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Outline

Spatial branching processes model the evolution of populations where
individuals both

@ reproduce themselves according to some branching distribution

@ move in space according to a certain Markov process (e.g.
Brownian motion)

Superprocesses (also called measure-valued branching processes)
occur in the limit where:

@ the population is very large (but each individual has a very small
“maSSH)

@ the mean time between two branching events is very small

Related model: Fleming-Viot processes used in population genetics
(spatial position = genetic type of the individual)
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Why study spatial branching processes, and in
particular superprocesses ?

@ These objects appear in the asymptotics of many other important
probabilistic models:

» interacting particle systems: voter model, contact process, etc.
(Cox, Durrett, Perkins, ...)

» models from statistical physics: lattice trees, oriented percolation,
etc. (Slade, van der Hofstad, Hara, ...)

» models from mathematical biology, where there is competition
between several species (e.g. Lotka-Volterra models)

@ Connections with the theory of stochastic partial differential
equations.

@ Connections with partial differential equations (probabilistic
approach to an important class of nonlinear PDEs, cf Dynkin,
Kuznetsov, LG, ..))

@ Description of asymptotics in models of combinatorics
(cf Lecture 3).
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1. Branching particle systems and superprocesses

Attime t = 0, p, particles located
atx],x3,... xh € R4

Particles independently
@ move in space according to
Brownian motion
@ die attimes 1/n,2/n,3/n,...
@ when a particle dies, it gives
. ! time rise to children according
i/m 2/n 3/n t to the offspring distribution ~

;%5

For every t > 0, x{'(t),x3(t),. .. positions of particles alive at time t,

1
Z8 =02 5
i

rescaled sum of Dirac masses at particles alive at time t.
Now letn — o ...
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1
Recall Ztn = ﬁ E 5Xi"(t)'
i

M;(RY) = {finite measures on R9}.

! Assumptions
: ' @ Convergence of initial values:

A . 1
\/\/u | | i n — E n d
Xp \/A@ & N4 5Xi et © W)
Pn i l l : . .
: : : i time @ The offspring distribution ~ has
i/n 2/m 3/n i mean 1 and finite variance p?.

Theorem (Watanabe)
Then,
d
(Z{"M)e=0 n(jlg (Zt)r=0

where (Z;)>o is @ Markov process with values in M;(RY), called
super-Brownian motion.

Z, € M¢(RY) is supported on “a cloud of particles alive at time t”
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Characterizing the law of super-Brownian motion

Notation: C+(]R<d) = {bounded continuous functions g : RY — R}
(1,9) = [gdp, for p € Mg(RY) and g € C;/ (RY).

Then, for every g € C/"(RY),
e [exp(-24.6) |20 = ] = exp )
where (ui(x),t > 0,x € RY) is the unique nonnegative solution of
ou 1 i

T ZAu-LE 2
ot 2- 2"
Up=9
The function ¢(u) = u2 is called the branching mechanism of Z.

Remark. The law of Z depends on the offspring distribution 1 of the
approximating system only through the parameter p?.

Other characterizations via martingale problems, more appropriate for
models with interactions.
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Path properties of super-Brownian motion (Dawson,
Perkins, Shiga, ...)

d = 1: Then Z; has a density with respect to Lebesgue measure
Zi(dx) = Y¢(x)dx
and this density solves the SPDE
1
dY; = EAYt dt + ¢ /Y dW;
where W is space-time white noise.

d > 2: Then Z; is almost surely supported on a set of zero Lebesgue
measure, and uniformly spread on its support, in the sense of
Hausdorff measure.
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2. The Brownian snake approach

Idea. One can generate the individual particle paths (the “historical
paths”) of a super-Brownian motion, as the values of a path-valued
Markov process called the Brownian snake.

— This construction is closely related to the fact that the underlying
genealogical structure of a super-Brownian motion can be coded by
Brownian excursions (in the same sense as the CRT is coded by a
normalized Brownian excursion, cf Lecture 1).

The construction of the Brownian snake. Fix x € RY and set

Wy = {finite paths started from x }
= {w : [0, ¢w] — RY continuous ,w(0) = x}.

Ifw e Wy, (w is called the lifetime of w.
The terminal point or tip of w is W = w/((y).
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The Brownian snake (Ws)s>o is the Markov process with values in
Wy = {finite paths started at x} such that:

@ The lifetime (s := (w, Is a linear Brownian motion reflected at 0.
@ Conditionally on ({s)s>0, (Ws)s>0 is time-inhomogeneous Markov,
andifs < s/,
» We(t) = Ws(t) for every 0 <t <m(s,s’) := ming s ¢
> (Wer(me(s,s") +t) — We (M (s, 8)))o<t<c, —m,(s,s) 1S distributed as
a Brownian motion in RY independent of Ws.
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Heuristic description of the Brownian snake (Ws)s>o

@ Forevery s > 0, Ws is a random path in RY started at x,
with a random lifetime (.

@ The lifetime (s evolves like linear Brownian motion reflected at O
(a lifetime cannot be negative !)

@ When (s decreases, the path Ws is shortened from its tip.

@ When (s increases, the path Ws is extended by adding “little
pieces” of d-dimensional Brownian motion at its tip.

Why consider such a process ?

In particular, because of its connection with super-Brownian motion.
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For everyt > 0, let L' = (LY)s>0 be the local time at level t of (¢s)s>o0
(the measure Lt(ds) is supported on {s > 0: (s = t}).

Theorem
Letn, :=inf{s > 0: L2 = 1}. The measure-valued process (Z;)i>o

(Zt,9) = Jo" L'(ds) g(Ws(t))
is a super-Brownian motion started from dy.
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Applications

Many results about super-Brownian motion can be stated equivalently
and proved more easily in terms of the Brownian snake.

This is true in particular for path properties:

@ The values Wg of the Brownian snake are Hoélder continuous with
exponent % — . The topological support supp(Z) of super-BM
cannot move faster: foreveryt > 0,0 <r < rg(w),

supp(Zt4r) C Uy1/2--(supp(Zt))

where U;s(K) denotes the é-enlargement of K.

o If VAVS = Ws((s) denotes the tip of the path Ws, the map s — VAVs is
Holder continuous with exponent %1 — . From the snake approach,

{Ws 0<s<m}= U supp(Zy) =1 R
t>0

is the range of Z, that is the set of points touched by the cloud of
particles. It follows that: dim(R) =4 Ad

More precise results: Perkins, Dawson, Iscoe, LG, etc.
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3. Connections with partial differential equations

Probabilistic potential theory: Classical connections between Brownian
motion and the Laplace equation Au = 0 or the heat equation
= Au (Doob, Kakutani, etc.)

In our setting: Similar remarkable connections between
super-Brownian motion or the Brownian snake and semilinear
equations of the form Au = u” or at = Au — u” (Dynkin, Kuznetsov,
LG, etc.)

Why study these connections ? Because they

@ Allow explicit analytic calculations of probabilistic quantities
related to the Brownian snake and super-BM

@ Give a probabilistic representation of solutions of PDE that has led
to new analytic results

For simple statements of the connections with PDE,
needs excursion measures.
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The Itd excursion measure
Bt
Consider a Brownian motion
(Bt)tZO with Bg =¢.

SetTo = inf{t > 0: By = 0}.

Let P. be the law of (Bia,)i>0
Then,

-1
e P, — 11
86—>0 € t

1is a o-finite measure on the set of excursions

E = {e:[0,00) — [0, 00) continuous,
Jdo(e) > 0,e(s) >0iff 0 < s < o(e)}
M is called the Itd excursion measure.
(Note: MN(- | ¢ = 1) is the law of the normalized excursion, cf Lect.1)
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The excursion measure of the Brownian snake ;
_ ime

Ny is the measure under v?hich:
@ ((s)s>o Is distributed according to (de) (the It6 measure)
@ Conditionally given ((s)s>0, (Ws)s>o is distributed as the snake
driven by (¢s)s>o, With initial point x : Ws has lifetime (s, and if
s < ¢/, the conditional law of Wy given Wy is as described before.
Under Ny, the paths W, s € [0, 0] form a “tree of Brownian paths” with
initial point x.
Warning. Ny is an infinite measure (because so is I1).
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Exit points from a domain

Classical theory of relations between Brownian motion and PDEs : A

key role is played by the first exit point of Brownian motion from a
domain D.

Here one constructs a measure supported on the set of exit points of
the paths Ws from D (assuming that the initial point x € D)

For every finite path w € Wy,
set

T(w) =inf{t >0:w(t) ¢ D}

and

EP = {Ws(7(Ws)) : 7(Ws) < oo}

(exit points of the paths W)

Jean-Frangois Le Gall (Université Paris-Sud)
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The exit measure of the Brownian snake

EP = {exit points of the paths W}

Proposition
The formula
N Y
2°.9) = im = [ ds L <cocrwey 1 GOWs(r(Ws)))

defines Ny a.e. a finite measure ZP supported on &£P.

ZP is called the exit measure from D (Dynkin)
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The key connection with PDE

Theorem (Reformulation of Dynkin 1991)

Let D be a regular domain (in the classical potential-theoretic sense),
and g € C/ (D). The formula

u(x) = Ne(1 — exp—(Z°,9)), X € 0D 1)
defines the unique (nonnegative) solution of the Dirichlet problem

Au = u? in D

Usp =9

Remark. Similarity with the probabilistic formula u(x) = Ex[g(B)] for
the classical Dirichlet problem.

Important point: Formula (1) is very robust with respect to passages
to the limit, and yields probabilistic representations for “virtually any”
positive solution of Au = u? in a domain.
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Maximal solutions

Corollary (Dynkin)
Let D be any domain. The formula

u(x) =Ne(EP #@), xeD

gives the maximal nonnegative solution of Au = u? in D.

Application. D = RY\K, K compact

The Brownian snake hits K with positive
probability

< There exists a non trivial solution of
Au = u?in R9\K

X < K is not a removable singularity for
Au = u?

< capgy_4(K) > 0 (Baras-Pierre)
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The representation of solutions whend = 2
D smooth domain in R?2
Fact. If X € D, the exit measure ZP has

Ny a.e. a continous density with respect to
Lebesgue measure on 9D, denoted by

(zo(y),y € dD).
Recall P = {exit points of the paths Ws}

Theorem (LG)
The formula

Uk 0(X) = Ny (1 — 1ieonk—g) €XP—(0, ZD>)

gives a bijection between {positive solutions of Au = u? in D} and the
set of all pairs (K, 6), where:

@ K is a compact subset of 9D
® 0 is a Radon measure on 9D\K

v
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Extensions of the representation theorem
Consider more generally the equation

Au =uP

forany p > 1, in dimensiond > 2

@ Subcritical case p < % (includesp=2,d = 2)

The correspondence betwen solutions and traces (K, ) remains
valid as in the preceding theorem (cf Marcus-Véron (analytic
methods), Dynkin-Kuznetsov and LG-Mytnik)
. d+1
@ Supercritical case p > a-1
Needs to introduce a notion of fine trace of a solution (Dynkin)
Dynkin conjectured a one-to-one correspondence between
solutions and admissible fine traces.
» Proved by Mselati (Memoirs AMS 2003) for p = 2 (using the
Brownian snake)
» Proved by Dynkin-Kuznetsov for 1 < p < 2
» Still open for p > 2 but recent analytic progress by Marcus-Véron
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4. Applications: Statistical physics _
T N -, jtime

_______________________________________

________________________________________

Consider the Brownian snake (Ws)
@ with initial pointx =0
@ driven by a normalized excursion (condition on o = 1)
The random probability measure Z on RY defined by
1 —_~ —_~
(Z,9) = / ds g(Ws) (recall Wg = terminal point of Ws)
0

is called ISE (for integrated super-Brownian excursion, Aldous).
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ISE has appeared in a number of limit theorems for models of
statistical physics in high dimensions: Lattice trees, percolation

clusters, etc.
A lattice tree is a finite subgraph of Z9 with no loop.

A lattice tree in Z2
with 36 vertices

Question. What can we say about the shape (for instance the
diameter) of a typical large lattice tree in Z9 ?
— Very hard question if d is small (self-avoiding constraint)
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Let
T, = {lattice trees with n vertices in Z¢ containing 0}.

Let T, be chosen uniformly over 7, and let X,, be the random measure
that assigns mass 1 to each point of the form ¢ n=1/4x, x vertex of Tp.
(Xn is uniformly spread over the rescaled tree ¢ n=/4T,)

Theorem (Derbez-Slade)
If d is large enough, we can choose ¢ = ¢4 > 0 so that

X, 9, 1

n—oo

where 7 is ISE.

Informally, a typical large lattice tree (suitably rescaled) looks like the
support of ISE, or equivalently the range of a Brownian snake driven
by a normalized Brownian excursion.

Conjecture. The preceding theorem holds for d > 8 (but not for
d <8).
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5. Applications: Interacting particle systems

The voter model.

At each point of Z¢ sits an
individual who can have opinion 0
or 1.

For each a € Z4, after an
exponential time with parameter 1,

a the individual sitting at a
1 0 0 0 0 @ chooses one of his neighbors
at random
0 1 1 1 0 @ adopts his opinion
And so on.

Question. How do opinions propagates in space ?
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5. Applications: Interacting particle systems

The voter model.

At each point of Z9 sits an
individual who has opinion O or 1.

1 0 1 0 1 For each a € Z4, after an
exponential time with parameter 1,
0 0 0 0 1 the individual sitting at a
a

@ chooses one of his neighbors
at random

@ adopts his opinion

And so on.

Question. How do opinions propagates in space ?
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Suppose d > 2. Write & (a) for the opinion of a at time t.
Suppose that

[0 ifa#0
éo(a)_{l ifa=0

(At time t = 0 only the origin has opinion 1)

SetVy ={acZ9:&(a) =1}
Bramson-Griffeath: estimates for P(V; # &) (opinion 1 survives).

Theorem (Bramson-Cox-LG)

The law of % V; conditional on {V; # @} converges ast — oo to the
law of the random set

{W5(1):s >0, ¢ >1}

under the conditional measure No(- | SUPg>q (s > 1).

Asymptotically interactions disappear and opinions propagate like a
spatial branching process: see also Cox-Durrett-Perkins, ...
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