ∂D is called boundary polar if Nx(ED ∩K 6= ∅) = 0
for every x ∈ D.

Then K is boundary polar if and only if the problem stated in Proposition 1 has no non-
trivial nonnegative solution. In this sense, we may say that K is a boundary removable
singularity for ∆u = u2 in D.

If d ≥ 3, we define the capacity Cd−3(K) by the formula

Cd−3(K) =
(

inf
ν∈M1(K)

∫ ∫
ν(dy)ν(dz)gd(|y − z|)

)−1

where

gd(r) =
{

1 + log+ 1
r if d = 3 ,

r3−d if d ≥ 4 .

We state without proof the following theorem, which will not be used in the rest of this
chapter.
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Theorem 2. If d ≤ 2, there are no nonempty boundary polar sets. If d ≥ 3, K is
boundary polar if and only if Cd−3(K) = 0.

For d = 2, it is enough to verify that singletons are not boundary polar. The proof
of this fact is relatively easy by estimating the first and second moments of the exit
measure evaluated on a small ball on the boundary (cf (2) and (3) below), and then
using the Cauchy-Schwarz inequality to get a lower bound on the “probability” that ED
intersects this ball. In the case of the unit disk, this can also be viewed as a by-product
of the (much stronger) Theorem 5.

A proof of Theorem 2 in dimension d ≥ 3 can be given along the lines of the character-
ization of polar sets in Chapter VI. We refer to [L9] and [DK2]. The latter paper deals
with more general equations of the type ∆u = uα, 1 < α ≤ 2.

2 Some properties of the exit measure from the unit disk

In this section and the next one, we restrict our attention to the case when d = 2 and
D is the open unit disk. However, all results can be extended to a domain D of class
C2 in the plane (see [L11]). We often identify R2 with the complex plane C, and the
boundary ∂D of D with T = R/2πZ. Lebesgue measure on ∂D is denoted by θ(dz).
Let GD(x, y), resp. PD(x, z) be the Green function, resp. the Poisson kernel of D. Note
the explicit expressions:

(1)
GD(x, y) =

1
π

log
|ỹ − x| |y|
|y − x|

, x, y ∈ D

PD(x, z) =
1

2π
1− |x|2

|z − x|2
, x ∈ D, z ∈ ∂D,

where ỹ = y/|y|2.
We first propose to derive certain properties of the exit measure ZD. Let g ∈ Bb+(∂D).
By the cases p = 1 and p = 2 of Theorem V.10, we have for x ∈ D

(2) Nx(〈ZD, g〉) =
∫
∂D

θ(dy)PD(x, y) g(y),

and

(3) Nx(〈ZD, g〉2) = 4
∫
D

dy GD(x, x′)
(∫

∂D

θ(dy)PD(x′, y) g(y)
)2

.

Proposition 3. Let x ∈ D. Then Nx a.e., the measure ZD has a continuous density
zD(y), y ∈ ∂D with respect to θ(dz). Furthermore,

Nx
(
zD(y)

)
= PD(x, y) , Nx

(
zD(y)2

)
= 4

∫
D

daGD(x, a)PD(a, y)2.
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Proof. For every ε > 0 and y ∈ ∂D, set

Zε(y) = (2ε)−1ZD(Nε(y)),

where Nε(y) = {z ∈ ∂D, |z − y| < ε}. By (3) and a polarization argument, we have for
every y, y′ ∈ ∂D,

Nx
(
Zε(y)Zε(y′)

)
= (εε′)−1

∫
Nε(y)2

θ(dz)θ(dy′)ψx(z, z′),

where
ψx(z, z′) =

∫
D

daGD(x, a)PD(a, z)PD(a, z′).

From the explicit expressions for GD and PD (which yield the easy bounds PD(a, z) ≤
C|a−z|−1, GD(x, a) ≤ C(x)dist(a, ∂D)) it is a simple exercise to verify that the function
ψx is bounded and continuous over ∂D × ∂D. It follows that

lim
ε,ε′→0

Nx(Zε(y)Zε′(y′)) = 4ψx(y, y′),

and the convergence is uniform when y and y′ vary over ∂D. By the Cauchy criterion,
it follows that Zε(y) converges in L2(Nx) as ε → 0, uniformly in y ∈ ∂D. Hence, we
can choose a sequence εn decreasing to 0 so that Zεn(y) converges Nx a.e. for every
y ∈ ∂D. The process (zD(y), y ∈ ∂D) defined by

zD(y) = lim
n→∞

Zεn(y)

(zD(y) = 0 if the limit does not exist) is measurable. Furthermore, for g ∈ Cb+(∂D),∫
θ(dy) zD(y) g(y) = lim

ε→0

∫
θ(dy)Zε(y) g(y),

in L2(Nx), and on the other hand∫
θ(dy)Zε(y) g(y) =

∫
ZD(dy) (2ε)−1

∫
Nε(y)

θ(dz) g(z) −→
ε→0
〈ZD, g〉.

Thus ZD(dy) = zD(y)θ(dy), Nx a.e.
It remains to verify that the process (zD(y), y ∈ ∂D) has a continuous modification.
The previous arguments immediately give the formula

Nx
(
(zD(y)− zD(y′))2

)
= 4
(
ψx(y, y)− 2ψx(y, y′) + ψx(y′, y′)

)
= 4

∫
D

daGD(x, a)
(
PD(a, y)− PD(a, y′)

)2
.
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From the explicit expressions for GD and PD, it is then a simple matter to derive the
bound

Nx
(
(zD(y)− zD(y′))2

)
≤ C(x) |y − y′|,

with a finite constant C(x) depending only on x. Unfortunately, this is not quite
sufficient for the existence of a continuous modification. One way out is to estimate
fourth moments. This is a bit more technical and we only sketch the proof, referring
to [L11] for a detailed argument. The fourth moment formula for the exit measure
(Theorem V.10) leads to

Nx
(
(zD(y)− zD(y′))4

)
= 8.4! (F1(y, y′) + 4F2(y, y′)),

where

F1(y, y′) =
∫
D3
da1da2da3GD(x, a1)GD(a1, a2)GD(a1, a3)

× (PD(a2, y)− PD(a2, y
′))2(PD(a3, y)− PD(a3, y

′))2,

F2(y, y′) =
∫
D3
da1da2da3GD(x, a1)GD(a1, a2)GD(a2, a3)

× (PD(a1, y)− PD(a1, y
′))(PD(a2, y)− PD(a2, y

′))(PD(a3, y)− PD(a3, y
′))2.

From this explicit expression and after some lengthy calculations, one arrives at the
bound

(4) Nx((zD(y)− zD(y′))4) ≤ C |y − y′|2 ,

with a finite constant C that can be chosen independently of x provided that x varies
in a compact subset of D. The existence of a continuous modification of the process
(zD(y), y ∈ ∂D) is then a consequence of the classical Kolmogorov lemma.
Finally, the formula Nx(zD(y)2) = 4ψx(y, y) is immediate from our approach and the
first moment formula for zD(y) is easy from (2). �

If D is replaced by Dr = {y ∈ R2, |y| < r}, the same method (or a scaling argument)
shows that, for every x ∈ Dr, the exit measure ZDr has (Nx a.e.) a continuous density
zDr with respect to Lebesgue measure θr on ∂Dr. We will need a weak continuity
property of zDr as a function of r > 0. To simplify notation, we write zD(r, y) = zDr (ry)
for y ∈ ∂D and r > 0.

Lemma 4. There exists a strictly increasing sequence (rn) converging to 1 such that,
for every x ∈ D,

lim
n→∞

(
sup
y∈∂D

|zD(rn, y)− zD(y)|
)

= 0, Nx a.e.
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Proof. Let r ∈ (0, 1] and let τr denote the exit time from Dr. From the method of proof
of Theorem V.10, it is easy to get for every x ∈ Dr, g ∈ Bb+(∂D) and g′ ∈ Bb+(Dr),

Nx(〈ZD, g〉〈ZDr , g′〉) = 4 Πx

(∫ τr

0

dtΠξt

(
g(ξτ )g′(ξτr )

))
= 4
∫
Dr

daGDr (x, a)
∫
θ(dy)PD(a, y)g(y)

∫
θr(dy′)PDr (a, y

′)g′(y′),

where PDr (a, y) = r−1PD(ar ,
y
r ) and GDr (a, y) = GD(ar ,

y
r ) are respectively the Poisson

kernel and the Green function of Dr. From the L2 construction of zD, it follows that,
for every y, y′ ∈ ∂D,

Nx
(
zD(y)zD(r, y)

)
= 4

∫
Dr

daGDr (x, a)PD(a, y)PDr (a, ry
′).

Hence,

Nx
(
(zD(y)− zD(r, y′))2

)
= 4

(∫
D\Dr

daGD(x, a)PD(a, y)2

+
∫
Dr

da (GD(x, a)−GDr (x, a))PD(a, y)2

+
∫
Dr

daGDr (x, a)
(
PD(a, y)− PDr (a, ry))2

)
.

From this explicit formula and elementary estimates (using the previously mentioned
bounds on PD and GD), one easily obtains that

(5) lim
r↑1

(
sup
y∈∂D

Nx
(
(zD(y)− zD(r, y))2

))
= 0 ,

and the convergence is uniform when x varies over compact subsets of D.

Let K be a compact subset of D. By (4) and a scaling argument, the bound

Nx
(
(zD(r, y)− zD(r, y′))4

)
≤ CK |y − y′|2

holds for every x ∈ K and r sufficiently close to 1, with a constant CK depending only
on K. Then, for every n ≥ 1, p ∈ Z/2nZ, set ynp = exp(2iπp2−n) ∈ ∂D. Let γ > 0.
The previous bound gives for k ≥ 1 and p ∈ Z/2kZ,

Nx
(
|zD(r, ykp)− zD(r, ykp+1)| > 2−γk

)
≤ C ′24γk2−2k,

where C ′ = 4π2CK . We take γ = 1/8, sum over p and then over k ≥ n to get

(6) Nx(∃k ≥ n, ∃p : |zD(r, ykp)− zD(r, ykp+1)| > 2−k/8) ≤ C ′′2−n/2,
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where C ′′ = C ′/(1− 2−1/2). Denote by En(r) the event

En(r) = {∀k ≥ n, ∀p, |zD(r, ykp)− zD(r, ykp+1)| ≤ 2−k/8}.

The classical chaining argument of the proof of the Kolmogorov lemma shows that on
the set En(r) we have for every y, y′ ∈ ∂D such that |y − y′| ≤ 2π2−n,

(7) |zD(r, y)− zD(r, y′)| ≤ c |y − y′|1/8,

for some universal constant c. On the other hand, by (5), we may choose a sequence
(rn) that increases to 1 sufficiently fast so that, for every x ∈ K,

Nx

 ∑
{n,rn>|x|}

2n−1∑
p=0

(
zD(rn, ynp )− zD(ynp )

)2

 <∞.

The sequence (rn) can be chosen independently of the compact set K by extracting a
diagonal subsequence. It follows that

lim
n→∞

sup
0≤p≤2n−1

|zD(rn, ynp )− zD(ynp )| = 0, Nx a.e.

for every x ∈ D. To complete the proof, notice that
∑
n Nx(En(rn)c) < ∞ by (6).

Therefore, the bound (7) holds with r = rn for all n sufficiently large, Nx a.e. Lemma
4 follows by writing

sup
y∈∂D

|zD(rn, y)− zD(y)| ≤ sup
0≤p≤2n−1

|zD(rn, ynp )− zD(ynp )|

+ sup
|y−y′|≤2π2−n

|zD(rn, y)− zD(rn, y′)|+ sup
|y−y′|≤2π2−n

|zD(y)− zD(y′)|.

�

3 The representation theorem

We are now ready to state and prove the main result of this chapter. Recall the notation
Nε(y) = {z ∈ ∂D, |z − y| < ε}.

Theorem 5. Nonnegative solutions of equation ∆u = 4u2 in D are in one-to-one
correspondence with pairs (K, ν), where K is a compact subset of ∂D and ν is a Radon
measure on ∂D\K.
In this correspondence, the pair (K, ν) is determined from u by the formulas

(8) K = {y ∈ ∂D, lim
r↑1,r<1

∫
Nε(y)

θ(dz)u(rz) =∞, for every ε > 0},
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and, for every g ∈ C0(∂D\K),

(9) 〈ν, g〉 = lim
r↑1,r<1

∫
∂D\K

θ(dz)u(rz) g(z).

Conversely, for every x ∈ D,

(10) u(x) = Nx(ED ∩K 6= ∅) + Nx
(

1{ED∩K=∅}

(
1− exp−

∫
ν(dy) zD(y)

))
.

The pair (K, ν) is called the trace of the solution u. Roughly speaking, K corresponds
to a singular boundary set for u, and ν to the boundary value of u on ∂D\K. As
special cases of formula (10), we get u = uK when ν = 0, and u = ug when K = ∅
and ν(dy) = g(y)θ(dy). In this sense, the general form of a solution is a mixture of the
formulas for uK and ug.

Proof. Step 1. We first verify that, for a given choice of K and ν, the function u
determined by (10) solves ∆u = 4u2 in D. This is analogous to the beginning of the
proof of Proposition 1. Recall the notation Kε = {y ∈ ∂D, dist(y,K) < ε}. We can
choose a sequence of functions gn ∈ C0(∂D\K) such that the measures gn(y)θ(dy)
converge vaguely to ν(dy) as n → ∞. Set hn = n 1Kε + gn. Then, for every n the
function

uεn(x) = Nx(1− exp−〈ZD, hn〉) , x ∈ D

solves ∆u = 4u2 in D. As in the proof of Proposition 1, we have limn→∞〈ZD, hn〉 =∞
a.e. on {ED ∩ Kε 6= ∅}. On the other hand, on {ED ∩ Kε = ∅}, the function zD(y)
has compact support in ∂D\K, and the vague convergence of gn(y)θ(dy) towards ν(dy)
gives

lim
n→∞

〈ZD, hn〉 = lim
n→∞

〈ZD, gn〉 = lim
n→∞

∫
θ(dy) zD(y)gn(y) =

∫
ν(dy) zD(y).

By combining the previous observations, we get

lim
n→∞

uεn(x) = Nx(ED ∩Kε 6= ∅) + Nx
(

1{ED∩Kε=∅}
(
1− exp−

∫
ν(dy) zD(y)

))
=: uε(x).

By Proposition V.9 (iii), this implies that uε is a solution, and so is u = lim ↓ uε.

Step 2. We now construct the pair (K, ν) for a given solution. From now on until the
end of the proof, we fix a nonnegative solution u. We have to check that u can be
written in the form (10) and that the pair (K, ν) is determined from u by the formulas
of Theorem 5.
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We choose a sequence (rn) converging to 1 so that the conclusion of Lemma 4 holds.
Then, for p, q ∈ T = R/2πZ, we set

an(p, q) =
∫

(p,q)

u(rn eiβ) dβ.

(We use the obvious convention for intervals in T: If a, respectively b, is the represen-
tative of p, respectively q, in [0, 2π), we take (p, q) = (a, b) if a ≤ b, (p, q) = (a, b+ 2π)
if a > b). Replacing (rn) by a subsequence if necessary, we may assume that, for every
p, q ∈ T1 := T ∩ 2πQ,

lim
n→∞

an(p, q) = a(p, q) ∈ R+ ∪ {+∞}.

Note that a(p, r) = a(p, q) + a(q, r) if p, q, r ∈ T1 and q ∈ (p, r). We set

K = {y ∈ T, a(p, q) =∞ whenever p, q ∈ T1 and y ∈ (p, q)}.

Then K is a compact subset of T, which is identified to ∂D.

We also set O = T\K and define a finite measure νn on O by

νn(dβ) = 1O(β)u(rneiβ) dβ.

From the definition of K, we see that for every compact subset H of O,

sup
n
νn(H) <∞.

Hence, by extracting again a subsequence, we may assume that the sequence (νn) con-
verges vaguely in the space of Radon measures onO. Through the identification ∂D = T,
the limiting measure ν is a Radon measure on ∂D\K.

Step 3. We now prove that formula (10) holds for the given solution u and the pair
(K, ν) introduced in Step 2. To simplify notation, we will write zD(r, β) instead of
zD(r, eiβ) and zD(β) instead of zD(eiβ). By Corollary V.8, we have for x ∈ Drn

u(x) = Nx
(
1− exp−〈ZDrn , u〉

)
= Nx

(
1− exp−rn

∫
T
dβ u(rneiβ) zD(rn, β)

)
.

Lemma 6. For every x ∈ D, we have

(11) lim
n→∞

∫
T
dβ u(rneiβ)) zD(rn, β) = +∞, Nx a.e. on {ED ∩K 6= ∅},

and

(12) lim
n→∞

∫
T
dβ u(rneiβ)) zD(rn, β) =

∫
T
ν(dβ) zD(β), Nx a.e. on {ED ∩K = ∅}.
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Observe that formula (10) immediately follows from Lemma 6 by passing to the limit
n → ∞ in the preceding formula for u(x). To complete Step 3, it remains to prove
Lemma 6.

Proof of Lemma 6. We first prove (12). For δ > 0, denote by Uδ the open tubular
neighborhood of radius δ of K in R2. Also introduce the random set

RD = {y = Ws(t), 0 ≤ s ≤ σ, 0 ≤ t ≤ ζs ∧ τ(Ws)}.

Note that ED = RD ∩ ∂D.

Since RD is compact, on the set {ED ∩K = ∅} we may find δ = δ(ω) > 0 so small that
RD ∩ Uδ = ∅. It follows that zD(r, y) = 0 for every y ∈ ∂D and r ∈ (0, 1] such that
ry ∈ Uδ. Choosing ε = δ/2, we see that zD(r, y) = 0 for every y ∈ Kε and r ∈ (1− ε, 1].
From the definition of K we have

sup
n

∫
T\Kε

dβ u(rneiβ) <∞.

Then Lemma 4 implies

lim
n→∞

∫
T
dβ u(rneiβ) |zD(rn, β)− zD(β)| = 0,

Nx a.e. on the set {ED ∩K = ∅}. On the other hand, on the same event we have for n
large ∫

T
dβ u(rneiβ) zD(β) =

∫
T
νn(dβ) zD(β)

which converges to
∫

T ν(dβ) zD(β) by the vague convergence of νn towards ν. This
completes the proof of (12).

Unfortunately, the proof of (11) is more involved. We first introduce the stopping time

T = inf{s ≥ 0, ζs = τ(Ws), Ŵs ∈ K},

in such a way that {ED ∩ K 6= ∅} = {T < ∞}, a.e., and ŴT ∈ K a.e. on the event
{T <∞}. We will prove that

(13) zD(ŴT ) > 0, Nx a.e. on {T <∞}.

Our claim (11) easily follows from (13): By Lemma 4 and the continuity of zD(β),
we may find ε > 0 such that zD(rn, β) ≥ 1

2zD(ŴT ) for every n sufficiently large and
|β − ŴT | < ε. Thus, for n large,∫

T
dβ u(rneiβ) zD(rn, β) ≥ 1

2
zD(ŴT )

∫
|β−ŴT |<ε

dβ u(rneiβ)
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which tends to ∞ by the property ŴT ∈ K and the definition of K.

In order to prove (13), we apply the strong Markov property to the Brownian snake
at time T and use Lemma V.5. We need to control the behavior of the path WT near
its endpoint. To this end, we will use both Lemma VI.10 and another technical result
showing that the path WT cannot be “too close” to the boundary immediately before
ζT = τ(WT ).

Lemma 7. Let x ∈ D. We can choose α > 0 so that Nx a.e. for every s ∈ (0, σ) such
that τ(Ws) ≥ ζs,

lim inf
m→∞

1
m

Card{p ≤ m ;Ws(t) ∈ D1−α2−p ,∀t ∈ [(ζs − 2−2p)+, (ζs − 2−2p−1)+]} > 1
2
.

We postpone the proof of Lemma 7 to the end of this section. As a consequence of
Lemma VI.10 and Lemma 7, the stopped path WT satisfies the following two properties
Nx a.e. on {T <∞}:
(a) τ(WT ) = ζT and ŴT ∈ K.
(b) There exist positive constants α and A such that the property

{WT (ζT − t), 2−2p−1 ≤ t ≤ 2−2p} ⊂ D1−α2−p ∩B(ŴT , A 2−p)

holds for infinitely many p ∈ N.

We now fix a stopped path w ∈ Wx such that (a) and (b) hold when WT and ζT are
replaced by w and ζw respectively . Write P∗w for the law of the Brownian snake started
at w and stopped when its lifetime process vanishes. Lemma V.5 allows us to define
zD(y), y ∈ D under P∗w via the formula zD(y) =

∑
i∈I zD(y)(W i). From Lemma V.5,

we have then

(14) P∗w(zD(ŵ) > 0) = 1− exp−2
∫ ζw

0

dtNw(t)(zD(ŵ) > 0).

However, for a ∈ D,

(15) Na(zD(ŵ) > 0) ≥
(
Na(zD(ŵ))

)2
Na(zD(ŵ)2)

=
PD(a, ŵ)2

4
∫
D
dy GD(a, y)PD(y, ŵ)2

,

using the Cauchy-Schwarz inequality and Proposition 3.

On one hand, easy calculations using the explicit formulas (1) give the existence of a
constant C such that, for every a ∈ D and z ∈ ∂D,

(16)
∫
D

dy GD(a, y)PD(y, z)2 ≤ C.
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On the other hand, if a ∈ D1−α2−p ∩B(ŵ, A 2−p), we have

PD(a, ŵ) =
1

2π
1− |a|2

|ŵ − a|2
≥ α

2π A2
2p.

By substituting these estimates in (15), we get that for every integer p such that 2−2p ≤
ζw and

{w(ζw − t), 2−2p−1 ≤ t ≤ 2−2p} ⊂ D1−α2−p ∩B(ŵ, A 2−p),

we have ∫ ζw−2−2p−1

ζw−2−2p
dtNw(t)(zD(ŵ) > 0) ≥ 1

8C

( α

2π A2

)2

.

By (b) this lower bound holds for infinitely many values of p, and we conclude from (14)
that P∗w(zD(ŵ) > 0) = 1. Our claim (13) now follows by applying the strong Markov
property at time T .

Step 4. It remains to verify that K and ν are determined from u by formulas (8) and
(9) of Theorem 5 (this will in particular give the uniqueness of the pair (K, ν), which is
not clear from the previous construction). We rely on formula (10). First, if y ∈ K, we
have for every x ∈ D,

u(x) ≥ Nx(y ∈ ED) ≥ Nx(zD(y) > 0) ≥ PD(x, y)2

4
∫
D
daGD(x, a)PD(a, y)2

≥ PD(x, y)2

4C
,

by the arguments we have just used in Step 3. The fact that K is contained in the set
in the right side of (8) immediately follows from this estimate. The converse inclusion
is clear from our definition of K.

Let us prove (9). Let g ∈ Cb+(∂D) be such that supp g is contained in ∂D\K. By
Proposition 1,

(17) lim
r↑1,r<1

∫
θ(dy) g(y) Nry(ED ∩K 6= ∅) = 0.

As a consequence of (10) and (17), we have

lim
r↑1,r<1

∣∣∣ ∫ θ(dz)g(z)u(rz)−
∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν(dy)zD(y)

)∣∣∣ = 0.

Let ε > 0 be such that g = 0 on Kε. Denote by ν′ the restriction of ν to Kε/2, so that
ν′ is a finite measure and 〈ν′, g〉 = 〈ν, g〉. Furthermore,∣∣∣ ∫ θ(dz)g(z) Nrz

(
1− exp−

∫
ν′(dy)zD(y)

)
−
∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν(dy)zD(y)

)∣∣∣
≤
∫
θ(dz)g(z) sup

z∈∂D\Kε
Nrz(ED ∩Kε/2 6= ∅),
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and Proposition 1 again shows that the latter quantity goes to 0 as r ↑ 1. In view of
these considerations, the proof of (9) reduces to checking that

(18) 〈ν′, g〉 = lim
r↑1,r<1

∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν′(dy)zD(y)

)
.

First note that∫
θ(dz)g(z) Nrz

( ∫
ν′(dy)zD(y)

)
=
∫
θ(dz)g(z)

∫
ν′(dy)PD(rz, y)

=
∫
θ(dz)g(z)

∫
ν′(dy)PD(ry, z)

= 〈ν′, g〉.

Thus,∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν′(dy)zD(y)

)
≤
∫
θ(dz)g(z) Nrz

( ∫
ν′(dy)zD(y)

)
= 〈ν′, g〉.

On the other hand, we have for any η > 0,∫
θ(dz)g(z) Nrz

(∫
ν′(dy)zD(y)1{

∫
ν′(dy)zD(y)>η}

)
≤ η−1

∫
θ(dz)g(z) Nrz

((∫
ν′(dy)zD(y)

)2)
≤ 〈ν′, 1〉η−1

∫
θ(dz)g(z) Nrz

( ∫
ν′(dy) zD(y)2

)
= 〈ν′, 1〉η−1

∫
θ(dz)g(z)

∫
ν′(dy)

∫
D

daGD(rz, a)PD(a, y)2.

The last quantity tends to 0 as r ↑ 1 by dominated convergence, using (16) and the
(easy) fact that if z 6= y,

lim
r↑1,r<1

∫
D

daGD(rz, a)PD(a, y)2 = 0.

Then notice that, for every γ > 0, we can choose η > 0 small enough so that∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν′(dy)zD(y)

)
≥ (1− γ)

∫
θ(dz)g(z) Nrz

(∫
ν′(dy)zD(y)1{

∫
ν′(dy)zD(y)≤η}

)
and so it follows from the previous estimates that

lim inf
r↑1,r<1

∫
θ(dz)g(z) Nrz

(
1− exp−

∫
ν′(dy)zD(y)

)
≥ (1− γ)〈ν′, g〉.
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Since γ was arbitrary, this completes the proof of (18) and of Theorem 5. �

Proof of Lemma 7. This is very similar to the proof of Lemma VI.10. We use
again the stopping times σni defined in this proof and start with the following simple
observation. Let s ∈ (0, σ) and n ≥ 3 such that 2.2−2n < ζs. Let k ≥ 2 be such that
k2−2n ≤ s < (k + 1)2−2n. There is a random integer j such that

inf{s′ > s, ζs′ = (k − 1)2−2n} = σnj .

By the snake property, Wσn
j

is the restriction of Ws to the interval [0, (k − 1)2−n]. It
easily follows that, for every p ∈ {1, . . . , n− 2},{

Ws(t), t ∈ [(ζs − 2−2p)+, (ζs − 2−2p−1)+]
}

⊂
{
Wσn

j
(t), t ∈ [(ζσn

j
− 2−2p)+, (ζσn

j
− 3

2
2−2p−2)+]

}
.

As a consequence of this remark, the statement of the lemma will follow if we can prove
that for a suitable value of α > 0 we have Nx a.e., for all n sufficiently large and all j
such that σnj <∞ and τ(Wσn

j
) =∞,

(19) Card
{
p ≤ n ; Wσn

j
(t) ∈ D1−α2−p ,∀t ∈ [(ζσn

j
− 2−2p)+, (ζσn

j
− 3

2
2−2p−2)+]

}
>
n

2
.

For every stopped path w ∈ Wx, set

Gαn(w) =
1
n

Card{p ≤ n ; w(t) ∈ D1−α2−p ,∀t ∈ [(ζw − 2−2p)+, (ζw −
3
2

2−2p−2)+]}.

By the same arguments as in the proof of Lemma VI.10, our claim (19) will follow if we
can get a good estimate on Πx(τ > t,Gαn(ξ[0,t]) ≤ n/2). Precisely, it is enough to show
that, for every λ > 0, we can choose α > 0 sufficiently small so that, for every n ≥ 2
and every t > 0,

(20) Πx(τ > t,Gαn(ξ[0,t]) ≤ n/2) ≤ e−λn

(compare with Lemma VI.11). Set m = [n/2] and observe that

(21) Πx

(
τ > t,Gαn(ξ[0,t]) ≤ n/2

)
≤

∑
1≤k1<k2<...<km≤n

Πx(Uk1 ∩ . . . ∩ Ukm)

where for every p ∈ {1, . . . , n}, Up denotes the event

Up =
{
ξr ∈ D, ∀r ∈ [(t− 2−2p)+, (t− 2−2p−2)+]

}
∩
{
∃r ∈ [(t− 2−2p)+, (t− 3

2
2−2p−2)+] : ξr /∈ D1−α2−p

}
.
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By applying the strong Markov property at

inf{r ≥ t− 2−2km , ξr /∈ D1−α2−km },

we get

Πx(Uk1 ∩ . . . ∩ Ukm)

≤ Πx(Uk1 ∩ . . . ∩ Ukm−1)× sup
a∈D\D1−α2−km

Πa(ξr ∈ D, ∀r ∈ [0, 2−2km−3])

≤ c(α) Πx(Uk1 ∩ . . . ∩ Ukm−1)

with a constant c(α) depending only on α and such that c(α) → 0 as α → 0. By
iterating this argument, we arrive at the estimate

Πx(Uk1 ∩ . . . ∩ Ukm) ≤ c(α)m = c(α)[n/2].

By susbtituting this estimate in (21), and choosing a suitable value of α, we get the
bound (20). This completes the proof of Lemma 7. �

4 Further developments

A number of recent papers have studied extensions of Theorem 5 to higher dimensions
and more general equations. The purpose of these papers is usually to define the trace
of a nonnegative solution (possibly belonging to a special class) and then to study the
properties of the map that associates with a solution its trace. In this section, we
briefly survey these recent developments. The word solution always means nonnegative
solution.

A solution u of ∆u = 4u2 in a domain D is called moderate if it is bounded above by
a function harmonic in D. In the setting of Theorem 5, this corresponds to the case
K = ∅ (which implies that ν is finite), and the minimal harmonic majorant of u is
then the function h(x) =

∫
ν(dy)PD(x, y). For a general smooth domain in dimension

d, one can show [L9] that moderate solutions are in one-to-one correspondence with
finite measures ν on ∂D that do not charge boundary polar sets (this result had been
conjectured by Dynkin [D7]). This correspondence has been extended by Dynkin and
Kuznetsov [DK3] to the equation ∆u = up, 1 < p ≤ 2 (in fact to Lu = up for a general
elliptic operator L). In this more general setting, the notion of boundary polar sets
is defined in terms of the superprocess with branching mechanism ψ(u) = up, and an
analytic characterization analogous to Theorem 2 holds [DK2].

The analytic part of Theorem 5 has been extended by Marcus and Véron [MV2] to the
equation ∆u = up (p > 1) in the unit ball of Rd, provided that d < p+1

p−1 . In this case,
the so-called subcritical case, all assertions of Theorem 5 remain true, except of course
the probabilistic formula (10).
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The supercritical case d ≥ p+1
p−1 (d ≥ 3 when p = 2) is more difficult and more inter-

esting. Marcus and Véron [MV3] and Dynkin and Kuznetsov [DK4] (see also [DK5]
for extensions to a general domain on a Riemannian manifold) have shown that it is
still possible to define the trace as a pair (K, ν) as in Theorem 5. In fact, formulas (8)
and (9) can be used for this purpose, with obvious modifications when D is a general
smooth domain. There are however two essential differences with the subcritical case:

(i) Not all pairs (K, ν) are admissible. For instance, if p = 2, the pair (K, 0) is not
admissible when K is boundary polar. Dynkin and Kuznetsov [DK4] (in the case 1 <
p ≤ 2) and Marcus and Véron [MV1] have independently described all possible traces.
When 1 < p ≤ 2, a probabilistic formula analogous to (10) holds for the maximal
solution associated with a given trace.

(ii) Infinitely many solutions may have the same trace. Here is an example, adapted
from [L10], in the case when p = 2 and D is the unit ball in Rd, d ≥ 3. Let (yn) be a
dense sequence in ∂D and, for every n, let (rpn, p = 1, 2, . . .) be a decreasing sequence
of positive numbers. Recall the notation Nr(y) = {z ∈ ∂D, |z − y| < r} and, for every
p ≥ 1, set

Hp =
∞⋃
n=1

Nrpn(yn) ,

up(x) = Nx(ED ∩Hp 6= ∅) , x ∈ D.

Then it is easy to see that, for every p ≥ 1, up is a solution with trace (∂D, 0). On
the other hand, the fact that singletons are boundary polar implies that up ↓ 0 as
p ↑ ∞, provided that the sequences (rpn, p = 1, 2, . . .) decrease sufficiently fast. Therefore
infinitely many of the functions up must be different.

In view of this nonuniqueness problem, Dynkin and Kuznetsov [Ku], [DK6] have pro-
posed to use a finer definition of the trace, where the set K is no longer closed with
respect to the Euclidean topology. This finer definition leads to a one-to-one corre-
spondence between solutions and possible traces, provided that one considers only σ-
moderate solutions: A solution is σ-moderate if and only if it is the limit of an increasing
sequence of moderate solutions. An intriguing open problem is whether there exist so-
lutions that are not σ-moderate.

We refer to the survey [DK8] for a more detailed account of the recent results and open
problems in this area.
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VIII Lévy processes and the genealogy

of general continuous-state

branching processes

The Brownian snake construction of quadratic superprocesses relies on the fact that
the genealogical structure of the Feller diffusion can be coded by reflected Brownian
motion. Our goal in this chapter is to explain a similar coding for the genealogy of
continuous-state branching processes with a general branching mechanism ψ. The role
of reflected Brownian motion will be played by a certain functional of a Lévy process
with no negative jumps and Laplace exponent ψ. We first explain the key underlying
ideas in a discrete setting.

1 The discrete setting

We consider an offspring distribution µ, that is a probability measure on N = {0, 1, 2, ...}.
We assume that µ(1) < 1 and that µ is critical or subcritical:

∑
kµ(k) ≤ 1.

The law of the Galton–Watson tree with offspring distribution µ, in short the µ-Galton–
Watson tree, can then be realized as a probability distribution on the set of all finite
trees. Here, a (finite) tree is a finite subset T of

⋃∞
n=0(N∗)n (where N∗ = {1, 2, . . .} and

(N∗)0 = {φ}) which satisfies the obvious properties:

(i) φ ∈ T (φ is the root of T ).
(ii) If (u1, . . . , un) ∈ T with n ≥ 1, then (u1, . . . , un−1) ∈ T .
(iii) If u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that (u1, . . . , un, k) ∈
T if and only if k ≤ ku(T ).

If u ∈ (N∗)n, the generation of u is |u| = n.
Consider then a sequence T0, T1, . . . , Tk, . . . of independent µ-Galton–Watson trees. We
can code this sequence by the following procedure. We consider a “particle” that visits
the vertices of T0, . . . , Tk, . . . according to the following rules:

• The particle starts at time n = 0 from the root of T0 then visits all other vertices of
T0, then the vertices of T1, and so on.

• For each tree, the particle visits its vertices successively in lexicographical order.
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Denote by Hn the generation of the vertex that is visited at time n. It is easy to see
that the function n→ Hn provides a coding of the sequence of trees. We then want to
have a better probabilistic understanding of this coding.

Proposition 1. There exists a random walk V = (Vn, n ≥ 0) on Z with jump distribu-
tion ν(k) = µ(k + 1), k = −1, 0, 1, . . . such that for every n ≥ 0

Hn = Card
{
j ∈ {0, 1, . . . , n− 1}, Vj = inf

j≤k≤n
Vk
}
.

Proposition 1 is elementary. Let us outline the ingredients of the proof. For ev-
ery j ∈ {1, . . . ,Hn} let ρj(n) be the number of “younger brothers” of the ances-
tor of the individual visited at time n in the j-th generation. More precisely, if
u(n) =

(
u1(n), . . . , uHn(n)

)
is the vertex visited at time n, and T`(n) is the tree to

which it belongs, we set for every j = 1, . . . ,Hn,

ρj(n) = Card
{
k > uj(n);

(
u1(n), . . . , uj−1(n), k

)
∈ T`(n)

}
.

Set ρ(n) =
(
ρ1(n), . . . , ρHn(n)

)
. When Hn = 0, ρ(n) = ∅ is the empty sequence. Then

it is easy to see that ρ(n) is a Markov chain in the set of finite sequences of nonnegative
integers, with transition kernel given as follows. For k ≥ 0,

P
[
ρ(n+ 1) = (α1, . . . , αp, k)

∣∣ ρ(n) = (α1, . . . , αp)
]

= µ(k + 1)

and, if q = sup{j, αj > 0} (sup ∅ = 0),

P
[
ρ(n+ 1) = (α1, . . . , αq − 1)

∣∣ ρ(n) = (α1, . . . , αp)
]

= µ(0) ,

with the convention that (α1, . . . , αq − 1) = ∅ if q = 0. The first formula corresponds
to the case when the individual (vertex) visited at time n has k + 1 children: Then the
individual visited at time n + 1 will be the first of these children. The second formula
corresponds to the case when the individual visited at time n has no child: Then the next
visited individual is the “first available brother”, namely

(
u1(n), . . . , uq−1(n), uq(n)+1

)
in the previous notation (if q = 0 it is the root of the next tree). The Markov property
for

(
ρ(n), n ≥ 0

)
comes from the fact that, at the time when we visit an individual,

the past gives us no information on the number of its children (this is so because of the
lexicographical order of visits).

The random walk (Vn, n ≥ 0) can be defined in terms of
(
ρ(n), n ≥ 0

)
by the formula

Vn =
Hn∑
j=1

ρj(n)− `(n) =
Hn∑
j=1

ρj(n)− Card
{
k ∈ {1, . . . , n}, ρ(k) = ∅

}
.
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The fact that it has the desired distribution easily follows from the formulas for the
transition kernel of ρ(n). Also observe that

〈ρ(n), 1〉 :=
Hn∑
j=1

ρj(n) = Vn − inf
0≤j≤n

Vj

is the reflected random walk.

Finally, the explicit formula for H in terms of V is easy to derive. Note that the
condition

Vj = inf
j≤k≤n

Vk

holds iff n < inf{k > j, Vk < Vj}. But the latter infimum is the first time of visit of
an individual that is not a descendant of u(j) (as long as we are visiting descendants of
u(j), the “total number of younger brothers” 〈ρ(k), 1〉 is at least as large as 〈ρ(j), 1〉).
Hence the condition n < inf{k > j, Vk < Vj} holds iff u(n) is a descendant of u(j), or
equivalently u(j) is an ancestor of u(n). Therefore

Card
{
j ∈ {0, 1, . . . , n− 1}, Vj = inf

j≤k≤n
Vk
}

is the number of ancestors of u(n), and is thus equal to Hn.

Our main goal in the following sections will be to study a continuous analogue of the
previous coding. The role of the random walk (Vn, n ≥ 0) will be played by a Lévy
process with no negative jumps.

Exercise. Verify that an invariant measure for
(
ρ(n), n ≥ 0) is

M
(
(α1, . . . , αp)

)
= µ̄(α1) · · · µ̄(αp) where µ̄(j) = µ

(
(j,∞)

)
.

2 Lévy processes

In this section we introduce the class of Lévy processes that will be relevant to our
purposes and we record some of their properties.

We start from a function ψ of the type considered in Chapter II:

ψ(λ) = αλ+ βλ2 +
∫

(0,∞)

π(dr)(e−λr − 1 + λr)

where α ≥ 0, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫
π(dr)(r∧ r2) <∞

(cf. Theorem II.1).
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Then there exists a Lévy process (real-valued process with stationary independent in-
crements) Y = (Yt, t ≥ 0) started at Y0 = 0, whose Laplace exponent is ψ, in the sense
that for every t ≥ 0, λ ≥ 0:

E[e−λYt ] = etψ(λ) .

The measure π is the Lévy measure of Y , β corresponds to its Brownian part, and −α
to a drift coefficient (after compensation of the jumps). Since π is supported on (0,∞),
Y has no negative jumps. In fact, under our assumptions, Y can be the most general
Lévy process without negative jumps that does not drift to +∞ (i.e. we cannot have
Yt →∞ as t→∞, a.s.). This corresponds to the fact that we consider only critical or
subcritical branching.

The point 0 is always regular for (−∞, 0), with respect to Y , meaning that

P
(

inf{t > 0, Yt < 0} = 0
)

= 1 .

It is not always true that 0 is regular for (0,∞), but this holds if

(1) β > 0 , or β = 0 and
∫ 1

0

rπ(dr) =∞ .

From now on we will assume that (1) holds. This is equivalent to the property that the
paths of Y are a.s. of infinite variation. A parallel theory can be developed in the finite
variation case, but the cases of interest in relation with superprocesses (the stable case
where π(dr) = cr−2−αdr, 0 < α < 1) do satisfy (1).

Consider the maximum and minimum processes of Y :

St = sup
s≤t

Ys , It = inf
s≤t

Ys .

Both S − Y and Y − I are Markov processes in R+ (this is true indeed for any Lévy
process). From the previous remarks on the regularity of 0, it immediately follows that
0 is a regular point (for itself) with respect to both S − Y and Y − I. We can therefore
consider the (Markov) local time of both S − Y and Y − I at level 0.

It is easy to see that the process −I provides a local time at 0 for Y − I. We will denote
by N the associated excursion measure. By abuse of notation, we still denote by Y the
canonical process under N . Under N , Y takes nonnegative values and Yt > 0 if and
only if 0 < t < σ, where σ denotes the duration of the excursion.

We denote by L = (Lt, t ≥ 0) the local time at 0 of S − Y . Here we need to specify the
normalization of L. This can be done by the following approximation:

(2) Lt = lim
ε↓0

1
ε

∫ t

0

1{Ss−Ys<ε}ds ,
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in probability. If L−1(t) = inf{s, Ls > t} denotes the right-continuous inverse of L,
formula (2) follows from the slightly more precise result

(2)′ lim
ε→0

E
[(1
ε

∫ L−1(t)

0

1{Ss−Ys<ε}ds− (t ∧ L∞)
)2]

= 0

which can be derived from excursion theory for S − Y (after choosing the proper nor-
malization for L).

The process (SL−1(t), t ≥ 0) is a subordinator (that is, a Lévy process with nondecreasing
paths) and a famous formula of fluctuation theory gives its Laplace transform

(3) E(exp−λSL−1(t)) = exp
(
− tψ(λ)

λ

)
.

Note that
ψ(λ)
λ

= α+ βλ+
∫ ∞

0

dr π
(
(r,∞)

)
(1− e−λr)

so that the subordinator (SL−1(t), t ≥ 0) has Lévy measure π
(
(r,∞)

)
dr, drift β and is

killed at rate α. In particular for every s ≥ 0, if m denotes Lebesgue measure on R+,
we have a.s.

m
(
{SL−1(r); 0 ≤ r ≤ s, L−1(r) <∞}

)
= β(s ∧ L∞)

from which it easily follows that

(4) m
(
{Sr, 0 ≤ r ≤ t}

)
= βLt .

Note that when β > 0 this formula yields an explicit expression for Lt.

3 The height process

Recall the formula of Proposition 1 above. If we formally try to extend this formula
to our continuous setting, replacing the random walk S by the Lévy process Y , we are
lead to define Ht as the Lebesgue measure of the set {s ≤ t, Ys = Ist }, where

Ist = inf
s≤r≤t

Yr .

Under our assumptions however, this Lebesgue measure is always zero (if s < t, we have
P (Ys = Ist ) = 0 because 0 is regular for (−∞, 0)) and so we need to use some kind of
local time that will measure the size of the set in consideration. More precisely, for a
fixed t > 0, we introduce the time-reversed process

Ŷ (t)
r = Yt − Y(t−r)− , 0 ≤ r ≤ t (Y0− = 0 by convention)
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and its supremum process

Ŝ(t)
r = sup

0≤s≤r
Ŷ (t)
s , 0 ≤ r ≤ t .

Note that (Ŷ (t)
r , Ŝ

(t)
r ; 0 ≤ r ≤ t) has the same distribution as (Yr, Sr; 0 ≤ r ≤ t). Via

time-reversal, the set {s ≤ t, Ys = Ist } corresponds to the set {s ≤ t, Ŝ
(t)
s = Ŷ

(t)
s }. This

leads us to the following definition.

Definition. For every t ≥ 0, we let Ht be the local time at 0, at time t, of the process
Ŝ(t) − Ŷ (t). The process (Ht, t ≥ 0) is called the height process.

Obviously, the normalization of local time is the one that was described in Section 2.
From the previous definition it is not clear that the sample paths of (Ht, t ≥ 0) have any
regularity property. In order to avoid technical difficulties, we will reinforce assumption
(1) by imposing that

(1)′ β > 0 .

We emphasize that (1)′ is only for technical convenience and that all theorems and
propositions that follow hold under (1) (for a suitable choice of a modification of (Ht, t ≥
0)).
Under (1)′ we can get a simpler expression for Ht. Indeed from (4) we have

Ht =
1
β
m
(
{Ŝ(t)

r , 0 ≤ r ≤ t}
)
,

or equivalently,

(5) Ht =
1
β
m
(
{Irt , 0 ≤ r ≤ t}

)
.

The right side of the previous formula obviously gives a continuous modification of H
(recall that Y has no negative jumps). From now on we deal only with this modification.

If ψ(u) = βu2, Y is a (scaled) linear Brownian motion and has continuous paths. The
previous formula then implies that Ht = 1

β (Yt − It) is a (scaled) reflected Brownian
motion, by a famous theorem of Lévy.

We can now state our main results. The key underlying idea is that H codes the geneal-
ogy of a ψ-CSBP in the same way as reflected Brownian motion codes the genealogy of
the Feller diffusion. Our first theorem shows that the local time process of H (evaluated
at a suitable stopping time), as a function of the space variable, is a ψ-CSBP.

Theorem 2. For every r > 0, set τr = inf{t, It = −r}. There exists a ψ-CSBP
X = (Xa, a ≥ 0) started at r, such that for every h ∈ Bb+(R+),∫ ∞

0

da h(a)Xa =
∫ τr

0

ds h(Hs) .
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Obviously X can be defined by

Xa = lim
ε↓0

1
ε

∫ τr

0

ds 1{a<Hs<a+ε}, a.s.

Remark. It is easy to verify that a.s. for every t ≥ 0, Ht = 0 iff Yt = It. (The
implication Yt = It =⇒ Ht = 0 is trivial.) Since τr is the inverse local time at 0 of
Y − I, we can also interpret τr as the inverse local time at 0 of H. Indeed, Theorem 2
implies

r = X0 = lim
ε↓0

1
ε

∫ τr

0

ds 1{0<Hs<ε} , a.s.

from which it easily follows that for every t ≥ 0

lim
ε↓0

1
ε

∫ t

0

ds 1{0<Hs<ε} = −It , a.s.

Using this remark, we see that the case ψ(u) = β u2 of the previous theorem reduces to
a classical Ray-Knight theorem on the Markovian properties of Brownian local times.

Our second theorem gives a snake-like construction of (ξ, ψ)-superprocesses. As in
Chapter IV we consider a Markov process ξ with values in a Polish space E, satisfying
the assumptions in Section IV.1. We also fix a point x ∈ E. We use the notation
introduced in Section IV.1.

We then construct a process (Ws, s ≥ 0) with values in Wx, whose law is characterized
by the following two properties:

(i) ζs = ζWs
, s ≥ 0 is distributed as the process Hs, s ≥ 0.

(ii) Conditionally on ζs = f(s), s ≥ 0, the process W has distribution Θf
x.

Note that this is exactly similar to the construction of Chapter IV, but the role of
reflected Brownian motion is played by the processs H. There is another significant
difference. The process W is not Markovian, because H itself is not. This explains why
we constructed W started at the trivial path x and not with a general starting point
w ∈ Wx (this would not make sense, see however the comments in the next section).

Arguments similar to the proof of Lemma IV.1 show that W is continuous in probability
(see [LL2] for details). In particular we may and will choose a measurable modification
of W .

Theorem 3. There exists a (ξ, ψ)-superprocess Z = (Za, a ≥ 0), with Z0 = rδx, such
that for every h ∈ Bb+(R+), g ∈ Bb+(E),∫ ∞

0

h(a)〈Za, g〉da =
∫ τr

0

h(Hs)g(Ŵs)ds .
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This is clearly analogous to Theorem IV.4. Note however that we restricted our atten-
tion to a superprocess started at rδx. As in Theorem IV.4, we could have obtained a
general initial value for Z by introducing the excursion measures of W . These excursion
measures are easily defined from the excursion measure of H away from 0, which is itself
defined as the law of (Hs, s ≥ 0) under the excursion measure N of Y − I.

4 The exploration process

Before we proceed to the proofs, we need to introduce a crucial tool. We noticed that H
is in general not a Markov process. For the calculations that will follow it is important
to consider another process which contains more information than H and is Markovian.

Definition. The exploration process (ρt, t ≥ 0) is the process with values in Mf (R+)
defined by

〈ρt, g〉 =
∫

[0,t]

dsI
s
t g(Hs) ,

for g ∈ Bb+(R+). The integral in the right side is with respect to the increasing function
s −→ Ist .

We can easily obtain a more explicit formula for ρt: A change of variables using (5)
shows that

〈ρt, g〉 =
∫ t

0

ds I
s
t g
(
β−1m({Irs , r ≤ s})

)
=
∫ t

0

ds I
s
t g
(
β−1m({Irt , r ≤ s})

)
= β

∫ Ht

0

da g(a) +
∑

s≤t:Ys−<Ist

(Ist − Ys−)g(Hs)

so that

(6) ρt(da) = β1[0,Ht](a)da+
∑

s≤t:Ys−<Ist

(Ist − Ys−)δHs(da) .

From this formula it is clear that

supp ρt = [0, Ht] , for every t ≥ 0 , a.s.

The definition of ρt also shows that

〈ρt, 1〉 = Yt − It .

The process (ρt, t ≥ 0) is the continuous analogue of the Markov chain (ρ(n), n ≥ 0) of
Section 1.



Lévy processes and branching processes 123

If µ ∈Mf (R+) and a ∈ R we define kaµ ∈Mf (R+) by the formula

kaµ([0, r]) = µ([0, r]) ∧ a+ .

When a ≤ 0, kaµ = 0, and when a > 0, kaµ can be interpreted as the measure µ
“truncated at mass a”.

If µ ∈ Mf (R+) has compact support and ν ∈ Mf (R+), the concatenation [µ, ν] is
defined by ∫

[µ, ν](dr)h(r) =
∫
µ(dr)h(r) +

∫
ν(dr)h

(
H(µ) + r

)
where H(µ) = sup(suppµ).

Proposition 4. The process (ρt, t ≥ 0) is a càdlàg strong Markov process with values
in the space Mf (R+) of all finite measures on R+. If θ ∈Mf (R+), the process started
at θ can be defined by the explicit formula

ρθt = [k<θ,1>+Itθ, ρt].

Proof. The càdlàg property of paths follows from the explicit formula (6). This formula
shows more precisely that t is a discontinuity time for ρ iff it is so for Y , and ρt =
ρt− + ∆Yt δHt .
Then, let T be a stopping time of the canonical filtration (Ft)t≥0 of Y . Consider the
shifted process

Y
(T )
t = YT+t − YT , t ≥ 0,

which has the same distribution as Y and is independent of FT . Then, from the explicit
formulas for ρ and H, one easily verifies that, a.s. for every t > 0,

ρT+t = [k
<ρT ,1>+I

(T )
t
ρT , ρ

(T )
t ],

with an obvious notation for ρ(T )
t and I(T )

t . The statement of Proposition 4 now follows
from the fact that (I(T )

t , ρ
(T )
t ) has the same distribution as (It, ρt) and is independent

of FT . �

Remark. In view of applications to superprocesses (cf Theorem 3 above), the right
generalization of the Brownian snake of the previous chapters is the pair (ρ,W ), which
is Markovian in contrast to the process W alone. The process (ρ,W ) is called the
(ξ, ψ)-Lévy snake.

The following two propositions give properties of ρ that play a central role in the proof
of Theorems 2 and 3. The first proposition gives an explicit formula for the invariant
measure of ρ, and the second one describes the potential kernel of ρ killed when it hits
0.
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Before stating these results, we give some important remarks. Recall that N denotes
the excursion measure of Y − I away from 0. Formulas (5) and (6) providing explicit
expressions for the processes ρ and H still make sense under the excursion measure N .
Furthermore, these formulas show that both ρt and Ht depend only on the values taken
by Y − I on the excursion et of Y − I that straddles t, and

ρt = ρt−at(et) , Ht = Ht−at(et),

if at denotes the starting time of this excursion. Since
〈
ρt, 1

〉
= Yt − It the excursion

intervals of ρ away from 0 are the same as those of Y − I, and the “law” of (ρt, t ≥ 0)
under N is easily identified with the excursion measure of the Markov process ρ away
from 0.

We set ψ∗(u) = ψ(u)− αu and denote by U = (Ut, t ≥ 0) a subordinator with Laplace
exponent ψ∗, i.e. with drift β and Lévy measure π([r,∞))dr.

Proposition 5. For every nonnegative measurable function Φ on Mf (R+),

N
(∫ σ

0

dtΦ(ρt)
)

=
∫ ∞

0

da e−αaE
(
Φ(Ja)

)
,

where Ja(dr) = 1[0,a](r) dUr.

Proof. We may assume that Φ is bounded and continuous. From excursion theory for
Y − I and the remarks preceding the proposition, we have for every ε > 0, C > 0,

N
(∫ σ

0

dtΦ(ρt) 1{Ht≤C}
)

=
1
ε
E
(∫ τε

0

dtΦ(ρt) 1{Ht≤C}
)

=
1
ε

∫ ∞
0

dtE
(
1{t<τε,Ht≤C}Φ(ρt)

)
.

Then, for every fixed t > 0, we use time-reversal at time t. Recalling the definition of
H and ρ, we see that

ρt = η̂
(t)
t

where η̂(t)
t is defined by

〈
η̂

(t)
t , f

〉
=
∫ t

0

dŜ(t)
r f(L̂(t)

t − L̂(t)
r )

and L̂
(t)
r = β−1m({Ŝ(t)

s , 0 ≤ s ≤ t}) as in (4). Similarly,

{t < τε, Ht ≤ C} = {Ŝ(t)
t − Ŷ

(t)
t < ε, L̂

(t)
t ≤ C}

and so we can write

E
(
1{t<τε,Ht≤C}Φ(ρt)

)
= E

(
1{Ŝ(t)

t −Ŷ
(t)
t <ε,L̂

(t)
t ≤C}

Φ(η̂(t)
t )
)

= E
(
1{St−Yt<ε,Lt≤C}Φ(ηt)

)
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where 〈
ηt, f

〉
=
∫ t

0

dSr f(Lt − Lr).

Summarizing, we have for every ε > 0

N
(∫ σ

0

dtΦ(ρt) 1{Ht≤C}
)

= E
(1
ε

∫ ∞
0

dt 1{St−Yt<ε,Lt≤C}Φ(ηt)
)
.

Note from (2) that the random measures ε−11{St−Yt<ε}dt converge in probability to the
measure dLt. Furthermore, (2)′ allows us to pass to the limit under the expectation
sign and we arrive at

lim
ε→0

E
(1
ε

∫ ∞
0

dt 1{St−Yt<ε,Lt≤C}Φ(ηt)
)

= E
(∫ ∞

0

dLt 1{Lt≤C}Φ(ηt)
)

= E
(∫ L∞∧C

0

daΦ(ηL−1(a))
)
.

We finally let C tend to ∞ to get

N
(∫ σ

0

dtΦ(ρt)
)

= E
(∫ L∞

0

daΦ(ηL−1(a))
)
.

Then note that, on the event {a < L∞},

〈
ηL−1(a), f

〉
=
∫ L−1(a)

0

dSr f(a− Lr) =
∫ a

0

dVs f(a− s),

where Vs = SL−1(s) is a subordinator with exponent ψ(λ)
λ (cf (3)). Hence, P [a < L∞] =

P [L−1(a) < ∞] = e−αa and conditionally on {L−1(a) < ∞}, ηL−1(a) has the same
distribution as Ja, which completes the proof. �

We denote by M the measure on Mf (R+) defined by:

〈
M,Φ

〉
=
∫ ∞

0

da e−αaE
(
Φ(Ja)

)
.

It follows from Proposition 5 that the measure M is invariant for ρ (we will not need
this fact in what follows).

Proposition 6. Let θ ∈ Mf (R+) and let ρθ be as in Proposition 4. Define T
(θ)
0 =

inf{s ≥ 0, ρθs = 0}. Then,

E
(∫ T

(θ)
0

0

dsΦ(ρθs)
)

=
∫ <θ,1>

0

dr

∫
M(dµ) Φ([krθ, µ]).
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Proof. First note that T (θ)
0 = τ<θ,1> by an immediate application of the definition of ρθ

(notice that ρτa = 0 for every a ≥ 0 a.s.). Then, denote by (aj , bj), j ∈ J the excursion
intervals of Y − I away from 0 before time τ<θ,1>, and by ej , j ∈ J the corresponding
excursions. Note that {t ≥ 0, Yt = It} has zero Lebesgue measure a.s., since, for every
t > 0, P (Yt = It) = 0 by time-reversal and the regularity of 0 for (0,∞). As we observed
before Proposition 5, we have ρs = ρs−aj (ej) for every s ∈ (aj , bj), j ∈ J , a.s. It follows
that

E
(∫ T

(θ)
0

0

dsΦ(ρθs)
)

= E
(∑
j∈J

∫ bj−aj

0

drΦ([k<θ,1>+Iaj
θ, ρr(ej)])

)
.

By excursion theory, the point measure∑
j∈J

δIaj ,ej (dude)

is a Poisson point measure with intensity 1[−<θ,1>,0](u)duN(de). Hence,

E
(∫ T

(θ)
0

0

dsΦ(ρθs)
)

=
∫ <θ,1>

0

duN
(∫ σ

0

drΦ([kuθ, ρr])
)
,

and the desired result follows from Proposition 5. �

5 Proof of Theorem 2

We will now prove Theorem 2. Theorem 3 can be proved along the same lines (see
[LL2]).
Let h ∈ Bb+(R+) with compact support. It is enough to prove that

(7) E
(

exp−
∫ τr

0

ds h(Hs)
)

= E
(

exp−
∫ ∞

0

da h(a)Xa

)
,

where X is a ψ-CSBP with X0 = r. By Corollary II.9 (specialized to the case f = 1), the
right side of (7) is equal to exp(−r w(0)), where the function w is the unique nonnegative
solution of the integral equation

(8) w(t) +
∫ ∞
t

dr ψ(w(r)) =
∫ ∞
t

dr h(r).

On the other hand, by excursion theory for the process Y −I and the remarks preceding
Proposition 5, we have

E
[

exp−
∫ τr

0

ds h(Hs)
]

= exp−r N
(

1− exp−
∫ σ

0

ds h(Hs)
)
.
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Thus it suffices to verify that the function

w(t) = N
(

1− exp−
∫ σ

0

ds h(t+Hs)
)

solves (8).

To this end, we will proceed in a way similar to the proof of Proposition IV.3 and expand
the exponential in the definition of w. This leads to the calculation of the moments

Tnh(t) =
1
n!
N
((∫ σ

0

ds h(t+Hs)
)n)

, n ≥ 1.

Depending on the behavior of ψ near ∞, these moments may be infinite. Later we
will make an assumption on ψ that guarantees the finiteness of the moments and the
validity of the previously mentioned expansion. A suitable truncation can then be used
to handle the general case.
To begin with, we observe that

Tnh(t) = N
(∫
{0<t1<...<tn<σ}

dt1 . . . dtn

n∏
i=1

h(t+Hti)
)
.

Note that Hti = H(ρti), where H(µ) = sup(suppµ) as previously. The right-hand side
of the preceding formula can be evaluated thanks to the following lemma. To simplify
notation, we write |µ| =

〈
µ, 1
〉

for µ ∈Mf (R+).

Lemma 7. For any nonnegative measurable functional F on Mf (R)n,

N
(∫
{0<t1<...<tn<σ}

dt1 . . . dtn F (ρt1 , . . . , ρtn)
)

=
∫
Q(n)(dµ1 . . . dµnda2 . . . dan)F (µ1, . . . , µn),

where Q(n) is the measure onMf (R+)n×Rn−1
+ which is defined by induction as follows.

First, Q(1) = M , and then Q(n+1) is the image of

Q(n)(dµ1 . . . dµnda2 . . . dan)1[0,|µn|](a)daM(dθ)

under the mapping

(µ1, . . . , µn, a2, . . . , an, a, θ) −→ (µ1, . . . , µn, [kaµn, θ], a2, . . . , an, a).
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Remark. This lemma is a generalization of Proposition III.3: In the case ψ(u) = β u2,
ρt is equal to β−1 times Lebesgue measure on [0, Ht], and the law of (Ht, t ≥ 0) under
N is the Itô measure of Brownian excursions, up to a trivial scaling transformation.

Proof. The case n = 1 is Proposition 5. The proof is then completed by induction on
n using the Markov property of ρ under N and Proposition 6. �

By construction, the measures µ1, . . . , µn exhibit a branching structure under Q(n)

and the quantities a2, . . . , an determine the levels of branching. We will examine this
branching structure in detail and get a recursive relation between the measures Q(n),
which is the key to the proof of Theorem 2.

For every n ≥ 1, we set Θ(n) = Mf (R+)n × Rn−1
+ (Θ(1) = Mf (R+)) and we take

Θ = ∪∞n=1Θ(n).
Let n ≥ 2 and let (µ1, . . . , µn, a2, . . . , an) ∈ Θ(n) be such that aj ≤ |µj−1| ∧ |µj | and
kajµj−1 = kajµj for every j ∈ {2, . . . , n} (these properties hold Q(n) a.e.). We define
several quantities depending on (µ1, . . . , µn, a2, . . . , an). First, we set

b = inf
2≤j≤n

aj , h = H(kbµ1).

Notice that kbµj = kbµ1 for every j ∈ {2, . . . , n}.
We then set b− = µ1([0, h)), b+ = µ1([0, h]) and observe that b− ≤ b ≤ b+. We let
j1 < j2 < · · · < jk−1 be the successive integers in {2, . . . , n} such that

aj1 ∈ [b−, b+], aj2 ∈ [b−, aj1 ], . . . , ajk−1 ∈ [b−, ajk−2 ].

Here k is a (random) integer such that 2 ≤ k ≤ n and b = ajk−1 by construction. We
also take j0 = 1, jk = n+ 1 by convention. Informally, the integer k corresponds to the
number of offsprings at the first branching, and h is the level of this branching.
We let ν0 be the restriction of µ1 (or of any µj) to [0, h), and for every j ∈ {1, . . . , n},
we define νj ∈Mf (R+) by taking νj([0, r]) = µj((h, h+ r]).
Finally, for every l ∈ {1, . . . k}, we define

∆l = (µ(l)
1 , . . . , µ

(l)
jl−jl−1

, a
(l)
2 , . . . , a

(l)
jl−jl−1

) ∈ Θ(jl−jl−1)

by setting
µ

(l)
i = νjl−1+i−1 , 1 ≤ i ≤ jl − jl−1 ,

a
(l)
i = ajl−1+i−1 − ajl−1 , 2 ≤ i ≤ jl − jl−1 ,

where by convention a1 = b+.
The next lemma can be viewed as a generalization of Theorem III.4.
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Lemma 8. For every integer p ∈ {2, . . . , n}, for every measurable subsets A0, . . . , An
of Θ, we have

Q(n)(k = p, ν0 ∈ A0,∆1 ∈ A1, . . . ,∆p ∈ Ap)

= γpM(A0)
∑

n1+...+np=n,ni≥1

Q(n1)(A1) . . . Q(np)(Ap),

where γp = β1{p=2} +
∫
yp

p! π(dy).

Proof. We will derive Lemma 8 from a slightly more precise result, which is proved by
induction on n. We keep the previous notation and also set ∆b = b+− b−, ci = aji − b−
for 1 ≤ i ≤ k − 1. Then, if B is a Borel subset of Rp+, we claim that

(9)

Q(n)(k = p, (∆b, c1, . . . , cp−1) ∈ B, ν0 ∈ A0,∆1 ∈ A1, . . . ,∆p ∈ Ap)

=
(
β1{p=2}1B(0, 0) +

∫
π̃(dy)

∫ y

0

dz1 . . .

∫ zp−2

0

dzp−11B(y, z1, . . . , zp−1)
)

× M(A0)
∑

n1+...+np=n

ni≥1

Q(n1)(A1) . . . Q(np)(Ap),

where π̃(dy) = π([y,∞)) dy. Clearly, Lemma 8 follows from (9). Before proceeding to
the proof of (9), we state a lemma giving the “law” under M(dµ) of the splitting of µ
at a uniformly distributed mass level.

Lemma 9. If µ ∈ Mf (R+) and a ∈ (0, |µ|), define r = r(µ, a) by r = H(kaµ), and
then τrµ, σrµ ∈ Mf (R+) by τrµ = µ|[0,r), σrµ([0, u]) = µ((r, r + u]) for every u ≥ 0.
Then,∫

M(dµ)
∫ |µ|

0

daF (τrµ, σrµ, µ({r}), a− |τrµ|)

=
∫∫

M(dµ1)M(dµ2)
(
β F (µ1, µ2, 0, 0) +

∫
π̃(dy)

∫ y

0

dz F (µ1, µ2, y, z)
)
.

Proof. As in Proposition 5, write U = (Ut, t ≥ 0) for a subordinator with drift β and
Lévy measure π̃. For every a ≥ 0, set ηa = inf{t, Ut ≥ a}. By the definition of M , the
left-hand side of the formula of Lemma 9 can be written as∫ ∞

0

dt e−αt
∫ ∞

0

daE
[
1{a<Ut} F (1[0,ηa)(s)dUs, σηa(1[0,t](s)dUs),∆Uηa , a− Uηa−)

]
.
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We may assume that F is of the form F (µ1, µ2, u, v) = 1A1(µ1)1A2(µ2)1B(u, v). Then
the strong Markov property of U at time ηa shows that the previous expression is also
equal to

E
[ ∫ ∞

0

da e−αηa 1A1(1[0,ηa)(s)dUs)1B(∆Uηa , a− Uηa−)
]
M(A2)

= M(A2)×
(
E
[ ∑
t:∆Ut>0

e−αt1A1(1[0,t)(s)dUs)
∫ ∆Ut

0

1B(∆Ut, z) dz
]

+ E
[ ∫ ∞

0

da 1{∆Uηa=0}e
−αηa1A1(1[0,ηa)(s)dUs) 1B(0, 0)

])
.

The first term of the sum inside parentheses is equal to

E
[ ∫ ∞

0

dt e−αt 1A1(1[0,t)(s)dUs)
∫
π̃(dy)

∫ y

0

1B(y, z)dz
]

=
(∫

π̃(dy)
∫ y

0

1B(y, z)dz
)
M(A1),

whereas the change of variable s = ηa gives for the second term

E
[ ∫ ∞

0

dUt 1{∆Ut=0}e
−αt1A1(1[0,t)(s)dUs) 1B(0, 0)

]
= β 1B(0, 0)M(A1).

Lemma 9 follows. �

Proof of (9). First consider the case n = 2. Then necessarily k = 2. Furthermore,
from the construction of Q(2), we have with the notation of Lemma 9,

Q(2)
(
k = 2, (∆b, c1) ∈ B, ν0 ∈ A0, ν1 ∈ A1, ν2 ∈ A2

)
=
∫∫

M(dµ)M(dµ′)
∫ |µ|

0

da 1B(µ({r}), a− |τrµ|) 1A0(τrµ)1A1(σrµ)1A2(µ′)

= M(A2)
∫
M(dµ)

∫ |µ|
0

da 1B(µ({r}), a− |τrµ|) 1A0(τrµ)1A1(σrµ)

=
(
β 1B(0, 0) +

∫
π̃(dy)

∫ y

0

dz 1B(y, z)
)
M(A0)M(A1)M(A2),

by Lemma 9. This gives the case n = 2.

To complete the proof, we argue by induction on n. Under Q(n+1) we have µn+1 =
[kan+1µn, θ] for some an+1 ∈ [0, |µn|], θ ∈Mf (R+). To avoid confusion, write k(n), b(n),
b
(n)
− , etc. for the quantities defined at the order n. We need to treat separately the

following cases:
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• If an+1 > b(n), then k(n+1) = k(n), and ∆(n+1)
i = ∆(n)

i for i = 1, . . . , k(n)− 1, whereas
∆(n+1)

k(n) is obtained by adding one “branch” to ∆(n)

k(n) .

• If b(n)
− < an+1 < b(n), then k(n+1) = k(n) + 1, ∆(n+1)

i = ∆(n)
i for i = 1, . . . , k(n), and

∆(n+1)

k(n)+1
consists of only one “branch”.

• If an+1 < b
(n)
− , then k(n+1) = 2 and ∆(n+1)

2 consists of only one “branch”.

Starting from formula (9) at order n and examining carefully each of these cases one
arrives at the formula at order n+ 1. We leave details to the reader. �

We come back to the proof of Theorem 2. By Proposition 5,

(10) T 1h(t) =
∫
M(dν)h(t+H(ν)) =

∫ ∞
0

dr e−αr h(t+ r).

By using Lemma 7 and then Lemma 8, we get for n ≥ 2:

Tnh(t) =
∫
Q(n)(dµ1 . . . dµnda2 . . . dan)

n∏
i=1

h(t+H(µi))

=
∫
Q(n)(dµ1 . . . dµnda2 . . . dan)

k∏
l=1

( jl−jl−1∏
i=1

h(t+H(ν0) +H(µ(l)
i ))

)
=

n∑
p=2

γp

∫
M(dν)

∑
n1+...+np=n,ni≥1

p∏
l=1

Q(nl)
( nl∏
i=1

h(t+H(ν) +H(µi))
)

=
n∑
p=2

γp
∑

n1+...+np=n,ni≥1

T 1
( p∏
l=1

Tnlh
)
(t).

We have thus obtained the recursive relation:

(11) Tnh =
n∑
p=2

γp
∑

n1+...+np=n,ni≥1

T 1(
p∏
l=1

Tnlh)

(compare with formula (3) in Chapter IV).

To complete the proof, we first assume that suppπ ⊂ [0, A] for some A < ∞. This
implies that the numbers γp are finite. Furthermore, ψ is analytic on R, and

ψ(u) = αu+
∞∑
p=2

(−1)p γp up.
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Let B > 0 be such that h(t) = 0 if t ≥ B. The recursive relation (11) implies the
existence of a constant C <∞ such that, for every n ≥ 1,

(12) Tnh(t) ≤ Cn 1[0,B](t).

To prove this bound, introduce the nonnegative function v that solves the integral
equation

v(t) = δ 1[0,B](t) +
∫ ∞
t

ψ(v(s)) ds,

where ψ(u) = αu +
∑∞
p=2 γp u

p and δ is a positive constant. Note that the function
v is well defined and bounded provided that δ is small enough. Choose ε > 0 so that
εT 1h ≤ δ. An easy induction argument using (11) and the integral equation for v shows
that εn Tnh ≤ v for every n ≥ 1. The bound (12) follows.

By (12), we have for 0 < λ < C−1,

∞∑
n=1

λn

n!
N
((∫ σ

0

h(t+Hs) ds
)n)

<∞.

If wλ(t) = N
(
1 − exp−λ

∫ σ
0
ds h(t + Hs)

)
, we obtain from Fubini’s theorem that, for

0 < λ < C−1,

(13) wλ(t) =
∞∑
n=1

(−1)n−1 λn Tnh(t).

Set ψ∗(u) = ψ(u)− αu =
∑∞
p=2(−1)pγpup. Again by Fubini’s theorem, we have∫ ∞

0

dr e−αrψ∗(wλ(t+ r))

=
∫ ∞

0

dr e−αr
∞∑
p=2

(−1)p γp
( ∞∑
n=1

(−1)n−1 λn Tnh(t+ r)
)p

=
∫ ∞

0

dr e−αr
∞∑
p=2

(−1)p γp
∑

n1,...,np≥1

(−1)
∑

ni−p λ
∑

ni Tn1h(t+ r) . . . Tnph(t+ r)

=
∞∑
n=2

(−1)n λn
n∑
p=2

γp
∑

n1+...+np=n,ni≥1

T 1(Tn1h . . . Tnph)(t)

=
∞∑
n=2

(−1)n λn Tnh(t),

using (11) in the last equality, and (10) in the previous one. Comparing with (13) gives

wλ(t) +
∫ ∞

0

dr e−αrψ∗(wλ(t+ r)) = λT 1h(t) = λ

∫ ∞
0

dr e−αr h(t+ r).
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It is then easy to verify that this equation is equivalent to

wλ(t) +
∫ ∞

0

ψ(wλ(t+ r)) dr = λ

∫ ∞
0

h(t+ r) dr.

The latter equation holds a priori for 0 < λ < C−1. However an argument of analytic
continuation allows us to extend it to every λ > 0. In particular, it holds for λ = 1,
which gives the desired equation (8).

We finally explain the truncation procedure needed to get rid of our assumption that π
is supported on (0, A] for some A <∞. For every integer k ≥ 1, we let π(k) denote the
restriction of π to (0, k], and we set

ψ(k)(λ) =
(
α+

∫
(k,∞)

rπ(dr)
)
λ+ βλ2 +

∫
π(k)(dr) (e−rλ − 1 + rλ).

Notice that ψ(k) ↓ ψ as k ↑ ∞. The Lévy process with exponent ψ(k) can be embedded in
the Lévy process with exponent ψ via a suitable time-change. To explain this embedding
(under the excursion measure), we introduce the stopping times U (k)

j , j ≥ 0 and T
(k)
j ,

j ≥ 1 defined inductively as follows:

U
(k)
0 = 0,

T
(k)
j = inf{s ≥ U (k)

j−1, ∆Ys > k}, j ≥ 1,

U
(k)
j = inf{s ≥ T (k)

j , Ys = Y
T

(k)
j
−}, j ≥ 1.

We then let Γ(k) be the random set

Γ(k) =
∞⋃
j=0

[U (k)
j , T

(k)
j+1)

and define η(k)
s =

∫ s
0

1Γ(k)(r)dr, γ(k)
s = inf{r, η(k)

r > s}. Then, it is easy to verify that
the process Y (k)

s := Y
γ
(k)
s

, s ≥ 0 is distributed under N according to the excursion
measure of the Lévy process with Laplace exponent ψ(k). Informally, Y (k) is obtained
from Y by removing the jumps of size greater than k. Furthermore, our construction
immediately shows that H(k)

s := H
γ
(k)
s

is the height process associated with Y (k).

Set σ(k) = η
(k)
σ . By the first part of the proof, we know that the function

w(k)(t) = N
(

1− exp−
∫ σ(k)

0

ds h(t+H(k)
s )

)
solves (8) with ψ replaced by ψ(k). On the other hand, it is immediate that

w(k)(t) = N
(

1− exp−
∫ σ

0

ds1Γ(k)(s)h(t+Hs)
)
↑ N

(
1− exp−

∫ σ

0

dsh(t+Hs)
)

= w(t)

as k ↑ ∞. By simple monotonicity arguments, we conclude that w solves (8). �
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BIBLIOGRAPHICAL NOTES

CHAPTER I

The classical books by Harris [Ha2], Athreya and Ney [AN] and Jagers [Ja] contain
much about Galton-Watson branching processes and their generalizations. The idea
of considering branching processes whose state space is “continuous” appears in Jirina
[Ji]. Continuous-state branching processes and their connections with rescaled Galton-
Watson processes were studied in the late sixties by Lamperti [La1], [La2] and Silverstein
[Si] in particular. The convergence of rescaled critical Galton-Watson processes with
finite variance towards the Feller diffusion had already been discussed by Feller [Fe].
Watanabe [Wa] used semigroup methods to construct a general class of measure-valued
branching processes (later called superprocesses by Dynkin) including the one considered
here. Watanabe also established a first result of approximation of supeprocesses by
branching particle systems. Similar approximations results have been obtained since
by a number of authors in different settings: See in particular [Da1], [EK] (Chapter 9),
[D3] and more recently [DHV]. For references concerning the other results mentioned in
Chapter I, see below the notes about the corresponding chapters.

CHAPTER II

Theorem 1 is a special case of a result of Silverstein [Si] describing the general form of the
Laplace exponent of a continuous-state branching process. Our construction of super-
processes via an approximation by branching particle systems is in the spirit of Dynkin
[D3], [D4]. Lemma 6 is borrowed from [D3] (Lemma 3.1). Historical superprocesses
were constructed independently by Dawson and Perkins [DP1], Dynkin [D3], [D4] and
in a special case Le Gall [L3]. Regularity properties of superprocesses have been studied
by Fitzsimmons [Fi1], [Fi2] via martingale methods (see also Dynkin [D2]). Proposition
7 and its proof are directly inspired from [D3] Lemma 4.1. The Laplace functional for
the “weighted occupation time” of superprocesses (Corollary 9) was used by Iscoe [Is]
to study properties of superprocesses in the quadratic branching case. Dawson’s Saint-
Flour lecture notes [Da2] provide a good survey of the literature about measure-valued
processes until 1992. Dynkin’s book [D8] gives a general presentation of the theory of
superprocesses.

CHAPTER III

This chapter follows closely [L5], with some simplifications from Serlet [Se2]. Excursion
theory was developed by Itô [It]. See the books [Bl], [RW] or [RY] for a detailed
presentation of the Itô excursion measure. Our formalism for trees is in the spirit of
Neveu [Ne]. The construction of branching trees embedded in linear Brownian motion or
random walks has been the subject of many investigations. Harris [Ha1] first observed
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that the contour process of the critical geometric Galton-Watson tree is a positive
excursion of simple random walk (see also [Dw]). Rogers [Ro] and Le Gall [L1] gave
applications of this fact to properties of linear Brownian motion and its local times.
Brownian analogues of Harris’ observation were provided by Neveu and Pitman [NP1],
[NP2], Le Gall [L2] and Abraham [Ab]. The coding of trees by functions was formalized
by Aldous [Al3] (see also [L3]). Aldous’ CRT was introduced and studied in [Al1] (see
also [Al2] and [Al3]). The connection between the CRT and the normalized Brownian
excursion (Theorem 6) was first obtained in [Al3], with a different method involving an
approximation by conditioned Galton-Watson trees.

CHAPTER IV

The Brownian snake construction of superprocesses was first developed in [L3] with a
slightly different approach. Our presentation here is more in the spirit of [L4] or [L6].
Proposition 2 giving the moment functionals for the Brownian snake was one of the
motivation for the results of [L5] presented in Chapter III. Via the connection between
the Brownian snake and quadratic superprocesses, these moment formulas also appear as
consequences of the calculations in Dynkin [D1] (Theorem 1.1). Dynkin and Kuznetsov
[DK1] used the main result of [L5] (our Theorem IV.4) to prove an isomorphism theorem
between Brownian snakes and superprocesses which is more precise than Theorem V.4.
The fact that a superprocess started at a general initial value can be written as a Poisson
sum whose intensity involves the so-called “excursion measures” was observed in [EKR]
and used in particular in [DP1] (Chapter 3). Many remarkable sample path properties
of super-Brownian motion (much more precise than Corollary 9) have been established
by Perkins and others: See e.g. [Su], [Pe1], [Pe2], [Pe3], [DIP], [Tr1], [AL], [Se1], [Se2],
[LP], [DL2], [L12], [De]. The result of the exercise at the end of Section 5 is due to
Tribe [Tr2]. Integrated super-Brownian excursion was discussed by Aldous [Al4] as a
tree-based model for random distribution of mass.

CHAPTER V

Exit measures of superprocesses were introduced and studied by Dynkin [D3], [D4] for
superprocesses with a general branching mechanism. In particular, the basic Theorem
4 is a special case of Dynkin’s results. Our presentation follows [L6], which gives the
very useful Lemma 5. This lemma also plays an important role in the obtention of
sample path properties of super-Brownian motion: See in particular [LP] and [L12].
The probabilistic solution of the nonlinear problem (again for more general branching
mechanisms) was derived in Dynkin [D5] (see also [D6] for analogous results in the
parabolic setting). Lemma 7 is borrowed from the appendix to [D5], and Corollary 8 is
(a special case of) the “mean value property” observed by Dynkin. The analytic part
of Proposition 9 is not a difficult result and had been known for a long time, but the
probabilistic approach is especially simple.
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CHAPTER VI

The probabilistic representations of solutions with boundary blow-up (Propositions 1
and 2) are due to Dynkin [D5] (see also [D6] and [D7] for many related results including
the parabolic setting). The existence of such solutions had been known for a long time
by analytic methods: See Keller [Ke] and Osserman [Os]. The question of characterizing
polar sets was first addressed by Perkins [Pe3], who showed that a set is not polar if
it has nonzero capacity. The first part of the proof of Theorem 4 is an adaptation
of Perkins’ argument (see [L4] for a more elegant approach using the potential theory
of symmetric Markov processes). The converse was obtained by Dynkin [D5], who
generalized the result to the case of stable branching mechanism. Dynkin’s approach
consists in observing that polar sets exactly correspond to removable singularities for
the associated partial differential equation, and then using the characterization due to
Baras and Pierre [BP]. The key duality argument of the proof presented here is also
taken from [BP]. See Adams and Hedberg [AH] for a thorough discussion of Sobolev
capacities and equivalent definitions. Results analogous to Theorem 4 in the parabolic
setting are presented in [D6] and [D7]. The paper [L7] gives explicit calculations of
certain capacitary distributions for the Brownian snake, which yield in particular the
law of the process at the first time when it hits a nonpolar compact subset K (this
law is described as the distribution of the solution to a certain stochastic differential
equation). Section 3 is adapted from [DL1] with some simplifications. The problem of
finding sufficient conditions for the existence of solutions of ∆u = up with boundary
blow-up has been tackled by several authors in the analytic literature: See in particular
[BM], [V1] and [MV1]. Theorem 6 and Corollary 7 have been extended by Delmas and
Dhersin [DD] to a parabolic setting. Theorem 9 is an improvement of a result in [L6],
along the lines of [Dh], Chapter 3. Lemma 10 was proved in [L8] and applied there to
certain estimates of hitting probabilities for super-Brownian motion. See [MV1] for an
analytic approach to the uniqueness of the nonnegative solution of ∆u = up in a domain
(until now, this analytic approach requires more stringent conditions than the one of
Theorem 9). The recent book by Véron [V2] is a good source of analytic references for
the problems treated in this chapter and the next one.

CHAPTER VII

Proposition 1 is taken from [L7] (Proposition 4.4). Theorem II.8.1 of [D7] is a closely
related result valid for the more general equation ∆u = uα, 1 < α ≤ 2. Theorem 2
characterizing boundary polar sets was conjectured by Dynkin [D7] and proved in [L7]
(for the “easy” part) and [L9]. Some partial analytic results in this direction had been
obtained previously by Gmira and Véron [GV] and Sheu [Sh1]. Dynkin and Kuznetsov
[DK2] have extended Theorem 2 to equation ∆u = uα, 1 < α ≤ 2. Sections 2 and 3
follow closely [L11], except for Lemma 7 which was proved in [AL]. In the special case
of equation ∆u = u2, Theorem 5 explains a phenomenon of nonuniqueness observed
by Kondratyev and Nikishkin [KN] for singular solutions of ∆u = uα in a domain.
References to the more recent work on trace problems for ∆u = uα in a domain of Rd
are given in Section VII.4.
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CHAPTER VIII

This chapter is based on the papers [LL1], [LL2]. Bertoin’s book [Be] (especially Chapter
VII) contains the basic facts about Lévy processes that are used in this chapter, with
the exception of (2) or (2)’ that can be found in [DuL]. The discrete construction
of Section 1 is adapted from [LL1], but several other papers present closely related
results, and use the random walk representation to get information on the asymptotic
behavior of Galton-Watson processes: See in particular Borovkov and Vatutin [BV]
and Bennies and Kersting [BK]. Theorem 3 is proved in detail in [LL2], where the
details of the proof of Lemma 8 can also be found. Another more ancient connection
between the ψ-continuous-state branching process and the Lévy process with Laplace
exponent ψ had been observed by Lamperti [La2]. The paper [BLL] presents a different
approach (based on subordination) to a snake-like construction of superprocesses with
a general branching mechanism. Still another approach to the genealogical structure
of superprocesses, and more general measure-valued processes, has been developed by
Donnelly and Kurtz [DK1], [DK2]. The monograph [DuL] will give various applications
of the results of this chapter.
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[L7] Le Gall, J.F. (1994) Hitting probabilities and potential theory for the Brow-
nian path-valued process. Ann. Inst. Fourier 44, 277-306.

[L8] Le Gall, J.F. (1994) A lemma on super-Brownian motion with some applica-
tions. In: The Dynkin Festschrift (M.I. Freidlin ed.), pp.237-251. Birkhäuser,
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