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GOAL. To describe the scaling limit of large random planar maps
(= graphs embedded in the plane)

−→ Expect a “universal limit”, the Brownian map

(should be the appropriate model for a Brownian surface)

KEY TOOL. Coding of planar maps by trees, and known results for
large random trees:

convergence to the CRT – cf lecture 1

convergence to the Brownian snake – cf lecture 2
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1. Introduction: Planar maps

Definition
A planar map is a proper embedding of a connected graph into the
two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).
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Faces = connected components of the
complement of edges

p-angulation:

each face has p adjacent edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished oriented edge

A rooted quadrangulation
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A large triangulation of the sphere (simulation by G. Schaeffer)
Can we get a continuous model out of this ?
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What is meant by the continuous limit ?
M planar map

V (M) = set of vertices of M

dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space

M
p
n = {rooted p − angulations with n faces}

(modulo deformations of the sphere)
M

p
n is a finite set
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Goal

Let Mn be chosen uniformly at random in M
p
n. For some a > 0,

(V (Mn),n−adgr) −→
n→∞

“continuous limiting space”

in the sense of the Gromov-Hausdorff distance.

Remarks.
a. Needs rescaling of the graph distance for a compact limit.
b. It is believed that the limit does not depend on p (universality).
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The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

ψ2

E2E1

ψ1
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Gromov-Hausdorff convergence of rescaled maps

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

→ It makes sense to study the convergence of

(V (Mn),n−adgr)

as random variables with values in K.

(Problem stated for triangulations by O. Schramm [ICM06])

Choice of a. The parameter a is chosen so that diam(V (Mn)) ≈ na.

⇒ a = 1
4 [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]
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Why study planar maps and their continuous limits ?

combinatorics [Tutte ’60, four color theorem, etc.]
theoretical physics

◮ enumeration of maps related to matrix integrals [’t Hooft 74, Brézin,
Itzykson, Parisi, Zuber 78, etc.]

◮ large random planar maps as models of random geometry
(quantum gravity, cf Ambjørn, Durhuus, Jonsson 95,
Duplantier,Sheffield 09)

probability theory: models for a Brownian surface
◮ analogy with Brownian motion as continuous limit of discrete paths
◮ universality of the limit (conjectured by physicists)

algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs
on surfaces and their applications
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2. Bijections between maps and trees
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A plane tree τ = {∅,1,2,11, . . .}
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A well-labeled tree (τ, (ℓv )v∈τ )

(rooted ordered tree)

the lexicographical order on
vertices will play an important role
in what follows

Properties of labels:

ℓ∅ = 1

ℓv ∈ {1,2,3, . . .}, ∀v

|ℓv − ℓv ′ | ≤ 1, if v , v ′ neighbors
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Coding maps with trees, the case of quadrangulations

Tn = {well-labeled trees with n edges}
M

4
n = {rooted quadrangulations with n faces}

Theorem (Cori-Vauquelin, Schaeffer)

There is a bijection Φ : Tn −→ M
4
n such that, if M = Φ(τ, (ℓv )v∈τ ), then

V (M) = τ ∪ {∂} (∂ is the root vertex of M)

dgr(∂, v) = ℓv ,∀v ∈ τ

Key facts.

Vertices of τ become vertices of M

The label in the tree becomes the distance from the root in the
map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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vertex with
smaller label

well-labeled tree quadrangulation
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General strategy

Use our knowledge of continuous limits of trees (cf Lecture 1)

in order to understand continuous limits of maps (“more difficult”)

Key point. The bijections with trees allow us to handle distances from
the root vertex, but not distances between two arbitrary vertices of the
map (required if one wants to get Gromov-Hausdorff convergence)
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3. Asymptotics for trees
The case of plane trees

T plane
n = {plane trees with n edges}

A tree τ ∈ T plane
n is viewed as a metric space for the graph distance dgr.

Recall a special case of Aldous’ theorem of Lecture 1:

Theorem

For every n, let τn be uniformly distributed over T plane
n .Then

(τn,
1√
2n

dgr)
(d)−→

n→∞
(Te,de)

in the Gromov-Hausdorff sense.
Here (Te,de) is the CRT (Continuum Random Tree) or equivalently the
tree coded by a normalized Brownian excursion e = (es)0≤s≤1.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,
g(0) = g(1) = 0

mg(s,t)

g(s)

g(t)

s t ′t 1

mg(s, t) = mg(t , s) = mins≤r≤t g(r)

dg(s, t) = g(s) + g(t) − 2mg(s, t) t ∼g t ′ iff dg(t , t ′) = 0

Proposition (Duquesne-LG)
Tg := [0,1]/∼g equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

Remark. Tg inherits a “lexicographical order” from the coding.
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The CRT (Te,de) is the (random) real tree coded by
a normalized Brownian excursion e.

1
t

et

ρ

tree Te

�
I

yzI
w
�
o
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We then want to assign random labels to the vertices of the CRT.
−→ We use the Brownian snake construction of Lecture 2:

Start from a normalized Brownian excursion e = (et)0≤t≤1

Introduce the one-dimensional Brownian snake W driven by e (cf
construction of ISE in Lecture 2), with initial point 0
Observe that if s ∼e s′ (that is, if es = es′ = me(s, s′)), then
Ws = Ws′ (easy from the construction of the Brownian snake)
Thus W can also be viewed as indexed by [0,1]/∼e= Te

Put Za = Ŵa (terminal point of Wa) for a ∈ Te

er 6
time

R
d

Ws′Ws

r
s′s x1
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Remark. (Za)a∈Te can be viewed as Brownian motion indexed by Te.
“Conditionally on Te”, Z is a centered Gaussian process such that

Zρ = 0 (ρ root of Te)

E [(Za − Zb)
2] = de(a,b), a,b ∈ Te

Problem. We would like to think of Z as the scaling limit of discrete
labels, but ...
... the positivity constraint on labels is not satisfied !
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The scaling limit of well-labeled trees

Recall Tn = {well-labeled trees with n edges}
(θn, (ℓ

n
v )v∈θn) uniformly distributed over Tn

Rescaling:

Distances on θn are rescaled by 1√
n

(Aldous’ theorem)

Labels ℓn
v are rescaled by 1√√

n
= 1

n1/4

(“central limit theorem”)
u
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u u u

u

u

u
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122121
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1231

1
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32

423
1

3

Fact

The scaling limit of (θn, (ℓ
n
v )v∈θn) is (Te, (Z a)a∈Te), where

Te is the CRT, (Za)a∈Te is Brownian motion indexed by Te

Z a = Za − Z∗, where Z∗ = min{Za,a ∈ Te}
Te is re-rooted at vertex ρ∗ minimizing Z
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Application to the radius of a planar map
Recall

Schaeffer’s bijection : quadrangulations ↔ well-labeled trees
labels on the tree correspond to distances from the root in the map

Theorem (Chassaing-Schaeffer 2004)
Let Rn be the maximal distance from the root in a quadrangulation with
n faces chosen at random. Then,

n−1/4Rn
(d)−→

n→∞
(
9
8

)1/4 ( max
0≤s≤1

Ŵs − min
0≤s≤1

Ŵs)

where (Ws)0≤s≤1 is the one-dimensional Brownian snake driven by a
normalized Brownian excursion e.

Extensions to much more general planar maps (including
triangulations, etc.) by

Marckert-Miermont (2006), Miermont, Miermont-Weill (2007), ...

⇒ Strongly suggests the universality of the scaling limit of maps.
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3. The scaling limit of planar maps
M

2p
n = {rooted 2p − angulations with n faces} (bipartite case)

Mn uniform over M
2p
n , V (Mn) vertex set of Mn, dgr graph distance

Theorem (The scaling limit of 2p-angulations)
From each strictly increasing sequence of integers, one can extract a
subsequence along which

(V (Mn), cp
1

n1/4
dgr)

(d)−→
n→∞

(m∞,D)

in the sense of the Gromov-Hausdorff distance.
Furthermore, m∞ = Te/≈ where

Te is the CRT (re-rooted at vertex ρ∗ minimizing Z )

(Za)a∈Te is Brownian motion indexed by Te, and Z a = Za − min Z

≈ equivalence relation on Te: a ≈ b ⇔ Z a = Z b = minc∈[a,b] Z c

([a,b] lexicographical interval between a and b in the tree)

D distance on m∞ such that D(ρ∗,a) = Z a

D induces the quotient topology on m∞ = Te/≈
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Interpretation of the equivalence relation ≈

Recall Schaeffer’s bijection:
∃ edge between u and v if

ℓu = ℓv − 1

ℓw ≥ ℓv , ∀w ∈]u, v ]

Explains why in the continuous limit

a ≈ b ⇒ Z a = Z b = min
c∈[a,b]

Z c

⇒ a and b are identified
v

v

v

v v v

v

v

v

1

1
2

32

423

1

3

v
u

v

Key point: Prove the converse (no other pair of points are identified)

Remark: Equivalence classes for ≈ contain 1, 2 or 3 points.
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Consequence and open problems

Corollary

The topological type of any weak limit of (V (Mn),n−1/4dgr) is
determined:

m∞ = Te/≈ with the quotient topology.

Open problems

Identify the distance D on m∞
(would imply that there is no need for taking a subsequence)
−→ Recent progress: 3-point function (Bouttier-Guitter)

Show that D does not depend on p
(universality property, expect same limit for triangulations, etc.)

STILL MUCH CAN BE PROVED ABOUT THE LIMIT !

The limiting space (m∞,D) is called the Brownian map
[Marckert-Mokkadem 2006, with a different approach]
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Two theorems about the Brownian map

Theorem (Hausdorff dimension)

dim(m∞,D) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, (m∞,D) is homeomorphic to the 2-sphere S
2.

Consequence: for n large,
no separating cycle of size
o(n1/4) in Mn,
such that both sides have
diameter ≥ εn1/4

Alternative proof of the homeomorphism theorem: Miermont (2008)
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4. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:

Look for the last visited vertex (before
v) with label ℓv − 1. Call it v ′.

Proceed in the same way from v ′ to
get a vertex v ′′.

And so on.

Eventually one reaches the root ∂.

u

u

uu

u u u

u

u

uu u

uuuu

u

u

u

u u

u

uu

u∂

vv ′

v ′′

u

u

uu
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Simple geodesics in the Brownian map

Brownian map: m∞ = Te/≈, root ρ∗
≺ lexicographical order on Te

Recall D(ρ∗,a) = Z a (labels on Te)

Fix a ∈ Te and for t ∈ [0,Z a], set

ϕa(t) = sup{b ≺ a : Z b = t}

(same formula as in the discrete case !)

Then (ϕa(t))0≤t≤Z a
is a geodesic from ρ∗ to

a

(called a simple geodesic)
ρ∗

a

ϕa(t)

Fact
Simple geodesics visit only leaves of Te (except possibly at the
endpoint)
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How many simple geodesics from a given point ?

If a is a leaf of Te,
there is a unique simple geodesic
from ρ∗ to a
Otherwise, there are

◮ 2 distinct simple geodesics if a is a
simple point

◮ 3 distinct simple geodesics if a is a
branching point

(3 is the maximal multiplicity in Te)

ρ∗

a

Proposition (key result)
All geodesics from the root are simple geodesics.
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The main result about geodesics
Define the skeleton of Te by Sk(Te) = Te\{leaves of Te} and set

Skel = π(Sk(Te)) (π : Te → Te/≈= m∞ canonical projection)

Then
the restriction of π to Sk(Te) is a homeomorphisme onto Skel
dim(Skel) = 2 (recall dim(m∞) = 4)

Theorem (Geodesics from the root)
Let x ∈ m∞. Then,

if x /∈ Skel, there is a unique geodesic from ρ∗ to x

if x ∈ Skel, the number of distinct geodesics from ρ∗ to x is the
multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks
Skel is the cut-locus of m∞ relative to ρ∗: cf classical Riemannian
geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
invariance of the Brownian map under re-rooting ⇒ same results if
ρ∗ is replaced by a point chosen “at random” in m∞.
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Confluence property of geodesics

Fact: Two simple geodesics coincide near the root.
(easy from the definition)

Corollary
Given δ > 0, there exists ε > 0 s.t.

if D(ρ∗, x) ≥ δ, D(ρ∗, y) ≥ δ

if γ is any geodesic from ρ∗ to x

if γ′ is any geodesic from ρ∗ to y

then

γ(t) = γ′(t) for all t ≤ ε

�

?

ρ∗
ε

δ

x

y

“Only one way” of leaving ρ∗ along a geodesic.
(also true if ρ∗ is replaced by a typical point of m∞)

Jean-François Le Gall (Université Paris-Sud) Scaling limits of random planar graphs IMS Meeting Göteborg 36 / 38



Uniqueness of geodesics in discrete maps

Mn uniform distributed over M
2p
n = {2p − angulations with n faces}

V (Mn) set of vertices of Mn, ∂ root vertex of Mn, dgr graph distance

For v ∈ V (Mn), Geo(∂ → v) = {geodesics from ∂ to v}
If γ, γ′ are two discrete paths (with the same length)

d(γ, γ′) = max
i

dgr(γ(i), γ′(i))

Corollary
Let δ > 0. Then,

1
n

#{v ∈ V (Mn) : ∃γ, γ′ ∈ Geo(∂ → v), d(γ, γ′) ≥ δn1/4} −→
n→∞

0

Macroscopic uniqueness of geodesics, also true for
“approximate geodesics”= paths with length dgr(∂, v) + o(n1/4)
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Exceptional points in discrete maps
Mn uniformly distributed 2p-angulation with n faces
For v ∈ V (Mn), and δ > 0, set

Multδ(v) = max{k : ∃γ1, . . . , γk ∈ Geo(∂, v), d(γi , γj) ≥ δn1/4 if i 6= j}

(number of “macroscopically different” geodesics from ∂ to v)

Corollary
1. For every δ > 0,

P[∃v ∈ V (Mn) : Multδ(v) ≥ 4] −→
n→∞

0

2. But
lim
δ→0

(
lim inf
n→∞

P[∃v ∈ V (Mn) : Multδ(v) = 3]
)

= 1

There can be at most 3 macroscopically different geodesics from ∂ to
an arbitrary vertex of Mn.

Remark. ∂ can be replaced by a vertex chosen at random in Mn.
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