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Abstract

We prove that, both for the Brownian snake and for super-Brownian motion in dimension
one, the historical path corresponding to the minimal spatial position is a Bessel process of
dimension —5. We also discuss a spine decomposition for the Brownian snake conditioned
on the minimizing path.

1 Introduction

Marc Yor used to say that “Bessel processes are everywhere”. Partly in collaboration with Jim
Pitman [13] [14], he wrote several important papers, which considerably improved our knowledge
of Bessel processes and of their numerous applications. A whole chapter of Marc Yor’s celebrated
book with Daniel Revuz [I5] is devoted to Bessel processes and their applications to Ray-Knight
theorems. As a matter of fact, Bessel processes play a major role in the study of properties of
Brownian motion, and, in particular, the three-dimensional Bessel process is a key ingredient of
the famous Williams decomposition of the Brownian excursion at its maximum. In the present
work, we show that Bessel processes also arise in similar properties of super-Brownian motion
and the Brownian snake. Informally, we obtain that, both for the Brownian snake and for super-
Brownian motion, the (historical) path reaching the minimal spatial position is a Bessel process
of negative dimension.

Let us describe our results in a more precise way. We write (Ws)s>o for the Brownian snake
whose spatial motion is one-dimensional Brownian motion. Recall that (Ws)s>o is a Markov
process taking values in the space of all finite paths in R, and for every s > 0, write (s for the
lifetime of W,. We let Ny stand for the o-finite excursion measure of (Ws)s>0 away from the
trivial path with initial point 0 and zero lifetime (see Section 2 for the precise normalization of
Np). We let W, be the minimal spatial position visited by the paths Wy, s > 0. Then the “law”
of W, under Ny is given by

3
NO(W* S —a) = @, (1)

for every a > 0 (see [9, Section VI.1] or [12, Lemma 2.1]). Furthermore, it is known that, Ny
a.e., there is a unique instant sy, such that W, = Wy ((s,,). Our first main result (Theorem
5) shows that, conditionally on W, = —a, the random path a + W, is a Bessel process of
dimension d = —5 started from a and stopped upon hitting 0. Because of the relations between
the Browian snake and super-Brownian motion, this easily implies a similar result for the unique
historical path of one-dimensional super-Brownian motion that attains the minimal spatial value
(Corollary . Our second result (Theorem @ provides a “spine decomposition” of the Brownian
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snake under Ny given the minimizing path W;_ . Roughly speaking, this decomposition involves
Poisson processes of Brownian snake excursions branching off the minimizing path, which are
conditioned not to attain the minimal value W,. See Theorem [f] for a more precise statement.

Our proofs depend on various properties of the Brownian snake, including its strong Markov
property and the “subtree decomposition” of the Brownian snake ([9, Lemma V.5], see Lemma
below) starting from an arbitrary finite path w. We also use the explicit distribution of the
Brownian snake under Ny at its first hitting time of a negative level: If b > 0 and S} is the first
hitting time of —b by the Brownian snake, the path b+ W, is distributed under No(- | Sp < 00)
as a Bessel process of dimension d = —3 started from b and stopped upon hitting 0 (see Lemma
below). Another key ingredient (Lemma (1) is a variant of the absolute continuity relations
between Bessel processes that were discovered by Yor [17] and studied in a more systematic way
in the paper [13] by Pitman and Yor.

Let us briefly discuss connections between our results and earlier work. As a special case
of a famous time-reversal theorem due to Williams [16, Theorem 2.5] (see also Pitman and Yor
[14, Section 3], and in particular the examples treated in subsection (3.5) of [I4]), the time-
reversal of a Bessel process of dimension d = —5 started from a and stopped upon hitting 0 is
a Bessel process of dimension d = 9 started from 0 and stopped at its last passage time at a
— This property can also be found in [I5, Exercise XI.1.23]. Our results are therefore related
to the appearance of nine-dimensional Bessel processes in limit theorems derived in [12] and
[11]. Note however that in contrast with [I2] and [I1], Theorem 5| gives an exact identity in
distribution and not an asymptotic result. As a general remark, Theorem [f] is related to a
number of “spine decompositions” for branching processes that have appeared in the literature
in various contexts. We finally note that a strong motivation for the present work came from
the forthcoming paper [2], which uses Theorems [5 and |§| to provide a new construction of the
random metric space called the Brownian plane [I] and to give a number of explicit calculations
of distributions related to this object.

The paper is organized as follows. Section 2 presents a few preliminary results about Bessel
processes and the Brownian snake. Section 3 contains the statement and proof of our main
results Theorems [f] and [6] Finally Section 4 gives our applications to super-Brownian motion,
which are more or less straightforward consequences of the results of Section 3.

2 Preliminaries

2.1 Bessel processes

We will be interested in Bessel processes of negative index. We refer to [I3] for the theory
of Bessel processes, and we content ourselves with a brief presentation limited to the cases of
interest in this work. We let B = (By);>0 be a linear Brownian motion and for every a > 0,
we will consider the nonnegative process R(®) = ( Ea))tzo that solves the stochastic differential
equation
() a
dR;” =dB; — ——dft, (2)
R
t
with a given (nonnegative) initial condition. To be specific, we require that equation holds
up to the first hitting time of 0 by R(®),

T = inf{t > 0: R,Ea) =0},



and that Rto‘) =0 for t > T(®. Note that uniqueness in law and pathwise uniqueness hold for
@.

In the standard terminology (see e.g.[I3, Section 2]), the process R(®) is a Bessel process of
index v = —a — %, or dimension d = 1 — 2a. We will be interested especially in the cases a = 2
(d=-3)and a =3 (d = —5).

For notational convenience, we will assume that, for every r > 0, there is a probability
measure P, such that both the Brownian motion B and the Bessel processes R(® start from r
under P,.

Let us fix > 0 and argue under the probability measure P,. Fix § € (0,r) and set

T(;(a) =inf{t > 0: Rga) =4},

and
Ts:=inf{t > 0: B; = §}.

The following absolute continuity lemma is very closely related to results of [I7] (Lemma 4.5)
and [13] (Proposition 2.1), but we provide a short proof for the sake of completeness. If F is a
metric space, C(R4, E') stands for the space of all continuous functions from R} into E, which
is equipped with the topology of uniform convergence on every compact interval.

Lemma 1. For every nonnegative measurable function F on C(R4,Ry),

B (R )0 = (5) B[P (B i) exp (- SEE [T 2]

Proof. Write (F;)¢>0 for the (usual augmentation of the) filtration generated by B. For every

t >0, set r \a a(l +a) (s ds
M () (301

An application of It&’s formula shows that (M) is an (F;)-local martingale. Clearly, (M¢):>0
is bounded by (r/§)® and is thus a uniformly integrable martingale, which converges as t — oo

to
T\ a(l+a) (15 ds
Moo = (5) e (== /0 ]?3)'
We define a probability measure ) absolutely continuous with respect to P, by setting Q) =
My - P.. An application of Girsanov’s theorem shows that the process

tA\Ts ds
B +a/ —
! 0 Bs

is an (F;)-Brownian motion under Q). It follows that the law of (Bar;)i>0 under @ coincides

with the law of (RE;’\‘)T(Q))QO under P,. This gives the desired result. O
&

The formula of the next lemma is probably known, but we could not find a reference.
Lemma 2. For every r > 0 and a > 0,
7(2)

ET[exp(—iS/O dt(a—i—Rt(Q))_z)] :1—( 4 )2.

r+a




Proof. An application of 1t6’s formula shows that

(2)
M= (1 (Rgfj;ﬂf) cw (-3 [ " ds ot BO)?)

is a local martingale. Clearly, M; is bounded by 1 and is thus a uniformly integrable martingale.
Writing E,[Mp@] = E.[My] yields the desired result. O

Remark. An alternative proof of the formula of Lemma [2] will follow from forthcoming calcula-
tions: just use formula below with G = 1, noting that the left-hand side of this formula is
then equal to No(—b — e < W, < —b), which is computed using . So strictly speaking we do
not need the preceding proof. Still it seems a bit odd to use the Brownian snake to prove the
identity of Lemma [2] which has to do with Bessel processes only.

2.2 The Brownian snake

We refer to [9] for the general theory of the Brownian snake, and only give a short presentation
here. We write W for the set of all finite paths in R. An element of WV is a continuous mapping
w : [0,¢] — R, where ¢ = (() > 0 depends on w and is called the lifetime of w. We write
W = W(((w)) for the endpoint of w. For x € R, we set W, := {w € W : w(0) = x}. The trivial
path w such that w(0) = x and ((w) = x is identified with the point = of R, so that we can view
R as a subset of W. The space W is equipped with the distance

d(w,w") = |{w) — w)l + Sup (W(t A Cpwy) = W (EA o))

The Brownian snake (Ws)s>0 is a continuous Markov process with values in W. We will
write (s = (qw,) for the lifetime process of Ws. The process ((s)s>0 evolves like a reflecting
Brownian motion in Ry. Conditionally on ({s)s>0, the evolution of (Ws)s>0 can be described
informally as follows: When (, decreases, the path W is shortened from its tip, and, when (
increases, the path Wj is extended by adding “little pieces of linear Brownian motion” at its tip.
See [9, Chapter IV] for a more rigorous presentation.

It is convenient to assume that the Brownian snake is defined on the canonical space
C(R4,W), in such a way that, for w = (ws)s>0 € C(R4, W), we have Wi(w) = w,s. The
notation Py, then stands for the law of the Brownian snake started from w.

For every x € R, the trivial path z is a regular recurrent point for the Brownian snake, and
so we can make sense of the excursion measure N, away from z, which is a o-finite measure on
C(R4,W). Under N, the process ((s)s>0 is distributed according to the It6 measure of positive
excursions of linear Brownian motion, which is normalized so that, for every € > 0,

Nm(ssg%)g's > 6) = %

We write o := sup{s > 0 : (s > 0} for the duration of the excursion under N,. In a way
analogous to the classical property of the Itd excursion measure [15, Corollary XII.4.3], N, is
invariant under time-reversal, meaning that (W, _s)v0)s>0 has the same distribution as (Ws)s>0
under N, .

Recall the notation

W, := inf W,= inf inf Wi(2),
0<s<o 0<s<0 0<t<(s



and formula determining the law of W, under Ny. It is known (see e.g. [12, Proposition
2.5]) that N, a.e. there is a unique instant sy € [0, 0] such that Wy, = W.. One of our main
objectives is to determine the law of W, . We start with two important lemmas.

Our first lemma is concerned with the Brownian snake started from Py, for some fixed
w € W, and considered up to the first hitting time of 0 by the lifetime process, that is

no :=inf{s > 0:(; = 0}.
Then the values of the Brownian snake between times 0 and 79 can be classified according to
“subtrees” branching off the initial path w. To make this precise, let (a;,3;), i@ € I be the
excursion intervals away from 0 of the process

— min
Cs 0<r<s Gr

before time 7y. In other words, the intervals (o, 3;) are the connected components of the open
set {s € [0,m0] : (s > minp<y<s(-}. Using the properties of the Brownian snake, it is easy
to verify that Py, a.s. for every i € I, W,, = Wy, is just the restriction of w to [0, (y,], and
the paths Wy, s € [a, §i] all coincide over the time interval [0, (y,]. In order to describe the
behavior of these paths beyond time (,, we introduce, for every i € I, the element W = (W)
of C(R4, W) obtained by setting, for every s > 0,

W;(t) = W(Ozrks)/\ﬁi (COZZ + t) ) 0 S t S C; = C(a2‘+5)/\,3¢ - Cai'
Lemma 3. Under Py, the point measure
el
is a Poisson point measure on Ry x C(R4, W) with intensity

2100, (1) dt Nyy(g) (dw).

We refer to [9, Lemma V.5] for a proof of this lemma. Our second lemma deals with the
distribution of the Brownian snake under Ny at the first hitting time of a negative level. For
every b > 0, we set .

Sp:=inf{s > 0: Wy = —b}
with the usual convention inf @ = oco.

Lemma 4. The law of the random path W, under the probability measure No(- | Sp < 00) is
the law of the process (R§2) —b)o<y<r(2 under Py.

This lemma can be obtained as a very special case of Theorem 4.6.2 in [6]. Alternatively,
the lemma is also a special case of Proposition 1.4 in [5], which relied on explicit calculations
of capacitary distributions for the Brownian snake found in [§]. Let us briefly explain how the
result follows from [6]. For every x > —b, set

3
2(x + b)?
where the second equality is just . Following the comments at the end of Section 4.6 in [6],
we get that the law of W, under the probability measure Ny(- | S, < 00) is the distribution of

the process X solving the stochastic differential equation
/

dX, = dB, + 2 (X,)dt, Xo=0,
Up

up(z) = Nz (Sp < 00) =

and stopped at its first hitting time of —b. Since Z—Z(m) = —Q%Lb we obtain the desired result.
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3 The main results

Our first theorem identifies the law of the minimizing path W .

Theorem 5. Let a > 0. Under Ny, the conditional distribution of W, knowing that W, = —a
(3)

is the distribution of the process (R;” — a)ogth@)’ where R®) is a Bessel process of dimension
—5 started from a, and T®) = inf{t >0: RE?’) =0}.

In an integral form, the statement of the theorem means that, for any nonnegative measurable
function F on W,

No(F(Wi,,)) =3 /0 h j—fj EF((RY = a)gcrcr )|

where we recall that the process R starts from a under P,.

Proof. We fix three positive real numbers §, K, K’ such that § < K < K’, and we let G be a
bounded nonnegative continuous function on W. For every w € W, we then set

75(w) := inf{t > 0 : w(t) = —0}

and F(w) := G((W(t))o<t<rs(w)) if 7s(W) < 00, F(w) := 0 otherwise.

For every real x and every integer n > 1, write [z], for the largest real number of the
form k27", k € Z, smaller than or equal to z. Using the special form of F' and the fact that
Si-w.], T Sm as n T oo, Ng a.e., we easily get from the properties of the Brownian snake that
F(Ws_y.,,) = F(Ws.), for all n large enough, Ny a.e. on the event {W, < —¢}. By dominated
convergence, we have then
VUK < [-W.], < K'))

No(F(We H{—K' < W, < —=K}) = lim No(F(Ws_y,,,
=lm Y N (F(Ws

n—oo

1{S}y-n < 00} 1{5 min W >—(k+1)27"}). (3)

kZ_n) <s<o

KQnSkSK/Zn k2—n

Let b > 6 and € > 0. We use the strong Markov property of the Brownian snake at time Sy,
together with Lemma [3] to get

NO(F(WSb) I{Sb < OO} 1{ min Ws > —b— 6})

Sp<s<o
¢sy

= No(F(Ws,) 1{Sy < o0} exp (=2 [ " dt Ny (i (We > ~b— <))

o

= R (F (W) 148 < o0 exp (=3 [ ar (042 4 W, (0)2))

3

T7(2)
’ 2)\—
= 5 E, [F((R,E ) _ b)o<i<T(2) €XP ( — 3/0 dt (e + Rt( )) 2)} @

using in the second equality, and Lemma [4| and again in the third one. Recall the
definition of the stopping times Téa before Lemma (1} From the special form of the function F,



and then the strong Markov property of the process R® at time T, b(z)& we obtain that

7(2)
Ey [F((R?) _ b)ogth(2)) exp ( — 3/0 dt (8 + R§2))—2)}
@) T (22
= B [GURY = ),y g) exp (- 3/0 dt (e + R?)™?)]
(2) % (2)y-2
= B[G(R = b)) exp (3 / dt (= + R()2)

x Ey_ 5{exp 3/ 5+R(2)) )H (5)

Using the formula of Lemma I 2{ and combining (4]) and | , we arrive at

NO(F(WSb)l{Sb<oo}1{ min W, > b—e})

Sp<s<o

- %(1 B (bﬁgj-g)Q) {G((R(Z) b)0<t<T(2>) exp 3/ (e+ Rg )) )]

Hence,

ii_r}r(l)e_lNo(F(st) 1{Sp, < o0} 1{ riug W > —b— 5})

Sp<s<o

o)
- (b2(b3—5)) Ep {G((R?) - b)0<t<T @ ) exp 3/T R§2))_2)]-

At this stage we use Lemma [I] twice to see that
2) 5 1 (@
B [G(RP = D)y g exp (=3 [ at (RP)72)]
b To-s ds
= (m) [G((Bt — b)0<t<Tb 5) exp 6/ )}

— (%)71 Ey {G((R?) - b)ogthb@é)}

Summarizing, we have

. _3 (3)
lim &~ "No(F(Ws,) 1{S, < o} 1{ Juin W, b e}) = 15 By G((RY - b)ogtgﬁ;)]
Note that the right-hand side of the last display is a continuous function of b € (§,00). Fur-
thermore, a close look at the preceding arguments shows that the convergence is uniform when
b varies over an interval of the form [, 00), where ¢’ > §. We can therefore return to and
obtain that

No(F(Ws )1{—K' < W, < —-K})
. K/ . g p—
= Jim [ db2"No (P (W, ) 1{Sp, < o0} 1] 5, min_ W, > [t —27"})
K" db (3)
=3[ @B [G(RP ~b)

The result of the theorem now follows easily.

)]
o<t<T> 5)



We turn to a statement describing the structure of subtrees branching off the minimizing
path Ws_ . In a sense, this is similar to Lemma [3| above (except that we will need to consider
separately subtrees branching before and after time sy, in the time scale of the Brownian snake).
Since sy, is not a stopping time of the Brownian snake, it is of course impossible to use the strong
Markov property in order to apply Lemma [3] Still this lemma will play an important role.

We argue under the excursion measure Ny and, for every s > 0, we set

fs = C(sm+s)AU s Cvs = C(sm—s)\/O'

We let (a, lA)l), i € I be the excursion intervals of (; above its past minimum. Equivalently, the

A

intervals (a;,b;), ¢ € I are the connected components of the set
>0:¢ in }
{s >0:¢ > oin Gr

Similarly, we let (dj,lv)j), j € J be the excursion intervals of 55 above its past minimum. We
may assume that the indexing sets I and J are disjoint. In terms of the tree 7; coded by

~

the excursion ((s)o<s<os under Ny (see e.g. [10, Section 2]), each interval (a;,b;) or (aj;, BJ)
corresponds to a subtree of 7¢ branching off the ancestral line of the vertex associated with sp,.
We next consider the spatial displacements corresponding to these subtrees. For every ¢ € I, we

let WO = (W),50 € C(R4, W) be defined by

Ws(l) (t) = W3m+(@i+5)/\[§i (CSerﬁi + t) , 0<t< C5m+(di+5)/\1§i - Csm+&i-

Similarly, for every j € J,
Ws(j)(t) = Wsm—(éj+s)AI;j (Csm—d]‘ + t) ) 0 S t S Csm_(dj_;,_s)/\[;j - CSm—dj-

We finally introduce the point measures on Ry x C(R4, W) defined by
N=3 0 maay » N =20, o wiy:
icl jeJ
If w = (ws)s>0 belongs to C(R4, W), we set w, := inf{ws(t) : s > 0,0 <t < C(ws)}.
Theorem 6. Under Ny, conditionally on the minimizing path W_,, the point measures N(dt, dw)

and /\vf(dt, dw) are independent and their common conditional distribution is that of a Poisson
point measure with intensity

2 1[0,Csm] (t) 1{W*>ﬁ/sm} dt NWsm () (dw).

Clearly, the constraint wy > ‘//I\/sm corresponds to the fact that none of the spatial positions
in the subtrees branching off the ancestral line of p;(sm) can be smaller than W, = W,_, by
the very definition of Wi,.

Proof. We will first argue that the conditional distribution of N given W, is as described in
the theorem. To this end, we fix again ¢, K, K’ such that 0 < § < K < K’, and we use the
notation 75(w) introduced in the proof of Theorem |5 On the event where W, < —d, we also set

'/\/\/5 = Z 5(<Sm+dl‘ 7W(2)) ’

el
Com+a; <Ts(Wom)
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Informally, considering only the subtrees that occur after sy, in the time scale of the Brownian
snake, N corresponds to those subtrees that branch off the minimizing path W before this
path hits the level —4.

Next, let ® be a bounded nonnegative measurable function on the space of all point measures
on Ry x C(R4, W) — we should restrict this space to point measures satisfying appropriate o-
finiteness conditions, but we omit the details — and let ¥ be a bounded continuous function
on C(R4,W). To simplify notation, we write W<, for the process (Wsps,,)s>0 viewed as a
random element of C'(R4, W), and we use the similar notation W<g,. For every b > 0, let the

point measure N [;(b) be defined (only on the event where S, < 00) in a way analogous to /\7’5 but
replacing the path W, with the path Wg,: To be specific, N, 5(1)) accounts for those subtrees
(occurring after Sp in the time scale of the Brownian snake) that branch off W, before this path
hits —4.

As in , we have then

No(U(Wegu)1{-K' < W, < —K}0(Np)) = lim > No(U(W<s,, ) 1{Skn < 00}

n—oo
Kon<k<K'2n

. = n (k2=
1{ SkQ,mnlélsga We>—(k+1)2 } P (N ))
(6)

The point in @ is the fact that, Ny a.e., if n is sufficiently large, and if & > K27 is the largest
integer such that Syo—» < 00, the paths W, and Wy are the same up to a time which is

2—n

k2—n
greater than 75(Ws,, ), and the point measures N and N, (;(kZ_n) coincide.
Next fix b > ¢ and, for € > 0, consider the quantity
.~ b 7 (0)
No(W(We<s,) 1{S) < 00} 1{ guin W > b eh (). (7)

To evaluate this quantity, we again apply the strong Markov property of the Brownian snake at
time Sp. For notational convenience, we suppose that, on a certain probability space, we have
a random point measure M on Ry x C(R4, W) and, for every w € W), a probability measure
II, under which M(d¢, dw) is Poisson with intensity

2 l[O,Cw} (t) dt Nw(t) (dw)

By the strong Markov property at S, and Lemma |3, the quantity is equal to
No(¥(Wes,) 1{Sy < 00} Iy, (H{M({(t,w) :wa < =b—£}) = 0} D(M<r ) )

where M« w,, ) denotes the restriction of the point measure M to [0, 75(Wg,)] x C(R4, W).
Write Wéfz) for the restriction of the path Wg, to [0, 75(Ws,)]. We have then

My, (L{M({(t,w) . < —b = £}) = 0} 8(Mery )
= Tlws, (M{(t,w) :we < =b—c}) =0) Mg, ((I)(Méfa(st)) ‘ MH{(t,w) rwe < =b—¢€}) = 0)

= My, (M({(t,w) :w. < =b—e}) = 0TI sy (M) | M({(t,w) : w, < —b—€}) = 0),

(%)
st



using standard properties of Poisson measures in the last equality. Summarizing, we see that
the quantity coincides with

No(¥(W<s,) H(Ws,,b+€) 1{S) < 00} Mg, (M({(t,w) s wa < —b—}) =0)), (8

where, for every w € W, such that 75(w) < oo, for every a > 6, H(w,a) := ﬁ((W(t))ogtgm(w), a),
and the function H is given by

H(w,a) = (®(M) ]M({(t,w) ‘w, < —a}) =0),

this definition making sense if w € Wy does not hit —a. By the strong Markov property at S
and again Lemma |3 the quantity is also equal to

No(W(W<s,) H(Ws,, b+ ) 1{S, < 00} 1{ min W, > ~b—¢}).

Sp<s<o

We may now come back to @, and get from the previous observations that
No (¥ (Weo)1{-K' < Wi < ~K} 2(X5))

=lim Y NO(\IJ(WSSkW)H(WSk (k+1)27")
Kon<k<K'2n

2—n’

1{Skz-n < oo} 1{ min W, > —(k + 1)2_”})

po—n <85S0

= lim No(W(Wes_y, ) HWs ., [-Weln = 27" 1{K < [-W.], < K'})
- No(\D(Wgsm) H(W,,,-W)1{-K <W, < —K}).

To verify the last equality, recall that the paths WS[fw*]n and Wy coincide up to their first

hitting time of —§, for all n large enough, Ny a.e., and use also the fact that the function H(w,a)

is Lipschitz in the variable a on every compact subset of (§,00), uniformly in the variable w.
From the definition of H, we have then

No(¥(Weo ) L{-K' < W, < ~K} $(A;))

= No (U (W) L{-K' < W. < =K} ) (D(M) | M({(t,0) 1 w. < WD) =0)),

wi)

Sm Sm>

obtain that the conditional distribution of Ns given W<, is (on the event where W, < —§) the
law of a Poisson point measure with intensity

where W.°) denotes the restriction of W, to [0,75(Ws,.)]. From this, and since W, = W, , we

2110,y (Wem ) (0) Ly, o,y AN (1) (dw).-

Since ¢ is arbitrary, it easily follows that the conditional distribution of N given W<y, is that
of a Poisson measure with intensity

2 I[O,Cwsm] (t) 1{w*>ﬁ/sm} dt Nw,_. @ (dw).

Note that this conditional distribution only depends on W, , meaning that N is conditionally
independent of W<, given W .

Since the measure Ny is invariant under time-reversal, we also get that the conditional
distribution of N given W, is the same as the conditional distribution of N given W, . Finally,
N is a measurable function of W<, and since N s conditionally independent of W<, given

W, , we get that N and N are conditionally independent given Wy_ . O

Sm?

m’
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4 Applications to super-Brownian motion

We will now discuss applications of the preceding results to super-Brownian motion. Let u be a
(nonzero) finite measure on R. We denote the topological support of p by supp(u) and always
assume that

m := inf supp(p) > —oc.

We then consider a super-Brownian motion X = (X;);>¢ with quadratic branching mechanism
Y(u) = 2u? started from p. The particular choice of the normalization of v is motivated by the
connection with the Brownian snake. Let us recall this connection following Section IV.4 of [9].
We consider a Poisson point measure P(dz,dw) on R x C(Ry, W) with intensity

p(dz) Ny (dw).

Write
P(dx,dw) = Z O wiy (dz, dw)
el
and for every i € I, let ¢ = Cwiy, 8 = 0, stand for the lifetime process associated with wt. Also,
for every » > 0 and s > 0, let ¢%((") be the local time at level r and at time s of the process
¢*. We may and will construct the super-Brownian motion X by setting X = p and for every
r > 0, for every nonnegative measurable function ¢ on R,

o0
Xrp) =3 [T dn(¢) p(@l), ©)
ier 70

where the notation dy¢%(¢?) refers to integration with respect to the increasing function s —

5(¢").
A major advantage of the Brownian snake construction is the fact that it also yields an
immediate definition of the historical super-Brownian motion Y = (Y;),>0 associated with X
(we refer to [4] or [7] for the general theory of historical superprocesses). For every r > 0, Y,

is a finite measure on the subset of W consisting of all stopped paths with lifetime r. We have
Yo = p and for every r > 0,

.8 =3 [ () Bl (10)

for every nonnegative measurable function ® on W. Note the relation (X, ¢) = [ Y, (dw) p(W).
The range R is the closure in R of the set

| supp(X,),
r>0

and, similarly, we define RY as the closure in W of

| supp(¥7).

r>0
We note that
RX = supp(u) U (U{wi Ps> 0}>

el
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and

We set
mx ‘= inf RX.

From the preceding formulas and the uniqueness of the minimizing path in the case of the
Brownian snake, it immediately follows that there is a unique stopped path wyui, € RY such
that Wpin = mx. Our goal is to describe the distribution of wpi,. We first observe that the
distribution of mx is easy to obtain from and the Brownian snake representation: We have
obviously mx < m and, for every z < m,

P(mx > ) —exp 2/ (=) (11)

Note that this formula is originally due to [3, Theorem 1.3]. It follows that
Pimx =m) = exp ~3 /

Therefore, if [(u —m) 2u(du) < oo, the event {my = m} occurs with positive probability. If
this event occurs, Wiy is just the trivial path m with zero lifetime.

Proposition 7. The joint distribution of the pair (Wmin(0), mx) is given by the formulas

P(Wmin(0) < a, mx <z) = 3/; dy </[m,a} (u (_d?;)>3 D) /

for every a € [m,00) and x € (—oo,m), and
Pimx =m) =P(mx =m,wnpin(0) =m) = eXp —5 /

Proof. Fix a € [m, ), and let 1/, respectively u” denote the restriction of p to [m,al, resp. to
(a,00). Define X', respectively X", by setting X, = 1/, resp. X{j = p”, and restricting the sum in
the right-hand side of (9) to indices i € I such that z* € [m, a], resp. 2" € (a,00). Define Y’ and
Y" similarly using instead of (9). Then X', respectively X” is a super-Brownian motion
started from g/, resp. from p”, and Y’, resp. Y” is the associated historical super-Brownian
motion. Furthermore, (X', Y”) and (X”,Y”) are independent.

By (1)), the law of mx+ has a density on (—oo,m) given by

fo)=3( [ D yep(= 2 A e (oo m).

(mya) (u—y)? 2 Jima) (u—y)

On the other hand, if z € (—oco, m),
X
P(Wmln(O) < a, mx < CL’) = P(’I’)’LXI < T, mxn > mX/) = / dyfmx/(y) P(mX” > y)7
—00

and we get the first formula of the proposition using again. The second formula is obvious
from the remarks preceding the proposition. O
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Together with Proposition [7, the next corollary completely characterizes the law of Wyin.
Recall that the case where mx = m is trivial, so that we do not consider this case in the following
statement.

Corollary 8. Let x € (—oo,m) and a € [m,00). Then conditionally on mx = x and Wi, (0) =
a, the path Wiy is distributed as the process (x + Rgg))ogth@) under P,_,.

Proof. On the event {mx < m}, there is a unique index iy, € I such that
mx = min{@™» : s > 0}.

Furthermore, if sy, is the unique instant such that mx = @;r;;; , we have wpyj, = wﬁ,ﬂi , and in
particular z;_ . = Win(0).

Standard properties of Poisson measures now imply that, conditionally on mx = z and
Winin(0) = @, w'min is distributed according to Ny(- | W, = x). The assertions of the corollary
then follow from Theorem [l O

We could also have obtained an analog of Theorem [6] in the superprocess setting. The
conditional distribution of the process X (or of Y) given the minimizing path wy;, is obtained
by the sum of two contributions. The first one (present only if Wy, < m) corresponds to the
minimizing “excursion” w®i» introduced in the previous proof, whose conditional distribution
given Wi, is described by Theorem [6] The second one is just an independent super-Brownian
motion X started from w and conditioned on the event m 5 > Wmin. We leave the details of the
statement to the reader.
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