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Abstract

We discuss asymptotics for large random planar maps under the assumption that
the distribution of the degree of a typical face is in the domain of attraction of a
stable distribution with index α ∈ (1, 2). When the number n of vertices of the map
tends to infinity, the asymptotic behavior of distances from a distinguished vertex
is described by a random process called the continuous distance process, which can
be constructed from a centered stable process with no negative jumps and index
α. In particular, the profile of distances in the map, rescaled by the factor n−1/2α,
converges to a random measure defined in terms of the distance process. With the
same rescaling of distances, the vertex set viewed as a metric space converges in
distribution as n → ∞, at least along suitable subsequences, towards a limiting
random compact metric space whose Hausdorff dimension is equal to 2α.

1 Introduction

The goal of the present work is to discuss the continuous limits of large random planar
maps, when the distribution of the degree of a typical face has a heavy tail. Recall that
a planar map is a proper embedding of a finite connected graph in the two-dimensional
sphere. For technical reasons, it is convenient to deal with rooted planar maps, mean-
ing that there is a distinguished oriented edge called the root edge. One is interested in
the “shape” of the graph and not in the particular embedding that is considered: More
rigorously, two rooted planar maps are identified if they correspond via an orientation-
preserving homeomorphism of the sphere. The faces of the map are the connected compo-
nents of the complement of edges, and the degree of a face counts the number of edges that
are incident to it. Large random planar graphs are of interest in particular in theoretical
physics, where they serve as models of random geometry [1].

A simple way to generate a large random planar map is to choose it uniformly at ran-
dom from the set of all rooted p-angulations with n faces (a planar map is a p-angulation
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if all faces have degree p). It is conjectured that the scaling limit of uniformly distributed
p-angulations with n faces, when n tends to infinity (or equivalently when the number of
vertices tends to infinity), does not depend on the choice of p and is given by the so-called
Brownian map. Since the pioneering work of Chassaing and Schaeffer [6], there has been
several results supporting this conjecture. Marckert and Mokkadem [22] introduced the
Brownian map and proved a weak form of the convergence of rescaled uniform quadran-
gulations towards the Brownian map. A stronger version, involving convergence of the
associated metric spaces in the sense of the Gromov-Hausdorff distance, was derived in
Le Gall [19] in the case of uniformly distributed 2p-angulations. Because the distribution
of the Brownian map has not been fully characterized, the convergence results of [19]
require extracting suitable subsequences. Proving the uniqueness of the distribution of
the Brownian map is one of the key open problems in the area.

A more general way of choosing a large planar map at random is to use Boltzmann
distributions. In this work, we restrict our attention to bipartite maps, where all face
degrees are even. Given a sequence q = (q1, q2, q3, . . .) of nonnegative real numbers and a
bipartite planar map m, the associated Boltzmann weight is

Wq(m) =
∏

f∈F (m)

qdeg(f)/2 (1)

where F (m) denotes the set of all faces of m, and deg(f) is the degree of the face f . One
can then generate a large planar map by choosing it at random in the set of all planar
maps with n vertices (or with n faces) with probability weights that are proportional to
Wq(m). Such distributions arise naturally (possibly in slightly different forms) in problems
involving statistical physics models on random maps. This is discussed in Section 8 below.

Assuming certain integrability conditions on the sequence of weights, Marckert and
Miermont [21] obtain a variety of limit theorems for large random bipartite planar maps
chosen according to these Boltzmann distributions. These results are extended in Mier-
mont [23] and Miermont and Weill [25] to the non-bipartite case, including large triangu-
lations. In all these papers, limiting distributions are described in terms of the Brownian
map. Therefore these results strongly suggest that the Brownian map should be the
universal limit of large random planar maps, under the condition that the distribution
of the degrees of faces satisfies some integrability property. Note that, even though the
distribution of the Brownian map has not been characterized, many of its properties can
be investigated in detail and have interesting consequences for typical large planar maps
– See in particular the recent papers [20] and [24].

In the present work, we consider Boltzmann distributions such that, even for large
n, a random planar map with n vertices will have “macroscopic” faces, which in some
sense will remain present in the scaling limit. This leads to a (conjectured) scaling limit
which is different from the Brownian map. In fact our limit theorems involve new random
processes that are closely related to the stable trees of [11], in contrast to the construction
of the Brownian map [22, 19], which is based on Aldous’ CRT.

Let us informally describe our main results, referring to the next sections for more
precise statements. For technical reasons, we consider planar maps that are both rooted
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and pointed (in addition to the root edge, there is a distinguished vertex denoted by
v∗). Roughly speaking, we choose the Boltzmann weights qk in (1) in such a way that
the distribution of the degree of a (typical) face is in the domain of attraction of a
stable distribution with index α ∈ (1, 2). This can be made more precise by using the
Bouttier-Di Francesco-Guitter bijection [3] between bipartite planar maps and certain
labeled trees called mobiles. A mobile is a (rooted) plane tree, where vertices at even
distance, respectively at odd distance, from the root are called white, resp. black, and
white vertices are assigned integer labels that satisfy certain simple rules – see subsection
3.1. In the Bouttier-Di Francesco-Guitter bijection, a (rooted and pointed) planar map m
corresponds to a mobile θ(m) in such a way that each face of m is associated with a black
vertex of θ(m) and each vertex of m (with the exception of the distinguished vertex v∗)
is associated with a white vertex of θ(m). Moreover, the degree of a face of m is exactly
twice the degree of the associated black vertex in the mobile θ(m) (see subsection 3.1 for
more details).

Under appropriate conditions on the sequence of weights q, formula (1) defines a
finite measure Wq on the set of all rooted and pointed planar maps. Moreover, if Pq is
the probability measure obtained by normalizing Wq, the mobile θ(m) associated with a
planar map m distributed according to Pq is a critical two-type Galton-Watson tree, with
different offspring distributions µ0 and µ1 for white and black vertices respectively, and
labels chosen uniformly over all possible assignments (see [21] and Proposition 4 below).
The distribution µ0 is always geometric, whereas µ1 has a simple expression in terms of
the weights qk.

We now come to our basic assumption: In the present work, we choose the weights qk
in such a way that µ1(k) behaves like k−α−1 when k →∞, for some α ∈ (1, 2). Recalling
that the degree of a face of m is equal to twice the degree of the associated black vertex
in the mobile θ(m), we see that, in a certain sense, the face degrees of a planar map
distributed according to Pq are independent with a common distribution that belongs to
the domain of attraction of a stable law with index α.

We equip the vertex set V (m) of a planar map m with the graph distance dgr, and
we would like to investigate the properties of this metric space when m is distributed
according to Pq and conditioned to be large. For every integer n ≥ 1, denote by Mn

a random planar map distributed according to Pq(· | #V (m) = n). Our goal is to get
information about typical distances in the metric space (V (Mn), dgr) when n is large,
and if at all possible to prove that these (suitably rescaled) metric spaces converge in
distribution as n → ∞ in the sense of the Gromov-Hausdorff distance. As a motivation
for studying the particular conditioning {#V (m) = n}, we note that our results will have
immediate applications to Boltzmann distributions on non-pointed rooted planar maps:
Just observe that a given rooted planar map with n vertices corresponds to exactly n
different rooted and pointed planar maps.

To achieve the preceding goal, we use another nice feature of the Bouttier-Di Francesco-
Guitter bijection: Up to an additive constant depending on m, the distance between v∗
and an arbitrary vertex v ∈ V (m)\{v∗} coincides with the label of the white vertex
of θ(m) associated with v. Thus, in order to understand the asymptotic behavior of
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distances from v∗ in the map Mn, it suffices to get information about labels in the mobile
θ(Mn) when n is large. To this end, we first consider the tree T (Mn) obtained by ignoring
the labels in θ(Mn). Under our basic assumption, the results of [11] can be applied to
prove that the tree T (Mn) converges in distribution, modulo a rescaling of distances
by the factor n−(1−1/α), towards the so-called stable tree with index α. The stable tree
can be defined by a suitable coding from the sample path of a centered stable Lévy
process with no negative jumps and index α, under an appropriate excursion measure.
The preceding convergence to the stable tree is however not sufficient for our purposes,
since we are primarily interested in labels. Note that, under the assumptions made in
[21] on the weight sequence q (and in particular in the case of uniformly distributed 2p-
angulations), the rescaled trees T (Mn) converge towards the CRT, and the scaling limit
of labels is described in [21] as Brownian motion indexed by the CRT, or equivalently
as the Brownian snake driven by a normalized Brownian excursion. In our “heavy tail”
setting however, the scaling limit of the labels is not Brownian motion indexed by the
stable tree, but is given by a new random process of independent interest, which we call
the continuous distance process.

Let us give an informal presentation of the distance process – A rigorous definition
can be found in Section 4 below. We view the stable tree as the genealogical tree for a
continuous population, and the distance of a vertex from the root is interpreted as its
generation in the tree. Fix a vertex a in the stable tree. Among the ancestors of a,
countably many of them, denoted by b1, b2, . . . correspond to a sudden creation of mass in
the population: Each bk has a macroscopic number δk > 0 of “children”, and one can also
consider the quantity rk ∈ [0, δk], which is the rank among these children of the one that
is an ancestor of a. The preceding description is informal in our continuous setting (there
are no children) but can be made rigorous thanks to the ideas developed in [11] and in
particular to the coding of the stable tree by a Lévy process. We then associate with each
vertex bk a Brownian bridge (Bk(t))t∈[0,δk] (starting and ending at 0) with duration δk ,
independently when k varies, and we set

D(a) =
∞∑
k=1

Bk(rk).

The resulting process D(a) when a varies in the stable tree is the continuous distance
process. As a matter of fact, since vertices of the stable trees are parametrized by the
interval [0, 1] (using the coding by a Lévy process), it is more convenient to define the
continuous distance process as a process (Dt)t∈[0,1] indexed by the interval [0, 1] (or even
by R+ when we consider a forest of trees).

Much of the technical work contained in this article is devoted to proving that the
rescaled labels in the mobile θ(Mn) converge in distribution to the continuous distance
process. The proper rescaling of labels involves the multiplicative factor n−1/2α instead of
n−1/4 in earlier work. This indicates that the typical diameter of our random planar maps
Mn is of order n1/2α rather than n1/4 in the case of maps with faces of bounded degree.
Because conditioning on the total number of vertices makes the proof more difficult, we
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first establish a version of the convergence of labels for a forest of independent mobiles
having the distribution of θ(m) under Pq. The proof of this result (Theorem 1) is given in
Section 5. We then derive the desired convergence for the conditioned objects in Section
6.

Finally, we obtain asymptotic results for the planar maps Mn in Section 7. Theorem
4 gives precise information about the profile of distances from the distinguished vertex v∗
in Mn. Precisely, let ρ

(n)
Mn

be the measure on R+ defined by∫
ρ

(n)
Mn

(dx)ϕ(x) =
1

n

∑
v∈V (Mn)

ϕ(n−1/2α dgr(v∗, v)).

Then, the sequence of random measures ρ
(n)
Mn

converges in distribution towards the measure

ρ(∞) defined by ∫
ρ(∞)(dx)ϕ(x) =

∫ 1

0

dt ϕ(c(Dt −D)),

where c > 0 is a constant depending on the sequence of weights, and D = mint∈[0,1] Dt.
We also investigate the convergence of the suitably rescaled metric spaces V (Mn)

in the Gromov-Hausdorff sense. Theorem 5 shows that, at least along a subsequence,
the random metric spaces (V (Mn), n−1/2αdgr) converge in distribution towards a limiting
random compact metric space. Furthermore, the Hausdorff dimension of this limiting
space is a.s. equal to 2α, which should be compared with the value 4 for the dimension of
the Brownian map [19]. The fact that the Hausdorff dimension is bounded above by 2α
follows from Hölder continuity properties of the distance process that are established in
Section 4. The proof of the corresponding lower bound is more involved and depends on
some properties of the stable tree and its coding by Lévy processes, which are investigated
in [11]. Similarly as in the case of the convergence to the Brownian map, the extraction of a
subsequence in Theorem 5 is needed because the limiting distribution is not characterized.

The paper is organized as follows. Section 2 introduces Boltzmann distributions on
planar maps and formulates our basic assumption on the sequence of weights. Section 3
recalls the Bouttier-Di Francesco-Guitter bijection and the key result giving the distribu-
tion of the random mobile associated with a planar map under the Boltzmann distribution
(Proposition 4). Section 3 also introduces several discrete functions coding mobiles, in
terms of which most of the subsequent limit theorems are stated. Section 4 is devoted to
the definition of the continuous distance process and to its Hölder continuity properties.
In Section 5, we address the problem of the convergence of the discrete label process of a
forest of random mobiles towards the continuous distance process of Section 4. We then
deduce a similar convergence for labels in a single random mobile conditioned to be large
in Section 6. Section 7 deals with the existence of scaling limits of large random planar
maps and the calculation of the Hausdorff dimension of limiting spaces. Finally, Section
8 discusses some motivation coming from theoretical physics.

Notation. The symbols K,K ′, K1, K
′
1, K2, K

′
2, . . . will stand for positive constants

that may depend on the choice of the weight sequence q = (q1, q2, . . .) but unless otherwise
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indicated do not depend on other quantities. The value of these constants may vary from
one proof to another. The notation C(R) stands for the space of all continuous functions
from R+ into R, and the notation D(Rd) stands for the Skorokhod space of all càdlàg
functions from R+ into Rd. If X = (Xt)t≥0 is a process with càdlàg paths, Xs− denotes
the left limit of X at s, for every s > 0. We denote the set of all finite measures on R+

by Mf (R+) and this set is equipped with the usual weak topology. If (ak) and (bk) are
two sequences of positive numbers, the notation ak ∼ bk (as k → ∞) means that the
ratio ak/bk tends to 1 as k → ∞. Unless otherwise indicated, all random variables and
processes are defined on a probability space (Ω,F ,P).

2 Critical Boltzmann laws on bipartite planar maps

2.1 Boltzmann distributions

A rooted and pointed bipartite map is a pair (m, v∗), where m is a rooted bipartite
planar map, and v∗ is a distinguished vertex of m. As in Section 1 above, the graph
distance on the vertex set V (m) is denoted by dgr, and we let e−, e+ be respectively the
origin and the target of the root edge of m. By the bipartite nature of m, the quantities
dgr(e+, v∗), dgr(e−, v∗) differ. Moreover, this difference is at most 1 in absolute value since
e+ and e− are linked by an edge. We say that (m, v∗) is positive if

dgr(e+, v∗) = dgr(e−, v∗) + 1 .

It is called negative otherwise, i.e. if dgr(e+, v∗) = dgr(e−, v∗)− 1.
We letM∗

+ be the set of all rooted and pointed bipartite planar maps that are positive.
In the sequel, the mention of v∗ will usually be implicit, so that we will simply denote
the generic element of M∗

+ by m. For our purposes, it is useful to add an element † to
M∗

+, which can be seen roughly as the vertex-map with no edge and one single vertex v∗
“bounding” a single face of degree 0.

Let q = (q1, q2, . . .) be a sequence of nonnegative real numbers. For every m ∈
M∗

+ \ {†}, set

Wq(m) =
∏

f∈F (m)

qdeg(f)/2

where F (m) denotes the set of all faces of m. By convention, we set Wq(†) = 1. This
defines a σ-finite measure on M∗

+, whose total mass is

Zq = Wq(M∗
+) ∈ [1,∞] .

We say that q is admissible if Zq < ∞, in which case we can define Pq = Z−1
q Wq as the

probability measure obtained by normalizing Wq. The measure Pq is called the Boltzmann
distribution on M∗

+ with weight sequence q.
Following [21], we have the following simple criterion for the admissibility of q. Intro-

duce the function

fq(x) =
∞∑
k=1

N(k)qk x
k−1 , x ≥ 0 (2)
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where

N(k) =

(
2k − 1

k − 1

)
.

Let Rq ≥ 0 be the radius of convergence of this power series. Note that by monotone
convergence, the quantity fq(Rq) = fq(Rq−) ∈ [0,∞] exists, as well as f ′q(Rq) = f ′q(Rq−).

Proposition 1 [21] The sequence q is admissible if and only if the equation

fq(x) = 1− 1/x , x ≥ 1 (3)

has a solution. If this holds, then the smallest such solution equals Zq.

On the interval [0, Rq), the function fq is convex, so that the equation (3) has at
most two solutions. Let us make a short informal discussion, inspired from [21]. For a
“typical” admissible sequence q, the graphs of fq and of the function x 7→ 1 − 1/x will
cross at x = Zq without being tangent. In this case, the law of the number of vertices of
a Pq-distributed random map will have an exponential tail. An admissible sequence q is
called critical, if the graphs are tangent at Zq, i.e.

Z2
q f
′
q(Zq) = 1 . (4)

For critical sequences, the law of the number of vertices of a Pq-distributed random map
may have a tail heavier than exponential. In the case where Rq > Zq, [21] shows that this
tail follows a power law with exponent −1/2. However, the law of the degree of a typical
face in such a random map will have an exponential tail.

In the present paper we will be interested in the “extreme” cases where q is a critical
sequence such that Zq = Rq. We will show that in a number of these cases, the degree of
a typical face in a Pq-distributed random map also has a heavy tail distribution.

2.2 Choosing the Boltzmann weights

We start from a sequence q◦ := (q◦k)k∈N of nonnegative real numbers, such that

q◦k ∼
k→∞

k−a , (5)

for some real number a > 3/2. In agreement with (2), we set

f◦(x) = fq◦(x) =
∞∑
k=1

N(k)q◦k x
k−1

for every x ≥ 0. By Stirling’s formula, we have

N(k) ∼
k→∞

22k−1

√
πk

,

so that the radius of convergence of the series defining f◦ is 1/4. Furthermore the condition
a > 3/2 guarantees that f◦(1/4) and f ′◦(1/4) are (well-defined and) finite.
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Proposition 2 Set

c =
4

4f◦(1/4) + f ′◦(1/4)
, β =

f ′◦(1/4)

4f◦(1/4) + f ′◦(1/4)

and define a sequence q = (qk)k∈N by setting

qk = c(β/4)k−1 q◦k. (6)

Then the sequence q is both admissible and critical, and Zq = Rq = β−1.

Remark. As the proof will show, the choice given for the constants c and β is the only
one for which the conclusion of the proposition holds.

Proof. Consider a sequence q = (qk)k∈N defined as in the proposition, with an arbitrary
choice of the positive constants c and β. If fq is defined as in (2), it is immediate that

fq(x) = c f◦(βx/4).

Hence Rq = β−1. Assume for the moment that the sequence q is admissible and Zq = Rq.
By Proposition 1, we have fq(β

−1) = 1− β, or equivalently

cf◦(1/4) = 1− β. (7)

Furthermore, the criticality of q will hold if and only if f ′q(β
−1) = β2, or equivalently

cf ′◦(1/4) = 4β. (8)

Conversely, if (7) and (8) both hold, the sequence q is admissible by Proposition 1, then
the curves x → fq(x) and x → 1 − 1/x are tangent at x = β−1, and a simple convexity
argument shows that β−1 is the unique solution of (3), so that Zq = β−1 = Rq by
Proposition 1 again.

We conclude that the conditions (7) and (8) are necessary and sufficient for the con-
clusion of the proposition to hold. The desired result follows. �

We now introduce our basic assumption, making a further restriction on the value of
the parameter a.

Assumption (A). The sequence q is of the form given in Proposition 2, with a
sequence q◦ satisfying (5) for some a ∈ (3/2, 5/2). We set α := a−1/2 ∈ (1, 2).

This assumption will be in force in the remaining part of this work, with the exception
of the beginning of subsection 3.2 (including Proposition 4), where we consider a general
admissible sequence q.

Many of the subsequent asymptotic results will be written in terms of the constant β,
which lies in the interval (0, 1), and the constant c0 > 0 defined by

c0 =
( 2cΓ(2− α)

α(α− 1)β
√
π

)1/α

. (9)

The reason for introducing this other constant will become clearer in subsection 3.2.
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3 Coding maps with mobiles

3.1 The Bouttier-Di Francesco-Guitter bijection

Following [3], we now recall how bipartite planar maps can be coded by certain labeled
trees called mobiles.

By definition, a plane tree T is a finite subset of the set

U =
∞⋃
n≥0

Nn (10)

of all finite sequences of positive integers (including the empty sequence ∅), which satisfies
three obvious conditions. First ∅ ∈ T . Then, for every v = (u1, . . . , uk) ∈ T with k ≥ 1,
the sequence (u1, . . . , uk−1) (the “parent” of v) also belongs to T . Finally, for every
v = (u1, . . . , uk) ∈ T , there exists an integer kv(T ) ≥ 0 (the “number of children” of v)
such that vj := (u1, . . . , uk, j) belongs to T if and only if 1 ≤ j ≤ kv(T ). The elements of
T are called vertices. The generation of a vertex v = (u1, . . . , uk) is denoted by |v| = k.
The notions of an ancestor and a descendant in the tree T are defined in an obvious way.

For our purposes, vertices v such that |v| is even will be called white vertices, and
vertices v such that |v| is odd will be called black vertices. We denote by T ◦, respectively
T •, the set of all white, resp. black, vertices of T .

A (rooted) mobile is a pair θ = (T , (`(v))v∈T ◦) that consists of a plane tree and a
collection of integer labels assigned to the white vertices of T , such that the following
properties hold:

(a) `(∅) = 0.

(b) Let v ∈ T •, let v(0) the parent of v, let p = kv(T ) + 1, and let v(j) = vj, 1 ≤ j ≤ p− 1
be the children of v. Then for every j ∈ {1, . . . , p}, `(v(j)) ≥ `(v(j−1))− 1, where by
convention v(p) = v(0).

Condition (b) means that if one lists the white vertices adjacent to a given black
vertex in clockwise order, the labels of these vertices can decrease by at most one at each
step. See Fig.1 for an example of a mobile.

We denote by Θ the (countable) set of all mobiles. We will now describe the Bouttier-
Di Francesco-Guitter (BDG) bijection between Θ and M∗

+. This bijection can be found
in Section 2 of [3], with the minor difference that [3] deals with maps that are pointed
but not rooted.

Let θ = (T , (`(v))v∈T ◦) be a mobile with n + 1 vertices. The contour sequence of
θ is the sequence v0, . . . , v2n of vertices of T which is obtained by induction as follows.
First v0 = ∅, and then for every i ∈ {0, . . . , 2n − 1}, vi+1 is either the first child of vi
that has not yet appeared in the sequence v0, . . . , vi, or the parent of vi if all children of
vi already appear in the sequence v0, . . . , vi. It is easy to verify that v2n = ∅ and that
all vertices of T appear in the sequence v0, v1, . . . , v2n. In fact, a given vertex v appears
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0

−1 −2 1

0

−1 −2 −1

−1

−2 0

Figure 1: A rooted mobile

exactly kv(T ) + 1 times in the contour sequence, and each appearance of v corresponds
to one “corner” associated with this vertex.

The vertex vi is white when i is even and black when i is odd. The contour sequence
of T ◦, also called the white contour sequence of θ, is by definition the sequence v◦0, . . . , v

◦
n

defined by v◦i = v2i for every i ∈ {0, 1, . . . , n}.
The image of θ under the BDG bijection is the element (m, v∗) ofM∗

+ that is defined
as follows. First, if n = 0, meaning that T = {∅}, we set (m, v∗) = †. Suppose that
n ≥ 1, so that T • has at least one element. We extend the white contour sequence of
θ to a sequence v◦i , i ≥ 0 by periodicity, in such a way that v◦i+n = v◦i for every i ≥ 0.
Then suppose that the tree T is embedded in the plane, and add an extra vertex v∗ not
belonging to the embedding. We construct a rooted planar map m whose vertex set is
equal to

V (m) = T ◦ ∪ {v∗} ,
and whose edges are obtained by the following device. For every i ∈ {0, 1, . . . , n− 1}, we
let

φ(i) = inf{j > i : `(v◦j ) = `(v◦i )− 1} ∈ {i+ 1, i+ 2, . . .} ∪ {∞} .
We also set v◦∞ = v∗ by convention. Then, for every i ∈ {0, 1, . . . , n−1}, we draw an edge
between v◦i and v◦φ(i). More precisely, the index i corresponds to one specific “corner” of
v◦i , and the associated edge starts from this corner. The construction can then be made
in such a way that edges do not cross (and do not cross the edges of the tree), so that
one indeed gets a planar map. This planar map m is rooted at the edge linking v◦0 = ∅
to v◦φ(0), which is oriented from v◦φ(0) to ∅. Furthermore m is pointed at the vertex v∗, in
agreement with our previous notation.

See Fig.2 for an example, and Section 2 of [3] for a more detailed description.

Proposition 3 (BDG bijection) The preceding construction yields a bijection from Θ
onto M∗

+. This bijection enjoys the following two properties:
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0

−1 −2 1

0

−1 −2 −1

−1

−2 0

v∗

Figure 2: The Bouttier-Di Francesco-Guitter construction for the mobile of Figure 1

1. Each face f of m contains exactly one vertex v of T •, with deg(f) = 2(kv(T ) + 1).

2. The graph distances in m to the distinguished vertex v∗ are linked to the labels of
the mobile in the following way: for every v ∈ T ◦ = V (m) \ {v∗},

dgr(v∗, v) = `(v)− min
v′∈T ◦

`(v′) + 1 .

In our study of scaling limits of random planar maps, it will be important to derive
asymptotics for the random mobiles associated with these maps via the BDG bijection.
These asymptotics are more conveniently stated in terms of random processes coding the
mobiles. Let us introduce such coding functions.

Let θ = (T , (`(v))v∈T ◦) be a mobile with n + 1 vertices (so n = #T − 1) and let
v◦0, . . . , v

◦
n be as previously the white contour sequence of θ. We set

Cθ
i =

1

2
|v◦i | , for 0 ≤ i ≤ n , Cθ

i = 0, for i > n. (11)

We call (Cθ
i , 0 ≤ i ≤ n) the contour process of the mobile θ. It is a simple exercise to

check that the contour process Cθ determines the tree T . Similarly, we set

Λθ
i = `(v◦i ) , for 0 ≤ i ≤ n , Λθ

i = 0, for i > n. (12)

and call Λθ the contour label process of θ. The pair (Cθ,Λθ) determines the mobile θ.
For technical reasons, we introduce variants of the preceding contour functions. Let

n◦ = #T ◦ − 1 and let w◦0 = ∅, w◦1, . . . , w◦n◦ be the list of vertices of T ◦ in lexicographical
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order. The height process of θ is defined by

Hθ
i =

1

2
|w◦i | , for 0 ≤ i ≤ n◦ , Hθ

i = 0, for i > n◦.

Similarly, we introduce the label process, which is defined by

Lθi = `(w◦i ) , for 0 ≤ i ≤ n◦ , Lθi = 0, for i > n◦.

We will also need the Lukasiewicz path of T ◦. This is the sequence Sθ = (Sθ0 , S
θ
1 , . . .).

defined as follows. First Sθ0 = 0. Then, for every i ∈ {0, 1, . . . , n◦}, Sθi+1 − Sθi + 1 is the
number of (white) grandchildren of w◦i in T . Finally, Sθi = Sθn◦+1 = −1 for every i > n◦.
It is easy to see that Sθi ≥ 0 for every i ∈ {0, 1, . . . , n◦}, so that

#T ◦ = n◦ + 1 = inf{i ≥ 0 : Sθi = −1}.
Let us briefly comment on the reason for introducing these different processes. In our

applications to random planar maps, asymptotics for the pair (Cθ,Λθ), which is directly
linked to the white contour sequence of θ, turn out to be most useful. On the other hand,
in order to derive these asymptotics, it will be more convenient to consider first the pair
(Hθ, Lθ).

In the following, the generic element of Θ will be denoted by (θ, (`(v))v∈T ◦) as previ-
ously.

3.2 Boltzmann distributions and Galton-Watson trees

Let q be an admissible sequence, in the sense of Section 2, and let M be a random element
ofM∗

+ with distribution Pq. Our goal is to describe the distribution of the random mobile
associated with M via the BDG bijection. We follow closely Section 2.2 in [21].

We first need the notion of an alternating two-type Galton-Watson tree. Recall that
white vertices are those at even generation and black vertices are those at odd generation.
Informally, an alternating two-type Galton-Watson tree is just a Galton-Watson tree
where white and black vertices have a different offspring distribution. More precisely, if
µ0 and µ1 are two probability distributions on the nonnegative integers, the associated
(alternating) two-type Galton-Watson tree is the random plane tree whose distribution is
specified by saying that the numbers of children of the different vertices are independent,
the offspring distribution of each white vertex is µ0 and the offspring distribution of each
black vertex is µ1. See [21, Section 2.2] for a more rigorous presentation.

We also need to introduce the notion of a discrete bridge. Consider an integer p ≥ 1
and the set

Ep :=
{

(x1, . . . , xp) ∈ {−1, 0, 1, 2, . . .}p :

p∑
i=1

xi = 0
}
.

Note that Ep is a finite set, and indeed #Ep = N(p), with N(p) as in (2). Let (X1, . . . , Xp)
be uniformly distributed over Ep. The sequence (Y0, Y1, . . . , Yp) defined by Y0 = 0 and

Yj =

j∑
i=1

Xi , 1 ≤ j ≤ p ,
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is called a discrete bridge of length p.

Proposition 4 [21, Proposition 7] Let M be a random element of M∗
+ with distribution

Pq and let θ = (T , (`(v), v ∈ T ◦)) be the random mobile associated with M via the BDG
bijection. Then:

1. The random tree T is an alternating two-type Galton-Watson tree with offspring
distributions µ0 and µ1 given by

µ0(k) = Z−1
q fq(Zq)

k , k ≥ 0 ,

and

µ1(k) =
Zk
qN(k + 1)qk+1

fq(Zq)
, k ≥ 0 .

2. Conditionally given T , the labels (`(v), v ∈ T ◦) are distributed uniformly over all
possible choices that satisfy the constraints (a) and (b) in the definition of a mobile.
Equivalently, for every v ∈ T •, with the notation introduced in property (b) of the
definition of a mobile, the sequence (`(v(j))− `(v(0)), 0 ≤ j ≤ kv(T )+1) is a discrete
bridge of length kv(T ) + 1, and these sequences are independent when v varies over
T •.

A random mobile having the distribution described in the proposition will be called a
(µ0, µ1)-mobile. The law Q of a (µ0, µ1)-mobile is a probability distribution on Θ.

Note that the respective means of µ0 and µ1 are

m0 :=
∑
k≥0

kµ0(k) = Zqfq(Zq) , m1 :=
∑
k≥0

kµ1(k) = Zqf
′
q(Zq)/fq(Zq) ,

so that m0m1 = Z2
q f
′
q(Zq) is less than or equal to 1, and equality holds if and only if q is

critical.
We now come back to a weight sequence q satisfying our basic assumption (A). Recall

that the sequence q, which is both admissible and critical, is given in terms of the sequence
q◦ by (6) and that we have q◦k ∼ k−α−1/2 as k →∞, with α ∈ (1, 2).

Then µ0 is the geometric distribution with parameter fq(Zq) = 1− β, and

µ1(k) =
c

1− β 4−kN(k + 1)q◦k+1 , k = 0, 1, . . .

From the asymptotic behavior of q◦k, we obtain

µ1(k) ∼
k→∞

2c

(1− β)
√
π
k−α−1.

In particular, if we set µ1(k) = µ1([k,∞)), this yields

µ1(k) ∼
k→∞

2c

α(1− β)
√
π
k−α. (13)



3 CODING MAPS WITH MOBILES 14

Let µ be the probability distribution on the nonnegative integers which is the law of

U∑
i=1

Vi

where U is distributed according to µ0, V1, V2, . . . are distributed according to µ1, and the
variables U, V1, V2, . . . are independent. Then µ is critical in the sense that

∞∑
k=0

k µ(k) = m0m1 = 1.

Notice that µ is just the distribution of the number of individuals at the second generation
of a (µ0, µ1)-mobile. It will be important to have information on the tail µ(k) := µ([k,∞))
of µ. This follows easily from the estimate (13) and the definition of µ. First note that

µ(k) = P
[ U∑
i=1

Vi ≥ k
]
≥ P[∃i ∈ {1, . . . , U} : Vi ≥ k] = 1− E

[
(1− µ1(k))U

]
.

Then,

1− E
[
(1− µ1(k)U

]
= 1− β

1− (1− µ1(k))(1− β)
∼

k→∞

1− β
β

µ1(k).

Using (13), we get

µ(k) ≥ 2c

αβ
√
π
k−α + o(k−α).

A corresponding upper bound is easily obtained by writing, for every ε > 0,

µ(k) ≤ P[∃i ∈ {1, . . . , U} : Vi ≥ (1− ε)k]

+P
[{ U∑

i=1

Vi ≥ k
}
∩
{
∀i ∈ {1, . . . , U} : Vi ≤ (1− ε)k

}]
and checking that the second term in the right-hand side is o(k−α) as k →∞.

We have thus obtained

µ(k) ∼
k→∞

2c

αβ
√
π
k−α,

which we can rewrite in the form

µ(k) ∼
k→∞

α− 1

Γ(2− α)
cα0 k

−α , (14)

with the constant c0 defined in (9). The reason for introducing the constant c0 and writing
the asymptotics (14) in this form becomes clear when discussing scaling limits. Recall
that 1 < α < 2 by our assumption 3

2
< a < 5

2
. By (13) or (14), µ is then in the domain of

attraction of a stable law with index α. Recalling that µ is critical, we have the following
more precise result.
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Let ν be the probability distribution on Z obtained by setting ν(k) = µ(k + 1) for
every k ≥ −1 (and ν(k) = 0 if k < −1). Let S = (Sn)n≥0 be a random walk on the
integers with jump distribution ν. Then,(

n−1/αS[nt]

)
t≥0

(d)−→
n→∞

(c0Xt)t≥0, (15)

where the convergence holds in distribution in the Skorokhod sense, and X is a centered
stable Lévy process with index α and no negative jumps, with Laplace transform given
by

E[exp(−uXt)] = exp(tuα) , t, u ≥ 0 . (16)

See e.g. Chapter VII of Jacod and Shiryaev [15] for a thorough discussion of the conver-
gence of rescaled random walks towards Lévy processes.

3.3 Discrete bridges

Recall from Proposition 4 that the sequence of labels of white vertices adjacent to a given
black vertex in a (µ0, µ1)-mobile is distributed as a discrete bridge. In this section, we
collect some estimates for discrete bridges that will be used in the proof of our main
results.

We consider a random walk (Yn)n≥0 on Z starting from 0 and with jump distribution

ν∗(k) = 2−k−2 , k = −1, 0, 1, . . .

Fix an integer p ≥ 1, and let (Y
(p)
n )0≤n≤p be a vector whose distribution is the conditional

law of (Yn)0≤n≤p given that Yp = 0. Then the process (Y
(p)
n )0≤n≤p is a discrete bridge with

length p. Indeed, a simple calculation shows that

(Y
(p)

1 , Y
(p)

2 − Y (p)
1 , . . . , Y (p)

p − Y (p)
p−1)

is uniformly distributed over the set Ep.

Lemma 1 For every real r ≥ 1, there exists a constant K(r) such that for every integer
p ≥ 1 and k, k′ ∈ {0, 1, . . . , p},

E[(Y
(p)
k − Y (p)

k′ )2r] ≤ K(r)|k − k′|r .
Proof. We may, and will, assume that p ≥ 2. Let us first suppose that k ≤ k′ ≤ 2p/3.
By the definition of Y (p), and then the Markov property of Y , we have

E[(Y
(p)
k − Y (p)

k′ )2r] =
E[|Yk − Yk′|2r1{Yp=0}]

P(Yp = 0)
= E

[
|Yk − Yk′|2rπp−k′(−Yk′)

πp(0)

]
,

where πn(x) = P(Yn = x) for every integer n ≥ 0 and x ∈ Z. A standard local limit
theorem (see e.g. Section 7 in [29]) shows that, if g(x) = (4π)−1/2e−x

2/4, we have
√
nπn(x) = g(x/

√
n) + εn(x) , where sup

x∈Z
|εn(x)| →

n→∞
0 .



4 THE CONTINUOUS DISTANCE PROCESS 16

Then,
πp−k′(−Yk′)

πp(0)
≤
√

3

√
p− k′πp−k′(−Yk′)√

pπp(0)
≤ K

where

K =
√

3
(4π)−1/2 + supn≥1 supx∈Z |εn(x)|

infn≥1

√
nπn(0)

<∞.

It follows that
E[(Y

(p)
k − Y (p)

k′ )2r] ≤ KE[|Yk − Yk′ |2r] .
Then the bound E[|Yk − Yk′ |2r] ≤ K ′(r)|k − k′|r with a finite constant K ′(r) depending

only on r, is a consequence of Rosenthal’s inequality for i.i.d. centered random variables
[26, Theorem 2.10]. We have thus obtained the desired estimate under the restriction
k ≤ k′ ≤ 2p/3.

If p/3 ≤ k ≤ k′ ≤ p, the same estimate is readily obtained by observing that

(−Y (p)
p−n, 0 ≤ n ≤ p) has the same distribution as Y (p). Finally, if k ≤ p/3 ≤ 2p/3 ≤ k′, we

apply the preceding bounds successively to E[|Yk − Y[p/2]|2r] and to E[|Y[p/2] − Yk′ |2r]. �

An immediate consequence of the lemma (applied with r = 1) is the bound

E[(Y
(p)
j )2] ≤ K

j(p− j)
p

. (17)

for every integer p ≥ 2 and j ∈ {0, 1, . . . , p} (take K = 2K(1)).

Finally, we recall that a conditional version of Donsker’s theorem gives( 1√
2p
Y

(p)
[pt]

)
0≤t≤1

(d)−→
p→∞

(γt)0≤t≤1 (18)

where γ is a standard Brownian bridge.

4 The continuous distance process

Our goal in this section is to discuss the so-called continuous distance process, which will
appear as the scaling limit of the label processes Lθ and Λθ of subsection 3.1, when θ is
a (µ0, µ1)-mobile conditioned to be large in some sense.

4.1 Definition and first properties

We consider the centered stable Lévy process X with no negative jumps and index α,
and Laplace exponent as in (16). The canonical filtration associated with X is defined as
usual by

Ft = σ{Xs, 0 ≤ s ≤ t}
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for every t ≥ 0. We let (ti)i∈N be a measurable enumeration of the jump times of X, and
set xi = ∆Xti for every i ∈ N. Then the point measure∑

i∈N

δ(ti,xi)

is Poisson on [0,∞)× [0,∞) with intensity

α(α− 1)

Γ(2− α)
dt

dx

xα+1
.

For s ≤ t, we set
Ist = inf

s≤r≤t
Xr ,

and It = I0
t . For every x ≥ 0, we set

Tx = inf{t ≥ 0 : −It > x}.
We recall that the process (Tx, x ≥ 0) is a stable subordinator of index 1/α, with Laplace
transform

E[exp(−uTx)] = exp(−xu1/α) . (19)

See e.g. Theorem 1 in [2, Chapter VII].
Suppose that, on the same probability space, we are given a sequence (bi)i∈N of inde-

pendent (one-dimensional) standard Brownian bridges over the time interval [0, 1] starting
and ending at the origin. Assume that the sequence (bi)i∈N is independent of the Lévy
process X. Then, for every i ∈ N, we introduce the rescaled bridge

b̃i(r) = x
1/2
i bi(r/xi) , 0 ≤ r ≤ xi ,

which, conditionally on F∞, is a standard Brownian bridge with duration xi.
Recall that Xs− denotes the left limit of X at s, for every s > 0.

Proposition 5 For every t ≥ 0, the series∑
i∈N

b̃i(I
ti
t −Xti−)1{Xti−≤I

ti
t }
1{ti≤t} (20)

converges in L2-norm. The sum of this series is denoted by Dt. The process (Dt, t ≥ 0)
is called the continuous distance process.

Remark. In a more compact form, we can write

Dt =
∑

i∈N:ti≤t

b̃i((I
ti
t −Xti−)+) .

Proof. Note that in (20), the summands are well-defined since obviously I tit ≤ Xti for
every ti ≤ t, so that I tit −Xti− ≤ ∆Xti = xi. The nonzero summands in (20) correspond
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to those values of i for which ti ≤ t and Xti− ≤ I tit . Conditionally on F∞, these summands
are independent centered Gaussian random variables with respective variances

E
[
b̃i(I

ti
t −Xti−)2

∣∣∣F∞] =
(I tit −Xti−)(Xti − I tit )

xi
≤ I tit −Xti− .

The equality in the previous display follows from the fact that Var b(a)(t) = t(a−t)
a

, when-
ever b(a) is a Brownian bridge with duration a > 0 and 0 ≤ t ≤ a.

Then, we have

E
[∑
i∈N

b̃i(I
ti
t −Xti−)2

1{Xti−≤I
ti
t }
1{ti≤t}

]
≤ E

[∑
i∈N

(I tit −Xti−)1{Xti−≤I
ti
t }
1{ti≤t}

]
= E

[∑
ti≤t

(I tit − I ti−t )
]
≤ E[Xt − It] = E[−It],

where the last equality holds because X is centered. It is well known that E[−It] < ∞.
Indeed −It even has exponential moments, see Corollary 2 in [2, Chapter VII]. Since the
summands in (20) are centered and orthogonal in L2, the desired convergence readily
follows from the preceding estimate. �

In order to simplify the presentation, it will be convenient to adopt a point process
notation, by letting (xs, bs) = (xi, bi) whenever ti = s for some i ∈ N, and by convention
xs = 0, bs = 0 (i.e. the path with duration zero started from the origin) when s /∈ {ti, i ∈
N}. The process b̃s is defined accordingly, and is equal to 0 when bs = 0. We can thus
rewrite

Dt =
∑

0<s≤t

b̃s((I
s
t −Xs−)+) . (21)

Let us conclude this section with a useful scaling property. For every r > 0, we have(
r−1/αXrt, r

−1/2αDrt

)
t≥0

(d)
= (Xt, Dt)t≥0 . (22)

This easily follows from our construction and the scaling property of X.

4.2 Hölder regularity

In this subsection, we prove the following regularity property of D.

Proposition 6 The process (Dt, t ≥ 0) has a modification that is locally Hölder contin-
uous with any exponent η ∈ (0, 1/2α).

We start with a few preliminary lemmas.

Lemma 2 For every real t > 0 and r > −1, we have E[(−It)r] <∞.
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Proof. By scaling, it is enough to consider t = 1. As we already mentioned in the last
proof, the case r ≥ 0 is a consequence of Corollary 2 in [2, Chapter VII]. To handle the
case r < 0, we use a scaling argument to write

P(−I1 > x) = P(Tx < 1) = P(xαT1 < 1) = P((T1)−1/α > x),

so that −I1 has the same distribution as T
−1/α
1 . We already observed that the process

(Tx, x ≥ 0) is a stable subordinator with index 1/α. This implies that E[(T1)s] < ∞ for
every 0 ≤ s < 1/α, from which the desired result follows. �

Lemma 3 For every real t ≥ 0 and r > 0, we have E[|Dt|r] <∞.

Proof. Again by scaling, we may concentrate on the case t = 1. Arguing as in the proof
of Proposition 5, we get that, conditionally on F∞, the random variable D1 is a centered
Gaussian variable with variance∑

0<s≤1

(Is1 −Xs−)(Xs − Is1)

∆Xs

1{Xs−<Is1} ≤
∑

0<s≤1

(Xs − Is1)1{Xs−<Is1} .

Note that this time, we chose the upper bound Xs − Is1 rather than Is1 − Xs− for the
summands, as the latter is ineffective for getting finiteness of high moments. Thus,

E[|D1|r] ≤ Kr E
[( ∑

0<s≤1

(Xs − Is1)1{Xs−<Is1}

)r/2]
, (23)

for some finite constant Kr depending on r. By a standard time-reversal property of
Lévy processes, the process (X1 − X(1−s)−, 0 ≤ s < 1), has the same distribution as
(Xs, 0 ≤ s < 1), which entails that∑

0<s≤1

(Xs − Is1)1{Xs−<Is1}
(d)
=
∑

0<s≤1

(Xs− −Xs−)1{Xs−<Xs} , (24)

where Xs = sup0≤r≤sXr. For every integer k ≥ 0, introduce the process

A
(k)
t =

∑
0<s≤t

(Xs− −Xs−)2k
1{Xs−<Xs} , t ≥ 0 ,

which is an increasing càdlàg process adapted to the filtration (Ft), with compensator

Ã
(k)
t =

α(α− 1)

Γ(2− α)

∫ t

0

ds(Xs−Xs)
2k
∫ ∞

0

dx

xα+1
1{Xs<Xs+x} =

α− 1

Γ(2− α)

∫ t

0

(Xs−Xs)
2k−αds .

Note that E[Ã
(k)
t ] <∞, since this expectation is

α− 1

Γ(2− α)
E[(X1 −X1)2k−α]

∫ t

0

s2k/α−1ds ,

and time-reversal shows that E[(X1 −X1)2k−α] = E[(−I1)2k−α] < ∞, by Lemma 2 since
2k − α ≥ 1 − α > −1. In order to complete the proof of Lemma 3, we will need the
following stronger fact.
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Lemma 4 For every integers k, p ≥ 0, we have E[(Ã
(k)
1 )p] <∞.

Proof. We must show that∫
[0,1]p

ds1 . . . dsp E
[ p∏
i=1

(Xsi −Xsi)
2k−α

]
<∞ . (25)

When k ≥ 1, we have 2k − α > 0 and the result easily follows from Hölder’s inequality,
using a scaling argument and then time-reversal and Lemma 2, just as we did to verify
that E[Ã

(k)
t ] <∞. The case k = 0 is a little more delicate. We rewrite the left-hand side

of (25) as

p!

∫
0≤s1≤...≤sp≤1

ds1 . . . dsp E
[ p∏
i=1

(Xsi −Xsi)
1−α
]
.

By Proposition 1 in [2, Chapter VI], the reflected process X −X is Markov with respect
to the filtration (Ft). When started from a value x ≥ 0, this Markov process has the same
distribution as x∨X−X under P and thus stochastically dominates X−X (started from
0). Consequently, since 1− α < 0, we get for 0 = s0 ≤ s1 ≤ . . . ≤ sp ≤ 1,

E
[ p∏
i=1

(Xsi −Xsi)
1−α
]

= E
[
(Xs1 −Xs1)

1−αE
[ p∏
i=2

(Xsi −Xsi)
1−α ∣∣Xs1 −Xs1

]]
≤ E

[
(Xs1 −Xs1)

1−αE
[ p∏
i=2

(Xsi−s1 −Xsi−s1)
1−α
]]

≤
p∏
i=1

E
[
(Xsi−si−1

−Xsi−si−1
)1−α

]
,

by induction. Finally, by scaling and a simple change of variables, we get that (25) is
bounded above by

p! E
[
(X1 −X1)1−α]p ∫

[0,1]p

p∏
i=1

s
1/α−1
i dsi ,

which is finite by Lemma 2, since X1 −X1
(d)
= −I1 by time-reversal. �

We now complete the proof of Lemma 3. Note that A(k+1) is the square bracket of the
compensated martingale A(k)− Ã(k), for every k ≥ 0. For any real r ≥ 1, the Burkholder-
Davis-Gundy inequality [7, Chapter VII.92] gives the existence of a finite constant K ′r
depending only on r, such that

E
[
|A(k)

1 − Ã(k)
1 |r

]
≤ K ′r E

[(
A

(k+1)
1

)r/2]
.

Since Ã
(k)
1 has moments of arbitrarily high order by Lemma 4, and E[A

(k)
1 ] = E[Ã

(k)
1 ] <∞,

a repeated use of the last inequality shows that E[(A
(k−i)
1 )2i ] < ∞ for every i = 0, . . . , k.
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In particular E[(A
(0)
1 )2k ] <∞ for every integer k ≥ 0. The desired result now follows from

(23) and (24). �

Proof of Proposition 6. Fix s ≥ 0 and t > 0. Let u = sup{r ∈ (0, s] : Xr− < Iss+t},
with the convention sup ∅ = 0. Then Irs+t = Irs for every r ∈ [0, u), whereas Irs+t = Iss+t
for r ∈ [u, s]. By splitting the sum (21), we get

Ds =
∑

0<r<u

b̃r((I
r
s −Xr−)+) + b̃u((I

u
s −Xu−)+) +

∑
u<r≤s

b̃r((I
r
s −Xr−)+) ,

and similarly,

Ds+t =
∑

0<r<u

b̃r((I
r
s+t −Xr−)+) + b̃u((I

u
s+t −Xu−)+) +

∑
s<r≤s+t

b̃r((I
r
s+t −Xr−)+) .

In the last display, we should also have considered the sum over r ∈ (u, s], but in fact this
term gives no contribution because we have Xr− ≥ Iss+t = Irs+t for these values of r, by
the definition of u. Moreover, as Irs = Irs+t for r ∈ [0, u), we have∑

0<r<u

b̃r((I
r
s −Xr−)+) =

∑
0<r<u

b̃r((I
r
s+t −Xr−)+) .

Also, a simple translation argument shows that we may write∑
s<r≤s+t

b̃r((I
r
s+t −Xr−)+) = D

(s)
t

where the process D(s) has the same distribution as D, and in particular, D
(s)
t has the

same distribution as Dt. By combining the preceding remarks, we get

Ds+t −Ds −D(s)
t = −

∑
u<r≤s

b̃r((I
r
s −Xr−)+) +

(
b̃u((I

u
s+t −Xu−)+)− b̃u((Ius −Xu−)+)

)
.

Conditionally on F∞, the right-hand side of the last display is distributed as a centered
Gaussian variable with variance bounded above by∑
u<r≤s

(Irs −Xr−)+ + (Ius − Ius+t) =
∑
u<r≤s

(Irs − Ir−s ) + (Ius − Ius+t) ≤ Xs − Ius+t = Xs − Iss+t .

Furthermore, Xs − Iss+t has the same distribution as −It, by the Markov property of X.
Now let p ≥ 1. From the previous considerations, we obtain

E[|Ds+t −Ds|p] ≤ 2p
(
E[|D(s)

t |p] + E[|Ds+t −Ds −D(s)
t |p]

)
≤ 2p

(
E[|Dt|p] +KpE[(−It)p/2]

)
= 2p

(
E[|D1|p] +KpE[(−I1)p/2]

)
tp/2α ,
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where we have made another use of the scaling properties of X and D. The constant in
front of tp/2α is finite by Lemmas 2 and 3. The classical Kolmogorov continuity criterion
then yields the desired result. �

In what follows we will always consider the continuous modification of (Dt, t ≥ 0).

Remark. The process D is closely related to the so-called exploration process associated
with X, as defined in the monograph [11]. The latter is a measure-valued strong Markov
process (ρt, t ≥ 0), such that, for every t ≥ 0, ρt is an atomic measure on [0,∞), and the
masses of the atoms of ρt are precisely the quantities (Ist −Xs−)+, s ≤ t that are involved
in the definition of Dt (see the proof of Theorem 5 below for more information about this
exploration process). As a matter of fact, part of the proof of Proposition 6 resembles
the proof of the Markov property for (ρt, t ≥ 0), see [11, Proposition 1.2.3]. However, the
definition of ρt requires the introduction of the continuous-time height process (see the
next section), which is not needed in the definition of Dt.

4.3 Excursion measures

It will be useful to consider the distance process D under the excursion measure of X
above its minimum process I. Recall that X − I is a strong Markov process, that 0 is
a regular recurrent point for this Markov process, and that −I provides a local time for
X − I at level 0 (see [2, Chapters VI and VII]). We write N for the excursion measure of
X − I away from 0 associated with this choice of local time. This excursion measure is
defined on the Skorokhod space D(R), and without risk of confusion, we will also use the
notation X for the canonical process on the space D(R). The duration of the excursion
under N is σ = inf{t > 0 : Xt = 0}. For every a > 0, we have

N(σ ∈ da) =
da

αΓ(1− 1/α)a1+1/α
.

This easily follows from formula (19) for the Laplace transform of Tx.
In order to assign an independent bridge to each jump of X, we consider an auxiliary

probability space (Ω∗,F∗,P∗), which supports a countable collection of independent Brow-
nian bridges (bi)i∈N. We then argue on the product space D(R) × Ω∗, which is equipped
with the product measure N⊗P∗. With a slight abuse of notation, we will write N instead
of N⊗ P∗ in what follows.

The construction of the distance process under N is then similar to the preceding
subsections. The process X has a countable number of jumps under N and these jumps
can be enumerated, for instance by decreasing size, as a sequence (ti)i∈N. The same
formula (20) can be used to define the distance process Dt under N. It is again easy to
check that the series (20) converges, say in N-measure. Note that Dt = 0 on {σ ≤ t}.

To connect this construction with the previous subsections, we may consider, under
the probability measure P, the first excursion interval of X− I (away from 0) with length
greater than a, where a > 0 is fixed. We denote this interval by (g(a), d(a)). Then the
distribution of (X(g(a)+t)∧d(a) , t ≥ 0) under P coincides with that of (Xt, t ≥ 0) under
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N(· | σ > a). Furthermore, it is easily checked that the finite-dimensional marginals of
the process (D(g(a)+t)∧d(a) , t ≥ 0) under P also coincide with those of (Dt, t ≥ 0) under
N(· | σ > a). The point is that the only jumps that may give a nonzero contribution in
formula (20) are those that belong to the excursion interval of X − I that straddles t.
From the previous observations and Proposition 6, we deduce that the process (Dt, t ≥ 0)
also has a Hölder continuous modification under N, and from now on we will deal with
this modification.

Finally, it is well known that the scaling properties of stable processes allow one to
make sense of the conditioned measure N(· | σ = a), for any choice of a > 0. Using the
scaling property (22), it is then a simple matter to define the distance process D also
under this conditioned measure. Furthermore the Hölder continuity properties of D still
hold under N(· | σ = a).

5 Convergence of labels in a forest of mobiles

We now consider a sequence F = (θ1, θ2, . . .) of independent random mobiles. We assume
that, for every i ∈ N, θi = (Ti, (`i(v), v ∈ T ◦i )) is a (µ0, µ1)-mobile. We will call F a
(random) labeled forest. It will also be useful to consider the (unlabeled) forest F defined
as the sequence (T1, T2, . . .).

For our purposes, it will be important to distinguish the vertices of the different trees in
the forest F. This can be achieved by a minor modification of the formalism of subsection
3.1, letting T1 be a (random) subset of {1} × U , T2 be a subset of {2} × U , and so on.
Whenever we deal with a sequence of trees or of mobiles, we will tacitly assume that this
modification has been made.

Our goal is to study the scaling limit of the collection of labels in the forest F.

5.1 Statement of the result

We first recall known results about scaling limits of the height process. We let (H◦n)n≥0

denote the height process of the forest F. This means that the process H◦ is obtained
by concatenating the height processes (Hθi(n), 0 ≤ n ≤ #T ◦i − 1) of the mobiles θi.
Equivalently, let u0, u1, . . . be the sequence of all white vertices of the forest F, listed one
tree after another and in lexicographical order for each tree. Then H◦n is equal to half the
generation of un.

Scaling limits of (H◦n)n≥0 are better understood thanks to the connection between the
height process and the Lukasiewicz path of the forest F. We denote this Lukasiewicz path
by (S◦n)n≥0. This means that S◦0 = 0, and for every integer n ≥ 0, S◦n+1 − S◦n + 1 is the
number of (white) grandchildren of un in F. Then (S◦n)n≥0 is a random walk with jump
distribution ν, as defined before (15). To see this, note that, for every i ∈ N, the set
T ◦i of all white vertices of Ti can be viewed as a plane tree, just by saying that a white
vertex of Ti is a child in T ◦i of another white vertex of Ti if and only if it is a grandchild
of this other vertex in the tree Ti. Modulo this identification, T ◦1 , T ◦2 , . . . are independent
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Galton-Watson trees with offspring distribution µ. The fact that (S◦n)n≥0 is a random
walk with jump distribution ν is then a consequence of well-known results for forests of
i.i.d. Galton-Watson trees: See e.g. Section 1 of [17].

Moreover, the height process (H◦n)n≥0 is related to the random walk (S◦n)n≥0 by the
formula

H◦n = #{k ∈ {0, 1, . . . , n− 1} : S◦k = min
k≤j≤n

S◦j }. (26)

The integers k that appear in the right-hand side of (26) are exactly those for which uk
is an ancestor of un distinct from un. For each such integer k, the quantity

S◦k+1 − min
k+1≤j≤n

S◦j + 1 (27)

is the rank of uk+1 among the grandchildren of uk in F. We again refer to Section 1 of [17]
for a thorough discussion of these results and related ones. For every integer k such that
uk is a strict ancestor of un, it will also be of interest to consider the (black) parent of
uk+1 in the forest F. As a consequence of the preceding remarks, the number of children
of this black vertex is less than or equal to S◦k+1 − S◦k + 1, and the rank of uk+1 among
these children is less than or equal to the quantity (27).

Let us now discuss scaling limits. We can apply the convergence (15) to the random
walk (S◦n)n≥0. As a consequence of the results in Chapter 2 of [11] (see in particular
Theorem 2.3.2 and Corollary 2.5.1), we have the joint convergence(

n−1/αS◦[nt], n
−(1−1/α)H◦[nt]

)
t≥0

(d)−→
n→∞

(c0Xt, c
−1
0 Ht)t≥0, (28)

where the convergence holds in distribution in the Skorokhod sense, and (Ht)t≥0 is the
so-called continuous-time height process associated with X, which may be defined by the
limit in probability

Ht = lim
ε→0

1

ε

∫ t

0

1{Xs>Ist−ε} ds.

Note that the preceding approximation of Ht is a continuous analogue of (26). The process
(Ht)t≥0 has continuous sample paths, and satisfies the scaling property

(Hrt)t≥0
(d)
= (r1−1/αHt)t≥0,

for every r > 0. We refer to [11] for a thorough analysis of the continuous-time height
process.

We aim at establishing a version of (28) that includes the convergence of rescaled
labels. The label process (L◦n, n ≥ 0) of the forest F is obtained by concatenating the
label processes Lθ1 , Lθ2 , . . . of the mobiles θ1, θ2, . . . (cf subsection 3.1). Our goal is to
prove the following theorem.

Theorem 1 We have(
n−1/αS◦[nt], n

−(1−1/α)H◦[nt], n
−1/2αL◦[nt]

)
t≥0

(d)−→
n→∞

(c0Xt, c
−1
0 Ht,

√
2c0Dt)t≥0
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where the convergence holds in the sense of weak convergence of the laws in the Skorokhod
space D(R3).

The proof of Theorem 1 is rather long and occupies the remaining part of this section.
We will first establish the convergence of finite-dimensional marginals of the rescaled label
process, and then complete the proof by a tightness argument.

5.2 Finite-dimensional convergence

Proposition 7 For every choice of 0 ≤ t1 < t2 < · · · < tp, we have

n−1/2α
(
L◦[nt1], L

◦
[nt2], . . . , L

◦
[ntp]

)
(d)−→

n→∞

√
2c0

(
Dt1 , Dt2 , . . . , Dtp

)
.

Furthermore this convergence holds jointly with the convergence (28).

Proof of Proposition 7. In order to write the subsequent arguments in a simpler
form, it will be convenient to use the Skorokhod representation theorem to replace the
convergence in distribution (28) by an almost sure convergence. For every n ≥ 1, we can
construct a labeled forest F(n) having the same distribution as F, in such a way that if
S(n) is the Lukasiewicz path of F(n), and H(n) is the height process of F(n), we have the
almost sure convergence(

n−1/αS
(n)
[nt], n

−(1−1/α)H
(n)
[nt]

)
t≥0

(a.s.)−→
n→∞

(c0Xt, c
−1
0 Ht)t≥0, (29)

in the sense of the Skorokhod topology. We also use the notation F(n) for the unlabeled
forest associated with F(n).

We denote by u
(n)
0 , u

(n)
1 , . . . the white vertices of the forest F(n) listed in lexicographical

order. For every k ≥ 0, we denote the label of u
(n)
k by L

(n)
k = `(n)(u

(n)
k ). In order to get

the convergence of one-dimensional marginals in Proposition 7, we need to verify that,
for every t > 0,

n−1/2αL
(n)
[nt]

(d)−→
n→∞

√
2c0Dt.

We fix t > 0 and ε ∈ (0, 1). We denote by si, i = 1, 2, . . . the sequence consisting of
all times s ∈ [0, t] such that

Xs− < Ist .

The times si are ranked in such a way that ∆Xsi < ∆Xsj if i > j.

On the other hand, we denote by J (n)
t the set of all integers k ∈ {0, 1, . . . , [nt] − 1}

such that
S

(n)
k = min

k≤p≤[nt]
S(n)
p .

We list the elements of J (n)
t as J (n)

t = {a(n)
1 , a

(n)
2 , . . . , a

(n)
kn
}, in such a way that

S
(n)

a
(n)
i +1

− S(n)

a
(n)
i

≤ S
(n)

a
(n)
j +1

− S(n)

a
(n)
j

if 1 ≤ j ≤ i ≤ kn.
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The convergence (29) ensures that almost surely, for every i ≥ 1,

1

n
a

(n)
i −→

n→∞
si ,

1

c0n1/α

(
S

(n)

a
(n)
i +1

− S(n)

a
(n)
i

)
−→
n→∞

∆Xsi , (30)

1

c0n1/α

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S(n)

a
(n)
i

)
−→
n→∞

Isit −Xsi− .

By the observations following (26), we know that the (white) ancestors of u
(n)
[nt] are the

vertices u
(n)
k for all k ∈ J (n)

t . In particular, the generation of u
(n)
[nt] is (twice) H

(n)
[nt] = #J (n)

t ,

in agreement with (26). We can then write

L
(n)
[nt] = `(n)(u

(n)
[nt]) =

∑
j∈J (n)

t

(
`(n)(u

(n)
ϕn(j))− `(n)(u

(n)
j )
)

(31)

where, for j ∈ J (n)
t , ϕn(j) is the smallest element of ({j+ 1, . . . , [nt]− 1}∩J (n)

t )∪{[nt]}.
Equivalently, u

(n)
ϕn(j) is the unique (white) grandchild of u

(n)
j that is also an ancestor of

u
(n)
[nt].

Consider now the Lévy process X. As a consequence of classical results of fluctuation
theory (see e.g. Lemma 1.1.2 in [11]), we know that the ladder height process of X is
a subordinator without drift, hence a pure jump process. By applying this to the dual
process (X(t−r)− −Xt, 0 ≤ r < t), we obtain that

Xt − It =
∞∑
i=1

(Isit −Xsi−).

It follows that we can fix an integer N ≥ 1 such that with probability greater than 1− ε
we have

Xt − It −
N∑
i=1

(Isit −Xsi−) =
∑
i>N

(Isit −Xsi−) ≤ ε

2
. (32)

Now note that
1

c0n1/α

(
S

(n)
[nt] − min

k≤[nt]
S

(n)
k

)
a.s.−→
n→∞

Xt − It
and recall the convergences (30). Using (32), it follows that we can find n0 sufficiently
large, such that for every n ≥ n0, with probability greater than 1− 2ε, we have

1

c0n1/α

((
S

(n)
[nt] − min

k≤[nt]
S

(n)
k

)
−

N∧kn∑
i=1

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S(n)

a
(n)
i

))
< ε.

Since
kn∑
i=1

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S(n)

a
(n)
i

)
= S

(n)
[nt] − min

k≤[nt]
S

(n)
k ,
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we get that, for every n ≥ n0, with probability greater than 1− 2ε,

1

c0n1/α

∑
i>N

(
min

a
(n)
i +1≤k≤[nt]

S
(n)
k − S(n)

a
(n)
i

)
< ε. (33)

Now recall (31). By Proposition 3, and the observations following (26), we know that,

conditionally on the forest F(n), for every j ∈ J (n)
t , the quantity

`(n)(u
(n)
ϕn(j))− `(n)(u

(n)
j )

is distributed as the value of a discrete bridge with length pj ≤ S
(n)
j+1− S(n)

j + 2, at a time

kj ≤ S
(n)
j+1−minj+1≤k≤[nt] S

(n)
k +1 such that pj−kj ≤ minj+1≤k≤[nt] S

(n)
k −S(n)

j +1. Thanks
to our estimate (17) on discrete bridges, we have thus

E[(`(n)(u
(n)
ϕn(j))− `(n)(u

(n)
j ))2 | F(n)] ≤ K

kj(pj − kj)
pj

≤ K
(

min
j+1≤k≤[nt]

S
(n)
k − S(n)

j + 1
)
.

Furthermore, still conditionally on the forest F(n), the random variables `(n)(u
(n)
ϕn(j)) −

`(n)(u
(n)
j ) are independent and centered. It follows that, for n ≥ n0,

E
[(
n−1/2α

∑
j∈J (n)

t \{a(n)
1 ,...,a

(n)
N }

(`(n)(u
(n)
ϕn(j))− `(n)(u

(n)
j ))

)2 ∣∣∣F(n)
]

≤ K n−1/α
∑

j∈J (n)
t \{a(n)

1 ,...,a
(n)
N }

(
min

j+1≤k≤[nt]
S

(n)
k − S(n)

j + 1
)

≤ K (c0ε+ n−1/α#J (n)
t )

the last bound holding on a set of probability greater than 1−2ε, by (33). Since #J (n)
t =

H
(n)
[nt], we have n−1/α#J (n)

t −→ 0 a.s. as n→∞, by (29).

From (31) and the preceding considerations, the limiting behavior of n−1/2αL
(n)
[nt] will

follow from that of

n−1/2α
∑

j∈{a(n)
1 ,...,a

(n)
N }

(
`(n)(u

(n)
ϕn(j))− `(n)(u

(n)
j )
)
.

Recall that, for every j ∈ {a(n)
1 , . . . , a

(n)
N }, the number of white grandchildren of u

(n)
j in

the forest F(n) is m
(n)
j = S

(n)
j+1 − S(n)

j + 1. Moreover u
(n)
ϕn(j) appears at the rank

r
(n)
j = S

(n)
j+1 − min

j+1≤k≤[nt]
S

(n)
k + 1

in the list of these grandchildren. The next lemma will imply that u
(n)
ϕn(j) is the child of a

black vertex whose number of children is also close to m
(n)
j .
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Lemma 5 We can choose δ > 0 small enough so that, for every fixed η > 0, the following
holds with probability close to 1 when n is large. For every white vertex belonging to
{u(n)

0 , u
(n)
1 , . . . , u

(n)
[nt]} that has more than ηn1/α white grandchildren in the forest F(n), all

these grandchildren have the same (black) parent in the forest F(n), except at most n1/α−δ

of them.

Proof. Recall that µ0(k) = β(1−β)k, for every k ≥ 0. We choose δ > 0 such that 2δα < 1,
and take n sufficiently large so that ηn1/α > 2n1/α−δ. Let us fix i ∈ {0, 1, . . . , [nt]}. The

number of black children of u
(n)
i is distributed according to µ0, and each of these black

children has a number of white children distributed according to µ1. Supposing that u
(n)
i

has k black children, if it has a number M ≥ ηn1/α of grandchildren and simultaneously
none of its black children has more than M − n1/α−δ white children, this implies that
at least two among its black children will have more than n1/α−δ/k white children. The
probability that this occurs is bounded above by

β
∞∑
k=2

(1− β)k
(
k

2

)
µ1(n1/α−δ/k)2.

From (13), there is a constant K such that µ1(k) ≤ K k−α for every k ≥ 1. Hence the
last displayed quantity is bounded by

K2β
( ∞∑
k=2

(1− β)k
(
k

2

)
k2α
)
n−2+2δα = o(n−1).

The desired result follows by summing this estimate over i ∈ {0, 1, . . . , [nt]}. �

We return to the proof of Proposition 7. We fix δ > 0 as in the lemma. We first
observe that, for every j ∈ {a(n)

1 , . . . , a
(n)
N }, (30) implies that

lim
n→∞

n−1/αr
(n)
j = c0(Xsj − Isjt ) > 0.

We then deduce from Lemma 5 that, with a probability close to 1 when n is large, for
every j ∈ {a(n)

1 , . . . , a
(n)
N }, unϕn(j) is the child of a black child of u

(n)
j , whose number of

white children is m̃
(n)
j such that

m
(n)
j ≥ m̃

(n)
j ≥ m

(n)
j − n1/α−δ. (34)

Moreover, the rank r̃
(n)
j of unϕn(j) among the children of its (black) parent satisfies

r
(n)
j ≥ r̃

(n)
j ≥ r

(n)
j − n1/α−δ. (35)

On the other hand, we know that, conditionally on F(n), the difference

`(n)(u
(n)
ϕn(j))− `(n)(u

(n)
j )
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is distributed as the value of a discrete bridge with length m̃
(n)
j + 1 at time r̃

(n)
j . Thus,

conditionally on F(n),

∑
j∈{a(n)

1 ,...,a
(n)
N }

(
`(n)(u

(n)
ϕn(j))− `(n)(u

(n)
j )
)

(d)
=

N∑
i=1

b
(n)
i (r̃

(n)

a
(n)
i

),

where, for every i ∈ {1, . . . , N}, b(n)
i is a discrete bridge with length m̃

(n)

a
(n)
i

+ 1, and the

bridges b
(n)
i are independent.

Using Donsker’s theorem for bridges (18), the convergences (29) and (30), the bounds
(34) and (35), together with scaling properties of Brownian bridges, it is then a simple
matter to obtain that, for every i ∈ {1, . . . , N},

n−1/2α b
(n)
i (r̃

(n)

a
(n)
i

)
(d)−→
n→∞

√
2c0 γi(Xsi − Isit ), (36)

where conditionally on X, γi = (γi(r))0≤r≤∆Xsi
is a Brownian bridge with length ∆Xsi .

The preceding convergences hold jointly when i varies in {1, . . . , N}, with Brownian
bridges γ1, . . . , γN that are independent conditionally on X. It finally follows that

n−1/2α
∑

j∈{a(n)
1 ,...,a

(n)
N }

(
`(n)(u

(n)
ϕn(j))− `(n)(u

(n)
j )
)

(d)−→
n→∞

√
2c0

N∑
i=1

γi(Xsi − Isit ).

From Proposition 5, the limit is close to
√

2c0Dt when N is large. This completes the
proof of the convergence of one-dimensional marginals. It is also clear from our argument
that the convergences (36) hold jointly with (29), so that the convergence of n−1/2αL◦[nt]
must hold jointly with (28).

The same arguments yield the convergence of finite-dimensional marginals. It would be
tedious to write a detailed proof, but we sketch the method in the case of two-dimensional
marginals. So fix 0 < s < t. We aim at proving that

n−1/2α(L
(n)
[ns], L

(n)
[nt])

(d)−→
n→∞

√
2c0 (Ds, Dt).

It is convenient to argue separately on the events {Is > It} and {Is = It}. Discarding
sets of probability zero, the first event corresponds to the case when s and t belong to
different excursion intervals of X − I away from 0, and the second one to the case when
s and t are in the same excursion interval of X − I.

On the event {Is > It}, things are easy. We first note that conditionally on X, Ds and
Dt are independent on that event. This is so because the jumps ti that give a nonzero
contribution in (20) belong to the excursion interval of X − I that straddles t. Similarly,
Ln[ns] and Ln[nt] are independent conditionally given the forest F(n), on the event

min
k≤[ns]

S
(n)
k > min

k≤[nt]
S

(n)
k .
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Furthermore the latter event converges to {Is > It} as n→∞. Thus the very same argu-
ments as in the case of one-dimensional marginals yield that the conditional distribution
of the pair n−1/2α(L

(n)
[ns], L

(n)
[nt]) given {Is > It} converges to the conditional distribution of√

2c0 (Ds, Dt) given the same event.
On the event {Is = It}, we need to be a little more careful. Set

Js = {r ∈ [0, s] : Xr− < Irs} ,
Jt = {r ∈ [0, t] : Xr− < Irt } .

Then a.s. there exists a unique r0 ∈ Js such that

Ist ∈ (Xr0−, I
r0
s ).

Furthermore we have Js∩Jt = Js∩[0, r0] = Jt∩[0, r0], and Irs = Irt for every r ∈ Js∩[0, r0).
Using the convergence (29), we get that a.s. on the event {Is = It}, for n sufficiently large,

there exists a time j0(n) ∈ J (n)
s ∩ J (n)

t such that

S
(n)
j0(n) < min

[ns]≤k≤[nt]
S

(n)
k < min

j0(n)+1≤k≤[ns]
S

(n)
k < S

(n)
j0(n)+1,

and furthermore J (n)
s ∩ J (n)

t = J (n)
s ∩ [0, j0(n)] = J (n)

t ∩ [0, j0(n)]. The white vertices

that are common ancestors to u
(n)
[ns] and to u

(n)
[nt] are exactly the vertices u

(n)
k for k ∈

J (n)
s ∩ [0, j0(n)]. Also note that n−1j0(n) converges to r0, a.s. on the event {Is = It}.

Write ψn : J (n)
s −→ J (n)

s ∪ {[ns]} for the function analogous to ϕn when t is replaced
by s. Analogously to (31) we have

L
(n)
[ns] =

∑
j∈J (n)

s

(
`(n)(u

(n)
ψn(j))− `(n)(u

(n)
j )
)
, L

(n)
[nt] =

∑
j∈J (n)

t

(
`(n)(u

(n)
ϕn(j))− `(n)(u

(n)
j )
)
.

The terms corresponding to j ∈ J (n)
s ∩ [0, j0(n)) = J (n)

t ∩ [0, j0(n)) are the same in
both sums of the preceding display. On the other hand, conditionally on F(n), the terms
corresponding to j ∈ J (n)

s ∩ (j0(n), [ns]) in the first sum are independent of the terms of

the second sum, and similarly for the terms corresponding to j ∈ J (n)
t ∩(j0(n), [nt]) in the

second sum. As for the term corresponding to j0(n), the same arguments as in the proof
of the convergence of one-dimensional marginals, using Lemma 5 in particular, show that

n−1/2α
(
`(n)(u

(n)
ψn(j0(n)))− `(n)(u

(n)
j0(n)), `

(n)(u
(n)
ϕn(j0(n)))− `(n)(u

(n)
j0(n))

)
(d)−→

n→∞

√
2c0

(
γ(Xr0 − Ir0s ), γ(Xr0 − Ir0t )

)
where, conditionally given X, γ is a Brownian bridge with length ∆Xr0 .

Finally, let (ri)i∈N be a measurable enumeration of Js∩ [0, r0) = Jt∩ [0, r0), let (r′i)i∈N
be a measurable enumeration of Js ∩ (r0, s] and let (r′′i )i∈N be a measurable enumeration
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of Js ∩ (r0, t]. Set

L∞s =
∑
i∈N

γi(Xri − Iris ) + γ(Xr0 − Ir0s ) +
∑
i∈N

γ′i(Xr′i
− Ir′is ),

L∞t =
∑
i∈N

γi(Xri − Irit ) + γ(Xr0 − Ir0t ) +
∑
i∈N

γ′′i (Xr′′i
− Ir′′it )

where, conditionally given X, (γi)i∈N, (γ′i)i∈N, (γ′′i )i∈N and γ are independent Brownian
bridges, and the duration of γi, respectively of γ′i, of γ′′i , is ∆Xri , resp. ∆Xr′i

, ∆Xr′′i
. Then

by following the lines of the proof of the convergence of one-dimensional marginals, we
obtain that the conditional distribution of n−1/2α(L

(n)
[ns], L

(n)
[nt]) given {Is = It} converges to

the conditional distribution of
√

2c0 (L∞s , L
∞
t ) given the same event. However, the latter

conditional distribution clearly coincides with the conditional distribution of
√

2c0 (Ds, Dt)
given {Is = It}. So we get the desired convergence for two-dimensional marginals, and
the same argument as in the case of one-dimensional marginals gives a joint convergence
with (28). This completes the proof. �

5.3 Tightness of the rescaled label process

The next proposition will allow us to complete the proof of Theorem 1.

Proposition 8 There exists a constant K0 such that, for every integers i, j ≥ 0,

E[(L◦i − L◦j)4] ≤ K0|i− j|2/α.

Theorem 1 is an easy consequence of this proposition and Proposition 7. To see this,
define L

{n}
t = n−1/2αL◦nt if nt is an integer, and use linear approximation to define L

{n}
t

for every real t ≥ 0. By the bound of the proposition,

E[(L{n}s − L{n}t )4] ≤ K0 |s− t|2/α

if ns and nt are both integers. It readily follows that the same bound holds (possibly with
a different constant) for every reals s, t ≥ 0. Since 2/α > 1, standard criteria entail that
the sequence of the distributions of the processes L{n} is tight in the space of probability
measures on C(R). Theorem 1 then follows by using Proposition 7.

Proof of Proposition 8. We use the same notation as in subsection 5.1. In particular,
u0, u1, u2, . . . are the white vertices of the forest F listed in lexicographical order and one
tree after another, so that L◦i = `(ui) is the label of ui. We also set

J (i) = {k ∈ {0, 1, . . . , i− 1} : S◦k ≤ min
k+1≤`≤i

S◦` }

in such a way that the vertices uk, k ∈ J (i) are the white vertices of F that are strict
ancestors of ui.



5 CONVERGENCE OF LABELS IN A FOREST OF MOBILES 32

We fix two nonnegative integers i < j. If k ∈ J (i), we write ϕ(k) for the index
such that uϕ(k) is the (unique) grandchild of uk that is also an ancestor of ui. We define
similarly ψ(k) for k ∈ J (j) in such a way that uψ(k) is the grandchild of uk that is an
ancestor of uj.

In the case when ui and uj belong to the same tree of the forest, we define i0 by
requiring that ui0 is the most recent white common ancestor of ui and uj in F. If i0 < i,
we have

S◦i0 ≤ min
i≤k≤j

S◦k ≤ S◦ϕ(i0). (37)

This easily follows from the relations between the sequence T ◦1 , T ◦2 , . . . and the Lukasiewicz
path S◦ (see e.g. [11, Section 0.2] or [17, Section 1]), and we leave the proof as an exercise
for the reader. It may happen that i0 = i (but not that i0 = j) and in that case we set
ϕ(i0) = i0 by convention.

In the case when ui and uj belong to different trees of the forest, we take i0 = −∞ by
convention, and we also agree that ϕ(−∞), resp. ψ(−∞), is defined in such a way that
uϕ(−∞), resp. uψ(−∞), is the root of the tree containing ui, resp. containing uj.

Then we have

L◦i − L◦j = `(ui)− `(uj) =
∑

k∈J (i)∩(i0,i)

(
`(uϕ(k))− `(uk)

)
−

∑
k∈J (j)∩(i0,j)

(
`(uψ(k))− `(uk)

)
+ `(uϕ(i0))− `(uψ(i0)). (38)

As in the proof of Proposition 7, we can write∑
k∈J (i)∩(i0,i)

(
`(uϕ(k))− `(uk)

)
=

∑
k∈J (i)∩(i0,i)

bk(rk)

where, conditionally on F, the processes bk are independent discrete bridges, bk has length
mk ≤ S◦k+1 − S◦k + 2, and rk ∈ {1, . . . ,mk − 1} is such that:

rk ≤ S◦k+1 − min
k+1≤`≤i

S◦` + 1 , (39)

mk − rk ≤ min
k+1≤`≤i

S◦` − S◦k + 1 . (40)

From the bound of Lemma 1 and (40), we get, with some constant K1,

E
[( ∑

k∈J (i)∩(i0,i)

bk(rk)
)4 ∣∣∣ F

]
≤ K1

( ∑
k∈J (i)∩(i0,i)

(mk − rk)
)2

≤ K1

( ∑
k∈J (i)∩(i0,i)

(
min

k+1≤`≤i
S◦` − S◦k + 1

))2

≤ 2K1

((
S◦i − min

i≤`≤j
S◦`

)2

+
(
H◦i − min

i≤`≤j
H◦`

)2)
.
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In the last inequality, we have used the identity

#{k ∈ J (i) ∩ (i0, i)} = H◦i − min
i≤`≤j

H◦` ,

and the bound ∑
k∈J (i)∩(i0,i)

(
min

k+1≤`≤i
S◦` − S◦k

)
≤ S◦i − min

i≤`≤j
S◦` ,

which follows from (37) in the case i0 < i.
To simplify notation, set

Jn = min
0≤k≤n

S◦k ,

and note that

S◦i − min
i≤`≤j

S◦`
(d)
= −Jj−i.

Lemma 6 There exists a constant K2 such that, for every integer n ≥ 1,

E[(Jn)2] ≤ K2 n
2/α.

Lemma 7 There exists a constant K3, which does not depend on the choice of i and j,
such that

E
[(
H◦i +H◦j − 2 min

i≤`≤j
H◦`

)2]
≤ K3 |i− j|2(1−1/α).

The proof of these lemmas is postponed to the end of the section. By combining
Lemma 6, Lemma 7 and the previous observations, we get, with a certain constant K4,

E
[( ∑

k∈J (i)∩(i0,i)

(
`(uϕ(k))− `(uk)

))4]
≤ K4|i− j|2/α.

We still have to handle the other two terms in the right-hand side of (38). As previ-
ously, we have ∑

k∈J (j)∩(i0,j)

(
`(uψ(k))− `(uk)

)
=

∑
k∈J (j)∩(i0,j)

bk(rk)

where, conditionally on F, the processes bk are independent discrete bridges, bk has length
mk ≤ S◦k+1 − S◦k + 2, and rk ∈ {1, . . . ,mk − 1} satisfies the bounds (39) and (40) with i
replaced by j. Arguing as above, but now using the bound (39), we get

E
[( ∑

k∈J (j)∩(i0,j)

bk(rk)
)4 ∣∣∣ F

]
≤ 2K1

(( ∑
k∈J (j)∩(i0,j)

(S◦k+1− min
k+1≤`≤j

S◦` )
)2

+
(
H◦j−min

i≤`≤j
H◦`

)2)
.

The expected value of the second term in the right-hand side is bounded by Lemma 7.
As for the first term, we observe that J (j) ∩ (i0, j) = J (j) ∩ (i, j) and thus∑
k∈J (j)∩(i0,j)

(S◦k+1 − min
k+1≤`≤j

S◦` ) =
∑
k∈(i,j)

1{S◦k≤mink+1≤`≤j S
◦
` } (S◦k+1 − min

k+1≤`≤j
S◦` )

(d)
= Fj−i−1
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where, for every n ≥ 1,

Fn =
n−1∑
k=0

1{S◦k≤mink+1≤`≤n S
◦
` }

(
S◦k+1 − min

k+1≤`≤n
S◦`

)
.

Furthermore, a time-reversal argument shows that Fn has the same distribution as Gn,
where

Gn =
n∑
k=1

1{S◦k≥max0≤`≤k−1 S
◦
` }

(
max

0≤`≤k−1
S◦` − S◦k−1

)
.

Lemma 8 There exists a constant K5 such that, for every integer n ≥ 1,

E[(Gn)2] ≤ K5 n
2/α.

Combining Lemma 8 with the preceding observations, we see that the fourth moment
of the second term in the right-hand side of (38) is bounded above by K6|j − i|2/α, for
some constant K6. We easily get the same bound for the third term by using Lemma
1 and Lemma 6. This completes the proof of Proposition 8, but we still have to prove
Lemmas 6, 7 and 8.

Proof of Lemma 6. For every integer k ≥ 0, set

Vk = inf{n ≥ 0 : S◦n = −k}.

Note that Vk is the sum of k independent copies of V1. As a consequence of (15), n−αVn
converges in distribution towards the variable Tc−1

0
= inf{t ≥ 0 : Xt < −c−1

0 }, which

is stable with index 1/α. By standard results about domains of attraction of stable
distributions (see e.g. Section XVII.5 in [12]), there exists a constant K > 0 such that

P(V1 > n) ∼
n→∞

K n−1/α. (41)

Consequently, there is a constant K ′ > 0 such that, for every n ≥ 1,

P(V1 > n) ≥ K ′n−1/α.

Then, for every x ≥ 1 and n ≥ 1,

P(|Jn| ≥ xn1/α) ≤ P(V[xn1/α] ≤ np) ≤ P(V1 ≤ n)[xn1/α] ≤ (1−K ′n−1/α)[xn1/α] ≤ exp(−K ′x/2).

It readily follows that all moments of n−1/α|Jn| are uniformly bounded. �

Proof of Lemma 7. For every nonnegative integers k ≤ `, we set Jk,` = mink≤n≤` S
◦
n, so

that Jk = J0,k. We fix two nonnegative integers i < j, and we first look for an expression
of mini≤`≤j H

◦
` . To this end, we set

g = max{r ∈ {0, 1, . . . , i− 1} : S◦r ≤ Ji,j} ,
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with the convention max ∅ = −∞. Assume first that g > −∞ and let k ∈ {i, . . . , j}.
Then we have

H◦k = #{` ∈ {0, . . . , k − 1} : S◦` = J`,k}
= #{` ∈ {0, . . . , g − 1} : S◦` = J`,k}+ #{` ∈ {g, . . . , k − 1} : S◦` = J`,k} . (42)

From the definition of g, it is easy to verify that J`,k = J`,g for every ` ∈ {0, . . . , g − 1}.
Thus, the first term in the right-hand side of (42) is equal to H◦g and does not depend
on k. Then we note that S◦g = Jg,k by the definition of g, so that the second term in the
right-hand side of (42) equals

1 + #{` ∈ {g + 1, . . . , k − 1} : S◦` = J`,k} .

This expression attains its minimal value 1 when k equals min{` ≥ i : S◦` = Ji,j}. So we
have proved that, when g > −∞,

min
i≤k≤j

H◦k = H◦g + 1.

When g = −∞, by considering k = min{` ≥ i : S◦` = Ji,j}, we see that

min
i≤k≤j

H◦k = 0.

Using (42) and the preceding observations, we get that, for every k ∈ {i, . . . , j},

H◦k − min
i≤`≤j

H◦` = #{` ∈ {0, 1, . . . , k − 1} : ` > g and S◦` = J`,k}. (43)

Specializing this formula to k = i, we have

H◦i − min
i≤`≤j

H◦` ≤ #{` ∈ {g+, . . . , i− 1} : S◦` = J`,i} . (44)

Introduce the time-reversed walk Ŝ
(i)
` = S◦i −S◦i−` for 0 ≤ ` ≤ i. Note that (Ŝ

(i)
` , 0 ≤ ` ≤ i)

has the same distribution as (S◦` , 0 ≤ ` ≤ i). For every integer m ≥ 0, set

ρ̂(i)
m = min{k ∈ {0, . . . , i} : Ŝ

(i)
k ≥ m} ,

where min ∅ = +∞. For k ∈ {0, 1, . . . , i}, we also set

∆̂(i)(k) = #{` ∈ {1, . . . , k} : Ŝ
(i)
` = max

0≤n≤`
Ŝ(i)
n } ,

which is the number of (weak) records of the time-reversed walk Ŝ(i) before time k. Finally,

let J
(i)
j−i = Ji,j − S◦i . With these definitions, (44) can be rewritten in the form

H◦i − min
i≤`≤j

H◦` ≤ ∆̂(i)(ρ̂
(i)

−J(i)
j−i
∧ i) . (45)



5 CONVERGENCE OF LABELS IN A FOREST OF MOBILES 36

Note that J
(i)
j−i is independent of the time-reversed walk Ŝ(i) and that conditionally on

{−J (i)
j−i = m}, the random variable ∆̂(i)(ρ̂

(i)

−J(i)
j−i
∧ i) has the same distribution as ∆(ρm∧ i),

where for every integers k,m ≥ 0,

∆(k) = #{` ∈ {1, . . . , k} : S◦` = max
0≤n≤`

S◦n} , ρm = inf{k ≥ 0 : S◦k ≥ m}.

We thus need to estimate the moments of ∆(ρm). To this end, introduce the weak record
times, which are defined by induction by τ0 = 0 and

τn+1 = inf{k > τn : S◦k ≥ S◦τn} , n ≥ 0 .

It is well known (see e.g. [17, Lemma 1.9]) that the random variables S◦τn − S◦τn−1
, n ≥ 1,

are i.i.d. with distribution
P(S◦τ1 = k) = ν(k)

where ν(k) = ν([k,∞)) = µ([k + 1,∞)). From (14), we get that there exists a positive
constant K ′1 such that, for every m ≥ 1,

P(S◦τ1 ≥ m) ≥ K ′1m
−α+1 .

Consequently, by arguing as in the proof of Lemma 6, we get, for every real y ≥ 1,

P(∆(ρm) > ymα−1) ≤ P(S◦τ[ymα−1]
< m) ≤ P (S◦τ1 < m)[ymα−1] ≤ exp(−K ′1y/2) .

Thus, the moments of ∆(ρm)/mα−1 are uniformly bounded. From the remarks following
(45), we get

E[(∆̂(i)(ρ̂
(i)

−J(i)
j−i
∧ i))2] ≤ K ′2E[(−J (i)

j−i)
2(α−1)] = K ′2E[(−Jj−i)2(α−1)] ≤ K ′3|j − i|2(1−1/α) ,

where we used Lemma 6 and the Jensen inequality in the last bound. By (45), this yields

E[(H◦i − min
i≤`≤j

H◦` )2] ≤ K ′3|j − i|2(1−1/α) . (46)

Next, let us take k = j in (43). It follows that

H◦j − min
i≤`≤j

H◦` = #{` ∈ {i, . . . , j − 1} : S◦` = J`,j} .

Using the same notation as above, we can rewrite the previous displayed quantity as

#{` ∈ {1, . . . , j − i} : Ŝ
(j)
` = max

0≤n≤`
Ŝ(j)
n }

(d)
= ∆(j − i) .

We claim that, for every integer p ≥ 1, the p-th moment of ∆(n)/n1−1/α is bounded
independently of n ≥ 1. Taking p = 2, we then deduce from the previous identity in
distribution that

E[(H◦j − min
i≤`≤j

H◦` )2] ≤ K ′4|i− j|2(1−1/α) .
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The statement of the lemma follows from the last bound and (46).
It thus remains to verify our claim. We note that, for every real y ≥ 1 and every

n ≥ 1,
P(∆(n) > yn1−1/α) ≤ P(τ[yn1−1/α] < n).

Since τn =
∑n

k=1(τk− τk−1) and the random variables τk− τk−1, k ≥ 1 are i.i.d., the same
argument as in the proof of Lemma 6 shows that our claim will follow from the bound

P(τ1 ≥ n) ≥ K ′5n
(1/α)−1 , (47)

for some positive constant K ′5. From formulas P5(b), p.181 and (3), p.187 in [29, IV.17],
the generating function of τ1 is given by the formula

1− E[sτ1 ] =
1− s
1− rs , (48)

where, for 0 < s < 1, rs is the unique real solution in (0, 1) of equation rs/s = φµ(rs),
with φµ(s) =

∑∞
k=0 s

kµ(k). From a standard Abelian theorem, the asymptotic formula
(14) implies that φµ(s) = s + K(µ)(1 − s)α + o((1 − s)α) as s → 1, with some positive
constant K(µ) depending on µ. From the equation rs/s = φµ(rs) one then gets that the
ratio K(µ)(1− rs)α/(1− s) tends to 1 as s→ 1. From this and (48), it follows that

1− E[sτ1 ] = K
1/α
(µ) (1− s)1−1/α + o((1− s)1−1/α) ,

as s → 1. The desired estimate (47) then follows using Karamata’s Tauberian theorem
for power series. �

Remark. The previous proof may be compared with that of the analogous statement in
the continuous-time setting [11, Lemma 1.4.6].

Proof of Lemma 8. To simplify notation, we set

Mn = max
0≤k≤n

S◦k

for every n ≥ 0. We have then

Gn =
n−1∑
k=0

1{S◦k+1≥Mk} (Mk − S◦k). (49)

By time-reversal, Mk − S◦k has the same distribution as −Jk. We start by deriving some
information about the distribution of Jk. From (14), there exists a constant K ′6 such that,
for every ` ≥ 1,

ν(`) ≤ K ′6 `
−α. (50)

We use this to verify that, for every k ≥ 1 and ` ≥ 1,

P(Jk > −`) ≤ K ′7
`

k1/α
, (51)
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with some constant K ′7. Clearly, we may assume that ` < k1/α/10. Recall the notation Vk
introduced in the proof of Lemma 6. As we already noticed in the proof of this lemma,
k−1V[k1/α] converges in distribution towards a stable variable with index 1/α as k → ∞.
This implies that there exists a constant c∗ such that, for every k ≥ 1,

P(V[k1/α] > k) ≤ c∗ < 1.

Let U1, U2, . . . be independent random variables distributed as V`. Then,

P(V[k1/α] > k) ≥ P(U1 + U2 + · · ·+ U[`−1[k1/α]] > k)

≥ 1− P(Ui ≤ k, ∀i = 1, . . . , [`−1[k1/α]] )

= 1− (1− P(V` > k))[`−1[k1/α]]

Combining the last two displays, we get

(1− P(V` > k))[`−1[k1/α]] ≥ 1− c∗
and consequently

P(V` > k) ≤ 1− (1− c∗)1/[`−1[k1/α]].

The bound (51) follows since P(Jk > −`) = P(V` > k). Using the bound (51), we easily
get that there exists a constant K ′8 such that, for every k ≥ 1,

E[|Jk|1−α ∧ 1] ≤ K ′8 k
(1/α)−1. (52)

Let us now bound E[(Gn)2]. From (49), we have

Gn =
n−1∑
k=0

ν(Mk − S◦k) (Mk − S◦k) +
n−1∑
k=0

(1{S◦k+1≥Mk} − ν(Mk − S◦k)) (Mk − S◦k) =: G′n +G′′n.

We first bound E[(G′′n)2]. Using the Markov property for the random walk S◦, and more
precisely the fact that P(S◦k+1 ≥Mk | S◦0 , . . . , S◦k) = ν(Mk − S◦k), we get

E[(G′′n)2] = E
[ n−1∑
k=1

(1{S◦k+1≥Mk} − ν(Mk − S◦k))2(Mk − S◦k)2
]

= E
[ n−1∑
k=1

(Mk − S◦k)2ν(Mk − S◦k) (1− ν(Mk − S◦k))
]

≤ E
[ n−1∑
k=1

(Mk − S◦k)2ν(Mk − S◦k)
]

Using the estimate (50), the fact that Mk−S◦k has the same distribution as |Jk|, and then
Lemma 6 together with the Jensen inequality, we get

E[(G′′n)2] ≤ K ′6

n−1∑
k=1

E[|Jk|2−α] ≤ K ′6(K2)(2−α)/2

n−1∑
k=1

k2/α−1 ≤ K ′9 n
2/α.
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We then turn to E[(G′n)2]. We have

E[(G′n)2] = E
[ n−1∑
k=0

ν(Mk − S◦k)2 (Mk − S◦k)2
]

+ 2E
[ ∑

0≤k<j≤n−1

ν(Mk − S◦k) (Mk − S◦k)ν(Mj − S◦j ) (Mj − S◦j )
]
.

Since ν(Mk − S◦k) ≤ 1, the first term in the right-hand side is bounded above by K ′9n
2/α

as in the preceding calculation. Using (50), the second term is bounded above by

2(K ′6)2 E
[ ∑

0≤k<j≤n−1

((Mk − S◦k)1−α ∧ 1) ((Mj − S◦j )1−α ∧ 1)
]
.

To bound this quantity, we note that, for fixed k and j such that 0 ≤ k < j, the
distribution of Mj − S◦j given the past of S◦ up to time k dominates the (unconditional)
distribution of Mj−k − S◦j−k. Since the function x → x1−α ∧ 1 is nonincreasing over R+,
it follows that the quantity in the last display is bounded above by

2(K ′6)2
∑

0≤k<j≤n−1

E[(Mk − S◦k)1−α ∧ 1] E[(Mj−k − S◦j−k)1−α ∧ 1]

≤ 2(K ′6)2
( n−1∑
k=0

E[(Mk − S◦k)1−α ∧ 1]
)2

= 2(K ′6)2
( n−1∑
k=0

E[|Jk|1−α ∧ 1]
)2

≤ 2(K ′6)2(K ′8)2
(

1 +
n−1∑
k=1

k(1/α)−1
)2

≤ K ′10 n
2/α.

In the penultimate line of the calculation, we used the bound (52). We conclude that
E[(G′n)2] ≤ (K ′9 +K ′10)n2/α, which completes the proof of Lemma 8. �

6 Contour processes and conditioned trees

6.1 Contour processes

In view of our applications to random planar maps, it will be important to reformulate
Theorem 1 in terms of contour processes associated with our forest of mobiles. We consider
the same general setting as in the previous section. In particular, u0, u1, . . . are the white
vertices of the forest F listed one tree after another and in lexicographical order for every
tree. Recall that H◦n = 1

2
|un|. We also denote by x0, x1, . . . the sequence obtained by
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concatenating the white contour sequences of θ1, θ2, . . . Notice that some of the vertices
u0, u1, . . . appear more than once in the sequence x0, x1, . . . More precisely the number of
occurrences of a given white vertex of F is equal to 1 plus the number of its black children.
We set C◦n = 1

2
|xn|, and we denote by Λn the label of xn.

In order to study the scaling limit of (C◦n)n≥0, we define, for every n ≥ 0,

Rn = inf{j ≥ 0 : xj = un}.
Clearly,

C◦Rn =
1

2
|xRn| =

1

2
|un| = H◦n.

Lemma 9 We have

lim
n→∞

Rn

n
=

1

β
, a.s.

Proof. For every j = 0, 1, . . ., let B(j) denote the number of black children of uj. Notice
that the random variables B(0), B(1), . . . are independent and distributed according to
µ0. We first observe that

Rn ≤
n−1∑
j=0

(B(j) + 1). (53)

This bound comes from the fact that any vertex that is visited by the contour sequence
x0, x1, . . . before the first visit of un must be smaller than un in lexicographical order.
Hence, Rn has to be smaller than the total number of visits by the contour sequence of
all vertices that are smaller than un in lexicographical order. The bound (53) follows.

Since the mean of µ0 is m0 = Zqfq(Zq) = 1
β
− 1, the law of large numbers gives

lim sup
n→∞

Rn

n
≤ 1

β
, a.s.

We would like to derive the reverse inequality. To this end, note that, if a vertex uj with
j < n is not an ancestor of un, then all its visits by the contour sequence will occur before
the first visit of un. Thus,

Rn ≥ n+
n−1∑
j=0

B(j)1{uj is not an ancestor of un}

or equivalently

n−1∑
j=0

(B(j) + 1)−Rn ≤
n−1∑
j=0

B(j)1{uj is an ancestor of un} ≤ H◦n × sup
0≤j≤n−1

B(j). (54)

A crude estimate gives, for every ε > 0,

lim
n→∞

1

nε
sup

0≤j≤n−1
B(j) = 0 , a.s.
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On the other hand, by a special case of Lemma 7, we know that E[(H◦n)2] ≤ K3 n
2(1−1/α).

Using the Markov inequality and then the Borel-Cantelli lemma, we can find ε > 0 such
that

lim
n→∞

1

n1−ε H
◦
n = 0 , a.s. (55)

and we conclude that

lim
n→∞

1

n
H◦n × sup

0≤j≤n−1
B(j) = 0 , a.s.

The desired result then follows from (54) and the law of large numbers. �

Remark. Since the sequence (Rn)n≥0 is monotone increasing, we have also for every
A > 0,

lim
n→∞

1

n
sup

0≤k≤An
|Rk − k

β
| = 0 , a.s. (56)

The next proposition is an analogue of Theorem 1 for contour processes.

Proposition 9 We have(
n−(1−1/α) C◦[nt], n

−1/2α Λ[nt]

)
t≥0

(d)−→
n→∞

(
c−1

0 Hβt,
√

2c0Dβt

)
t≥0
,

where the convergence holds in the sense of weak convergence of the laws in the Skorokhod
space D(R2).

Proof. Fix an integer A > 0. The statement of the proposition will be an immediate
consequence of Theorem 1 once we have verified that

n−(1−1/α) sup
0≤k≤An

|C◦k −H◦[βk]| −→
n→∞

0 , in probability, (57)

and
n−1/2α sup

0≤k≤An
|Λk − L◦[βk]| −→

n→∞
0 , in probability. (58)

Let us start with the proof of (57). It is elementary to check that, for every integer
n ≥ 0,

sup
Rn≤j≤Rn+1

|C◦j − C◦Rn| ≤ |H◦n+1 −H◦n|+ 1. (59)

Then note that, if k ∈ {0, 1, . . . , An} and ` is chosen so that R` ≤ k < R`+1, we have

|C◦k −H◦[βk]| ≤ |C◦k − C◦R` |+ |H◦` −H◦[βk]|

since C◦R` = H◦` . By (59) and the fact that the limiting process H in (28) is continuous,
we have

n−(1−1/α) sup
0≤`≤An

sup
R`≤k<R`+1

|C◦k − C◦R` | −→n→∞ 0 , in probability. (60)
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On the other hand, for every fixed ε > 0, it follows from (56) that, with a probability
close to 1 when n is large, we have for every ` = 0, 1, . . . , An,

`− εn ≤ βR` ≤ βR`+1 ≤ `+ εn

and thus

n−(1−1/α) sup
0≤`≤An

sup
R`≤k<R`+1

|H◦` −H◦[βk]| ≤ n−(1−1/α) sup
r,s∈[0,A+ε], |r−s|≤ε

|H◦[nr] −H◦[ns]|.

The right-hand side will be small in probability when n is large, by (28) again, provided
that ε has been chosen small enough. This completes the proof of (57).

Let us now prove (58). Notice that L◦n = ΛRn , for every n ≥ 0. So we can argue in
a way similar to the proof of (57), using Theorem 1 in place of (28), provided that we
establish the analogue of (60),

n−1/2α sup
0≤`≤An

sup
R`≤k<R`+1

|Λk − ΛR` | −→n→∞ 0 , in probability. (61)

So let us verify that (61) holds. From the distribution of labels, it is easy to check that,
for every fixed n ≥ 0, conditionally on the forest F, the sequence

(Λ(Rn+j)∧Rn+1 − ΛRn)j≥0

is a martingale (in fact the increments of this sequence are both independent and centered,
conditionally given F). By Doob’s inequality, there are constants K and K ′ such that,
for every ` ≥ 0,

E
[

sup
R`≤k<R`+1

(Λk − ΛR`)
4
∣∣∣F] ≤ K E

[
(ΛR`+1

− ΛR`)
4
∣∣∣F]

and
E
[

sup
R`≤k<R`+1

(Λk − ΛR`)
4
]
≤ K E

[
(ΛR`+1

− ΛR`)
4
]
≤ K ′

using Proposition 8 with i = ` and j = ` + 1. Finally, if ε > 0 is small enough so that
2
α
− 4ε− 1 > 0, we have

P
[

sup
0≤`≤An

sup
R`≤k<R`+1

|Λk − ΛR`| ≥ n(1/2α)−ε
]
≤ (An+ 1)K ′(n(1/2α)−ε)−4 −→

n→∞
0 .

This completes the proof of (61) and of the proposition. �

6.2 Conditioning a mobile to have more than n white vertices

The definition of the continuous-time height process (Ht)t≥0 also makes sense under
the excursion measure N, or under N(· | σ = 1) (see Chapter 1 of [11]). Further-
more, the law of the pair (Ht, Dt)t≥0 under N(· | σ > 1) coincides with the law of
(H(g(1)+t)∧d(1), D(g(1)+t)∧d(1))t≥0 under P, where (g(1), d(1)) is the first excursion interval of
X − I with length greater than 1. This follows from a minor extension of the arguments
of subsection 4.3.

For every integer n ≥ 1, we set Q̃(n) = Q(· | #T ◦ ≥ n).
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Theorem 2 The law of 1
n
#T ◦ under Q̃(n) converges as n → ∞ to the law of σ under

N(· | σ > 1). Moreover, the law of the process(
n−(1−1/α) Hθ

[nt], n
−1/2αLθ[nt]

)
t≥0

under Q̃(n)(dθ) converges as n→∞ towards the law of the process(
c−1

0 Ht,
√

2c0Dt

)
t≥0

under N(· | σ > 1). Similarly, the law of the process(
n−(1−1/α) Cθ

[nt], n
−1/2αΛθ

[nt]

)
t≥0

under Q̃(n)(dθ) converges as n→∞ towards the law of(
c−1

0 Hβt,
√

2c0Dβt

)
t≥0

under N(· | σ > 1).

Proof. Thanks to Theorem 1 and the Skorokhod representation theorem, we can con-
struct, for every integer n ≥ 1, a random labeled forest F(n) having the same distribution
as F, in such a way that(

n−1/αS
(n)
[nt], n

−(1−1/α)H
(n)
[nt], n

−1/2αL
(n)
[nt]

)
t≥0

a.s.−→
n→∞

(c0Xt, c
−1
0 Ht,

√
2c0Dt)t≥0 (62)

where we used the notation of the proof of Proposition 7. Let θ̃(n) be the first mobile in
the forest F(n) with at least n white vertices, and note that θ̃(n) is distributed according
to Q̃(n). Let [gn, dn] be the first excursion interval of H(n) away from 0 with length greater

than or equal to n. Then, writing H̃(n) and L̃(n) for the height process and the label
process of θ̃(n) respectively, we have for every k ≥ 0,

H̃
(n)
k = H

(n)
(gn+k)∧dn , L̃

(n)
k = L

(n)
(gn+k)∧dn .

This is so because the interval [gn, dn) exactly corresponds to those integers j such that

the (j + 1)-st vertex of F(n) (in lexicographical order) belongs to θ̃(n).
One can then deduce from (62) that

1

n
gn

a.s.−→
n→∞

g(1) ,
1

n
dn

a.s.−→
n→∞

d(1) . (63)

We omit the details of the derivation of (63): See the proof of Proposition 2.5.2 in [11],
or the proof of Corollary 1.13 in [17] for a very similar argument.
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The first assertion of the theorem readily follows from (63), since the number of white

vertices of θ̃(n) is dn − gn, and the law of d(1) − g(1) is precisely the law of σ under
N(· | σ > 1).

Then, we have

(n−(1−1/α) H̃
(n)
[nt], n

−1/2αL̃
(n)
[nt]) = (n−(1−1/α)H

(n)

[n(( gn
n

+t)∧ dn
n

]
, n−1/2αL

(n)

[n(( gn
n

+t)∧ dn
n

]
)

and thus (62) and (63) give

(n−(1−1/α) H̃
(n)
[nt], n

−1/2αL̃
(n)
[nt])t≥0

a.s.−→
n→∞

(c−1
0 H(g(1)+t)∧d(1) ,

√
2c0D(g(1)+t)∧d(1))t≥0.

The first convergence stated in the theorem follows, since we know that the limiting
process has the desired distribution.

Let us turn to the proof of the second convergence of the theorem. From (57) and
(58), we know that, for every integer A > 0,

n−(1−1/α) sup
k≤An

|C(n)
k −H(n)

[βk]| −→n→∞ 0 , in probability,

and
n−1/2α sup

k≤An
|Λ(n)

k − L(n)
[βk]| −→n→∞ 0 , in probability.

Write C̃(n) and Λ̃(n) for the contour process and the contour label process, respectively,
of θ̃(n). We have for every t ≥ 0,

C̃
(n)
[nt] = C

(n)
(Rgn+[nt])∧Rdn

.

Writing

(Rgn + [nt]) ∧Rdn = n
(

(
Rgn

n
+

[nt]

n
) ∧ Rdn

n

)
and using Lemma 9 together with (63), we get

n−(1−1/α) sup
t≥0
|C̃(n)

[nt] −H(n)
[n((g(1)+βt)∧d(1))]

| −→
n→∞

0 , in probability.

Similarly, we have

n−1/2α sup
t≥0
|Λ̃(n)

[nt] − L(n)
[n((g(1)+βt)∧d(1))]

| −→
n→∞

0 , in probability.

The desired result now follows from (62). �
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6.3 Conditioning a mobile to have exactly n white vertices

We now set Q(n)
= Q(· | #T ◦ = n). Note that this makes sense (the conditioning event

has positive probability) for all sufficiently large n. From now on, we consider only such

values of n. Our goal is to derive an analogue of Theorem 2 when Q̃(n) is replaced by

Q(n)
. The proof is more delicate and will require a few preliminary lemmas.

Let θ = (T , (`(v))v∈T ◦) be a mobile. Recall our notation w0(θ), w1(θ), . . . , w#T ◦−1(θ)
for the white vertices of θ listed in lexicographical order. By convention, we put wl(θ) = ∅
when l ≥ #T ◦. For every k ≥ 1, we then define another mobile θ[k] = (T[k], (`[k](v))v∈T ◦

[k]
)

in the following way. First, T[k] consists of the vertices w0(θ), . . . , wk−1(θ), together with
all the (black) children and all the (white) grandchildren of these vertices in T . Then,
`[k](v) = `(v) for every v ∈ T ◦[k]. By convention, we also define θ[0] as the trivial mobile
with just one vertex.

For every k ≥ 0, we let Gk be the σ-field on Θ generated by the mapping θ → θ[k]. It
is easily checked that the processes Hθ

k and Lθk are adapted to the filtration (Gk)k≥0.
Recall that by definition of the Lukasiewicz path Sθ, for every j ∈ {1, . . . ,#T ◦},

Sθj −Sθj−1 + 1 is the number of (white) grandchildren of wj−1(θ). It follows that, for every
k ≥ 0, Sθk is Gk-measurable. Furthermore, under the probability measure Q, the process
(Sθk)k≥0 is Markovian with respect to the filtration (Gk)k≥0 and its transition kernels are
those of the random walk with jump distribution ν stopped at its first hitting time of −1.
The preceding properties can be derived by a minor modification of the arguments found
in Section 1 of [17]. We leave details to the reader.

Recall our notation (Sk)k≥0 for a random walk with jump distribution ν. We assume
that S0 = j under the probability measure Pj, for every j ∈ Z. We set V = inf{k ≥ 0 :
Sk = −1}.
Lemma 10 Let k ∈ {1, 2, . . . , n−1}. The Radon-Nikodym derivative of Q(n)

with respect

to Q̃(n) on the σ-field Gk is equal to Γ(k, n, Sθk), where, for every integer j ≥ 0,

Γ(k, n, j) =
ψn−k(j)/ψn(0)

ϕn−k(j)/ϕn(0)

and, for every integer p ≥ 0,

ψp(j) = Pj(V = p)

ϕp(j) = Pj(V ≥ p).

Remark. If k ≤ #T ◦, the number of white vertices of θ[k] is k+1+Sθk. If γ has (strictly)

more than n white vertices, then Q(n)
(θ[k] = γ) = 0. This is consistent with the fact that

ψn−k(j) = 0 if j > n− k − 1.

Proof. Let γ be a mobile with strictly more than k white vertices and such that γ[k] = γ
(these are the necessary and sufficient conditions for γ to be of the form θ[k] for some
θ ∈ Θ with at least n white vertices). Then,

Q(n)
(θ[k] = γ) =

Q({θ[k] = γ} ∩ {#T ◦ = n})
Q(#T ◦ = n)

.
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On the one hand,
Q(#T ◦ = n) = P0(V = n) = ψn(0).

On the other hand, by the remarks preceding the statement of the lemma,

Q({θ[k] = γ} ∩ {#T ◦ = n}) = Q({θ[k] = γ} ∩ {inf{p ≥ 0 : Sθp = −1} = n})
= Q(1{θ[k]=γ} PSθk(V = n− k))

= Q(1{θ[k]=γ} ψn−k(S
θ
k)).

We have thus

Q(n)
(θ[k] = γ) = Q

(
1{θ[k]=γ}

ψn−k(S
θ
k)

ψn(0)

)
.

Similar arguments give

Q̃(n)(θ[k] = γ) = Q
(
1{θ[k]=γ}

ϕn−k(S
θ
k)

ϕn(0)

)
.

The desired result follows. �

Lemma 11 Let a ∈ (0, 1). There exist an integer n0 and a constant K such that, for
every n ≥ n0 and every j ≥ 0,

Γ([an], n, j) ≤ K.

Proof. By Kemperman’s formula (see e.g. [27, p.122]), for every j ≥ 0 and n ≥ 1,

Pj(V = n) =
j + 1

n
P0(Sn = −j − 1). (64)

On the other hand, Gnedenko’s local limit theorem (see [14, Theorem 4.2.1]) shows that

lim
n→∞

sup
k∈Z

∣∣∣n1/α P0(Sn = k)− g(
k

n1/α
)
∣∣∣ = 0 (65)

where the function g is continuous and (strictly) positive over R. Taking k = −1, we get
that there exist positive constants K1 and K2 such that, for n large,

ψn(0) =
1

n
P0(Sn = −1) ≥ K1 n

−1−1/α

and

ϕn(0) =
∞∑
m=n

1

m
P0(Sm = −1) ≤ K2 n

−1/α

(the latter bound can also be derived from (41)).
So in order to get the desired statement, we need to verify that the quantity

nψn−[an](j)

ϕn−[an](j)
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is bounded when n is large, uniformly in j.
Consider first the case when j ≤ n1/α. From (64) and (65), we obtain that there exist

positive constants K3 and K4 such that, for n large,

ψn−[an](j) =
j + 1

n
P0(Sn−[an] = −j − 1) ≤ K3(j + 1)n−1−1/α

and

ϕn−[an](j) = (j + 1)
∞∑

m=n−[an]

1

m
P0(Sm = −j − 1) ≥ K4(j + 1)n−1/α.

The desired bound follows.
Suppose then that j ≥ n1/α. It easily follows from (15) that there exists a positive

constant K5 such that
ϕn−[an](j) ≥ K5 > 0.

On the other hand, we already noticed that the law of V under P0 is in the domain of
attraction of a stable distribution with index 1/α. Another application of Gnedenko’s
local limit theorem shows that

lim
k→∞

sup
n≥1

∣∣∣kαPk(V = n)− g̃(
n

kα
)
∣∣∣ = 0 ,

where the function g is continuous and bounded over (0,∞). Hence, there exists a constant
K6 such that, for every integers n ≥ 1 and k ≥ n1/α

nPk(V = n) ≤ kαPk(V = n) ≤ K6. (66)

It immediately follows that

nψn−[an](j) =
n

n− [an]
(n− [an]) Pj(V = n− [an]) ≤ K6

1− a.

giving the desired bound when j ≥ n1/α. This completes the proof. �

Proposition 10 The law of the process(
n−1/αSθ[nt], n

−(1−1/α) Hθ
[nt]

)
t≥0

under Q(n)
(dθ) converges as n→∞ towards the law of the process(

c0Xt, c
−1
0 Ht

)
t≥0

under N(· | σ = 1).



6 CONTOUR PROCESSES AND CONDITIONED TREES 48

This follows from Theorem 3.1 in [10]. This theorem gives the convergence in distribu-
tion of the rescaled height process (n−(1−1/α) Hθ

[nt])t≥0, under more general assumptions.

A close look at the proof (see in particular formula (130) in [10]) shows that the joint
convergence stated in the proposition is indeed a direct consequence of the arguments in
[10].

Lemma 12 The finite-dimensional marginal distributions of the process

(n−1/2αLθ[nt])0≤t≤1

under Q(n)
(dθ) converge as n→∞ to the finite-dimensional marginal distributions of the

process (
√

2c0Dt)0≤t≤1 under N(· | σ = 1). Moreover, this convergence holds jointly with
that of Proposition 10.

Proof. This can be derived from the convergence of the rescaled process (n−1/αSθ[nt])0≤t≤1

in Proposition 10, in the same way as Proposition 7 has been derived from the convergence
(15). The only delicate point is to verify that a suitable analogue of Lemma 5 holds. To
this end, we may argue as follows. Suppose that we are interested in the finite-dimensional
marginal distribution at times 0 ≤ t1 < t2 < · · · < tp < 1. Then it suffices to prove that
an analogue of Lemma 5 holds for the vertices w0(θ), w1(θ), . . . , w[ntp]−1(θ), which are
the first [ntp] white vertices of θ in lexicographical order. But then the desired property
involves an event that is measurable with respect to the σ-field G[ntp], and so we may use

Lemmas 10 and 11, to see that it is enough to argue under the probability measure Q̃(n),

rather than under Q(n)
. The same trick that we used in the proof of Theorem 2 then leads

to the desired estimate. The remaining part of the argument is straightforward, and we
leave details to the reader. �

Before stating and proving the main theorem of this section, we need to establish an
analogue of Lemma 9. If θ is a mobile, we still denote (with a slight abuse of notation)
by Rk = Rk(θ) the time of the first visit of wk(θ) by the contour sequence of θ, for every
k ∈ {0, 1, . . . ,#T ◦ − 1}.

Lemma 13 For every ε > 0,

lim
n→∞

Q(n)
( 1

n
sup

0≤k≤n−1
|Rk − k

β
| > ε

)
= 0 , (67)

and

lim
n→∞

Q(n)
(
| 1
n

#T − 1

β
| > ε

)
= 0 .

Proof. This follows by a minor modification of the proof of Lemma 9. Starting from a

forest F = (θ1, θ2, . . .) as previously, we note that Q(n)
(dθ) is the distribution of θ1 under

the conditioned measure P(· | #T ◦1 = n). Notice that P(#T ◦1 = n) = Q(#T ◦ = n) =
ψn(0) is of order n−1−1/α when n is large, by (64) and (65). Thus we can use standard
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large deviations estimates for sums of independent random variables to verify that, for
every ε > 0,

lim
n→∞

P
( 1

n
sup

1≤k≤n

∣∣∣ k−1∑
j=0

(B(j) + 1)− k

β

∣∣∣ > ε
∣∣∣ #T ◦1 = n

)
= 0. (68)

Similarly,

lim
n→∞

P
(

sup
0≤j≤n−1

B(j) > nε
∣∣∣ #T ◦1 = n

)
= 0.

Furthermore, an analogue of (55) follows from Proposition 10, which implies that, for
every ε > 0, we have

P
(

sup
0≤k≤n−1

H◦k ≥ n1−1/α+ε
∣∣∣#T ◦1 = n

)
−→
n→∞

0 .

The first assertion of the lemma follows from these remarks by the same arguments as
in the proof of Lemma 9. The second assertion is a consequence of (68) since #T1 =∑n−1

j=0 (B(j) + 1), P a.s. on {#T ◦1 = n}. �

Theorem 3 The law of the process(
n−(1−1/α) Hθ

[nt], n
−1/2αLθ[nt]

)
t≥0

under Q(n)
(dθ) converges as n→∞ towards the law of the process(

c−1
0 Ht,

√
2c0Dt

)
t≥0

under N(· | σ = 1). Similarly, the law of the process(
n−(1−1/α) Cθ

[nt], n
−1/2αΛθ

[nt]

)
t≥0

under Q(n)
(dθ) converges as n→∞ towards the law of(

c−1
0 Hβt,

√
2c0Dβt

)
t≥0

under N(· | σ = 1).

Proof. Fix a real a ∈ (1
2
, 1). Recall that a sequence of laws of càdlàg processes is C-tight

if it is tight and any sequential limit is supported on the space of continuous functions.
We first observe that the sequence of the laws of the processes(

n−(1−1/α) Hθ
[nt], n

−1/2αLθ[nt]

)
0≤t≤a

(69)
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under Q(n)
(dθ), is C-tight. Indeed, by Lemmas 10 and 11, the law under Q(n)

of the process

in (69) is absolutely continuous with respect to the law of the same process under Q̃(n),
with a Radon-Nikodym density that is bounded uniformly in n. The desired tightness
then follows from Theorem 2.

Next, from Lemma 13, and the very same arguments as in the derivation of (57) and
(58), we have for every ε > 0,

Q(n)
(
n−(1−1/α) sup

0≤k≤ a
β
n

|Cθ
k −Hθ

[βk]| > ε
)
−→
n→∞

0 , (70)

and
Q(n)

(
n−1/2α sup

0≤k≤ a
β
n

|Λθ
k − Lθ[βk]| > ε

)
−→
n→∞

0 . (71)

Note that we must restrict the supremum to k ≤ a
β
n, because we need the C-tightness of

the processes in (69).
From (70) and (71), together with Lemma 12, we obtain that the finite-dimensional

marginal distributions of the process(
n−(1−1/α) Cθ

[nt], n
−1/2αΛθ

[nt]

)
0≤t≤a/β

(72)

under Q(n)
converge to those of (c−1

0 Hβt,
√

2c0Dβt)0≤t≤a/β under N(· | σ = 1). Moreover,
the sequence of the laws of the processes in (72) is C-tight, by (70) and (71), and the
tightness of the laws of the processes in (69).

This gives the second convergence stated in the theorem, but only over the time interval
[0, a/β]. To get rid of this restriction, we may argue as follows. From Lemma 13, we have
for every ε > 0,

Q(n)
(
| 1
n

#T − 1

β
| > ε

)
−→
n→∞

0.

On the other hand, we know that Cθ
k = Λθ

k = 0 for every k ≥ #T − 1. Furthermore, a
simple argument shows that the processes

(Cθ
k ,Λ

θ
k)k≥0 and (Cθ

(#T −1−k)+ ,−Λθ
(#T −1−k)+)k≥0

have the same distribution under Q(n)
(dθ). It is an easy matter to combine these remarks

in order to remove the restriction t ≤ a/β in the convergence of the processes in (72).
The first convergence of the theorem then follows from the second one, using the

identities Hθ
k = Cθ

Rk
and Lθk = Cθ

Rk
, together with Lemma 13. �

7 Asymptotics for large planar maps

In this section, we apply the results of the preceding sections to properties of planar maps
distributed according to Pq and conditioned to be large in some sense. We recall our



7 ASYMPTOTICS FOR LARGE PLANAR MAPS 51

notation v∗ for the distinguished vertex of a rooted and pointed bipartite planar map m,
and e− for the origin of the root edge of m. The radius of the planar map m is defined
by

R(m) = max
v∈V (m)

dgr(v∗, v).

The profile of distances in m is the point measure ρm on Z+ defined by

ρm(k) = #{v ∈ V (m) : dgr(v∗, v) = k} , k ∈ Z+.

Finally, we also set ∆(m) = dgr(e−, v∗).
In the following theorem, we consider the distance process (Dt)t≥0 under N(· | σ = 1)

and under N(· | σ > 1). In both cases, we use the notation

D = max
t≥0

Dt , D = min
t≥0

Dt .

Theorem 4 Let Mn be distributed according to Pq(· | #V (m) = n), respectively according
to Pq(· | #V (m) ≥ n). Then :

(i) n−1/2αR(Mn)
(d)−→

n→∞

√
2c0(D −D).

(ii) Let ρ
(n)
Mn

denote the rescaled profile of distances in Mn defined by∫
ρ

(n)
Mn

(dx)ϕ(x) = n−1
∑
k∈Z+

ρMn(k)ϕ(n−1/2αk).

Then, ρ
(n)
Mn

converges in distribution to the measure ρ(∞) defined by∫
ρ(∞)(dx)ϕ(x) =

∫ σ

0

dt ϕ(
√

2c0(Dt −D)).

(iii) n−1/2α∆(Mn)
(d)−→

n→∞

√
2c0 D.

In (i)–(iii), the limiting distributions are to be understood under the probability measure
N(· | σ = 1), respectively under N(· | σ > 1).

Proof. Let Mn be distributed according to Pq(· | #V (m) = n) and let θn be the random
mobile associated with Mn by the BDG bijection. By Proposition 4, θn is distributed

according to Q(n−1)
. From Proposition 3,

R(Mn) = `n − `n + 1 ,

where `n, respectively `n, denotes the maximal, resp. the minimal, label in θn. Now it is
clear that

`n − `n = max
k≥0

Λθn
k −min

k≥0
Λθn
k
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and so (i) follows from the second assertion of Theorem 3.
Then, let ϕ be a bounded continuous function on R+. We have∫

ρ
(n)
Mn

(dx)ϕ(x) = n−1
∑

v∈V (Mn)

ϕ(n−1/2αdgr(v∗, v))

= n−1

n−2∑
i=0

ϕ(n−1/2α(`n(wi)− `n + 1)) + n−1ϕ(0)

where w0 = w0(θn), . . . , wn−2 = wn−2(θn) denote the white vertices of θn listed in lexico-
graphical order, and `n(w0), . . . , `n(wn−2) are their respective labels. Then,

n−1

n−2∑
i=0

ϕ(n−1/2α(`n(wi)− `n + 1)) = n−1

n−2∑
i=0

ϕ
(
n−1/2α

(
Lθni − min

j=0,...,n−2
Lθnj + 1

))
=

∫ 1−n−1

0

dt ϕ
(
n−1/2α

(
Lθn[nt] − min

s∈[0,1]
Lθn[ns] + 1

))
.

The convergence in (ii) is thus a consequence of the first assertion of Theorem 3.
Finally, we have

∆(Mn) = 1− `n
except if v∗ = e−, in which case ∆(Mn) = 0 = −`n. Thus the same argument as for (i)
shows that n−1/2α∆(Mn) converges in distribution to −√2c0 D, which has the same law
as
√

2c0 D by symmetry.
The case when Mn is distributed according to Pq(· | #V (m) ≥ n) is treated by similar

arguments, using Theorem 2 instead of Theorem 3. �

Recall from [4] the notion of the Gromov-Hausdorff distance between two compact
metric spaces. The space K of all isometry classes of compact metric spaces, equipped
with the Gromov-Hausdorff distance, is a Polish space. If M is a random planar map,
the set V (M) equipped with the metric dgr is a random variable with values in K.

Theorem 5 For every n ≥ 1, let Mn be distributed according to Pq(· | #V (m) = n),
respectively according to Pq(· | #V (m) ≥ n). From every strictly increasing sequence of
integers, one can extract a subsequence along which

(V (Mn), n−1/2αdgr)
(d)−→

n→∞
(M∞, δ∞)

where (M∞, δ∞) is a random compact metric space and the convergence holds in distribu-
tion in the Gromov-Hausdorff sense. Furthermore, the Hausdorff dimension of (M∞, δ∞)
is a.s. equal to 2α.

Proof. We consider only the case when Mn is distributed according to Pq(· | #V (m) =
n). The first assertion could be established by using compactness criteria in the space
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K in order to derive the tightness of the distributions of the spaces (V (Mn), n−1/2αdgr).
We will use a different approach, which is inspired from [19, Section 3]. This approach
provides additional information about the limiting space (M∞, δ∞), which will be useful
when proving the second assertion of the theorem.

As in the previous proof, let θn be the random mobile associated with Mn by the BDG
bijection, and write vn0 , v

n
1 , . . . , v

n
rn for the white contour sequence of θn. Recall that the

BDG bijection allows us to identify the white vertices of θn with corresponding vertices
of the map Mn. We can thus set for every i, j ∈ {0, 1, . . . , rn},

dn(i, j) = dgr(v
n
i , v

n
j )

where dgr refers to the graph distance in the map Mn. By convention we put vnk = vnrn = ∅
for every k ≥ rn, so that the definition of dn(i, j) makes sense for every nonnegative
integers i and j. We can use linear interpolation to extend the definition of dn to real
values of the parameters, by setting for every s, t ≥ 0,

dn(s, t) = (s− [s])(t− [t])dn([s] + 1, [t] + 1) + (s− [s])([t] + 1− t)dn([s] + 1, [t])

+([s] + 1− s)(t− [t])dn([s], [t] + 1) + ([s] + 1− s)([t] + 1− t)dn([s], [t]).

By [19, Lemma 3.1], we have for every integers i, j ≥ 0,

dn(i, j) ≤ d0
n(i, j), (73)

where
d0
n(i, j) = Λθn

i + Λθn
j − 2 min

i∧j≤k≤i∨j
Λθn
k + 2.

(To be precise, [19] uses a slightly different version of the BDG bijection, with nonnegative
labels, but is straightforward to verify that the argument of the proof of Lemma 3.1 in
[19] goes through without change in our setting.) In the same way as for dn, we extend
the definition of d0

n to real values of the parameters by linear interpolation. The bound
dn(s, t) ≤ d0

n(s, t) still holds for real s and t.

Let (H
(1)
t , D

(1)
t )t≥0 be a random process which has the distribution of (Ht, Dt)t≥0 under

N(· | σ = 1). From Theorem 3,(
n−1/2αd0

n(ns, nt)
)
s,t≥0

(d)−→
n→∞

(√
2c0 d

0
∞(βs, βt)

)
s,t≥0

(74)

where, for every s, t ≥ 0,

d0
∞(s, t) = D(1)

s +D
(1)
t − 2 min

s∧t≤r≤s∨t
D(1)
r .

In (74), the convergence holds in the sense of weak convergence of the laws in the space
of continuous functions on R2

+.
We then observe that, for every s, t, s′, t′ ≥ 0,

|dn(s, t)− dn(s′, t′)| ≤ dn(s, s′) + dn(t, t′) ≤ d0
n(s, s′) + d0

n(t, t′). (75)
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By the convergence (74), we have for every η, ε > 0,

lim sup
n→∞

P
(

sup
|s−s′|≤η

n−1/2αd0
n(ns, ns′) ≥ ε

)
≤ P

(
sup
|s−s′|≤η

d0
∞(βs, βs′) ≥ ε√

2c0

)
.

If ε > 0 is fixed, the right-hand side can be made arbitrarily small by choosing η > 0 small
enough. Thanks to this remark and to the bound (75), one easily gets that the sequence
of the laws of the processes (

n−1/2αdn(ns, nt)
)
s,t≥0

is tight (see the proof of Proposition 3.2 in [19] for more details).
Using also Theorem 3, we obtain that, from any strictly increasing sequence of positive

integers, we can extract a subsequence (nk)k≥1 along which we have the joint convergence(
n−(1−1/α)Cθn

[nt], n
−1/2αΛθn

[nt], n
−1/2αdn(ns, nt)

)
s,t≥0

(d)−→
n→∞

(
c−1

0 H
(1)
βt ,
√

2c0D
(1)
βt ,
√

2c0d∞(βs, βt)
)
s,t≥0

(76)

where (d∞(s, t))s,t≥0 is a continuous random process indexed by R2
+ and taking nonneg-

ative values. From now on, we restrict our attention to values of n belonging to the
sequence (nk).

By the Skorokhod representation theorem, we may, and will, assume that the conver-
gence (76) holds almost surely. Note that the bound dn ≤ d0

n immediately gives d∞ ≤ d0
∞.

From the convergence (76), one also gets that the function (s, t) → d∞(s, t) is symmet-
ric and satisfies the triangle inequality. Furthermore, the bound d∞ ≤ d0

∞ implies that
d∞(s, t) = 0 if s ≥ 1 and t ≥ 1. We define an equivalence relation on [0, 1] by setting

s ≈ t if and only if d∞(s, t) = 0.

We let M∞ be the quotient space [0, 1]/ ≈, and equip M∞ with the metric δ∞ =
√

2c0d∞.
The continuity of d∞ ensures that the canonical projection from [0, 1] (equipped with the
usual metric) onto M∞ is continuous, so that M∞ is compact.

We claim that the convergence of the theorem holds almost surely (along the sequence
(nk)) with this choice of the space (M∞, δ∞). To see this, define a correspondence Cn be-
tween (V (Mn)\{v∗}, n−1/2αdgr) and (M∞, δ∞) by declaring that a vertex v of V (Mn)\{v∗}
is in correspondence with x ∈ M∞ if and only if there exist a representative s of x in
[0, 1] such that v = vn[ns/β]. The desired convergence will follow if we can verify that the

distortion of Cn tends to 0 as n→∞. To this end, let s, s′ ∈ [0, 1] and set k = [ns/β] and
k′ = [ns′/β]. If v = vnk and v′ = vnk′ , and if x and x′ are the respective equivalence classes
of s and s′ in the quotient [0, 1]/ ≈, we have

|n−1/2αdgr(v, v
′)−√2c0 d∞(x, x′)| = |n−1/2αdn(k, k′)−√2c0 d∞(s, s′)|

= |n−1/2αdn([
ns

β
], [
ns′

β
])−√2c0 d∞(s, s′)|

≤ sup
t,t′≥0

|n−1/2αdn([nt], [nt′])−√2c0 d∞(βt, βt′)|
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which tends to 0 as n → ∞, by the (almost sure) convergence (76). This completes the
proof of the first assertion of the theorem.

Let us now turn to the calculation of the Hausdorff dimension of (M∞, δ∞). From the
bound d∞ ≤ d0

∞ and the Hölder continuity properties of the distance process, we get that
for every ε ∈ (0, 1/2α) there is an almost surely finite random constant K(ε) such that,
for every s, t ∈ [0, 1],

d∞(s, t) ≤ K(ε) |t− s|(1/2α)−ε.

Hence the projection mapping from [0, 1] onto M∞ is a.s. Hölder continuous with exponent
(1/2α)− ε. The almost sure bound dim(M∞, δ∞) ≤ 2α immediately follows.

The proof of the lower bound dim(M∞, δ∞) ≥ 2α is more delicate. We start with a
useful lower bound on d∞.

Lemma 14 Almost surely, for every 0 < s < t < 1 and r ∈ (s, t) such that H
(1)
u > H

(1)
r

for every u ∈ [s, r), we have
d∞(s, t) ≥ D(1)

s −D(1)
r .

Similarly, almost surely for every 0 < t < s < 1 and r ∈ (t, s) such that H
(1)
u > H

(1)
r for

every u ∈ (r, s], we have
d∞(s, t) ≥ D(1)

s −D(1)
r .

Proof. We establish only the first assertion, since the proof of the second one is very
similar. So let s, t, r be as in the first part of the lemma. Let (kn) and (k′n) be two
sequences of positive integers such that n−1kn −→ β−1s and n−1k′n −→ β−1t as n → ∞
(both sequences are indexed by the set of values of n that we are considering). Thanks

to the convergence (76) and our assumption H
(1)
u > H

(1)
r for every u ∈ [s, r), we can find

another sequence (mn) of positive integers such that n−1mn −→ β−1r and, for n large
enough,

Cθn
j > Cθn

mn > min
i∈{kn,...,k′n}

Cθn
i , ∀j ∈ {kn, . . . ,mn − 1}.

Recall our notation vn0 , v
n
1 , . . . for the white contour sequence of θn. The preceding

inequalities imply that vnmn is an ancestor of vnkn , but not an ancestor of vnk′n . Let
γn = (γn(i), 0 ≤ i ≤ dgr(v

n
kn
, vnk′n)) be a geodesic from vnkn to vnk′n in the planar map

Mn, and let in be the largest integer i ∈ {0, 1, . . . , dgr(v
n
kn
, vnk′n)} such that γn(i) is a de-

scendant of vnmn . By the preceding remarks, we have 0 ≤ in < dgr(v
n
kn
, vnk′n). Furthermore,

the contour sequence of θn must visit vnmn between any time at which it visits the point
γn(in) and any other time at which it visits γn(in + 1). Using the construction of edges in
the BDG bijection, the existence of an edge of Mn between γn(in) and γn(in + 1) implies
that

`n(vnmn) ≥ `n(γn(in)).
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It follows that

dn(kn, k
′
n) = dgr(v

n
kn , v

n
k′n

) ≥ dgr(v
n
kn , γn(in))

≥ dgr(v∗, v
n
kn)− dgr(v∗, γn(in))

= `n(vnkn)− `n(γn(in))

≥ `n(vnkn)− `n(vnmn)

= Λθn
kn
− Λθn

mn .

The bound of the lemma follows by passing to the limit n→∞ using (76). �

The next lemma will be used in combination with Lemma 14 to estimate the size of
balls for the metric δ∞. For technical reasons, we prove this lemma under the excursion
measure N, and we will then use a scaling argument to get a similar result under N(· |
σ = 1). For every u > 0, λu(ds) denotes Lebesgue measure on (0, u).

Lemma 15 For every s ∈ (0, σ), set

I(s) = {r ∈ [s, σ] : Hu > Hr for every u ∈ [s, r)}
and for every ε > 0,

τ sε = inf{t ∈ I(s) : Dt ≤ Ds − ε}
where inf ∅ =∞. Then, for every a ∈ (0, 2α),

lim
ε↓0

ε−a (τ sε − s) = 0 , λσ(ds) a.e. , N a.e.

Proof. For s ∈ (0, σ) and r ∈ [0, Hs), set

γsr = inf{t ≥ s : Ht < Hs − r}.
By convention, we put γsr = σ if r ≥ Hs. For our purposes, it will be important to have
information on the sample path behavior of the function r −→ Dγsr . This is the goal of
the next lemma, which relies heavily on results from [11], to which we refer for additional
details. We first need to introduce some notation. For every s ∈ (0, σ), we define two
positive finite measures on (0,∞) by setting

ρs =
∑

0≤u≤s

(Ius −Xu−)1{Xu−<Ius } δHu ,

ηs =
∑

0≤u≤s

(Xu − Ius )1{Xu−<Ius } δHu .

(It is not immediately obvious that ηs is a finite measure, see Chapter 3 in [11].) One
can prove that, N a.e., for every s > 0, the topological support of ρs is [0, Hs], and
ρs([0, Hs]) = Xs (see Chapter 1 in [11]). Furthermore, the quantities Hu corresponding
to the values of u that give nonzero terms in the definition of ρs are all distinct.
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We denote by N (drdzdx) a Poisson point measure on [0,∞)3 with intensity

dr π(dz)1[0,z](x) dx.

where π denotes the Lévy measure of X. We can enumerate atoms of N in a measurable
way, and write

N =
∑
j∈J

δ(rj ,zj ,xj).

Lemma 16 (i) Let Φ be a nonnegative measurable function on R+ ×Mf (R+)2. Then,

N
(∫ σ

0

dsΦ(Hs, ρs, ηs)
)

=

∫ ∞
0

duE
[
Φ
(
u,
∑

0≤rj≤u

xj δrj ,
∑

0≤rj≤u

(zj − xj) δrj
)]
.

(ii) Let F be a nonnegative measurable function on D(R). Then,

N
(∫ σ

0

ds F ((Ds −Dγsr )r≥0)
)

=

∫ ∞
0

duE
[
F ((Zr∧u)r≥0)

]
where (Zr)r≥0 is a symmetric stable process with index 2(α− 1).

Proof. Part (i) is a special case of Proposition 3.1.3 in [11]. Part (ii) is essentially a
consequence of (i) and our construction of the distance process. Let us explain this in
greater detail. We fix s > 0 and r > 0, and argue on the event {s < σ}. As in Section
4, we assign a Brownian bridge bu with length ∆Xu to each jump time u of X, in such a
way that

Ds =
∑
u≤s

bu(I
u
s −Xu−)1{Xu−<Ius }.

Then, we have also, N a.e.,

Dγsr =
∑
u≤s

bu(I
u
s −Xu−)1{Xu−<Ius } 1{Hu<Hs−r}.

To see this, note that the identity

γsr = inf{t ≥ s : Xt < Xs − ρs([Hs − r,Hs])} (77)

is a consequence of formula (20) in [11]. Moreover, by the same formula, ργsr is exactly
the restriction of ρs to the interval [0, Hs− r) (or the zero measure if r ≥ Hs). Hence the
values u ≤ γsr that give a nonzero contribution to the sum defining Dγsr are exactly those
u ≤ s such that Xu− < Ius and Hu < Hs − r, leading to the stated formula for Dγsr .

It follows that

Ds −Dγsr =
∑
u≤s

bu(I
u
s −Xu−)1{Xu−<Ius } 1{Hs−r≤Hu≤Hs} (78)
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and we can use part (i) to compute the Fourier transform of this quantity. Note that, for
every jump time u ≤ s with the property Xu− < Ius , the duration of the bridge bu is the
sum of the masses assigned by ρs and ηs respectively to the point Hu.

Suppose that, conditionally given N , we are given a collection (b
(zj)
j )j∈J of independent

Brownian bridges, with respective durations (zj)j∈J . Then it follows from (i), formula (78)
and the preceding discussion that, for every λ ∈ R,

N
(∫ σ

0

ds exp(iλ(Ds −Dγsr ))
)

=

∫ ∞
0

duE
[

exp
(
iλ

∑
u−r≤rj≤u

b
(zj)
j (xj)

)]
=

∫ ∞
0

duE
[

exp
(
− λ2

2

∑
u−r≤rj≤u

xj(zj − xj)
zj

)]
=

∫ ∞
0

duE
[

exp
(
−
∫ u

(u−r)+
dv

∫
π(dz)

∫ z

0

dx (1− exp(−λ
2

2

x(z − x)

z
))
)]

=

∫ ∞
0

du exp(−Kα (u ∧ r) |λ|2(α−1))

by an easy calculation using the fact that π(dz) = K ′αz
−1−αdz.

It follows that the formula of (ii) holds in the case when F is of the form F (ω) =
f(ω(r)) for a fixed r > 0. A slight extension of the previous calculation gives the case
when F depends only on a finite number of coordinates. This is enough to conclude since
the process (Ds −Dγsr )r≥0 has right-continuous paths. �

We now complete the proof of Lemma 15. We fix a ∈ (0, 2α). We can then choose
b ∈ ((2α− 2)−1,∞), b′ ∈ (0, (α− 1)−1) and b′′ ∈ (0, α) such that

b′b′′

b
> a.

By standard path properties of stable processes (see e.g. [2, Theorem VIII.6]), we have

lim
r↓0

r−b
(

sup
0≤x≤r

Zx

)
=∞ a.s.

It then follows from Lemma 16 (ii) that we have also

lim
r↓0

r−b
(

sup
0≤x≤r

(Ds −Dγsx)
)

=∞ λσ(ds) a.s. , N a.e.

Notice that γsx ∈ I(s) provided that x is a continuity point of the mapping r → γsr , and
thus for all but countably many values of x. Therefore, the previous display also implies
that

τ sε ≤ γsε1/b (79)

for all sufficiently small ε > 0, λσ(ds) a.e., N a.e.
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The next step is to investigate the behavior of γsx as x ↓ 0. We first observe that

lim
x↓0

x−b
′
ρs([Hs − x,Hs]) = 0 , λσ(ds) a.s. , N a.e. (80)

This is a consequence of Lemma 16 (i): Note that, for every u > 0, the process

Yx =
∑

u−x≤rj≤u

xj , 0 ≤ x ≤ u

is a stable subordinator with index α−1, and apply path properties of subordinators (see
e.g. [2, Theorem VIII.5]). Furthermore, by applying the Markov property under N, and
using again [2, Theorem VIII.6], we get that

lim
r↓0

r−1/b′′ sup
0≤x≤r

(Xs −Xs+x) =∞ ,

N a.e. on s < σ, for every fixed s > 0. It readily follows that

inf{x ≥ 0 : Xs+x < Xs − r} ≤ rb
′′
, (81)

for all sufficiently small r > 0, λσ(ds) a.e., N a.e. Now recall (77), and use (80) and (81)
to obtain

γsr ≤ s+ rb
′b′′ (82)

for all sufficiently small r > 0, λσ(ds) a.e., N a.e. We get the statement of the lemma by
combining (79) and (82), recalling that b′b′′/b > a. �

We now complete the proof of Theorem 5. We again fix a ∈ (0, 2α). For every
s ∈ (0, 1), we set

Ĩ(s) = {r ∈ [s, 1] : H(1)
u > H(1)

r for every u ∈ [s, r)},

and for every ε > 0,
τ̃ sε = inf{t ∈ Ĩ(s) : D

(1)
t ≤ D(1)

s − ε}.
From Lemma 15 and an easy scaling argument, we get

lim
ε↓0

ε−a (τ̃ sε − s) = 0 , λ1(ds) a.e. , a.s.

However, if τ̃ sε ≤ t < 1, the first part of Lemma 14 implies that d∞(s, t) ≥ ε. Thus∫ 1

s

dt1{d∞(s,t)<ε} ≤ τ̃ sε − s

and

lim
ε↓0

ε−a
∫ 1

s

dt1{d∞(s,t)<ε} = 0 , λ1(ds) a.e. , a.s.



8 SOME MOTIVATION FROM PHYSICS 60

We can use a symmetric argument to handle the analogous integral where t varies between
0 and s: Use the second part of Lemma 14 and note that the distribution of the pair
(H

(1)
t , D

(1)
t )0≤t≤1 is invariant under the change of parameter t→ 1− t. We thus conclude

that

lim
ε↓0

ε−a
∫ 1

0

dt1{d∞(s,t)<ε} = 0 , λ1(ds) a.e. , a.s.

Finally, if κ denotes the probability measure on M∞ which is the image of Lebesgue
measure on (0, 1) under the canonical projection, we see that

lim
ε↓0

κ(B∞(x, ε))

εa
= 0 , κ(dx) a.e. , a.s.

where B∞(x, ε) = {y ∈ M∞ : δ∞(x, y) < ε}. The lower bound dim(M∞, δ∞) ≥ 2α now
follows from standard density theorems for Hausdorff measures. �

Remark. As we already noticed in Section 1, the results of this section carry over to
Boltzmann distributions on non-pointed rooted planar maps. More precisely, denote by
W̃q the Boltzmann distribution defined as in (1) but now viewed as a measure on the set

of all rooted planar maps. Let M̃n be a random rooted planar map distributed according
to the (suitably normalized) restriction of W̃q to maps with n vertices. Then Theorem 4

gives information about the distances in M̃n from a vertex chosen uniformly at random,
and both assertions of Theorem 5 remain valid if Mn is replaced by M̃n.

8 Some motivation from physics

In this section, we describe a motivation for the models discussed in this article, that
comes from the physics literature. In this discussion, we rely on a number of non-rigorous
predictions, and our only goal is to isolate some possible orientations for future work. A
useful reference is the Appendix B in the survey by Duplantier [8], and the references
therein.

As a starting point, we observe that models of random maps that are very similar to
ours appear when studying annealed statistical physics models on random maps. These
models are similar to more familiar models on regular lattices, such as percolation and
Ising or Potts models, but they are defined on a random map that is chosen at the same
time as the configuration of the model. To illustrate this, we will first deal with the
so-called O(N) model on a random planar quadrangulation. Let q be a rooted quadran-
gulation. A loop configuration on q is a collection L = {c1, . . . , ck}, where c1, . . . , ck are
cycles, i.e. paths on q starting and ending at the same point, and never visiting the same
vertex twice. It is further required that the paths ci do not intersect. We set

#L = k and lg(L) =
k∑
i=1

lg(ci) ,

where lg(ci) is the number of edges in the path ci. See Figure 3 for an example.
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Figure 3: An O(N) configuration on a rooted quadrangulation, with 4 cycles of total
length 30, and the external gasket associated with this configuration, with shaded holes
of degrees 6 and 14

Let N ≥ 0 be fixed. The annealed O(N) measure is the σ-finite measure over the set
of all pairs (q,L), where q is a rooted quadrangulation and L is a loop configuration on
q, defined by

WO(N)(q,L) = e−β#F (q)xlg(L)N#L ,

where β and x are positive parameters. When the total mass ZO(N)(β, x) of WO(N) is finite,
we say that the pair (β, x) is admissible, and we can consider the probability measure
PO(N) = ZO(N)(β, x)−1WO(N).

Consider a configuration (q,L). A cycle c ∈ L splits the sphere into two components.
The one that contains the face located to the left of the root edge of q is called the
exterior of c. The other component is called the interior of c. The external gasket E(q,L)
is the rooted planar map obtained from q by deleting all the edges and vertices strictly
contained in the interior of some c ∈ L. See Figure 3.

More precisely, m is defined as a rooted planar map with two different types of faces:

• faces that came from the exterior of cycles of L, which have degree 4 – we denote
by Q(m) the set of all these faces;

• faces of arbitrary even degree, called the holes of m, which came from the deletion
of the interior of a cycle of L – we denote by H(m) the set of all holes of m (note
that certain holes may have degree 4).

Furthermore the boundaries of the holes of m are disjoint cycles. In particular, every
edge of the boundary of a hole is adjacent to a face of Q(m).

One can verify that the range of the external gasket mapping (q,L)→ E(q,L) is the
set of all rooted planar maps (with faces of two types) satisfying the preceding conditions.
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It is then an easy exercise to check that the push-forward of WO(N) under the external
gasket mapping is

WO(N)({E(q,L) = m}) = e−β#Q(m)
∏

f∈H(m)

qdeg f/2 , (83)

where
qk = x2kZ∂

O(N),k(β, x) ,

and Z∂
O(N),k(β, x) is the partition function for the O(N)-model with a boundary of length

2k. This partition function is defined in an analogous way as ZO(N)(β, x), but configu-
rations (q,L) now consist in rooted quadrangulations q with a boundary of length 2k
together with a collection L of disjoint cycles that do not intersect the boundary, and
such that the boundary face lies on the left of the root edge. From formula (83), we see
that the external gasket of a PO(N)-distributed random map has a Boltzmann distribution
of a similar kind as those studied in the present work, except that the maps that appear
here have two distinct types of faces and extra topological constraints.

Ignoring these extra constraints, one can conjecture that for appropriate values of β
and x, the scaling limits of these random gasket configurations will be closely related to
those depicted in Section 7, provided that the weights qk satisfy similar asymptotics as
in subsection 2.2. At this stage, some predictions from theoretical physics provide insight
into these questions. For fixed β and x, introduce the generating function

Z∂
O(N)(z) =

∑
k≥1

zkZ∂
O(N),k(β, x) .

According to singularity analysis, for a ∈ (3/2, 2) ∪ (2, 5/2), a behavior

Z∂
O(N)(z) ≈

z↑zc
(zc − z)a−1 ,

meaning that the singular part of Z∂
O(N) near its first positive singularity zc is of order

(zc − z)a−1, leads to asymptotics of the form Z∂
O(N),k(β, x) ∼ Ck−a for some finite C > 0.

See for instance [13, Corollary VI.1]. Of course, this requires additional hypotheses on
Z∂
O(N)(z), which we ignore in this informal discussion.

We now summarize, and attempt to translate in a language more familiar to math-
ematicians, the discussion that can be found in [8, Appendix B] (see in particular Eqs.
B.48, B.64 and B.78, and the discussion at the end of Section B.1.1 in [8]). Assume
N ∈ (0, 2) is written in the form N = 2 cos(πθ), where θ ∈ (0, 1/2). One conjectures that
there exists a function xc(β) > 0 and a critical value βc > 0 such that,

• for fixed β > βc and x = xc(β),

Z∂
O(N)(z) ≈

z↑zc
(zc − z)1−θ ,
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• for β = βc and x = xc(βc),

Z∂
O(N)(z) ≈

z↑zc
(zc − z)1+θ .

These two different behaviors, respectively called the dense and the dilute phase, hint at
the asymptotics

Z∂
O(N),k(β, x) ∼

k→∞
Ck−a ,

respectively with a = 2 − θ and a = 2 + θ. Recalling subsection 2.2, and the preceding
formula for qk, we see that the scaling limits of the distribution WO(N) in (83) should
be related to the model studied in the previous sections, with the particular value α =
a − 1/2 ∈ {3/2 − θ, 3/2 + θ}. Note that the case N = 2 appears as a limiting critical
situation where the dense and dilute phases should coincide.

A similar description applies to other familiar statistical physics models, such as per-
colation or the Ising model on faces of a random quadrangulation. In that setting, a
configuration is a pair (q, σ) where q is a rooted quadrangulation, and

σ = (σf , f ∈ F (q)) ∈ {−1,+1}F (q).

In the (annealed) Ising model, one chooses the configuration with probability proportional
to

WI(q, σ) = e−β#F (q) exp
(
J
∑
f∼f ′

σfσf ′
)
,

where J is a real parameter and the last sum is over all pairs of adjacent faces f, f ′ in q.
For J = 0, one gets the percolation model, where conditionally on the quadrangulation
q, all σ ∈ {−1,+1}#F (q) are equally likely to occur. One then defines the exterior gasket
in a way that should be clear from Figure 4. This gasket again has a Boltzmann-type
distribution when (q, σ) is distributed according to WI . As previously, the relevant Boltz-
mann weights correspond to partition functions for the Ising model on a quadrangulation
with a boundary. On the other hand, the topological constraints on the gaskets are now
different: The boundaries of holes need not be cycles, and do not have to be disjoint
(however, an edge can be incident to at most one hole, and is incident only once to this
hole). See Figure 4.

Kazakov [16] identifies the value Jc = ln 2 as critical. One conjectures that, respec-
tively for J = Jc and for 0 ≤ J < Jc (and with the appropriate values of β), the Ising
model has the same scaling limit as the dilute and dense phases of the O(N = 1) model,
corresponding to θ = 1/3 and α ∈ {11/6, 7/6}. This is confirmed (for J = Jc) by pre-
dictions for the partition function of the Ising model with a boundary, see for example
section 3.3 in [5].

Note that a discussion parallel to the present one appears in Sheffield [28, Section
2.3] in the case of regular hexagonal lattices, where it is conjectured that the external
gasket of O(N) models should converge the so-called conformal loop ensembles, which are
a conformally invariant family of random curves related to SLE. Such parallel discussions
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Figure 4: An Ising (or percolation) configuration and the associated exterior gasket

might open some paths in the mathematical understanding of the so-called KPZ formula,
which links scaling exponents for models on random and on regular lattices. This approach
would still be different from the one developed recently by Duplantier and Sheffield [9], as
we are focusing more on the metric aspects of planar maps rather than on the conformal
invariance properties that are intrinsic to [9].

On a rigorous level, it seems plausible that the topological constraints that appear
in the random maps considered above can be handled using bijective methods in the
spirit of subsection 3.1. Establishing rigorous grounds for the conjectured behavior of
Z∂
O(N) is another, probably much more challenging, problem that would require a better

understanding of the combinatorial aspects of the O(N) model on maps.
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