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Abstract

We present different continuous models of random geometry that have been introduced
and studied in the recent years. In particular, we consider the Brownian map, which is the
universal scaling limit of large planar maps in the Gromov-Hausdorff sense, and the Brownian
disk, which appears as the scaling limit of planar maps with a boundary. We discuss the
construction of these models, and we emphasize the role played by Brownian motion indexed
by the Brownian tree.
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1 Introduction
The goal of this work is to survey a number of recent developments concerning the continuous
models of planar random geometry that have been studied extensively in the last ten years,
and their connections with discrete models. A very important feature of the continuous models
that we will present is their universality, meaning that they appear in the scaling limit of many
different discrete models. This is similar of course to the universality of standard Brownian
motion, which is the scaling limit of all random walks satisfying mild moment conditions. Partly
because of this analogy, and also because Brownian motion plays a crucial role in the construction
of our basic objects of study, we use the name Brownian geometry for the general area of
continuous models of random geometry that are discussed below. In the present article, we
stress the role played by Brownian motion indexed by the Brownian tree, which is the main
ingredient of the construction of the random metric space called the Brownian map and of other
models, and which in our opinion is also an important object worth of study in its own. Many
properties of Brownian motion indexed by the Brownian tree, in particular the excursion theory
presented in Section 7 below, have direct applications to Brownian geometry.

The discrete models of random geometry that we will consider are planar maps, which
are finite connected graphs embedded in the two-dimensional sphere and viewed up to direct
homeomorphisms (see Section 2 below for a more precise definition). The faces of a planar
map are the connected components of the complement of the union of edges, and important
particular cases of planar maps are triangulations, respectively, quadrangulations, where all
faces are bounded by 3, resp. 4, edges. We note that many of the results that follow can be
extended to graphs embedded in surfaces of higher genus, but we will not discuss these extensions
here. Planar maps are important objects of study in combinatorices, and random planar maps
have been used for a long time by theoretical physicists as models of random geometry, in the
setting of two-dimensional quantum gravity, see in particular [63] and the book [6]. From the
mathematical point of view, a natural question is to consider a planar map chosen at random in a
suitable class, say the class of all triangulations with a fixed number n of faces, and to investigate
the properties of this object when n → ∞. One expects, in a way similar to the convergence
of rescaled random walks to Brownian motion, that, when its size tends to infinity, the random
planar map, suitably rescaled, will be close to a certain continuous model. It turns out that
this vague idea can be made precise in the framework of the Gromov-Hausdorff convergence
of compact metric spaces (see e.g. [20] for basic facts about the Gromov-Hausdorff distance).
Starting from a random planar mapMn uniformly distributed over the class of all triangulations
with n faces (or quadrangulations with n faces), one shows [42, 53] that the vertex set V (Mn)
equipped with the graph distance rescaled by the factor n−1/4 converges in distribution in the
Gromov-Hausdorff sense to a limiting random compact metric space called the Brownian map,
see Theorem 1 below (the case of triangulations had been conjectured by Schramm [61]). The
proof of this convergence was strongly motivated by earlier results concerning asymptotics for
the two-point function [23] or the three-point function [18] of random quadrangulations. The
preceding convergence to the Brownian map has been extended to many classes of random planar
maps, always with the same limiting space, up to unimportant scaling factors on the distance:
This is the universality property of the Brownian map, which was already mentioned above.

The construction of the Brownian map, and the relevance of Brownian motion indexed by
the Brownian tree, are best understood from purely combinatorial considerations about planar
maps. Perhaps surprisingly, various classes of planar maps are in one-to-one correspondence
with certain classes of discrete trees whose vertices are assigned integer labels. A common
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feature of these bijections is the fact that labels assigned to the vertices of the tree are closely
related to graph distances from a distinguished vertex in the associated planar map. Therefore,
a good understanding of the labeled tree associated with a random planar map yields useful
information about the metric properties of the vertex set of the planar map equipped with the
graph distance. In Section 4 below, we present the simplest example of the bijections between
planar maps and labeled trees, in the case of quadrangulations.

It turns out that the tree associated with a large random planar map is close, modulo
a suitable rescaling, to the continuous random tree which we call the Brownian tree (this is
essentially the CRT introduced and studied by Aldous [4, 5]). Furthermore, labels on the tree
behave like Brownian motion indexed by the Brownian tree when the size of the planar map goes
to infinity. At least informally, these observations explain the construction of the Brownian map
which is presented in Section 3: Following [2], we introduce the concept of a snake trajectory —
this is a convenient framework for studying the Brownian snake driven by a Brownian excursion
[39], which is basically the same object as Brownian motion indexed by the Brownian tree —
and explain how to associate a compact metric space with a snake trajectory. If the snake
trajectory is chosen at random according to the normalized Brownian snake excursion measure,
the associated compact metric space is the Brownian map, and the “labels” (the values of
the tree-indexed Brownian motion) are related to distances from a distinguished point of the
Brownian map.

The Brownian map is by no means the only interesting model in our Brownian geometry.
In Section 5, we briefly present the Brownian plane, which is an infinite-volume version of the
Brownian map and can be obtained as the scaling limit of the infinite random lattices called
the UIPT (for uniform infinite planar triangulation) and the UIPQ (for uniform infinite planar
quadrangulation). In Section 6, we introduce Brownian disks as scaling limits of planar maps
with a boundary, when the boundary size tends to infinity [14, 16]. In contrast with the Brownian
map, which is homeomorphic to the two-dimensional sphere, Brownian disks are homeomorphic
to the closed unit disk. We pay special attention to the free Brownian disk, which has a fixed
boundary size or perimeter but a random volume.

Section 8 presents a construction of Brownian disks from a continuous random tree equipped
with Brownian labels, which is analogous to the construction of the Brownian map, with the
difference that the labels now correspond to distances from the boundary (this is in contrast
with the previous constructions of [14, 16], which also used labeled trees, but with a different
interpretation of labels). Our construction relies on an excursion theory for Brownian motion
indexed by the Brownian tree, which is developed in Section 7 and is of independent interest.
Roughly speaking, if Tζ denotes the Brownian tree and (Za)a∈Tζ denotes Brownian motion
indexed by Tζ , we describe the distribution of “excursions” of Z away from 0, each excursion
corresponding to the restriction of Z to one connected component of {a ∈ Tζ : Za 6= 0}. We
obtain that these excursions are independent conditionally given their “boundary sizes”, and
distributed according to a certain excursion measure on snake trajectories.

The construction of Section 8 makes it possible to identify certain subsets of the Brownian
map as Brownian disks. In particular, Theorem 17 shows that connected components of the
complement of the ball of radius r centered at the distinguished point in the Brownian map
are independent Brownian disks, conditionally on their boundary sizes and volumes. A similar
result holds for the free Brownian disk D: If r > 0 and H(x) denotes the distance from a point
x ∈ D to the boundary, connected components of the set {x ∈ D : H(x) > r} are independent
free Brownian disks conditionally on their boundary sizes. Finally, in Section 9, we present the
very recent results of [49] studying the sequence of boundary sizes of the connected components
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of {x ∈ D : H(x) > r} as a process parameterized by r. We show that this process is a growth-
fragmentation process whose distribution is completely determined. The latter result is very
closely related to the recent papers [13, 12] investigating scaling limits for a similar process
associated with triangulations with a boundary.

Even if it was not possible to provide detailed proofs in this survey, we have tried to sketch the
main ideas underlying several important results. We give a detailed presentation of Schaeffer’s
bijection between quadrangulations and labeled trees, and, at the end of Section 4, we explain
informally why the construction of the Brownian map, which may appear rather involved at
first glance, is a continuous counterpart of this bijection. Similarly in Section 8, we emphasize
that the study of connected components of the complement of balls in the Brownian map can
be reduced to the study of excursions of Brownian motion indexed by the Brownian tree.

Let us briefly mention several recent articles that are related to the present work. The pa-
per [26] discusses the Gromov-Hausdorff convergence of rescaled planar maps when the graph
distance is replaced by a “local modification”, and shows that the scaling limit is still the Brow-
nian map. The study of the UIPT and the UIPQ has given rise to a number of interesting
developments: See in particular [30] for a proof of the recurrence of simple random walk on
these infinite random lattices. Hyperbolic versions of the Brownian plane have been studied by
Budzinski [19]. The Brownian half-plane, which also appears as the scaling limit of quadrangu-
lations with a boundary when the volume and the boundary size tend to infinity in a suitable
way, is discussed in [32] and [9] — a presumably equivalent construction had been given earlier
by Caraceni and Curien [22]. The paper [9] provides an exhaustive study of possible scaling
limits of quadrangulations with a boundary, leading to new models of Brownian geometry in
addition to the Brownian map, the Brownian plane or the Brownian disk. In a series of recent
papers, Miller and Sheffield [56, 57, 58, 59] have developed a completely new approach to the
Brownian map, showing also that this random compact metric space can be equipped with a
conformal structure which is linked to Liouville quantum gravity. An important step in this
approach [56] was the derivation of an axiomatic characterization of the Brownian map. The
paper [56] uses a definition of Brownian disks which is different from the one in [14] but which
can be shown to be consistent with the latter thanks to the results of [44]. Brownian disks play
an important role in the recent work [31, 32, 34] of Gwynne and Miller motivated by the study
of statistical physics models on random planar maps. We also mention the paper [35] showing
that certain discrete conformal embeddings of random planar maps converge to their continuous
counterparts. Finally we refer to [47, 54] for pedagogical presentations of random planar maps
and the convergence to the Brownian map.
Acknowledgement. It is a pleasure to thank the organizers of the Takagi lectures for giving me
the opportunity to discuss the present work at this prestigious meeting.

2 Discrete and continuous models of random geometry

2.1 Planar maps

The basic discrete model of random geometry that we will consider is a random planar map.
Let us start with a precise definition.

Definition 1. A planar map is a proper embedding of a finite connected graph in the two-
dimensional sphere S2. Two planar maps are identified if they correspond via an orientation-
preserving homeomorphism of the sphere.
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In this definition, “proper” means that edges are not allowed to cross. The identification
modulo homeomorphisms is interpreted by saying that we are only interested in the shape of
the embedding, and not in its precise details.

In the preceding definition, we should in fact have written “multigraph” instead of graph,
meaning that we allow self-loops and multiple edges. Many of the results that follow are expected
to hold, and sometimes have been proved, also for simple planar maps where self-loops and
multiple edges are forbidden, but the technicalities become more difficult. See Fig. 1 for an
example with a self-loop and a double edge.

root
edge

root
vertex

root
face

Figure 1: A rooted triangulation with 20 faces.

Thanks to the fact that the graph is embedded, we can define the notion of a face. Faces
are the connected components of the complement of edges, or equivalently the regions bounded
by the edges. The degree of a face is the number of half-edges incident to this face: Note that
we say half-edges instead of edges because if both sides of an edge are incident to the same face,
this edge is counted twice in the degree (for instance the face inside the self-loop in Fig. 1 has
degree 3 though there are only two edges in its boundary).

If p ≥ 3 is an integer, a planar map is called a p-angulation if all its faces have degree p,
and we say triangulation when p = 3, quadrangulation when p = 4. Fig. 1 shows a triangulation
with 20 faces.

We will deal with rooted planar maps, meaning that we distinguish an oriented edge, which
is called the root edge. The origin of the root edge is called the root vertex, and the face lying
to the left of the root edge (this makes sense because the root edge is oriented) is called the
root face. See again Fig. 1. Notice that in order to identify two rooted planar maps via an
orientation-preserving homeomorphism we require that this homeomorphism preserves the root
edge. The reason for dealing with rooted maps comes from the fact that enumeration questions,
or bijections between maps and simpler objects such as trees, become more tractable (rooting
a map avoids problems related to the presence of symmetries). However, it is strongly believed
that the results that follow hold as well for planar maps that are not rooted.

Let p ≥ 3 and n ≥ 1 be integers. The set of all rooted p-angulations with n faces will be
denoted by Mp

n. It is easy to see that Mp
n is empty if p and n are both odd integers. So when

p is odd, in particular when p = 3, we will implicitly restrict our attention to even values of n.
Thanks to the identification in Definition 1, the set Mp

n is finite, and so it makes sense to choose
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a rooted p-angulation with n faces uniformly at random.
If M is a planar map, we will denote the vertex set of M by V (M). We equip V (M) with

the usual graph distance dMgr : If v and v′ are two vertices of M , dMgr (v, v′) is the minimal number
of edges on a path from v to v′. Our first goal is to study the metric space (V (M), dMgr ) when
M is chosen uniformly at random in Mp

n (for some fixed p) and when n is large. For this study,
we will need a notion of convergence of a sequence of compact metric spaces.

2.2 The Gromov-Hausdorff distance

Let us first recall that, if K1, K2 are two compact subsets of a metric space (E,d), the Hausdorff
distance between K1 and K2 is defined by

dEHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}

where Uε(K1) = {x ∈ E : d(x,K1) ≤ ε} is the ε-enlargement of K1.

Definition 2 (Gromov-Hausdorff distance). Let (E1,d1) and (E2, d2) be two compact metric
spaces. The Gromov-Hausdorff distance between E1 and E2 is

dGH(E1, E2) = inf{dEHaus(ψ1(E1), ψ2(E2))}

where the infimum is over all isometric embeddings ψ1 : E1 → E and ψ2 : E2 → E of E1 and
E2 into the same metric space (E,d).

Let K stand for the set of all compact metric spaces, where as usual two compact metric
spaces are identified if they are isometric. Then the Gromov-Hausdorff distance dGH is a metric
on K, and furthermore (K,dGH) is complete and separable. In other words, (K,dGH) is a Polish
space, which makes it especially suitable to study the convergence in distribution of random
variables with values in K.

One can prove [55] that a sequence (En) of compact metric spaces converges to a limiting
space E∞ in K if and only if all spaces En and the limit E∞ can be embedded isometrically in
the same metric space E in such a way that the convergence holds in the sense of the Hausdorff
distance.

2.3 Convergence to the Brownian map

We will now discuss the convergence in distribution of (Mn, n
−1/4dMn

gr ) when Mn is chosen
uniformly at random in Mp

n (for some fixed p). Note that we rescale the graph distance dMn
gr

by the factor n−1/4: The need for such a rescaling is clear since one expects that the diameter
of the graph blows up when the number of faces grows to infinity. The reason why the correct
rescaling factor is n−1/4 is more mysterious and will be best understood from the bijections
between planar maps and labeled trees that are described below (see the beginning of Section
4.2).

The following theorem is proved in [42]. The particular case of quadrangulations p = 4 was
obtained independently by Miermont [53]. The case p = 3 solves a problem of Schramm [61].

Theorem 1 (The scaling limit of p-angulations). Suppose that either p = 3 (triangulations) or
p ≥ 4 is even. Set

c3 = 61/4 , cp =
( 9
p(p− 2)

)1/4
if p is even.
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For every integer n ≥ 2 (n even if p = 3), let Mn be uniformly distributed over Mp
n. Then,

(V (Mn), cp n−1/4 dMn
gr ) (d)−→

n→∞
(m∞, d∞)

in the Gromov-Hausdorff sense. The limit (m∞,d∞) is a random compact metric space (that
is, a random variable with values in K) that does not depend on p and is called the Brownian
map.

The name “Brownian map” is due to Marckert and Mokkadem [50] who obtained a weak
form of the theorem in the case of quadrangulations. We note that the role of the constants
cp is only to ensure that the limit does not depend on p. It is expected that the result of the
theorem holds for all values of p ≥ 3, but the case of odd values p ≥ 5 seems more difficult to
handle for technical reasons.

The fact that the limit does not depend on p is a very important feature of Theorem 1.
Roughly speaking, it means that in large scales the metric properties of a typical (large) planar
map are the same if this planar map is a triangulation, or a quadrangulation, or a p-angulation.
This is the universality property of the Brownian map, which has been confirmed in many
subsequent works: In particular, analogs of Theorem 1, always with the same limit (m∞, d∞)
hold for general planar maps with a fixed number of edges [15], for bipartite planar maps with
a fixed number of edges [1], for simple triangulations or quadrangulations (where self-loops and
multiple edges are not allowed) [3], for planar maps with a prescribed degree sequence [51], etc.
We also mention that results similar to Theorem 1 hold if the graph distance is replaced by a
“local modification”: The paper [26] considers the so-called first-passage percolation distance on
random triangulations (independent random weights are assigned to the edges and the distance
between two vertices is the minimal total weight of a path between them). Perhaps surprisingly,
this local modification does not change the scaling limit, which is still the Brownian map up to
a deterministic scale factor for the distance.

As a general principle, the scaling limit of large random planar maps is expected to be the
Brownian map whenever some bound is assumed on the degree of faces. On the contrary, if one
considers probability distributions on planar maps that favor the appearance of very large faces,
different scaling limits may occur (the so-called stable maps of [46]), but we will not discuss this
case here.

It is implicit in Theorem 1 that the limit (m∞, d∞) is not the degenerate space with a
single point. We make this more explicit in the following two theorems that give some useful
information about the Brownian map.

Theorem 2 ([40]). The Hausdorff dimension of (m∞, d∞) is a.s. equal to 4.

Theorem 3 ([48]). The compact metric space (m∞,d∞) is a.s. homeomorphic to the 2-sphere
S2.

Both these theorems can be deduced from the construction of the Brownian map from
Brownian motion indexed by the Brownian tree that will be given below. The proof of Theorem
2 is in fact relatively easy, but that of Theorem 3 is more intricate and relies in part on an old
theorem of Moore giving conditions for a quotient space of the sphere to be homeomorphic to
the sphere.

Since planar maps are defined as graphs embedded in the sphere, and since we take a limit
where the number of vertices tends to infinity, it is maybe not surprising that the limiting metric
space has the topology of the sphere. Still, Theorem 3 implies a non-trivial combinatorial fact

7



about the non-existence of small “bottlenecks” in a large planar map: Informally, for a random
triangulation with n faces, the probability that there exists a cycle with length o(n1/4) such that
both sides of the cycle (meaning both components of its complement) have a diameter greater
than δn1/4, for some fixed δ > 0, will tend to 0 as n → ∞. The question of the existence of
small separating cycles in random planar maps has been investigated recently in connection with
isoperimetric inequalities [45].

3 The construction of the Brownian map
In this section, we present a construction of the limiting space (m∞,d∞) of Theorem 1. This
construction relies on the notion of Brownian motion indexed by the Brownian tree. We start
by a brief presentation of the Brownian tree.

3.1 The Brownian tree

Recall that an R-tree is a metric space (T , d) such that, for every a, b ∈ T there is, up to
reparameterization, a unique continuous injective path γ from a to b, and the range of γ, which
will be denoted by [[a, b]], is isometric to the line segment [0,d(a, b)]. An R-tree T is rooted if
there is a distinguished point ρ ∈ T , which is called the root. This makes it possible to define
a notion of genealogy in the tree T : If a, b ∈ T , we say that b is a descendant of a, or a is an
ancestor of b, if a ∈ [[ρ, b]].

In the present work, we will consider only compact R-trees, and we will use the fact that
such trees can be coded by continuous functions. Let h : R+ → R+ be a nonnegative continuous
function on R+ such that h(0) = 0. We assume that h has compact support, so that

σh := sup{t ≥ 0 : h(t) > 0} <∞.

Here and later we make the convention that sup∅ = 0.
For every s, t ∈ R+, we set

dh(s, t) := h(s) + h(t)− 2 min
s∧t≤r≤s∨t

h(r).

We note that dh is a pseudo-metric on R+, and thus we may introduce the associated equivalence
relation on R+, defined by setting s ∼h t if and only if dh(s, t) = 0, or equivalently

h(s) = h(t) = min
s∧t≤r≤s∨t

h(r).

Then, dh induces a distance on the quotient space R+/∼h.

Lemma 4. [29] The quotient space Th := R+/∼h equipped with the distance dh is a compact
R-tree called the tree coded by h. The canonical projection from R+ onto Th is denoted by ph.
By definition, Th is rooted at ρ = ph(0).

Remark. It is not hard to verify that any compact R-tree can be represented as Th for some
(not unique) function h, but we will not need this fact.

It is often convenient to equip Th with a volume measure, which is defined as the push forward
of Lebesgue measure on [0, σh] under ph.

The coding by a function makes it possible to define “lexicographical” intervals on the tree.
Let us explain this. If s, t ≥ 0 and s > t, we make the convention that [s, t] = [s,∞) ∪ [0, t]
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(of course, if s ≤ t, [s, t] is the usual interval). If a, b ∈ Th, there is a smallest “interval” [s, t]
with s, t ≥ 0 (but not necessarily s ≤ t) such that ph(s) = a and ph(b) = t, and we then set
[a, b] = ph([s, t]). Note that [a, b] is typically different from [b, a]. Intuitively, [a, b] is the set of
all points of Th that are visited when going from a to b around the tree in “clockwise order”.

Let us now randomize h. We let n(dh) stand for Itô’s excursion measure of positive excursions
of linear Brownian motion (see e.g. [60, Chapter XII]) normalized so that, for every ε > 0,

n
(

max
s≥0

h(s) > ε
)

= 1
2ε.

Under n(dh), we will write σ = σh for the duration of the excursion h. It will also be convenient
to introduce the conditional probability measure n(s) := n(· | σ = s), for every s > 0. In
particular n(1) is the law of the normalized excursion, and we have

n =
∫ ∞

0
n(s)

ds
2
√

2πs3
.

Definition 3. The Brownian tree is the tree Th coded by h under n(dh).

It is important to realize that n is an infinite measure. We can also consider the tree Th
under the probability measure n(1)(dh), and this random tree is Aldous’ continuum random tree,
also called the CRT (our normalization is slightly different from the one in [4, 5]). However, it
is often more convenient to argue under the infinite measure n.

3.2 Snake trajectories

We now propose to discuss Brownian motion indexed by the Brownian tree of Definition 3. The
fact that we are interested in a random process indexed by a random set creates some technical
difficulties, which we will avoid here by introducing the concept of a snake trajectory.

A finite real path is a continuous mapping w : [0, ζ(w)] −→ R, where the number ζ(w) ≥ 0
is called the lifetime of w. We let W denote the space of all finite paths in R. The set W is a
Polish space when equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|.

The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For every x ∈ R, we set
Wx = {w ∈ W : w(0) = x}. The trivial element of Wx with zero lifetime is identified with the
point x — in this way we view R as the subset of W consisting of all finite paths with zero
lifetime.

Definition 4. Let x ∈ R. A snake trajectory with initial point x is a continuous mapping

ω : R+ →Wx

s 7→ ωs

which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s ≥ 0 : ωs 6= x}, called the duration of the
snake trajectory ω, is finite.
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(ii) For every 0 ≤ s ≤ s′, we have

ωs(t) = ωs′(t) , for every 0 ≤ t ≤ min
s≤r≤s′

ζ(ωr).

Property (i) implies in particular that the function s 7→ ζ(ωs) has compact support.
Important remark. A snake trajectory ω is completely determined by the knowledge of the
lifetime function s 7→ ζ(ωs) and the tip function s 7→ ω̂s = ωs(ζ(ωs)). Indeed, for any s ≥ 0 and
r ∈ [0, ζ(ωs)], if θs(r) = inf{u ≥ s : ζ(ωu) = r}, property (ii) implies that ωs(r) = ω̂θs(r).

We write Sx for the set of all snake trajectories with initial point x, and

S :=
⋃
x∈R
Sx

for the set of all snake trajectories.
Let ω ∈ S. Then the real function s 7→ ζ(ωs) satisfies the conditions required to define the

tree coded by this function (cf. Section 3.1) and we will write Tζ for this tree, and pζ for the
canonical projection from R+ onto Tζ . We sometimes say that Tζ is the genealogical tree of the
snake trajectory ω. Property (ii) in Definition 4 implies that ωs = ωs′ whenever pζ(s) = pζ(s′).
In other words, ωs only depends on the equivalence class of s in the quotient space Tζ , and the
mapping s 7→ ωs induces a function defined on the genealogical tree Tζ . We should think of the
collection (ωs)s≥0 as forming a “tree of paths” whose genealogy is prescribed by Tζ (see the left
side of Fig. 6 below for an illustration).
Notation. In what follows, we will consider snake trajectories ω that may be deterministic
or chosen according to a measure on S, and we will use the notation Ws = Ws(ω) = ωs, and
ζs = ζs(ω) = ζ(ωs).

3.3 Constructing a compact metric space from a snake trajectory

The Brownian map of Theorem 1 is constructed from a random snake trajectory distributed
according to a certain probability measure. To explain this construction, it is best to consider
first the case of a deterministic snake trajectory ω.

So we fix ω ∈ S0 and we recall that Tζ is the tree coded by (ζs)s≥0 (we use the notation
explained at the end of Section 3.2). If a ∈ Tζ , we set Za = Ŵs if s is such that pζ(s) = a and
we also say that Ws is the historical path of a (by preceding observations, this does not depend
on the choice of s such that pζ(s) = a). We view (Za)a∈Tζ as a collection of labels assigned to
the points of Tζ . Note that the function a 7→ Za is continuous on Tζ .

We will now associate a metric space with the space trajectory ω, and roughly speaking this
metric space will be obtained from the genealogical tree Tζ by gluing together certain pairs of
points. Let us turn to a precise definition. For every a, b ∈ Tζ , we set

D◦(a, b) = Za + Zb − 2 max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc
)
, (1)

where we recall that [a, b] stands for the lexicographical interval from a to b in Tζ . We note that
D◦(a, b) = 0 if and only if

Za = Zb = max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc
)
, (2)
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which informally means that a and b have the same label and that we can go from a to b around
the tree (clockwise or counterclockwise) visiting only points whose label is at least as large as
the label of a and b. We then let D(a, b) be the largest symmetric function of the pair (a, b)
that is bounded above by D◦(a, b) and satisfies the triangle inequality: For every a, b ∈ Tζ ,

D(a, b) = inf
{ k∑
i=1

D◦(ai−1, ai)
}
, (3)

where the infimum is over all choices of the integer k ≥ 1 and of the elements a0, a1, . . . , ak of
Tζ such that a0 = a and ak = b. We note that

D(a, b) ≥ |Za − Zb| (4)

as an immediate consequence of the similar bound for D◦.
We now observe that D is a pseudo-metric on Tζ , and we letM be the associated quotient

space, which is the quotient of Tζ for the equivalence relation a ≈ b if and only if D(a, b) = 0.
We equip M with the distance induced by D, for which we keep the same notation. We note
that (M, D) is a compact metric space, and we let Π denote the canonical projection from Tζ
onto M. By abuse of notation, for every x ∈ M, we write Zx = Za if x = Π(a) (by (4) this
does not depend on the choice of a such that x = Π(a)). So labels can also be viewed as defined
on the quotient space M. Later it will be convenient to have a volume measure v(dx) on M,
which is defined as the push forward of the volume measure on Tζ under Π.

The preceding construction obviously depends on the choice of ω, which was fixed in the
beginning of this section. We claim that it does so in a measurable way.

Lemma 5. The mapping ω 7→ (M, D) defined above, with values in the space (K,dGH), is
measurable.

We refer to [44, Lemma 6] for the proof of a more precise statement.
Let us mention some properties of D that will play a role later. Let a∗ be any point of Tζ

such that
Za∗ = inf

a∈Tζ
Za.

The existence of such a point follows from a compactness argument (notice that a∗ may not be
unique, but if will follow from (5) below that Π(a∗) is uniquely determined). Then we have, for
every a ∈ Tζ ,

D(a∗, a) = Za − Za∗ .

The lower bound D(a∗, a) ≥ Za − Za∗ is immediate from (4). The corresponding upper bound
is also trivial since it is clear that D◦(a∗, a) = Za − Za∗ . So setting Z∗ = Za∗ and x∗ = Π(a∗),
we get that, for every x ∈M,

D(x∗, x) = Zx − Z∗. (5)

We interpret this by saying thatM has a distinguished point x∗ such that labels exactly corre-
spond to distances from x∗, up to the shift by Z∗.

3.4 Measures on snake trajectories

We start with a key lemma.

11



Lemma 6. Let h : R+ → R+ be a continuous function with compact support such that h(0) = 0.
Assume that h is Hölder continuous, meaning that there exist positive constants δ ∈ (0, 1] and
C such that |h(s) − h(s′)| ≤ C|s − s′|δ for every s, s′ ≥ 0. Then there exists a random snake
trajectory W h = (W h

s )s≥0 with initial point 0 such that:

(i) ζ(Wh
s ) = h(s), for every s ≥ 0, a.s.

(ii) The process (Ŵ h
s )s≥0 is a centered Gaussian process with covariance

cov(Ŵ h
s , Ŵ

h
s′) = min

s∧s′≤r≤s∨s′
h(r).

The process (W h
s )s≥0 is called the Brownian snake driven by the function h.

We note that the distribution of W h is completely determined by properties (i) and (ii),
thanks to the remark following Definition 4. The intuition underlying the preceding definition
is as follows: For every s ≥ 0, W h

s is a Brownian path with lifetime h(s), when h(s) decreases
the path W h

s is erased from its tip and when h(s) increases the path W h
s is extended by adding

“little pieces of Brownian paths” at its tip.
The proof of Lemma 6 is straightforward. Note that the Hölder continuity assumption of h

is used to warrant the existence of a continuous modification of a process satisfying properties
(i) and (ii) of Lemma 6.

As a consequence of (ii), we have W h
0 = 0 and

E[(Ŵ h
s − Ŵ h

s′)2] = dh(s, s′),

where the pseudo-metric dh was defined in Section 3.1. Since we already noted that the snake
trajectoryW h can be viewed as indexed by the tree Th, the last display justifies the fact that Ŵ h

is interpreted as Brownian motion indexed by Th. In fact, if ϕ : [0, u] −→ Th is an isometry map-
ping the interval [0, u] onto a line segment of Th, we immediately see that (Ŵ h

ϕ(r)− Ŵ
h
ϕ(0))0≤r≤u

is a linear Brownian motion.
If h satisfies the properties in Lemma 6, we let Ph stand for the distribution of W h, which

is thus a probability measure on the space S0. We now introduce Brownian snake excursion
measures, which will play a major role in what follows.

Definition 5. The Brownian snake excursion measure N0 is the σ-finite measure on S0 defined
by

N0(dω) =
∫

n(dh) Ph(dω).

Similarly, the normalized Brownian snake excursion measure is the probability measure on S0
defined by

N(1)
0 (dω) =

∫
n(1)(dh) Ph(dω).

In other words, to construct a random snake trajectory distributed according to N0 (resp.
according to N(1)

0 ) we just pick a Brownian excursion h distributed according to n (resp. a
normalized Brownian excursion) and consider the Brownian snake driven by h. This makes
sense because we know that h is Hölder continuous, n(dh) or n(1)(dh) a.e.

Lemma 5 now allows us to set the following definition.

Definition 6. The Brownian map is the random compact metric space (M, D) obtained via the
construction of Section 3.3 from a snake trajectory ω distributed according to N(1)

0 .
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One can prove [40] that N(1)
0 a.s., for every a, b ∈ Tζ the property D(a, b) = 0 holds if and

only if D◦(a, b) = 0 (the fact that D◦(a, b) = 0 implies D(a, b) = 0 is obvious since D ≤ D◦). So
the construction of the Brownian map can be summarized by saying that we start from the CRT
Tζ equipped with “Brownian labels” (Za)a∈Tζ , and we identify points a and b of the CRT if and
only if D◦(a, b) = 0, which has a simple interpretation as explained above after (2) (furthermore
the metric D is the largest metric bounded above by D◦).

It is often useful to consider also the free Brownian map, which is just the metric space
(M, D) under the measure N0. Many properties of the free Brownian map are “nicer” than
those of the “standard Brownian map” because there is no constraint on the total volume, but
the price to pay is to work under a σ-finite measure.

4 Discrete bijections with trees

4.1 Schaeffer’s bijection

In this section, we explain a bijection between quadrangulations and (discrete) labeled trees,
which can be found in [23] and is in some sense a discrete analog of the construction of the
Brownian map that was given in the previous section. In fact this discrete bijection (and its
generalizations) plays a major role in the proof of Theorem 1, and helps to understand the
definition of the Brownian map and of the metric D. We restrict our attention to the case of
quadrangulations because the description is simpler in that case, but we immediately mention
that similar bijections exist for more general planar maps (see in particular [17]).

We first need to introduce the class of discrete trees that will be relevant. First recall that
a plane tree τ is a (finite) rooted ordered tree. A plane tree can be specified by representing
each vertex as a finite word made of positive integers, in such a way that the empty word ∅
corresponds to the root, and for instance the word 21 corresponds to the first child of the second
child of the root. This should be clear from the left side of Fig. 2 (ignore for the moment the
circled figures). To make the connection with planar maps, we will assume that plane trees are
drawn in the plane (or rather on the sphere) in the way illustrated in the left side of Fig. 2, so
that in particular the edges connecting a vertex to its parent, its first child, its second child,
etc., appear in clockwise order around that vertex.

A labeled tree is a plane tree τ , with vertex set V (τ), whose vertices are assigned integer
labels (`v)v∈V (τ) in such a way that the following two properties hold:

(i) `∅ = 0;

(ii) |`v − `v′ | ≤ 1 whenever v, v′ ∈ V (τ) are adjacent.

The circled figures in the left side of Fig. 2 show a possible assignment of labels. For every
n ≥ 2, let Tn stand for the set of all labeled trees with n edges.

A rooted and pointed quadrangulation is a rooted quadrangulation given with a distinguished
vertex (which can be any vertex, including the root vertex). For every n ≥ 2, let M4,•

n stand for
the set of all rooted and pointed quadrangulations.

We then claim that there is a one-to-one correspondence between the sets M4,•
n and Tn ×

{−1, 1} (this correspondence is called Schaeffer’s bijection). To explain this correspondence, let
us start from a labeled tree (τ, (`v)v∈V (τ)) in Tn and a sign ε ∈ {−1,+1}. We need to consider
corners of the tree τ : A corner incident to a vertex v of τ is an angular sector between two
successive edges incident to v (for instance, in the tree of the left side of Fig. 2, the root ∅ has
2 corners, the vertex 21 has 3 corners, and the vertex 221 has only one corner). By convention,
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the root corner c0 is the corner “below” the root vertex. The set of all corners is given a cyclic
ordering by moving clockwise around the tree: starting from the root corner c0, the 2n corners
can be listed as c0, c1, . . . , c2n−1 in cyclic ordering (see the middle part of Fig. 2). We agree that
every corner inherits the label of the vertex to which it is incident.

0

1−1

10

0−1−1

−1

0

1−1

10

0−1−1

−1

−2v∗

∅

1 2

21

211 212

2121

22

221

0

1−1

10

0−1−1

−1
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c1
c2

c3

c4
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c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

Figure 2: Schaeffer’s bijection. Left: a labeled tree with 8 edges. Middle: the sequence
c0, c1, . . . , c15 of corners enumerated in cyclic order. Right: the edges of the associated
quadrangulations with 8 faces (case ε = −1).

With the labeled tree (τ, (`v)v∈V (τ)), we associate a quadrangulation M by the following
device. First, the vertex set of M is the union of the vertex set of τ and an extra vertex v∗,
which by convention is assigned the label

`v∗ = min
v∈V (τ)

`v − 1.

Then, in order to obtain the edges of the quadrangulation M , we proceed in the following way.
For every corner c of τ , with label `c, we draw an edge starting from this corner and ending at
the next corner of τ (in the cyclic ordering) with label `c − 1 — this corner will be called the
successor of c. This makes sense unless `c is equal to the minimal label on the tree τ , in which
case we draw an edge starting from c and ending at v∗. All these edges can be drawn, in a
unique manner (up to homeomorphisms), in such a way that they do not cross and do not cross
the edges of τ , and the resulting planar map is a quadrangulation (see Fig. 2 for an example
where, for instance, there are edges of M connecting c0 to c1, c1 to v∗, c2 to c5, c3 to c4, etc.).

We still have to define the root of the quadrangulation and its distinguished vertex. The
root edge is the edge starting from c0 and ending at the successor of c0, and its orientation is
determined by the sign ε: The root vertex is ∅ if and only if ε = +1. Finally the distinguished
vertex of M is v∗, and we have indeed obtained a rooted and pointed quadrangulation.
Proposition 7. The preceding construction yields a bijection from Tn × {−1, 1} onto Mn,•

4 .
Moreover, if the roooted and pointed quadrangulationM is the image of the pair ((τ, (`v)v∈V (τ)), ε)
under this bijection, the vertex set V (M) is canonically identified with V (τ) ∪ {v∗} where v∗ is
the distinguished vertex of M , and with this identification we have, for every v ∈ V (τ),

dMgr (v∗, v) = `v − min
u∈V (τ)

`u + 1. (6)
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Let us explain why property (6) holds. Let v be a vertex of M distinct from v∗, so that v is
identified to a vertex of τ . Choose any corner c incident to v in the tree τ . The construction of
edges in Schaeffer’s bijection shows that there is an edge connecting c to a corner c′ of a vertex
v′ with label `v − 1. But similarly, there is an edge of M connecting the corner c′ of v′ to a
corner of a vertex with label `v − 2. We can continue inductively, and we get a path in M of
length `v −minu∈V (τ) `u connecting v to a vertex with minimal label, which itself (by the rules
of Schaeffer’s bijection) is adjacent to v∗ in M . In this way we get the upper bound

dMgr (v∗, v) ≤ `v − min
u∈V (τ)

`u + 1.

The corresponding lower bound is also very easy, using the fact that |`v − `v′ | = 1 whenever v
and v′ are adjacent in M , again by the construction of Schaeffer’s bijection.

Property (6) is useful when studying the metric properties of M (in view of proving the case
p = 4 of Theorem 1). However, (6) only gives information about distances from the distinguished
vertex v∗, which is far from sufficient if one is interested in the Gromov-Hausdorff convergence.
If v and v′ are two arbitrary vertices of M , there is however a very useful upper bound for the
graph distance dMgr (v, v′). To state this bound, recall that c0, c1, . . . , c2n−1 is the sequence of
corners of the tree τ associated with M , listed in the cyclic ordering that was already used in
Schaeffer’s bijection. For every i ∈ {0, 1, . . . , 2n − 1}, let vi be the vertex corresponding to the
corner vi. Then, if 0 ≤ i < j ≤ 2n− 1, we have

dMgr (vi, vj) ≤ `vi + `vj − 2 max
(

min
k∈[i,j]

`vk , min
k∈[j,2n−1]∪[0,i]

`vk

)
+ 2. (7)

The proof of this bound is easy. Consider the geodesic path γ from the corner ci to v∗ constructed
as in the proof of (6), and the similar geodesic path from the corner cj . A simple argument
shows that these two geodesic paths coalesce at a vertex whose label is the maximum appearing
in (7) minus 1. The concatenation of these two geodesic paths up to their coalescence time thus
gives a path from vi to vj whose length is the right-hand side of (7).

4.2 Ideas of the proof of Theorem 1

Schaeffer’s bijection allows us to sketch the main ideas of the proof of Theorem 1 in the case of
quadrangulations. We start from a uniformly distributed rooted and pointed quadrangulation
Mn with n faces (the fact that we consider a rooted and pointed quadrangulation rather than a
rooted quadrangulation as in Theorem 1 is unimportant since by “forgetting” the distinguished
vertex ofMn we get a uniformly distributed rooted quadrangulation), and we let (τn, (`nv )v∈V (τn))
be the associated labeled tree. We note that τn is uniformly distributed over the set of all
plane trees with n edges, because for every such tree there is the same number 3n of possible
assignments of labels. It is well known that the height of the tree τn is of order

√
n when n is

large, and, from the central limit theorem, one may guess that the maximal and the minimal
label in τn are of order

√√
n = n1/4 (just note that conditionally given τn, the increments of

labels along the different edges of τn are independent and uniformly distributed over {−1, 0, 1}).
Recalling (6), we see that the diameter ofMn must be of order n1/4, which explains the rescaling
in Theorem 1.

Then, a well-known result of Aldous shows that the tree τn viewed as a metric space for
the graph distance rescaled by the factor 1/

√
2n converges in distribution to the CRT — with

our particular normalization of the CRT. This convergence can be stated in a more precise form
using the so-called “contour functions” which keep track of the lexicographical order on the trees.
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Furthermore, using the fact that the variance of the uniform distribution on {−1, 0, 1} is 2/3,
one gets that the labels rescaled by (2/3)−1/2(2n)−1/4 converge to Brownian motion indexed by
the CRT (we do not make the meaning of this convergence precise here). This suggests that
the scaling limit of Mn can be described in terms of the CRT equipped with Brownian labels.
However, in contrast with the discrete picture, we need to perform some identification of vertices
of the CRT. Let us explain this. Writing again c0, . . . , c2n−1 for the sequence of corners of the
tree τn, we note that for i < j, the corner ci is connected to the corner cj by an edge of Mn as
soon as

`cj = `ci − 1 and `ck ≥ `ci for every k ∈ {i, i+ 1, . . . , j − 1}.

The point is now that, even for large values of n, this property will hold for certain pairs (i, j)
such that j − i is of order n. Because of the rescaling of the graph distance by n−1/4, which
informally implies that two adjacent vertices are identified in the scaling limit, this means that
certain pairs of distinct points of the CRT must be glued together.

Finally, a tightness argument relying on the bound (7) can be used to verify that sequential
limits of (V (Mn), n−1/4dMn

gr ) exist in the Gromov-Hausdorff sense, and are represented as quo-
tient spaces of the CRT (equipped with Brownian labels) for a certain pseudo-metric D. The
discrete bound (7) implies that the pseudo-metric D satisfies D ≤ D◦, where D◦ is defined in (1).
It immediately follows that D must be bounded by the right-hand side of (3). The remaining
part of the argument, which unfortunately is much harder, is to verify that (3) indeed holds.

5 Infinite-volume models and the Brownian plane
The random planar maps discussed in the preceding sections are finite (random) graphs em-
bedded in the sphere. It turns out that one can also define infinite random lattices that are
limits in a certain sense of uniformly distributed triangulations or quadrangulations with a fixed
number of faces (one could consider more general planar maps, see in particular [62]). A pi-
oneering work of Angel and Schramm [8], which (together with the companion paper [7] and
the Chassaing-Schaeffer paper [23]) motivated much of the subsequent research about random
planar maps, introduced the so-called uniform infinite planar triangulation or UIPT as the local
limit of uniformly distributed triangulations with a fixed number of faces — in fact, Angel and
Schramm considered “type II triangulations” where self-loops are not allowed, but the analogous
construction for general triangulations can be found in [62]. Let us present the analog of the
Angel-Schramm construction for quadrangulations, which is due to Krikun [38].

If M is a rooted planar map with root vertex ρ, and r ≥ 1 is an integer, the ball of radius
r in M , which is denoted by Br(M), is the rooted planar map obtained by keeping only those
faces of M that are incident to a vertex whose graph distance from ρ is at most r−1. See Fig. 3
for an illustration in the case of a quadrangulation. This definition of balls can be extended to
infinite (rooted) planar lattices, meaning infinite (rooted) connected graphs properly embedded
in the plane.

For every n ≥ 1, let Qn be uniformly distributed over the set M4
n of all rooted quadrangu-

lations with n faces. Then one proves [38] that there exists an infinite random rooted planar
lattice Q∞ such that, for every integer r ≥ 1 and for every rooted planar map M , we have

P(Br(Qn) = M) −→
n→∞

P(Br(Q∞) = M).

The infinite random lattice Q∞ is called the uniform infinite planar quadrangulation or UIPQ.
It is the local limit of Qn as n → ∞, meaning that the distribution of what one sees in Qn
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ρ

Figure 3: A large quadrangulation Q near its root vertex ρ and in grey the ball B2(Q).

in a fixed neighborhood of the root vertex “stabilizes” when n → ∞ to the distribution of the
corresponding neighborhood of the root vertex in Q∞. We emphasize that this convergence
is very different from the Gromov-Hausdorff convergence in Theorem 1 (which also dealt with
uniformly distributed quadrangulations): here there is no rescaling of the graph distance, and
the limit is an infinite random lattice instead of a random compact metric space. Both the
Krikun paper [38] and the Angel-Schramm work [8] for triangulations relied on enumeration
techniques, but a different approach to the UIPQ based on bijections with labeled trees was
proposed by Chassaing and Durhuus [21] (the equivalence between this approach and Krikun’s
one was later established by Ménard [52]). A simple construction of the UIPQ, relying on the
version of Schaeffer’s bijection presented in Section 4.1, can be found in [27].

The UIPQ is an infinite-volume limit of finite quadrangulations. In the same way, one may
ask about the existence of an infinite-volume version of the Brownian map. This is the Brownian
plane, which appears in the following theorem as a scaling limit for the UIPQ. Before stating
this theorem, recall that a metric space is called boundedly compact if every closed bounded set
is compact. Write dQ∞gr for the graph distance on the vertex set V (Q∞), and view (V (Q∞), dQ∞gr )
as a pointed metric space, where the distinguished point is the root vertex.

Theorem 8 ([24]). There exists a random boundedly compact pointed metric space (P, D∞)
such that

(V (Q∞), λdQ∞gr ) (d)−→
λ→0

(P, D∞),

where the convergence holds in distribution in the local Gromov-Hausdorff sense.

The local Gromov-Hausdorff convergence (in distribution) means that, for every real r > 0,
the closed ball of radius r centered at the distinguished point of V (Q∞) converges (in distribu-
tion) to the same ball centered at the distinguished point in the limiting space P, in the sense of
the Gromov-Hausdorff distance for compact spaces. Just like the Brownian map, the Brownian
plane is believed to be a universal object, and in fact a version of the preceding theorem for the
UIPT has been proved by Budzinski [19] with the same limiting space.
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We refer to [24] for the construction of the Brownian plane, which is a continuous analog
of the construction of the UIPQ in [27] (a slightly different approach to the Brownian plane is
given in [25]). The construction of [24] is very similar to the construction of the Brownian map
in Section 3. The key ingredient is now Brownian motion indexed by the infinite Brownian tree,
which can be understood as the Brownian tree conditioned on non-extinction.

One may obtain the Brownian plane as a limiting object in a variety of different ways. For
instance, starting from the Brownian map (m∞, d∞) of Theorem 1 and viewing m∞ as a pointed
space with distinguished point x∗ (cf. the end of Section 3.3), one checks that (P, D∞) is the
limit of (m∞, λd∞) when λ → ∞, in the local Gromov-Hausdorff sense. In the terminology of
[20], one may say that the Brownian plane is the tangent cone (in distribution) of the Brownian
map at x∗. Alternatively one can start from the uniformly distributed quadrangulation Qn and
scale the distance by a factor εn tending to 0 less fast than n−1/4. Fig. 4 gives a diagram taken
from [24] that summarizes these convergences in distribution, together with those of Theorem 1
and 8.

Uniform Brownian map

(P , D∞) Brownian plane

scaling ·n−1/4

scaling ·λ→ 0

local local
scaling ·εn >> n−1/4

(Uniform infinite

·λ→∞

Quadrangulations

UIPQ

planar quadrangulation)

(Qn, d
Qn
gr )

(Q∞, d
Q∞
gr )

(m∞, d∞)

Figure 4: Convergence to the Brownian plane.

In a way similar to Theorem 3, the Brownian plane is homeomorphic to the usual plane.
On the other hand, the Brownian plane shares the same local properties as the Brownian map
(in fact in a strong sense, since one can couple the Brownian plane and the Brownian map
so that the respective balls of sufficiently small radius centered at the distinguished point are
isometric, see [24]). In particular, the Hausdorff dimension of the Brownian plane is also equal
to 4. Furthermore, the Brownian plane enjoys an additional property of scaling invariance: for
every λ > 0, the space (P, λD∞) has the same distribution as (P, D∞). This makes certain
calculations more tractable in the Brownian plane than in the Brownian map: see [25] for several
remarkable distributions related to the Brownian plane.

6 Planar maps with a boundary and Brownian disks
In this section we introduce Brownian disks as scaling limits of quadrangulations with a bound-
ary. Brownian disks are models of random geometry which unlike the Brownian map are homeo-
morphic to the closed disk. Nonetheless, Brownian disks are very closely related to the Brownian
map, and, as we will discuss later, various subsets of the Brownian map can be identified as
Brownian disks.

Let us start with a basic definition. Recall that the root face of a rooted planar map is the
face lying to the left of the root edge.

Definition 7. A quadrangulation with a (general) boundary is a rooted planar map Q such that
all faces but the root face have degree 4. The root face is also called the outer face and the other
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faces are called inner faces. The degree of the outer face, which is an even integer, is called the
boundary size or the perimeter of Q.

Figure 5: A quadrangulation with a boundary of size 14.

See Fig. 5 for an example. One could also consider p-angulations with a boundary (in
particular triangulations with a boundary) but for the sake of simplicity we restrict our attention
to quadrangulations.

For every integer k ≥ 1, we denote the set of all pointed quadrangulations with a boundary of
size 2k by Q∂,k. For every integer n ≥ 0, the subset of Q∂,k consisting of those quadrangulations
Q that have n inner faces is denoted by Q∂,k

n . Then, for every k ≥ 1, there is a constant bk > 0
such that

#Q∂,k
n ∼

n→∞
bk 12n n−5/2.

See formula (4) in [28].
A random variable Bk with values in Q∂,k is called a Boltzmann quadrangulation with a

boundary of size 2k if, for every integer n ≥ 0 and every Q ∈ Q∂,k
n ,

P(Bk = Q) = b̃k 12−n,

where b̃k > 0 is the appropriate normalizing constant.
The following result, which is analogous to Theorem 1, is a special case of [16, Theorem 8].

Theorem 9. For every integer k ≥ 1, let Bk be a Boltzmann quadrangulation with a boundary
of size 2k. Then, (

V (Bk),
√

3/2 k−1/2 dBkgr

) (d)−→
k→∞

(D, D∂)

where the convergence holds in distribution for the Gromov-Hausdorff topology. The limiting
random compact metric space (D, D∂) is called the free Brownian disk with perimeter 1.

The factor
√

3/2 in the convergence of the theorem is present only to allow a simpler de-
scription of the limit in the next section.

In contrast with Theorem 1, we notice that the number of faces of Bk is not fixed, but
only its perimeter. One can verify that the number of faces of Bk is typically of order k2, and
so the scaling factor k−1/2 in Theorem 9 corresponds to the factor n−1/4 in Theorem 1. One
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can prove versions of Theorem 9 for quadrangulations where both the boundary size and the
volume (number of faces) are fixed and grow to infinity simultaneously in such a way that the
volume stays proportional to the square of the boundary size: This leads to the definition of
Brownian disks with given perimeter and volume. See [9] for a discussion of all possible scaling
limits of quadrangulations with a boundary, and [33] for an analog of Theorem 9 in the case of
quadrangulations with a simple boundary.

For every a > 0, the free Brownian disk with perimeter a may be defined as the random
metric space (D,

√
aD∂).

One proves [14] that the Brownian disk is homeomorphic to the closed unit disk, and this
makes it possible to define the boundary ∂D as the set of all points in D that have no neighbor-
hood homeomorphic to the open unit disk.

7 Excursion theory for Brownian motion indexed by the Brow-
nian tree

In this section, which is mostly taken from [2], we discuss an excursion theory for Brownian
motion indexed by the Brownian tree. An important motivation is to derive a construction of
Brownian disks which is much analogous to the construction of the Brownian map explained
in Section 3. However, we believe that this excursion theory is interesting in its own and
should have many other applications. There is of course a strong analogy with the classical Itô
theory [36] but also important differences due to the fact that the parameter set is a tree, and
so connected components of the complement of the zero set of Brownian motion are R-trees
instead of intervals in the classical setting.

Recall from Definition 5 the σ-finite measure N0(dω) on the space of snake trajectories with
initial point 0, and the notation Ws(ω) = ωs, ζs(ω) = ζ(ωs) for s ≥ 0, and σ(ω) = sup{s ≥
0 : ζs 6= 0}. The “Brownian tree” Tζ is the tree coded by the function (ζs)s≥0 as explained in
Section 3.1, and we use the notation Za = Ŵs if a = pζ(s), where pζ stands for the canonical
projection from R+ onto Tζ . The collection (Za)a∈Tζ is thus our Brownian motion indexed by
the Brownian tree.

In a way very similar to classical excursion theory, our aim is to describe the process Z
restricted to a connected component of {b ∈ Tζ : Zb 6= 0}. To this end we first introduce the
notion of an excursion debut. We say that a ∈ Tζ is an excursion debut if

(i) Za = 0;

(ii) a has a strict descendant a′ such that Zb 6= 0 for every b ∈]]a, a′]].

In (ii), we use the obvious notation ]]a, a′]] = [[a, a′]]\{a}. We then observe that connected
components of {b ∈ Tζ : Zb 6= 0} are in one-to-one correspondence with excursion debuts:
The connected component Ca associated with an excursion debut a is just the set of all strict
descendants a′ of a such that the property Zb 6= 0 for every b ∈]]a, a′]] holds.

We will now explain how the values of Z on a given connected component can be represented
by a snake trajectory. So let us fix an excursion debut a. The fact that a has strict descendants
implies that there are exactly two times u < v such that pζ(u) = pζ(v) = a (there could be
three such times if a were a branching point of Tζ , but this case is excluded because branching
points have nonzero labels). Recall that Wu = Wv is called the historical path of a. We note
that the descendants of a are exactly the points pζ(s) for s ∈ [u, v]. We can then define a snake
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Figure 6: A schematic representation of excursions. The right side shows the tree Tζ ,
and the parts of the tree inside the dotted lines are a few connected components of the
set {a ∈ Tζ : Za 6= 0}. The left side shows the values of Za for a ∈ Tζ , or equivalently
the paths Ws which form a “tree of Brownian paths”, and the parts inside the dashed
lines are a few excursions away from 0.

trajectory W̃ (a) = (W̃ (a)
s )s≥0 in S0, which describes the labels of descendants of a, by setting for

every s ≥ 0,

W̃ (a)
s (t) := W(u+s)∧v(ζu + t) , for 0 ≤ t ≤ ζ̃(a)

s := ζ(u+s)∧v − ζu.

In fact we are not interested in all descendants of a, but only in those that lie in the associated
connected component Ca. For this reason, we introduce the time change

η(a)
s := inf

{
r ≥ 0 :

∫ r

0
dt1{τ∗0 (W̃ (a)

t )≥ζ̃(a)
t }

> s
}
,

where we use the notation τ∗0 (w) = inf{t ∈ (0, ζ(w)] : w(t) = 0} for w ∈ W, with the usual
convention inf ∅ = +∞. The effect of this time change will be to disregard the paths W̃ (a)

s that
return to 0 and then survive for a positive amount of time. Setting for every s ≥ 0,

W (a)
s := W̃

(a)
η

(a)
s

defines another snake trajectory in S0, which accounts for the labels on the connected component
Ca. We sometimes call W (a) the excursion associated with the excursion debut a.

Let (ai)i∈I be the (countable) collection of all excursion debuts. For every i ∈ I, we write li
for the total local time at 0 accumulated by the historical path of ai (this makes sense because
historical paths behave like one-dimensional Brownian paths), and we note that li is also the
total local time at 0 for the historical path of any point in the component Cai .
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Theorem 10 ([2]). There exists a σ-finite measure M0 on S0 such that, for any nonnegative
measurable function Φ on R+ × S0, we have

N0
(∑
i∈I

Φ(li,W (ai))
)

=
∫ ∞

0
d`M0

(
Φ(`, ·)

)
.

For symmetry reasons, we may write

M0 = 1
2
(
N∗0 + Ň∗0

)
where N∗0 is supported on nonnegative snake trajectories, and Ň∗0 is the push forward of N∗0 under
the mapping ω 7→ −ω. Under N∗0, the paths Ws form a “tree of Brownian paths” starting from
0, which take positive values until the first time when they return to 0 (if they do return to 0)
and are stopped at that time if not earlier. See Fig. 7 for a schematic illustration.

t

Ws(t)

Figure 7: A schematic representation of the paths Ws under N∗0. The quantity Z∗0
measures the “number” of circled points corresponding to returns of certain paths Ws

to 0.

Theorem 10 provides a first-moment formula for the collection of excursions (W (ai))i∈I ,
but, in contrast with the classical excursion theory, this result does not say anything about the
independence of these excursions. To discuss independence properties, we first need to introduce
the “boundary size” of an excursion, which roughly speaking measures the quantity of paths Ws

that return to 0.

Proposition 11. The limit

Z∗0 := lim
ε→0

1
ε2

∫ σ

0
1{0<|Ŵs|<ε}

ds

exists M0 a.e.

Using scaling arguments, it is not hard to define the conditional probability measures M0(· |
Z∗0 = z) for every z > 0.
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In order to state the main result of this section, we still need to introduce a process (Λr)r>0
defined under the excursion measure N0, such that, for every r > 0, Λr “counts the number” of
pathsWs that accumulate a total local time r at 0 and are stopped when they have accumulated
that amount of local time. The precise definition of Λr fits in the general framework of exit
measures as presented in [39, Chapter V], but can also be given via the following approximation:

Λr := lim
ε→0

1
ε

∫ σ

0
1{χr(Ws)<ζs<χr(Ws)+ε}ds , N0 a.e.

where χr(Ws) = inf{t ≥ 0 : L0
t (Ws) > r}, if (L0

t (Ws))0≤t≤ζs denotes the local time at 0 of the
path Ws.

Thanks to the special Markov property of the Brownian snake (see the appendix of [43]),
one can prove that the process (Λr)r>0 is Markovian under N0 (this makes sense even though
N0 is an infinite measure because N0(Λr 6= 0) < ∞ for every r > 0) with the transition kernels
of the continuous-state branching process with branching mechanism ψ(u) =

√
8/3u3/2. In

particular, (Λr)r>0 has a càdlàg modification with only positive jumps, which we consider in the
next statement.

Recall that li denotes the total local time at 0 accumulated by the historical path of ai.

Theorem 12 ([2]). The numbers li, i ∈ I, are exactly the jump times of the process (Λr)r>0.
Furthermore, conditionally on the process (Λr)r>0, the excursions W (ai), i ∈ I, are independent
and, for every j ∈ I, the conditional distribution of W (aj) is M0(· | Z∗0 = ∆Λlj ).

In particular, the boundary size of the excursion W (aj) is ∆Λlj .
In the applications developed below, we will be interested mainly in positive excursions and

in the measure N∗0, which we call the positive Brownian snake excursion measure. As in the case
of M0 we can define the conditional probability measures

N∗,z0 := N∗0(· | Z∗0 = z)

for every z > 0.
Interestingly, a number of explicit distributions can be computed explicitly under N∗0. In

particular the joint distribution of the pair (Z∗0 , σ) (boundary size and volume) under N∗0 has a
density given by

f(z, s) =
√

3
2π
√
z s−5/2 exp

(
− z2

2s
)
.

Consequently, for every fixed z > 0, the density of σ under N∗,z0 is

gz(s) = 1√
2π

z3 s−5/2 exp
(
− z2

2s
)
.

The latter density also appears as the density of the asymptotic distribution of the rescaled
volume (number of faces) of a Boltzmann quadrangulation with perimeter 2k, when k → ∞.
This will be explained by the results of the next section.

In the classical setting of excursions away from 0 for a standard linear Brownian motion
starting from 0, it is well known that the process can be reconstructed by concatenating the
different excursions (some care is required since there are infinitely many excursions on any
interval [0, t], t > 0). In our setting of a tree-indexed process, things are more complicated since
excursions are no longer ordered linearly, but have a certain genealogical structure induced by
the genealogy of their debuts: In the example of Fig. 6, the excursion C1 is an ancestor of both
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C3 and C4, but C3 is not ancestor of C4. Still this genealogical structure can be described in the
following way.

For every a, a′ ∈ Tζ , we let δ(a, a′) be the total local time at 0 accumulated by the process
Z along the line segment [[a, a′]] of the tree Tζ . This makes sense since we know that Z evolves
like a linear Brownian motion along any segment of the tree. Then δ(·, ·) is a pseudo-metric
on Tζ , and we can define the associated equivalence relation by setting a ' a′ if and only if
δ(a, a′) = 0. Obviously a ' a′ holds if a and a′ belong to the same connected component of
{b ∈ Tζ : Zb 6= 0} (because then Z does not vanish on [[a, a′]]). The quotient space Tζ/' can
thus be seen as obtained from Tζ by gluing each excursion component into a single point. It
turns out [43] that this quotient space has a remarkable probabilistic structure.

Theorem 13 ([43]). Under N0, the quotient space Tζ/' equipped with the distance induced by
δ is a stable Lévy tree with index 3/2.

Figure 8: A simulation of the stable tree with index 3/2 (simulation: I. Kortchemski).

We refer to [29] for the definition and main properties of Lévy trees (note that these trees
are typically defined under an infinite measure). See Fig. 8 for a simulation. The stable Lévy
tree appearing in the theorem has infinitely many points of infinite multiplicity, and to each
such point one can assign a “mass” corresponding informally to the degree of the point in the
tree. Then one can check that points of infinite multiplicity of the tree Tζ/ ' are in one-to-
one correspondence with excursions of (Za)a∈Tζ , and that the mass of every point of infinite
multiplicity coincides with the boundary size of the associated excursion.

The previous lines then suggest the following possible “reconstruction” method (which we
will not attempt to make rigorous here). Starting from a stable Lévy tree with index 3/2, asso-
ciate independently with each point a of infinite multiplicity a snake trajectory W a distributed
according to M0(· | Z∗0 = ma), where ma is the mass of a, then “glue” at the location of a the
genealogical tree of the snake trajectory W a, with the corresponding labels inherited from W a.
The resulting random R-tree equipped with labels should be the Brownian tree equipped with
Brownian labels.
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8 Constructing Brownian disks from the positive Brownian snake
excursion measure

The results of this section are taken from [44]. The first naive idea to construct a free Brownian
disk is to imitate the construction of Section 3.3, replacing the measure N0 by N∗0. This does not
give the desired result, but yields another object of interest, namely the (free) Brownian disk
with glued boundary.

Recall our notation (D, D∂) for the free Brownian disk with perimeter 1, and ∂D for the
boundary of D. We define a pseudo-metric on D by setting, for every x, y ∈ D,

D†(x, y) = min{D∂(x, y), D∂(x, ∂D) +D∂(y, ∂D)}.

Clearly D†(x, y) = 0 if and only if x = y, or both x and y belong to ∂D. Write D† for the set
obtained from D by identifying all points of the boundary ∂D to a single point. Then D† induces
a metric on D†, which we still denote by D†. The compact metric space (D†, D†) is called the
free Brownian disk with perimeter 1 and glued boundary. The case of a perimeter equal to z is
treated analogously.

Proposition 14. The random metric space (M, D) defined via the construction of Section 3.3
from a snake trajectory ω distributed according to N∗,z0 is a free Brownian disk with perimeter z
and glued boundary.

The problem is then to recover the free Brownian disk from the same object with glued
boundary. This can indeed be achieved by a slight modification of the construction of Section
3.3.

From now on, we argue under the measure N∗,z0 (dω) for some fixed z > 0. Recalling that
Tζ denotes the genealogical tree of the snake trajectory ω, we use the same notation Za for
the “labels” on Tζ (Za = Ŵs if a = pζ(s)). In contrast with the case of N0, labels are now
nonnegative reals, and we define the “boundary” ∂Tζ by

∂Tζ := {a ∈ Tζ : Za = 0}.

Recalling the definition of D◦ in (1), we set, for every a, b ∈ Tζ\∂Tζ ,

∆◦(a, b) =

 D◦(a, b) if max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc
)
> 0,

∞ otherwise.

Roughly speaking, the condition in the first line of the last display means that we can go from
a to b “around” the tree Tζ without visiting a vertex of ∂Tζ . We then define ∆(a, b) for every
a, b ∈ Tζ\∂Tζ by the exact analog of formula (3):

∆(a, b) = inf
{ k∑
i=1

∆◦(ai−1, ai)
}
,

where the infimum is over all choices of the integer k ≥ 1 and of the elements a0, a1, . . . , ak of
Tζ\∂Tζ such that a0 = a and ak = b. One easily verifies that the mapping (a, b) 7→ ∆(a, b) takes
finite values and is continuous on (Tζ\∂Tζ)× (Tζ\∂Tζ).
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Theorem 15. With probability one under N∗,z0 , the function (a, b) 7→ ∆(a, b) has a continuous
extension to Tζ ×Tζ , which is a pseudo-metric on Tζ . We let Θ stand for the associated quotient
space, and we equip Θ with the induced metric, which is still denoted by ∆(a, b). Then, the
random metric space (Θ,∆) is a free Brownian disk with perimeter z under N∗,z0 , and its boundary
∂Θ is the image of ∂Tζ under the canonical projection from Tζ onto Θ. Furthermore, if x ∈ Θ
is the image of a ∈ Tζ under the canonical projection, we have

∆(x, ∂Θ) = Za.

We note that we can define a volume measure V(dx) on Θ as the image of the volume measure
on Tζ under the canonical projection. In particular the total mass of V is V(Θ) = σ (recall
our notation σ for the duration of the snake trajectory ω, which is also the total mass of the
volume measure on Tζ). Hence we may define the Brownian disk with perimeter z and volume
v as the random metric space (Θ,∆) under the conditional probability measure N∗,z0 (· | σ = v).
This is consistent with the construction of [14, 16] using scaling limits of quadrangulations with
a boundary with fixed perimeter and volume.

A nice feature of the construction of Theorem 15 (in contrast with the previous constructions
in [14, 16]) is the fact that labels Za now correspond to distances from the boundary. This also
makes it possible to construct a natural “length measure” on the boundary. The following
proposition is closely related to the approximation of Z∗0 in Proposition 11.

Proposition 16. Almost surely under N∗,z0 , there exists a finite measure ν on ∂Θ with total
mass z, such that, for every bounded continuous function ϕ on Θ,

〈ν, ϕ〉 = lim
ε→0

1
ε2

∫
Θ

V(dx)ϕ(x) 1{∆(x,∂Θ)<ε}.

We will now exhibit certain particular subsets of the Brownian map that are Brownian disks.
So we now argue under the measure N(1)

0 (dω) and consider the metric space (M, D) constructed
in Section 3.3. Recall from the end of this section that M has a distinguished point x∗ such
that distances from x∗ exactly correspond to the labels Zx up to a shift (see (5) above). We will
discuss properties of the connected components of the complement of balls centered at x∗. At
this point, we should mention that the point x∗ does not play a special role, and that the re-
rooting invariance properties of the Brownian map [41, Section 8] show that the same properties
hold if x∗ is replaced by a point chosen according to the volume measure on the Brownian map.
We recall that this volume measure, which is denoted by v(dx), is the push forward of the
volume measure on Tζ , and that v is a probability measure under N(1)

0 (dω).
We note that the Brownian map is a length space (as a Gromov-Hausdorff limit of length

spaces) and that, if O is an open subset ofM, we can define an intrinsic metric DO
intr on O by

declaring that DO
intr(x, y) is the minimal length of a continuous path connecting x to y in O (see

[20, Chapter 2]).
For every z > 0 and v > 0, we let Fz,v be the distribution of the Brownian disk with perimeter

z and volume v. The following statement can be found in [44, Theorem 3] (see also [37] for a
related work).

Theorem 17. Let r > 0 and let B(x∗, r) stand for the closed ball of radius r centered at x∗ in
(M, D). Then, N(1)

0 a.s. for every connected component C ofM\B(x∗, r), the limit

|∂C| := lim
ε→0

1
ε2

∫
C

v(dx) 1{D(x,∂C)<ε} (8)
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exists and is called the boundary size of C. On the event {M\B(x∗, r) 6= ∅}, write Cr,1,Cr,2, . . .
for the connected components ofM\B(x∗, r) ranked in decreasing order of their boundary sizes.
Let Dr,j

intr be the intrinsic distance on Cr,j. Then, N(1)
0 a.s. on the event {M\B(x∗, r) 6= ∅},

for every j = 1, 2, . . ., the metric Dr,j
intr has a continuous extension to the closure Cr,j of Cr,j,

and this extension is a metric on Cr,j. Furthermore, under N(1)
0 (· | M\B(x∗, r) 6= ∅) and

conditionally on the sequence

(|∂Cr,1|,v(Cr,1)), (|∂Cr,2|,v(Cr,2)), . . .

the metric spaces (Cr,j
, Dr,j

intr), j = 1, 2, . . ., are independent Brownian disks with respective
distributions F|∂Cr,j |,v(Cr,j), j = 1, 2, . . ..

Let us briefly explain why Theorem 17 is related to the excursion theory developed in Section
7. The key point is the fact that distances from x∗ are given (up to the shift by −Z∗) by the
labels Zx. Assuming that r > −Z∗ for simplicity, it is then not too hard to verify that connected
components of the complement of B(x∗, r) correspond — via the construction presented in
Section 3 — to excursions of Brownian motion indexed by the Brownian tree above the (random)
level r + Z∗. The distribution of these excursions can be analysed thanks to Theorem 12 and
we also use Theorem 15 to relate the positive Brownian snake excursion measure to the law of
Brownian disks. There are however two significant technical difficulties, because on one hand
we have to deal with excursions above a random level, instead of level 0 in Theorem 12, and on
the other hand, we argue under N(1)

0 instead of N0 in Section 7.
Informally, Theorem 17 says that connected components of the complement of a ball centered

at a “typical point” in the Brownian map are independent Brownian disks conditionally on
their boundary sizes and volumes. A similar result [44, Theorem 18] holds for the connected
components of the complement of the Brownian net, which is a particular subset of the free
Brownian map playing an important role in the axiomatic characterization of Miller and Sheffield
[56]. At this point, we mention that we could have stated a version of Theorem 17 for the free
Brownian map, which is nicer in the sense that we do not need to condition on the volumes: We
get that the connected components of the complement of a ball centered at x∗ are independent
free Brownian disks conditionally on their perimeters. In the next section, we discuss a similar
statement for the free Brownian disk, where distances from x∗ are replaced by distances from
the boundary.

9 Slicing Brownian disks at heights
In this section, which is based on [49], we consider the random metric space (Θ,∆) defined in
Theorem 15, which is a free Brownian disk with perimeter z under the probability measure N∗,z0 .
For every x ∈ Θ, define the height of x by

H(x) = ∆(x, ∂D).

We also consider the maximal height

H∗ = max
x∈Θ

H(x).

Recall the notation V(dx) for the volume measure on Θ.
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Theorem 18. Let r > 0. Then, N∗,z0 a.s., for every connected component C of {x ∈ Θ : H(x) >
r}, the limit

|∂C| = lim
ε→0

1
ε2

∫
C

V(dx) 1{H(x)<r+ε}

exists and is called the perimeter of C. On the event {H∗ > r}, let Cr,1, Cr,2, . . . be the connected
components of {x ∈ Θ : H(x) > r} ranked in decreasing order of their perimeters. Then,
a.s. on the event {H∗ > r}, for every j = 1, 2, . . ., the intrinsic metric on Cr,j has a continuous
extension to the closure Cr,j of Cr,j, which is a metric on Cr,j, and conditionally on the perimeters
|∂C1,r|, |∂C2,r|, . . ., the resulting metric spaces Cr,1, Cr,2, . . . are independent free Brownian disks.

As explained for Theorem 17 at the end of the previous section, Theorem 18 can be derived
from the excursion theory developed in Section 7. The difficulty now comes from the fact that
we must argue under N∗,z0 instead of N0 in Section 7.

With the notation of Theorem 18, an obvious question is to describe the distribution of the
process

X(r) = (|∂C1,r|, |∂C2,r|, . . .)

giving for every r > 0 the perimeters of all connected components of {x ∈ Θ : H(x) > r} (by
convention X(r) = (0, 0, . . .) if H∗ ≤ r). We also take X(0) = (z, 0, 0, . . . ) and view (X(r))r≥0
as a random process taking values in the space of nonincreasing sequences of nonnegative real
numbers. Theorem 18 then suggests that this process enjoys properties similar to those of the
growth-fragmentation processes that have been studied recently by several authors. In fact,
Bertoin, Curien and Kortchemski [13] (see also [12] for extensions) have considered a process
analogous to X for triangulations with a boundary and showed that the scaling limit of this
process (when the boundary size tends to infinity) is a well-identified growth-fragmentation
process. Still it does not seem easy to apply the results of [13] in order to identify the distribution
of the process X, but the excursion theory of Section 7 can be used instead to compute this
distribution.

Before stating our last result, we need to recall a few basic facts about growth-fragmentation
processes (see [11] for more details). The starting ingredient is a positive self-similar Markov
process (Yt)t≥0 with only negative jumps. Suppose that Y0 = z, and view (Yt)t≥0 as the evolution
in time of the mass of an initial particle also called the Eve particle. At each time t where the
process Y has a jump, we consider that a new particle with mass −∆Yt (a child of the Eve
particle) is born, and the mass of this new particle evolves (from time t) again according to the
law of the process Y , but independently of the evolution of the mass of the Eve particle. Then
each child of the Eve particle has children at discontinuity times of its mass process, and so
on. Under suitable assumptions (see [11]), we can make sense of the process (Y(t))t≥0 giving
for every time t the sequence (in decreasing order) of masses of all particles alive at that time.
The process Y is Markovian and is called the growth-fragmentation process with Eve particle
process Y .

Theorem 19. Under N∗,z0 , the process (X(r))r≥0 is a growth-fragmentation process, which is
constructed from an Eve particle process X whose distribution starting from 1 is specified as
follows:

Xt = exp(ξτ(t)),

where
τ(t) = inf

{
u ≥ 0 :

∫ u

0
eξs/2 ds > t

}
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and ξ is the spectrally negative Lévy process such that, for every q > 0, E[exp(q ξt)] = exp(tψ(q)),
with

ψ(q) =
√

3
2π

(
− 8

3 q +
∫ 1

1/2
(xq − 1 + q(1− x)) (x(1− x))−5/2 dx

)
. (9)

Remark. The process ξ drifts to −∞ and the event {τ(t) =∞} occurs with positive probability
if t > 0: on this event, we of course make the convention that exp(ξ∞) = 0.

The expression of the process X in terms of the Lévy process ξ is a special case of the
classical Lamperti representation of a positive self-similar Markov process (here with index 1/2)
in terms of a spectrally negative Lévy process. The formula for ψ is the same as formula (1)
in [13], except for the (unimportant) multiplicative constant

√
3

2π . This should not come as a
surprise in view of preceding comments.

Although we have chosen to state them as properties of the free Brownian disk, Theorems
18 and 19 are really results about the tree-indexed Brownian motion (Za)a∈Tζ under N∗,z0 . In
particular, Theorem 19 relies on the identification of the distribution of the process giving, for
each r ≥ 0, the sequence of boundary sizes of all excursions above level r of the process (Za)a∈Tζ
under N∗,z0 . There is a striking analogy with the fragmentation process occuring when cutting the
CRT at a fixed height: Precisely, it is shown in [10] that the sequence of volumes of the connected
components of the complement of the ball of radius r centered at the root in the CRT is a self-
similar fragmentation process whose dislocation measure has the form (2π)−1/2(x(1−x))−3/2 dx,
to be compared with the measure (x(1− x))−5/2 dx appearing in formula (9).

As a consequence of Theorem 19 and known asymptotics [12, Corollary 4.5] for the distribu-
tion of the extinction time of a growth-fragmentation process, we derive the following corollary
about the tail of the distribution of the maximal height in a Brownian disk.

Corollary 20. There exist positive constants c1 and c2 such that, for every r ≥ 1,

c1 r
−6 ≤ N∗,z0 (H∗ > r) ≤ c2 r

−6.
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