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Outline

Spatial branching processes model the evolution of populations where
individuals both

reproduce themselves according to some branching distribution

move in space according to a certain Markov process (e.g.
Brownian motion)

Superprocesses (also called measure-valued branching processes)
occur in the limit where:

the population is very large (but each individual has a very small
“mass”)

the mean time between two branching events is very small

Related model: Fleming-Viot processes used in population genetics
(spatial position = genetic type of the individual)
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Why study spatial branching processes, and in
particular superprocesses ?

These objects appear in the asymptotics of many other important
probabilistic models:

◮ interacting particle systems: voter model, contact process, etc.
(Cox, Durrett, Perkins, ...)

◮ models from statistical physics: lattice trees, oriented percolation,
etc. (Slade, van der Hofstad, Hara, ...)

◮ models from mathematical biology, where there is competition
between several species (e.g. Lotka-Volterra models)

Connections with the theory of stochastic partial differential
equations.

Connections with partial differential equations (probabilistic
approach to an important class of nonlinear PDEs, cf Dynkin,
Kuznetsov, LG, ...)

Description of asymptotics in models of combinatorics
(cf Lecture 3).
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1. Branching particle systems and superprocesses
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rescaled sum of Dirac masses at particles alive at time t .
Now let n → ∞ ...
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Mf (R
d) = {finite measures on R

d}.

Assumptions

Convergence of initial values:

Z n
0 =

1
n

pn∑

i=1

δxn
i
−→
n→∞

µ ∈ Mf (R
d )

The offspring distribution γ has
mean 1 and finite variance ρ2.

Theorem (Watanabe)
Then,

(Z n
t )t≥0

(d)
−→
n→∞

(Zt)t≥0

where (Zt)t≥0 is a Markov process with values in Mf (R
d ), called

super-Brownian motion.

Zt ∈ Mf (R
d) is supported on “a cloud of particles alive at time t”
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Characterizing the law of super-Brownian motion

Notation: C+
b (Rd ) = {bounded continuous functions g : R

d −→ R+}
〈µ,g〉 =

∫
g dµ, for µ ∈ Mf (R

d ) and g ∈ C+
b (Rd ).

Then, for every g ∈ C+
b (Rd ),

E
[

exp(−〈Zt ,g〉
∣∣∣ Z0 = µ

]
= exp−〈µ,ut〉

where (ut(x), t ≥ 0, x ∈ R
d ) is the unique nonnegative solution of

∂u
∂t

=
1
2
∆u −

ρ2

2
u2

u0 = g

The function ψ(u) = ρ2

2 u2 is called the branching mechanism of Z .

Remark. The law of Z depends on the offspring distribution µ of the
approximating system only through the parameter ρ2.

Other characterizations via martingale problems, more appropriate for
models with interactions.
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Path properties of super-Brownian motion (Dawson,
Perkins, Shiga, ...)

d = 1 : Then Zt has a density with respect to Lebesgue measure

Zt(dx) = Yt(x) dx

and this density solves the SPDE

dYt =
1
2
∆Yt dt + c

√
Yt dWt

where W is space-time white noise.

d ≥ 2 : Then Zt is almost surely supported on a set of zero Lebesgue
measure, and uniformly spread on its support, in the sense of
Hausdorff measure.
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2. The Brownian snake approach

Idea. One can generate the individual particle paths (the “historical
paths”) of a super-Brownian motion, as the values of a path-valued
Markov process called the Brownian snake.

−→ This construction is closely related to the fact that the underlying
genealogical structure of a super-Brownian motion can be coded by
Brownian excursions (in the same sense as the CRT is coded by a
normalized Brownian excursion, cf Lecture 1).

The construction of the Brownian snake. Fix x ∈ R
d and set

Wx = {finite paths started from x}

= {w : [0, ζw ] −→ R
d continuous ,w(0) = x}.

If w ∈ Wx , ζw is called the lifetime of w .
The terminal point or tip of w is ŵ = w(ζw).
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The Brownian snake (Ws)s≥0 is the Markov process with values in
Wx = {finite paths started at x} such that:

The lifetime ζs := ζWs is a linear Brownian motion reflected at 0.
Conditionally on (ζs)s≥0, (Ws)s≥0 is time-inhomogeneous Markov,
and if s < s′,

◮ Ws′(t) = Ws(t) for every 0 ≤ t ≤ mζ(s, s′) := min[s,s′] ζr
◮ (Ws′(mζ(s, s′) + t) − Ws′(mζ(s, s′)))0≤t≤ζs′−mζ (s,s′) is distributed as

a Brownian motion in R
d independent of Ws.
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Heuristic description of the Brownian snake (Ws)s≥0

For every s ≥ 0, Ws is a random path in R
d started at x ,

with a random lifetime ζs.

The lifetime ζs evolves like linear Brownian motion reflected at 0
(a lifetime cannot be negative !)

When ζs decreases, the path Ws is shortened from its tip.

When ζs increases, the path Ws is extended by adding “little
pieces” of d -dimensional Brownian motion at its tip.

Why consider such a process ?

In particular, because of its connection with super-Brownian motion.
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For every t ≥ 0, let Lt = (Lt
s)s≥0 be the local time at level t of (ζs)s≥0

(the measure Lt(ds) is supported on {s ≥ 0 : ζs = t}).

Theorem

Let η1 := inf{s ≥ 0 : L0
s = 1}. The measure-valued process (Zt)t≥0

〈Zt ,g〉 =
∫ η1

0 Lt(ds) g(Ws(t))

is a super-Brownian motion started from δx .
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Applications
Many results about super-Brownian motion can be stated equivalently
and proved more easily in terms of the Brownian snake.
This is true in particular for path properties:

The values Ws of the Brownian snake are Hölder continuous with
exponent 1

2 − ε. The topological support supp(Zt) of super-BM
cannot move faster: for every t ≥ 0, 0 < r < r0(ω),

supp(Zt+r ) ⊂ Ur1/2−ε(supp(Zt))

where Uδ(K ) denotes the δ-enlargement of K .
If Ŵs = Ws(ζs) denotes the tip of the path Ws, the map s → Ŵs is
Hölder continuous with exponent 1

4 − ε. From the snake approach,

{Ŵs : 0 ≤ s ≤ η1} =
⋃

t≥0

supp(Zt) =: R

is the range of Z , that is the set of points touched by the cloud of
particles. It follows that: dim(R) = 4 ∧ d

More precise results: Perkins, Dawson, Iscoe, LG, etc.
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3. Connections with partial differential equations
Probabilistic potential theory: Classical connections between Brownian
motion and the Laplace equation ∆u = 0 or the heat equation
∂u
∂t = ∆u (Doob, Kakutani, etc.)

In our setting: Similar remarkable connections between
super-Brownian motion or the Brownian snake and semilinear
equations of the form ∆u = uγ or ∂u

∂t = ∆u − uγ (Dynkin, Kuznetsov,
LG, etc.)

Why study these connections ? Because they

Allow explicit analytic calculations of probabilistic quantities
related to the Brownian snake and super-BM

Give a probabilistic representation of solutions of PDE that has led
to new analytic results

For simple statements of the connections with PDE,
needs excursion measures.
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The Itô excursion measure

Consider a Brownian motion
(Bt)t≥0 with B0 = ε.

Set T0 = inf{t ≥ 0 : Bt = 0}.

Let Pε be the law of (Bt∧T0
)t≥0

Then,

ε−1 Pε −→
ε→0

Π
t

Bt

ε

T0
Π is a σ-finite measure on the set of excursions

E = {e : [0,∞) −→ [0,∞) continuous,

∃σ(e) > 0,e(s) > 0 iff 0 < s < σ(e)}

Π is called the Itô excursion measure.
(Note: Π(· | σ = 1) is the law of the normalized excursion, cf Lect.1)
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The excursion measure of the Brownian snake
ζr 6

time

R
d

Ws′Ws

r
s′s xσ

Nx is the measure under which:
(ζs)s≥0 is distributed according to Π(de) (the Itô measure)
Conditionally given (ζs)s≥0, (Ws)s≥0 is distributed as the snake
driven by (ζs)s≥0, with initial point x : Ws has lifetime ζs, and if
s < s′, the conditional law of Ws′ given Ws is as described before.

Under Nx , the paths Ws, s ∈ [0, σ] form a “tree of Brownian paths” with
initial point x .
Warning. Nx is an infinite measure (because so is Π).
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Exit points from a domain

Classical theory of relations between Brownian motion and PDEs : A
key role is played by the first exit point of Brownian motion from a
domain D.
Here one constructs a measure supported on the set of exit points of
the paths Ws from D (assuming that the initial point x ∈ D)

x
D

c ccc

c

c
c

c

For every finite path w ∈ Wx ,
set

τ(w) = inf{t ≥ 0 : w(t) /∈ D}

and

ED = {Ws(τ(Ws)) : τ(Ws) <∞}

(exit points of the paths Ws)
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The exit measure of the Brownian snake

x
D

b bbb

b

bbb

ED = {exit points of the paths Ws}

Proposition
The formula

〈Z D,g〉 = lim
ε→0

1
ε

∫ σ

0
ds 1{τ(Ws)<ζs<τ(Ws)+ε} g(Ws(τ(Ws)))

defines Nx a.e. a finite measure Z D supported on ED.

Z D is called the exit measure from D (Dynkin)
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The key connection with PDE

Theorem (Reformulation of Dynkin 1991)
Let D be a regular domain (in the classical potential-theoretic sense),
and g ∈ C+

b (∂D). The formula

u(x) = Nx(1 − exp−〈Z D,g〉), x ∈ ∂D (1)

defines the unique (nonnegative) solution of the Dirichlet problem

∆u = u2 in D

u|∂D = g

Remark. Similarity with the probabilistic formula u(x) = Ex [g(Bτ )] for
the classical Dirichlet problem.

Important point: Formula (1) is very robust with respect to passages
to the limit, and yields probabilistic representations for “virtually any”
positive solution of ∆u = u2 in a domain.
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Maximal solutions

Corollary (Dynkin)
Let D be any domain. The formula

u(x) = Nx (ED 6= ∅), x ∈ D

gives the maximal nonnegative solution of ∆u = u2 in D.

x K

Application. D = R
d\K , K compact

The Brownian snake hits K with positive
probability

⇔ There exists a non trivial solution of
∆u = u2 in R

d\K

⇔ K is not a removable singularity for
∆u = u2

⇔ capd−4(K ) > 0 (Baras-Pierre)
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The representation of solutions when d = 2

x
D

K

θ

D smooth domain in R
2

Fact. If x ∈ D, the exit measure Z D has
Nx a.e. a continous density with respect to
Lebesgue measure on ∂D, denoted by
(zD(y), y ∈ ∂D).

Recall ED = {exit points of the paths Ws}

Theorem (LG)
The formula

uK ,θ(x) = Nx

(
1 − 1{ED∩K=∅} exp−〈θ, zD〉

)

gives a bijection between {positive solutions of ∆u = u2 in D} and the
set of all pairs (K , θ), where:

K is a compact subset of ∂D

θ is a Radon measure on ∂D\K
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Extensions of the representation theorem
Consider more generally the equation

∆u = up

for any p > 1, in dimension d ≥ 2

Subcritical case p <
d + 1
d − 1

(includes p = 2, d = 2)

The correspondence betwen solutions and traces (K , θ) remains
valid as in the preceding theorem (cf Marcus-Véron (analytic
methods), Dynkin-Kuznetsov and LG-Mytnik)

Supercritical case p ≥
d + 1
d − 1

Needs to introduce a notion of fine trace of a solution (Dynkin)
Dynkin conjectured a one-to-one correspondence between
solutions and admissible fine traces.

◮ Proved by Mselati (Memoirs AMS 2003) for p = 2 (using the
Brownian snake)

◮ Proved by Dynkin-Kuznetsov for 1 < p < 2
◮ Still open for p > 2 but recent analytic progress by Marcus-Véron
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4. Applications: Statistical physics
ζr 6

time

R
d

Ws′Ws

r
s′s 01

Consider the Brownian snake (Ws)

with initial point x = 0

driven by a normalized excursion (condition on σ = 1)

The random probability measure I on R
d defined by

〈I,g〉 =

∫ 1

0
ds g(Ŵs) (recall Ŵs = terminal point of Ws)

is called ISE (for integrated super-Brownian excursion, Aldous).
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ISE has appeared in a number of limit theorems for models of
statistical physics in high dimensions: Lattice trees, percolation
clusters, etc.

A lattice tree is a finite subgraph of Z
d with no loop.

0 A lattice tree in Z
2

with 36 vertices

Question. What can we say about the shape (for instance the
diameter) of a typical large lattice tree in Z

d ?
−→ Very hard question if d is small (self-avoiding constraint)
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Let
Tn = {lattice trees with n vertices in Z

d containing 0}.

Let Tn be chosen uniformly over Tn and let Xn be the random measure
that assigns mass 1

n to each point of the form c n−1/4 x , x vertex of Tn.
(Xn is uniformly spread over the rescaled tree c n−1/4Tn)

Theorem (Derbez-Slade)
If d is large enough, we can choose c = cd > 0 so that

Xn
(d)
−→
n→∞

I

where I is ISE.

Informally, a typical large lattice tree (suitably rescaled) looks like the
support of ISE, or equivalently the range of a Brownian snake driven
by a normalized Brownian excursion.

Conjecture. The preceding theorem holds for d > 8 (but not for
d ≤ 8).
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5. Applications: Interacting particle systems

The voter model.
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At each point of Z
d sits an

individual who can have opinion 0
or 1.

For each a ∈ Z
d , after an

exponential time with parameter 1,
the individual sitting at a

chooses one of his neighbors
at random

adopts his opinion

And so on.

Question. How do opinions propagates in space ?
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Suppose d ≥ 2. Write ξt(a) for the opinion of a at time t .
Suppose that

ξ0(a) =

{
0 if a 6= 0
1 if a = 0

(At time t = 0 only the origin has opinion 1)

Set Vt = {a ∈ Z
d : ξt(a) = 1}.

Bramson-Griffeath: estimates for P(Vt 6= ∅) (opinion 1 survives).

Theorem (Bramson-Cox-LG)

The law of 1√
t
Vt conditional on {Vt 6= ∅} converges as t → ∞ to the

law of the random set

{Ws(1) : s ≥ 0, ζs ≥ 1}

under the conditional measure N0(· | sups≥0 ζs > 1).

Asymptotically interactions disappear and opinions propagate like a
spatial branching process: see also Cox-Durrett-Perkins, ...
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