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We study properties of the harmonic measure of balls in typical
large discrete trees. For a ball of radius n centered at the root, we
prove that, although the size of the boundary is of order n, most of
the harmonic measure is supported on a boundary set of size approx-
imately equal to n®, where 3 & 0.78 is a universal constant. To derive
such results, we interpret harmonic measure as the exit distribution
of the ball by simple random walk on the tree, and we first deal with
the case of critical Galton—Watson trees conditioned to have height
greater than n. An important ingredient of our approach is the anal-
ogous continuous model (related to Aldous’ continuum random tree),
where the dimension of harmonic measure of a level set of the tree is
equal to B, whereas the dimension of the level set itself is equal to 1.
The constant 3 is expressed in terms of the asymptotic distribution
of the conductance of large critical Galton—Watson trees.

1. Introduction. The main goal of this work is to study properties of
the harmonic measure of balls in large discrete trees. From a probabilistic
point of view, the harmonic measure of a set is the exit distribution of that
set by random walk, in the discrete setting, or by Brownian motion, in the
continuous setting. Harmonic measure has been studied in depth both in
harmonic analysis and in probability theory, and it would be hopeless to try
to survey the literature on this subject. It has been observed in different
contexts that the harmonic measure of a set with a fractal-like boundary is
often supported on a subset of the boundary of strictly smaller dimension.
For example, the famous Makarov theorem [30] states that harmonic measure
on the boundary of a simply connected planar domain is always supported on
a subset of Hausdorff dimension equal to 1, regardless of the dimension of the
boundary (see [21] for similar results in a discrete setting and [8] for higher
dimensional analogs). This “dimension drop” phenomenon also appears in
the context of (infinite) discrete random trees. In [27], Lyons, Pemantle and
Peres studied the harmonic measure at infinity for simple random walk on
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an infinite supercritical Galton—Watson tree and proved that the harmonic
measure is supported on a boundary set of dimension strictly less than the
dimension of the whole boundary. The same authors then extended this
result to biased random walk on a supercritical Galton-Watson tree [28].

In the present work, we study a similar phenomenon in the context of
finite discrete trees. Our results apply to several combinatorial classes of
discrete trees, such as plane trees, binary trees or Cayley trees in particular.
For a typical tree with a (fixed) large size chosen in any of these classes,
we obtain that the harmonic measure of a ball of radius n is supported, up
to a small mass, on a subset of about n® vertices, despite the fact that the
boundary of the ball has of order n vertices. Here 8 = 0.78 is a universal
constant that does not depend on the combinatorial class.

In order to obtain these results for “combinatorial trees”, we interpret
them as conditioned Galton-Watson trees. Recall that a Galton-Watson tree
describes the genealogy of a population starting with an ancestor or root,
where each individual has, independently of the others, a number of children
distributed according to a given offspring distribution (see Section 4.1 for a
precise definition). We first study harmonic measure on generation n of a
critical Galton—Watson tree, whose offspring distribution has mean 1 and
finite variance, and which is conditioned to have height greater than n. In
this setting, we obtain that most of the harmonic measure on generation n
is concentrated on a set of approximately n® vertices, with high probability.
Again, this should be contrasted with the fact that the generation n of the
tree has about n vertices. The constant 8 has an explicit expression in terms
of the law of a random variable C, which is the limit in distribution of the
(scaled) conductance of the tree between the root and generation n — again
this limiting distribution does not depend on the offspring distribution. In
the related continuous model, we show that the Hausdorff dimension of the
harmonic measure is almost surely equal to £, whereas the dimension of the
boundary is known to be equal to 1. Let us describe our results in a more
precise way.

Discrete setting. Let 6 be a probability measure on Z, and assume that
6 has mean one and finite variance ¢? > 0. Under the probability P, for
every integer n > 0, we let T be a Galton-Watson tree with offspring
distribution 6, conditioned on non-extinction at generation n. Conditionally
on the tree T(™ . we then consider simple random walk on T, starting
from the root, and we let >, be the first hitting point of generation n by
random walk. The harmonic measure u, is the law of 3,. Notice that uy,

is a random probability measure supported on the set T%n) of all vertices
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THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 3

of T(") at generation n. By a classical theorem of the theory of branching
processes, n~ ! #T,(ln) converges in distribution to an exponential distribution
with parameter 2/02.

THEOREM 1. There ezists a constant € (0,1), which does not depend
on the offspring distribution 0, such that, for every § > 0, we have the
convergence in P-probability
pn({v € TW - =870 < 1y (v) < n=PH0Y) B,

n—oo

Consequently, for every e € (0, 1), there exists, with P-probability tending to
1 as n — o0, a subset A, . of Tﬁl") such that #A, . < nPto and pn(Ape) >
1 — e. Conversely, the mazimal p,-measure of a set of cardinality bounded
by nP=9 tends to 0 as n — oo, in P-probability.

Although we have no exact numerical expression for 3, calculations using
the formulas in Proposition 4 below indicate that 5 = 0.78. See the discus-
sion at the end of Section 3.4. This approximate numerical value confirms
simulations made in physics [18].

The last two assertions of the theorem are easy consequences of the first
one. Indeed, A, . := {v € T . pin(v) > n7P79} has cardinality smaller
than n®19, and the first assertion of the theorem shows that the y,-measure
of the latter set is greater than 1 — ¢ with P-probability tending to 1 as
n — o0o0. On the other hand, if A is any subset of Tﬁl‘)
smaller than n®~%, we have

with cardinality

n(A) < ({0 € T & pin(v) > nH+9/2}) 4 =8y =+0/2
and the first term in the right-hand side tends to 0 in P-probability by the
first assertion of the theorem.

Theorem 1 implies a similar result for Galton-Watson trees conditioned
to have a fixed size. For every integer N > 0 such that this makes sense, let
T(N) be distributed under the probability measure P as a Galton-Watson
tree with offspring distribution 6 conditioned to have N edges. For every
integer n > 1, let T,,(INV) be the set of all vertices of T(IV) at generation
n. The harmonic measure u2 is defined on the event {T,,(N) # @} as the
hitting distribution of T,,(/N) by simple random walk on T(V) started from
the root.
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COROLLARY 2. Let >0 ande > 0. Then,

P({m) ({v € TaV) 2 Y (0) ¢ (07770 0= #%]}) > e 0 {TW(N) # 21}

— 0.
n,N—o00

As in Theorem 1, this implies that, with high probability on the event
{T,(N) # @}, the harmonic measure p)’ is supported, up to a mass less
than €, on a set of n®19 vertices, and conversely the maximal plY -measure
of a set of cardinality bounded above by n~9 is small.

If h(T(NN)) denotes the height (maximal distance from the root) of the
tree T(N), it is well known that N~'/2h(T(N)) converges in distribution to
a positive random variable, see (47) below. Therefore, if we let n and N tend
to infinity in such a way that n = o(v/N), the probability P(T,(N) # @)
tends to 1. It is worth pointing that Corollary 2 applies to balls of radius
n which is large but small in comparison with the diameter of the tree — a
similar extension would in fact hold also for Theorem 1.

For specific choices of 6, the tree T(N) is uniformly distributed over cer-
tain classes of combinatorial trees, and Corollary 2 yields the results that
were mentioned earlier in this introduction. In particular, if 8 is the geomet-
ric distribution #(k) = 27%~1, T(N) is uniformly distributed over plane trees
with N edges. If 0 is the Poisson distribution with mean 1, and if we assign
labels 1,..., N 4+ 1 to vertices in a random manner and then “forget” the
ordering of T(N), we get a random tree uniformly distributed over Cayley
trees on N 4 1 vertices. In a similar manner, for every integer p > 2, we can
handle p-ary trees (where the number of children of every vertex belongs to
{0,1,...,p}) or strictly p-ary trees (where each vertex has 0 or p children).

Continuous setting. A key ingredient of the proof of Theorem 1 is a similar
result in the continuous setting. A critical Galton—Watson tree conditioned
on having height greater than n, viewed as a metric space for the graph
distance normalized by the factor n~!, is close in the Gromov-Hausdorff
sense to a variant of Aldous’ Brownian continuum random tree [2], also
called the CRT. So a continuous analog of the harmonic measure u, would
be the hitting distribution of height 1 by Brownian motion on the CRT
starting from the root. Although the construction of Brownian motion on
the CRT has been carried out in [20] (see also [10] for a simpler approach,
and [4] for a general construction of Brownian motion on R-trees), we will
not follow this approach, because there is a simpler way of looking at the
continuous setting.
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Fic 1. A large (binary) Galton—Watson tree and the reduced tree at a given level.

The point is that properties of the harmonic measure p, on T%n) can

be read from the reduced tree T*" that consists only of vertices of T(")
that have descendants at generation n. In other words, we can chop off the
branches of the discrete tree that do not reach the level n. Indeed, a simple
argument shows that the hitting distribution of generation n is the same for
simple random walk on T and on the reduced tree T*". See Figure 1 for
a simulation of a large Galton-Watson tree and the associated reduced tree.

The scaling limit of the discrete reduced trees T*" (when distances are
scaled by the factor n~1) is particularly simple. We define a random compact
R-tree by the following device. We start from an (oriented) line segment
whose length Uy is uniformly distributed over [0,1] and whose origin will
serve as the root of our tree. At the other end of this initial line segment, we
attach the initial point of two other line segments with respective lengths
Uy and Uy such that, conditionally given Ug, U; and Us are independent
and uniformly distributed over [0,1 — Ug]. At the other end of the first of
these segments, respectively of the second one, we attach two line segments
whose lengths are again independent and uniformly distributed over [0,1 —
Uy — U], resp. over [0, 1 —Ug — Uz, conditionally on the triplet (Ug, Uy, Us).
We continue the construction by induction and after an infinite number of
steps we get a random (non-compact) rooted R-tree, whose completion is
denoted by A. This is the scaling limit of the discrete reduced trees T*". See
Section 2.1 for a more precise construction.

The metric on A is denoted by d. By definition, the boundary 0A consists
of all points of A at height 1, that is, at distance 1 from the root: These
are exactly the points that are added when taking the completion in the
preceding construction.

It is then easy to define Brownian motion on A starting from the root
and up to the first hitting time of A (it would be possible to extend the
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definition of Brownian motion beyond the first hitting time of A, but this
is not relevant to our purposes). Roughly speaking, this process behaves
like linear Brownian motion as long as it stays on an “open interval” of
the tree. It is reflected at the root of the tree and when it arrives at a
branching point, it chooses each of the three possible line segments incident
to this point with equal probabilities. The harmonic measure y is then the
(quenched) distribution of the first hitting point of A by Brownian motion
(see Section 2.1 for details).

THEOREM 3. With the same constant B as in Theorem 1, we have P a.s.
wu(dx) a.e.,
iy 108 #(Za(z, 7))
7,0 logr

:67

where Bq(xz,r) stands for the closed ball of radius r centered at x in the
metric space (A,d). Consequently, the Hausdorff dimension of u is P a.s.
equal to 3.

The fact that the second assertion of the theorem follows from the first
one is standard. See e.g. Lemma 4.1 in [27].

Remark. It is not hard to prove that the Hausdorff dimension of 0A (with
respect to d) is a.s. equal to 1. An exact Hausdorff measure function is given
by Theorem 1.3 in Duquesne and Le Gall [12].

a

Fic 2. A simulation of the reduced tree A and the harmonic measure on its boundary.
Clearly the measure is not uniformly spread and exhibits a fractal behavior.

Let us give some ideas of the proof of Theorem 3. It is well known that one
can turn the tree A, or rather the subtree A\JA, into a “stationary” object
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THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 7

via a logarithmic transformation. Roughly speaking, we introduce a new tree
which has the same binary branching structure as A, such that each point
of A at height s € [0,1) corresponds to a point of the new tree at height
—log(1—s) € [0, 00). The resulting non-compact tree is called the Yule tree
because it describes the genealogy of the classical Yule process, where indi-
viduals have (independent) exponential lifetimes with parameter 1 and each
individual has exactly two offspring. We define the boundary of the Yule tree
as the collection of all its geodesic rays, where a geodesic ray is just a semi-
infinite geodesic path starting from the root. This boundary is easily iden-
tified with OA. An application of It6’s formula shows that the logarithmic
transformation turns Brownian motion on A into a time-changed Brownian
motion with drift 1/2 toward infinity on the Yule tree. Consequently, the
probability measure u corresponds via the preceding transformation to the
distribution v of the geodesic ray that is “selected” by Brownian motion with
drift 1/2 (that is, the unique ray of the Yule tree that is visited by Brownian
motion at arbitrarily large times). The first assertion of Theorem 3 is then
equivalent to proving that, P a.s., v(dy) a.e.,

1
(1) lim — logv(B(y,r)) = -8
where B(y, ) denotes the set of all geodesic rays of the Yule tree that coincide
with y up to height r.

The next step is then to identify a kind of “stationary environment seen
from the particle” for Brownian motion on the Yule tree. More precisely,
we show in Section 3.1 that the law of the subtree above level » > 0 that
is selected by Brownian motion (with drift 1/2) converges as r — oo to a
limiting probability measure that we explicitly describe. This allows us to
construct an ergodic invariant measure for the natural shifts on the space of
all pairs consisting of a (deterministic) Yule-type tree and a distinguished
geodesic ray on this tree, and moreover this measure is absolutely continuous
with respect to the law of the random pair formed by the Yule tree and the
ray selected by Brownian motion. The limiting result (1) then follows from
an application of Birkhoff’s ergodic theorem to a suitable functional. In this
part of our work, we use several ideas that have been developed by Lyons,
Pemantle and Peres [27] in a slightly different setting.

The random conductance. The constant 8 in Theorems 1 and 3 can be ex-
pressed in terms of the (continuous) conductance of A. Roughly speaking, if
one considers A as a network of resistors with unit resistance per unit length,
then the effective resistance between height 0 and height 1 is a random vari-
able, which we denote by C. With this interpretation, it is clear that C > 1

imsart-aop ver. 2014/10/16 file: Harmonic-Tree-AOP.tex date: August 26, 2015



8

a.s. Alternatively, C is the mass under the Brownian excursion measure from
the root of those excursion paths that hit height 1. Note that C is also the
limit in distribution of the (scaled) conductance between generations 0 and
n in T™. The distribution of C satisfies the following recursive equation

(d) 1—U>—1
N C1+Co '

where C; and Cy are independent copies of C, and U is uniformly distributed
over [0,1] and independent of the pair (Cy,C2). Despite this rather simple
recursive equation, the law ~y(ds) of C is not completely understood (in
particular, its mean is unknown). We prove that, although ~ has a continuous
density f over [1,00), the function f is not twice continuously differentiable
at the point 2 (and we expect a similar singular behavior at all integer
values). See Figure 3.

(2) ¢

(v+

15 20 25 30 35

Fic 3. A histogram of the distribution of v over (1,00) from simulations based on the
recursive equation (2). There are explicit formulas for the density of v over [1,2] and over
[2, 3], which however depend on the (unknown) density at 1. The red and the blue curves
correspond to these explicit formulas, with a numerical approximation of the density at 1.

In many respects, the distribution + governs the behavior of harmonic
measure. In particular the constant 8 has an explicit expression in terms of

.

PROPOSITION 4. The distribution v is characterized in the class of all
probability measures on [1,00) by the distributional equation (2). The con-
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THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 9

stant 3 appearing in Theorems 1 and 8 is given by

(3)

P SIS A(dr)y(ds)y(de) s log(#£) :1< (Jr(ds)s)® 1>.
S A (ds)y(dt) 55 2\ [[v(ds)y(dt) 55

We finally mention that some extensions of the results of the present work
have been obtained by Lin [24, 25]. A version of Theorem 1 for Galton—
Watson trees whose offspring distribution belongs to the domain of attrac-
tion of a stable law with index a € (1,2) is derived in [24]. In the setting
of the present work, the article [25] gives an analog of Theorem 1 for the
harmonic measure of a vertex chosen according to the uniform probability
measure on generation n of the tree T(™. This is another step toward a full
multifractal analysis of the harmonic measure .

The paper is organized as follows. We start by studying the continuous
model. In Section 2 we introduce the basic set-up and we relate the random
tree A to the Yule tree. The law of the random conductance C is studied
in Section 2.3. Section 3 gathers the ingredients of the proof of Theorem 3.
In particular, Section 3.2 identifies the limiting distribution of the subtree
above level r selected by Brownian motion, and Section 3.3 explains the
application of the ergodic theorem needed to derive (1). Section 4 is devoted
to the proof of Theorem 1 and Corollary 2. Let us emphasize that Theorem
1 is not a straightforward consequence of Theorem 3, and that the proof of
our results in the discrete setting requires a number of additional estimates,
even though a key role is played by Theorem 3. The last section is devoted
to a few complements. In particular, we comment on the connection between
the present paper and the recent work of Aidékon [1].

2. The continuous setting. In this section we give a formal definition
of the (continuous) reduced tree A. We then explain the connection between
the reduced tree and the Yule tree. We finally introduce and study the
conductance of these trees, which plays a key role in the next sections.

2.1. The reduced tree A. We set
V= J{L2}"
n=0

where {1,2}° = {@}. If v = (v1,...,v,) € V, we set |v| = n (in particular,

|@| = 0), and if n > 1, we define the parent of v as v = (v1,...,v,—1) (We
then say that v is a child of ¥). If v = (v1,...,v,) and v = (v],...,v))
belong to V, the concatenation of v and v’ is vv' := (v1,..., v, V], ..., 0],).
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The notions of a descendant and an ancestor of an element of V are defined

in the obvious way, with the convention that a vertex v € V is both an

ancestor and a descendant of itself. If v,w € V, v A w is the unique element

of V that is an ancestor of both v and w and such that |v A w| is maximal.
We then consider a collection

(Uv)vev

of independent real random variables uniformly distributed over [0, 1] under
the probability measure P. We set

Yo =Ug
and then, by induction, for every v € {1,2}", with n > 1,
Yy =Y+ Uy(1 - Y3).

Note that 0 <Y, < 1 for every v € V, a.s. Consider then the set

Ao = ({8} x [0, Yo]) U ( U o) x m,,m).

veV\{o}

There is a straightforward way to define a metric d on Ay, so that (Ag,d) is
a (noncompact) R-tree and, for every x = (v, 1) € Ay, we have d((&,0),z) =
r. To be specific, let © = (v,7) € Ag and y = (w,7’) € Ag:
e If v is a descendant of w or w is a descendant of v, we set d(z,y) =
|r —r'].
e Otherwise, d(z,y) = d((v A w, Yyrw), ) + d((v A w, Yorw), y) = (1 —
Yv/\w) + (T/ - YVU/\u;)-

See Figure 4 for an illustration of the tree Ay.

We let A be the completion of Ag with respect to the metric d. Then
A =AygUOJOA

where by definition 0A = {z € A : d((@,0),x) = 1}, which is canonically
identified with {1, 2}" (here and below, N = {1,2, ...} is the set of all positive
integers). Note that (A,d) is a compact R-tree.

The point (&, 0) is called the root of A. For every x € A, we set H(z) =
d((2,0),x) and call H(x) the height of z. We can define a genealogical order
on A by setting x < y if and only if x belongs to the geodesic path from the
root to y.
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F1G 4. The random tree Mg

For every ¢ € (0,1), we set
A.={xeA:H(x)<1-¢},

which is also a compact R-tree for the metric d. The leaves of A, are the
points of the form (v,1 — ¢) for all v € V such that Y; < 1 —¢ <Y,. The
branching points of A, are the points of the form (v,Y,) for all v € V such
that Y, < 1 —e. We can then define Brownian motion on A, as a special
case of a diffusion on a graph (see in particular [15], [13] and the references
therein, and note that the definition of Brownian motion on A, can also
be viewed as a very special case of the construction of Brownian motion on
R-trees given in [4]). Informally, this process behaves like linear Brownian
motion as long as it stays on an “open interval” of the form {v} x (Y3, Y, A
(1—¢)). It is reflected at the root (&, 0) and at the leaves of A., and when it
arrives at a branching point of the tree, it chooses each of the three possible
line segments ending at this point with equal probabilities.

Write B = (B§)s>0 for Brownian motion on A, starting from the root,
which is defined under the probability measure P (for our purposes, it will
be important to carefully distinguish the probability measure P governing
the random trees and the one governing Brownian motions on these trees).
We let

T, :=inf{t >0: H(Bf) =1—¢},

be the hitting time of the set of all leaves of A..

If we now set €, = 27" for every n > 1, we may define all processes B®"
on the same probability space, in such a way that Bf}\LTEm = Bf;\”TEm for every
t > 0 and every choice of m < n, P a.s. Assuming that the latter property
holds, we set

T=1m1T.,
ntoo
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and we define the process (Bt)¢>0 by requiring that By = 1 if ¢ > T' (where
t is a cemetery point) and, for every n > 1 and t > 0, Biar., = By, - It is
easy to verify that the left limit

BT_ = lim Bt
HTt<T
exists in A and belongs to A, P a.s. The harmonic measure p is the dis-
tribution of Bp_ under P, which is a (random) probability measure on

OA = {1,2}N.

2.2. The Yule tree. For the proof of Theorem 3, it will be more conve-
nient to reformulate the problem in terms of Brownian motion on the Yule
tree. To define the Yule tree, consider now a collection

(Vv)UEV

of independent real random variables exponentially distributed with mean
1 under the probability measure P. We set

Vo =Vz
and then by induction, for every v € {1,2}", with n > 1,
yv - yf) + Vv-

The Yule tree is the set

r:=<{®}x[o,y@]>u< U {v}x()ﬂ@,m),

veV\{o}

which is equipped with the metric d defined in the same way as d in the
preceding section. For this metric, I' is again a non-compact R-tree. For
every x = (v,r) € I', we keep the notation H(z) = r = d((@,0),x) for the
height of the point x.

Now observe that if U is uniformly distributed over [0, 1], the random
variable —log(1 — U) is exponentially distributed with mean 1. Hence we
may and will suppose that the collection (V},),ep is constructed from the
collection (Uy)yecy in the previous section via the formula V, = —log(1 —
U,), for every v € V. Then, the mapping ¥ defined on Ay by ¥(v,r) =
(v, —log(1l — r)), for every (v,r) € Ay, is a homeomorphism from Aj onto
I.
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THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 13

Stochastic calculus shows that we can write, for every ¢ € [0,T),

(4) U(B,) = W(/Ot(l ~ H(B.)ds)

where (W (t))¢>0 is Brownian motion with constant drift 1/2 toward infinity
on the Yule tree (this process is defined in a similar way as Brownian motion
on Ag, except that it behaves like Brownian motion with drift 1/2 on every
“open interval” of the tree). Note that W is again defined under the prob-
ability measure P. From now on, when we speak about Brownian motion
on the Yule tree or on other similar trees, we will always mean Brownian
motion with drift 1/2 toward infinity.

By definition, the boundary of I' is the set of all infinite geodesics in I’
starting from the root (&, 0) (these are called geodesic rays). The boundary
of T' is canonically identified with {1,2}". From the transience of Brownian
motion on I'; there is an a.s. unique geodesic ray denoted by W, that is
visited by (W (t),t > 0) at arbitrarily large times. We sometimes say that
W is the exit ray of Brownian motion on I'. The distribution of W, under
P yields a probability measure v on {1,2}N. Thanks to (4), we have in fact
v = u, provided we view both p and v as (random) probability measures on
{1,2}". The statement of Theorem 3 is then reduced to checking that (1)
holds v(dy) a.e., P a.s.

Yule-type trees. Our proof of (1) makes a heavy use of tools of ergodic
theory applied to certain transformations on a space of trees that we now
describe. We let T be the set of all collections (z,),ecy of nonnegative real
numbers such that the following properties hold:

(1) zp < 2y for every v € V\{@};
(ii) for every v = (vi,va,...) € {1,2},

i 2,0, = +00.

Notice that we allow the possibility that zg = 0. We equip T with the o-field
generated by the coordinate mappings. If (z,),ey € T, we can consider the
associated “tree”

T :=({2} x[0,25]) U ( U {v} x (Zﬁazv]>u

veV\{o}

equipped with the distance defined as above. We will keep the notation
H(xz) = r if x = (v,r) for the height of a point # € 7. The genealogical
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order on 7 is defined as previously and will again be denoted by <. If
u = (u,u,...,Un,...) € {1,2N and 2 = (v,7) € T, we write z < u if
v = (uy,ug,...,ux) for some integer k > 0.

We will often abuse notation and say that we consider a tree T € T:
This really means that we are given a collection (z,),cy satisfying the above
properties, and we consider the associated tree 7. In particular 7 has an
order structure (in addition to the genealogical partial order) given by the
lexicographical order on V. Elements of T will be called Yule-type trees.

Clearly, the Yule tree can be viewed as a random variable with values in
T, and we write ©(dT) for its distribution.

Let us fix T € T. If r > 0, the level set at height r is

Tr={xe€T:H(z)=r}.

If x € 7., we can consider the subtree 7 [z] of descendants of = in 7. Formally,
we view T [z] as an element of T: We write v, for the unique element of V
such that x = (v, r), and define T [z] as the Yule-type tree corresponding to
the collection (zy,, — 7)yey. Similarly, if [0, z]] denotes the geodesic segment
between the root and x, we can define the subtrees of 7 branching off [0, z].
To this end, let n, = |vy| and let v, 0 = D,v51,...,0z 0, = vz be the
successive ancestors of v, from generation 0 to generation n,. Set r;; =
Zvg i1 for every 1 < i < ng. Then, for every 1 < i < n,, the i-th subtree
branching off [[0, z]], which is denoted by 7 ;, corresponds to the collection

(Zﬁz,iv - Tas,i)vev

where v, ; is the child of v, ;_1 that is not v, ;. To simplify notation, we
introduce the point measure

gr,x (T) = Z 6(7'1‘,1',7;,1')’
i=1

which belongs to the set M, (R x T) of all finite point measures on Ry x T.
We now state a “spine” decomposition of the Yule tree, which plays an
important role in our approach.

PROPOSITION 5 (Spine decomposition). Let F' be a nonnegative mea-
surable function on T, and let G be a monnegative measurable function on
Mp(Ry x T). Let r > 0. Then,

E| > F(Pla]) G(6.0(T)) | = " E[F(I)] x E[GW)],

IEFT
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F1G 5. The spine decomposition

where N (ds dT) is, under the probability measure P, a Poisson point measure
on Mp(Ry x T) with intensity 2 1 ,1(s) ds ©(dT).

This result is part of the folklore of the subject (see Theorem 2 in [9]
for essentially the same Palm decomposition in the more general setting
where branching is combined with spatial motion), and is closely related to
the spine decomposition of size-biased Galton-Watson trees in the discrete
setting (see e.g. [29, Section 12.1]). For the reader’s convenience, we sketch
a proof of Proposition 5 in the appendix below. This proof is based on a
relation between the continuous reduced tree A and the Brownian excursion
conditioned to hit level 1, which is recalled in Section 4.2 below (see in
particular Figure 7).

2.3. The continuous conductance. Before we proceed to the proof of The-
orem 3, we will define and study the continuous conductance C of the tree
A, which plays a major role in this proof. Informally, the random variable
C is defined by viewing the random tree A as a network of ideal resistors
with unit resistance per unit of length and letting C be the conductance
between the root and the set A in this network. We will give a more formal
definition using excursion measures of Brownian motion. To this end, and in
view of further applications in the next section, we first define the excursion
measure on a (deterministic) Yule-type tree.

So let 7 € T, and consider the associated collection (z,)yey as explained
in the preceding section. We suppose that zg > 0. We write C(R4., T) for the
set of all continuous functions from Ry into 7. We also let £ be the subset
of C(R4,T) consisting of all “excursions” in 7 an element w of C(R4,7)
belongs to &7 if and only if w(0) = (&,0) and there exists a number ((w) €
(0, 00] such that w(t) # (2,0) if and only if 0 < t < ((w). For every r > 0
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and w € C(Ry,T), set
Tr(w) :=inf{t > 0: H(w(t)) =r},

where we recall that H (w(t)) is the height (or distance from the root) of w(t),
and we make the usual convention inf @ = co. For every ¢ € (0, zz), there is
a unique y. € 7 whose height is equal to €. Let ny . be the law of Brownian
motion on 7 with drift 1/2 started from y. and stopped when it hits the root
(@,0) (if this event occurs). Then ny . is a probability measure on the space
C(R4+,T). If 0 < ¢’ < e an application of the strong Markov property shows
that the distribution of (w(T:(w) + t))i>0 under ny (- | Te < 00) is nye.
Furthermore, ny o (T: < 00) = (1 — e~ )/(1 — e~¢), by the formula for the
scale function of linear Brownian motion with drift. From these properties,
it is an easy exercise to verify that the measures 6_1717,5 converge when
€ — 0 toward a o-finite measure ny on the set &5 of all excursions in 7.
The convergence holds in the sense that
e nre(gr(w(tr) - gp(w(tp))) —3 n7(g1(w(t)) - gp(w(tp))

—0

for every choice of 0 < t; < --- <, and of the bounded continuous functions
g1,...,gp on T that vanish on a neighborhood of (&,0) in 7. Alternatively,
the measure ny is the unique o-finite measure on £ such that, for every
e > 0, one has ny(T. < 00) = (1 — )1 and the law of (w(T:(w) +t))>0
under ny (- | T < 00) is ny .

The measure ny is called the excursion measure of Brownian motion (with
drift 1/2) in the tree 7. The preceding construction is an analog of a classical
construction of the It6 excursion measure of linear Brownian motion, see e.g.
[32, Chapter XII]. Of course, it is also a special case of the definition of the
excursion measure of a general Markov process from a regular point (see
Blumenthal [6]).

The conductance C(7) is then defined by

C(T) =n7({ =00) = il—% e nr (Ty = o0).

Note that we have 1 < C(T) < (1 — e *?)~! < co. The bound C(T) > 1 is
obtained by saying that C(T) is greater than the conductance of the trivial
tree that consists only of a half-line. The other bound follows from the form
of the scale function of Brownian motion with drift, which yields an explicit
expression for the probability under ny . that the process comes back to 0
before hitting the first branching point.

To simplify notation, we set C = C(T"), which is a random variable with
values in [1,00). Because of the relations between the Yule tree I" and the
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reduced tree A, the random conductance C may also be defined as the mass
assigned by the excursion measure of Brownian motion on A (away from
the root), to the set of trajectories that reach height 1 before coming back
to the root.

The distributional identity (2) is obvious from the electric network inter-
pretation: just view A as a series of two conductors, the first one being a
segment of length U and the second one consisting of two independent copies
of A (scaled by the factor 1 — U) in parallel. Alternatively, it is also easy to
derive (2) from the probabilistic definition in terms of excursion measures,
by applying the strong Markov property at the hitting time of the first node
of the tree. We leave the details to the reader.

Let us now prove that (2) characterizes the law of C and discuss some of
the properties of this law. For v € (0,1) and z,y > 1, we define

(5) Glu,z,y) = <u+ 1_“>_1,

so that (2) can be rewritten as

(6) c @ ow,c,c)

=

where U, Cy,Cq are as in (2). Let .# be the set of all probability measures
on [1,00] and let ® : .# — .# map a distribution A to

®(\) = Law(G(U, X1, X5))

where X; and X, are independent and distributed according to A and U is
uniformly distributed over [0,1] and independent of the pair (X7, X2).

PROPOSITION 6.  The law v of C is the unique fized point of the mapping
® on ., and we have ®*(\) — v weakly as k — oo, for every A € .
Furthermore all moments of v are finite, and v has a continuous density
over [1,00). Finally, the Laplace transform

p(£) = Elexp(—£C/2)] = /100 e "Py(dr), €>0

solves the differential equation

(7) 200" (0) + L' (£) + ©*(£) — p(£) = 0.
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Remark. In [27] the authors discuss the conductance of an infinite super-
critical Galton—Watson tree with offspring distribution #. This conductance
also satisfies a recursive distributional equation, which depends on 6. In that
setting, it is conjectured that the distribution of the conductance is abso-
lutely continuous with respect to Lebesgue measure at least if 8(k) = 0 for
all sufficiently large k, see [26, 29].

PROOF. We start with a few preliminary observations. If A\, € .# we
say that a random pair (X,Y) is a coupling of A and X if X is distributed
according to A and Y is distributed according to \'. The stochastic partial
order < on . is defined by saying that A < X\ if and only if there exists a
coupling (X,Y) of A and X\ such that X <Y a.s. It is then clear that the
mapping P is increasing for the stochastic partial order.

We endow the set .#; of all probability measures on [1,00] that have a
finite first moment with the 1-Wasserstein metric

di(A,X) :=inf {E[|X — Y]] : (X,Y) coupling of (A, X)}.

The metric space (.#1,d;) is Polish and its topology is finer than the weak
topology on .#;. From the easy bound G(u,z,y) < x + y, we immediately
see that ® maps .#1 into .#;. We then observe that the mapping ® is
strictly contractant on .#;. To see this, let (Xi,Y7) and (X2,Y2) be two
independent copies of a coupling between A\, \' € . and let U be uniformly
distributed over [0,1] and independent of (X1,Y7, Xo,Y5). Then the two
variables G(U, X1, X3) and G(U,Y1,Y2) give a coupling of ®(\) and ®()\').
Using the fact that X1,Y71, X2, Y5 > 1 we have

’G(Uv X17X2) - G(U7 Y17Y2)’

1-U (-1 1-U -1
_‘<U+X1+X2> _(U+§/1+Y2> ’
_‘ X1+X2—Y1 Y2>(1—U) ‘

}(1'+')(2 4—],—-(])((/(13 +-}§) +1 —-(])

1-U
(1+U)%

Taking expected values and minimizing over the choice of the coupling
between A and X, we get dqi(®(N\), P(N)) < 2(1 — log(2))di (A, N'). Since
2(1—1og(2)) < 1, the mapping & is contractant on .#; and by completeness
it has a unique fixed point vy in .#;. Furthermore, for every A\ € .#;, we
have ®*(\) — 7o for the metric dy, hence also weakly, as k — oc.

Since we know from (6) that ~ is also a fixed point of ®, the equality v =
will follow if we can verify that 7g is the unique fixed point of ® in .#. To

< (| X1 —Yi|+ | X2 — Y3))
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this end, it will be enough to verify that we have ®*(\) — v as k — oo,
for every A\ € 4. Let A € .4 and for every t € R set F)\(t) = A([t, 00]).
Also set F>(\2) (t) = P(X1 + X2 > t) where X; and X are independent and
distributed according to A\. Then we have, for every t > 1,

1-U
F. t)=P U—I—i<t_1
o) =P (U+ 5 3 <17)
t—Ut

1-Ut

=P <U <t ! and

(8) _ -l /t h - fx1)2F§2><x>.

It follows that, for every ¢ > 1,

B2 _ 2R(t/2)
t - t

(9) Fpy(t) <

We apply this to A = ®(d ), where d is the Dirac measure at co. We have
Fyi.)(t) = t~1, and it follows that, for every t > 1,

4
Faz(5,0)(t) = 5
This implies that ®*(J,,) € .. By monotonicity, we have also ®*(\) € .,
for every A € .#, and from the preceding results we get ®*(\) — 7o for
every A € 4. As explained above this implies that v = 7 is the unique
fixed point of ® in ..
Let us now check that all moments of + are finite. To simplify notation,
we write F = F,, and F(?) = F,§2). By (8) we have for every t > 1,
t—1 [ dx
(10) R
which implies that F(t) < 2F(t/2)/t for every ¢t > 1, by the same argument
as above. Iterating this inequality, we get that F(t) < c1exp(—ca(logt)?),
with certain constants ¢y, co > 0. It follows that all moments of v are finite.
By construction, we have F?)(t) = 1 for every t € [1,2]. It then immedi-
ately follows from (10) that we have

(11) F(t)= -2 +1-Ko,  Vte[L2),
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where © g
Ko=2 —/2 mﬂ”(z) e 1,2

Then we observe that the right-hand side of (10) is a continuous function
of t € (1,00), so that F is continuous on [1,00) (the right-continuity at 1
is obvious from (11)). Thus 7 has no atoms and it follows that the function
F® is also continuous on [1,00). Using (10) again we obtain that F is
continuously differentiable on [1,00) and consequently v has a continuous
density f = —F' with respect to Lebesgue measure on [1,00). By (11),
f(t) = Kot=2 for t € [1,2] and in particular f(1) = Kp.

Let us finally derive the differential equation (7). To this end, we first
differentiate (10) with respect to ¢ to get that the linear differential equation

(12) tt—1)F'(t) = Ft) = —F2().

holds for ¢ € [1,00). Then let ¢ : [1,00) — R4 be a continuously differen-
tiable function such that g(z) and ¢'(z) are both o(z®) when z — oo, for
some « € (0,00). From the definition of F' and Fubini’s theorem, we have

[”duﬂwFu»=Ewwn—gu>

and similarly

[mmymﬂ%wzﬁma+@nﬂn

where C; and Cy are independent copies of C under the probability P. We
then multiply both sides of (12) by ¢’(¢) and integrate for ¢ running from 1
to oo to get

(13) E[C1(C1 — 1)g'(C1)] + Elg(C1)] = E[g(C1 + Ca)].
When g(z) = exp(—af/2) for ¢ > 0, this readily gives (7). O
Remark. We may also take g(x) = 2™ for m € {1,2,3,4,...} in (13). This

leads to recursive formulas for the moments of C in terms of the first moment
E[C] (simulations give E[C] ~ 1.72).

Singular behavior of the density of . By (11), the values of F' and
f = —F' on the interval [1, 2] are determined by the constant Ky = f(1). We
have not been able to obtain an exact numerical value for Ky, but simulations
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indicate that Ky ~ 1.47 (see Figure 3). We may now observe that the values
of F over [1,2] determine the values of F() over [2, 3], via the formula

t—1
1—FO() :/ ds f(s)(1—F(t—s)),  Vte|[2,3].
1

We can then use either (12) or (10) to get a complicated explicit expression
for F' over [2, 3], again in terms of K. By iterating the argument, we can in
principle determine F' by solving linear differential equations on the succes-
sive intervals [n,n + 1], n = 1,2, .... Unfortunately, the calculations become
tedious and we have not been able to find a closed expression for F'(t). How-
ever, from the expressions found for the first two intervals [1,2] and [2, 3],
one can verify that, although the function f is continuously differentiable on
(1,3), one has

_ 3Ko

Ko —4K?
f'(2-) g whereas f”(2+):3070

8 )
so that f is not twice differentiable at the point 2. See the inflection point
at 2 on Figure 3.

2.4. The flow property of harmonic measure. In this section we establish
a property of harmonic measure that plays an important role in the proof of
Theorem 3. This property is well known in the discrete setting, but perhaps
less standard in the continuous setting, and we sketch a short proof.

We fix a Yule-type tree 7 € T. In this section only, we slightly abuse
notation by writing W = (W;);>o for Brownian motion with drift 1/2 on
T started from the root. As previously, W, is the exit ray of W, and the
distribution of W, is the harmonic measure of 7. For every r > 0, if z is
the unique point of 7, such that x < W, we write Wég) for the ray of T[z]
that is obtained by shifting W, at time 7.

LEMMA 7. Letr >0 and x € T,. Conditionally on {x < W}, the law

of W) is the harmonic measure of T|x].

ProOF. For simplicity, we suppose that x is not a branching point of T,
and then we can choose € > 0 sufficiently small so that there is a unique
descendant z. of x in T at distance ¢ from x. Clearly the harmonic measure
of T[x] can be obtained by considering the distribution of the exit ray of
Brownian motion started from z. and conditioned never to hit x. On the
other hand, by considering the successive passage times at x., we can also
verify that the conditional law of Wég) knowing that © < W, corresponds
to the same distribution. We leave the details to the reader. O
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3. Proof of Theorem 3. Let us outline the main steps of the proof
of Theorem 3. Proposition 8 below uses the spine decomposition (Propo-
sition 5) and the Ray-Knight theorem for local times of Brownian motion
with drift to determine the exact distribution of the subtree of the Yule tree
above level r that is selected by harmonic measure. In Section 3.2, we use
stochastic calculus to prove that this law converges as r — co to an explicit
distribution, which is absolutely continuous with respect to © (Corollary 11).
In the last two subsections, we rely on arguments of ergodic theory, mainly
inspired by [27], to complete the proof of Theorem 3.

We recall that IP stands for the probability measure under which the Yule
tree is defined, whereas Brownian motion (with drift 1/2) on the Yule tree
is defined under the probability measure P.

3.1. The subtree above level r selected by harmonic measure. In this sub-
section, we fix r > 0. We will implicitly use the fact that I' has a.s. no
branching point at height r.

There is a unique point z € I', such that 2 < Wi, and we set I'") = T[z],
which is the subtree above level r selected by harmonic measure. We are
interested in the distribution of I'™). Let F' be a nonnegative measurable
function on T, and consider the quantity

(14) I :=E@E[FT")=E®E| > F([x]) Lup<w.y |,
xel',

where the notation E® E means that we consider the expectation first under
the probability measure P (under which the Brownian motion W is defined)
and then under P. We will use Proposition 5 to evaluate I,.. In the first part
of the argument, until the derivation of formula (17) below, we argue under
the probability measure P, that is, conditionally given the tree I'.

Let us fix z € ', and R > r. We will use the notation I'[z] := {y € T" :
x < y}. This is just the set of all descendants of z in I', now viewed as a
subset of I' and not as a Yule-type tree as in the definition of I'[z]. Define

> = {y e I\I'[z] : H(y) < R} UT[x].

Let W be Brownian motion (with drift 1/2) on I'"'® (we assume that
W= is reflected both at the root and at the leaves of I'*'f which are
the points y of T\I'[z] such that H(y) = R). We look for an expression
of the probability that W% never hits the leaves of I'* or equivalently
that W% escapes to infinity in f[x] before hitting any leaf of I'*%. Write
(Ef’R)tZO for the local time process of W* at x. Note that we use here the
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standard normalization of local time as an occupation time density. With
this normalization, Etx’R is the a.s. limit as ¢ — 0 of the quantities 2e N;"%,
where N,”¢ is the number of “upcrossings” of W## from z to the point z. € I’
such that x < z. and d(z,z.) = ¢ (this point is unique for £ small) before
time ¢. We claim that ¢% has an exponential distribution with parameter
C(I'[z])/2. This is easy from excursion theory, but an elementary argument
can be given as follows. Each time W% does an upcrossing from z to
Ze, there is a probability of order e C(I'[x]) that it escapes to infinity before
coming back to = (by the very definition of C(I'[x])). Hence the total number
of upcrossings from = to z. before escaping to infinity is geometric with
parameter of order € C(I'[x]), and our claim follows from the approximation
of local time by upcrossing numbers.

We then consider, for every a € [0,7], the local time process (L&™);50
of W& at the unique point of [0, ] at distance a from the root. Note in
particular that L) = ¢"®. The distribution of the process (L% )o<q<, can
be derived via a time change argument, which consists in looking at W%
only when it visits [0, z]]. More precisely, we set, for every s > 0,

t
Ts := inf {t >0: / 1[[07x]](Wf’R) dr > s}
0

with inf @ = oo as usual. Setting Z, = W, if 7, < oo and Z; = x otherwise,
we obtain that the process (Z5)s>0 is under P a Brownian motion (with drift
1/2) on [0, z]] started from the root, reflected at both ends of the segment
[0, 2], and stopped when its local time at = hits an independent exponential
variable with parameter C(I'[z])/2. The latter exponential random variable
is of course the local time /55" = LQOR, and the independence property in the
last sentence corresponds to the independence of excursions of W% “below”
and “above” z. The preceding assertions can be obtained either by arguments
of excursion theory, or, via scaling limits, from the (easy) corresponding
properties for random walk on discrete trees.

Observe that, for every y € [0, z]], the total local time of W% at y coin-
cides with the total local time of Z at y. Using the Ray-Knight theorem for
Brownian motion with drift (see e.g. [7], p.93) we get that, conditionally on
=R = ¢, the process (L’;“’R)Ugagr is distributed as the process (Xg)o<a<r
which solves the stochastic differential equation
(15) { dX, = 2\/Edna + (2 - Xa)da

Xo=/¢
where (74)a>0 is a standard linear Brownian motion. In what follows, we will
write P, for the probability measure under which the process X starts from
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¢, and P for the probability measure under which the process X starts
with an exponential distribution with parameter ¢/2.

Now write z;, 1 < j < k for the branching points of I'*® (or equivalently
of I') that belong to [0,«], and set a; = H(z;) for 1 < j < k. Also let
I, ; r be the subtree of ' that branches off [0, 2] at ;. We consider the
event A; g where W=E never hits the leaves of T%%, We can compute the
conditional probability of A, r knowing the local times (L&R)ogagr, using
arguments of excursion theory. For 1 < j < k, write n(j) for the excursion
measure of Brownian motion with drift 1/2 in the tree I'; j g (defined as in
the beginning of Section 2.3) and let C(I'; ; r) be the conductance of ', ; r
between its root x; and the set of its leaves. This conductance may be defined
as the measure under n ;) of the event E; where the excursion hits the leaves

before returning to the root. Conditionally given (L&R)ogagr, the excursions
of W% inside the tree I'; j,r form a Poisson point process with intensity

1 La]’ n(;)(+) and these point processes are independent when j varies (once
agam the reader who is unfamiliar with excursion theory may find it easier to
deduce these statements from their discrete versions, which are elementary).
Consequently, the conditional probability for a fixed j that no excursion in
I'; jr hits the leaves is exp(—%Lgé’R ni)(Ej)) = exp(—5C(Tajr) Lgé’R).
Finally, thanks to the conditional independence of the point processes of
excursions in the different trees I';. ; r, we get that the conditional probability

of A, r knowing (L&R)0<a<r is

exp(—fZC 2j,R) L Ly )

Using the distribution of the process (nga’R)0<a<r, we have thus

P(A; Rr) = {exp(—fzc vjr) Lo )}
(16) = Ec(ray) [GXP(—*ZC v R) X ﬂ

At this point, we let R tend to infinity. It is easy to verify that P(A; Rr)
increases to P(Ay), where A, = { < Wy }. Furthermore, for every j €
{1,...,k}, C(I'yj,r) decreases to C(I'y ), where I';; is the subtree of T’
branching off [0, z] at z;. Consequently, we obtain that

(17) P <Wa) = Eca)) [exp(—fzc X,-0,)]

imsart-aop ver. 2014/10/16 file: Harmonic-Tree-AOP.tex date: August 26, 2015



THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 25

We can now return to the computation of the quantity I, defined in (14).
By integrating (17) with respect to P, we get

I — E[ 3" F(P[a]) P < Woo)]

zel's
—E[ 3" Pl By [ ( - ;Zk:(z(rx,j) X, )]
zel's Jj=1

Note that the quantity inside the sum over = € I', is a function of I'[z] and
of the subtrees of I' branching off the segment [0, z]]. We can thus apply
Proposition 5 and we get

L—e / OT) F(T) BBy [exo (-~ / N;(dadT"y (T X, )],

where under the probability measure P, A;.(dad7”) is a Poisson point mea-
sure on [0, r] x T with intensity 2da ©(d7"). We can interchange the expec-
tation under P and the one under P¢(7)), and using the exponential formula
for Poisson measures, we arrive at

(18) I, = eT/G(dT)F(T) E(C(T))[exp _2/0 da (1 —cp(Xa))},
where we recall that for every s > 0,

¢(s) = Elexp(—s/2)] = O exp(=sC(T)/2))

is the Laplace transform (evaluated at s/2) of the distribution of the con-
ductance of the Yule tree. We have thus proved the following proposition.

PROPOSITION 8. The distribution under P @ P of the subtree T'") has

a density with respect to the law ©(dT) of the Yule tree, which is given by
®,.(C(T)), where, for every ¢ > 0,

@, (c) = E) {GXP— /Or da (1 = 2¢(Xa))|-

3.2. Asymptotics. In this section, we study the asymptotic behavior of
®,(c) when r tends to co. We first observe that, in terms of the law ~(ds)
of C(T"), we have

maz/ /2 (ds) | dwz—l/ se0/2(ds).
[1,00) 2 Ji,00)
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It follows that ¢(¢) < e~%/? and |/ (¢)| < (S sv(ds))e~*/2. By differentiat-
ing (7), we have also

(19) 206" (0) + (24 0)¢"(0) + 20(0)¢'(€) = 0.
Our main tool is the next proposition.

PROPOSITION 9. For every £ > 0,

(10/(6)66/2
s @7

lim Eg{exp—/orda(l - 230(Xa))} = —

r—00

Additionally, there exists a constant K < oo such that, for every £ > 0 and
r >0,

T
Eg[exp—/ da(1— 2¢(Xa))} <K.
0
PROOF. Under the probability measure P (1)) the process X starts with

an initial distribution which is exponential with parameter C(7)/2. Conse-
quently, under [ ©(dT) Pc(r)), the initial density of X is

(20) o) = [ 9(ds) 5 e = =0,
[1,00)
However, from (18) with F' = 1, we have
1= /@(dT) Ecery [exp—/o da (1 — 2¢(Xa))}
- —/dw(e) Eg[exp—/ da(l— 2¢(Xa))]
0
We can generalize the last identity via a minor extension of the calcula-
tions of the preceding section. We let LY be the total local time accumulated
by the process W at the root of I'. Let » > 0 and let A be a bounded non-

negative continuous function on (0, 00), and instead of the quantity I, of the
preceding section, set

I" =EQE

h(L%) Y F(Cl]) 1{:5-<Woo}] :

zel,
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where F' is a given nonnegative measurable function on T. The same calcu-
lations that led to (16) give, for every x € I'; and R > r,

BN 11, ) = B[00 e (~ 53l
j=1

—_

LS e )|

le

(21) = Erp)) {h( ) exp (
When R — oo, LYR converges to LY, and so we get

8
E[R(L2) Lz=woot] = Ee(ria)) {h(Xr) exp ( - % > C(Tey) Xr—aj)]
=1

We then sum over x € I', and integrate with respect to P. By the same
manipulations as in the preceding section, we arrive at

(22 =e /@ (A7) F(T) Ecey {h(XT) exp —2 /07" da (1 — @(Xa))}.
Note that if F' =1,
I =Eo B =~ [ P On0
0

since given I' = T the local time LY follows an exponentiel distribution
with parameter C(7)/2, and we use the same calculation as in (20). Hence
the case F' =1 of (22) gives

@) [ O Bhx) exp- [ da(-2000)] = [T aeg @ no).
0 0 0
By an obvious truncation argument, this identity also holds if A is un-

bounded.
At this point, we need a lemma.

LEMMA 10. The process

Mai= =g/ (X0) exp (52 = [ ds1 - 26(x)

is a martingale under Py, for every £ > 0.
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Proof of Lemma 10. From the stochastic differential equation (15), an
application of It6’s formula shows that the finite variation part of the semi-
martingale — M, is

/Oa (QXSSDW(Xs) + (24 Xo)¢"(Xs) + QQO(XS)(’D/(XS))

X exp (% — /OS du (1 — 2g0(Xu))) ds

and this vanishes thanks to (19). Hence M is a local martingale. Further-
more, we already noticed that, for every £ > 0, |¢/'(¢)] < Ce /2, where
C := 3 [ s7(ds). It follows that [M| is bounded by C e® over the time inter-
val [0, a], and thus M is a (true) martingale. O

We return to the proof of Proposition 9. Let £ > 0 and ¢ > 0. On the prob-
ability space where X is defined, we introduce a new probability measure
Q! by setting

Note that the fact that Qf is a probability measure follows from the mar-
tingale property derived in Lemma 10. Furthermore, we have P, a.s.

1= e (Bt [asa - 2e0x),

so that the martingale part of log % is
1!
¢"(Xs)
v Xsd
o Xs) s A7s,

t t
/ \/Xsdns—i—Q/ v
0 0 ¥

where 7 is the linear Brownian motion in (15). An application of Girsanov’s
theorem shows that the process

~ S 290”(Xu)
Ao [ VE(1+ 255 Y, 0<s<t,
0 ¢ (Xu)

is a linear Brownian motion over the time interval [0, ¢], under QY. Further-
more, still on the time interval [0,¢], the process X satisfies the stochastic
differential equation

2¢"(X)

dX, = 2v/X, dif, + 2XS<1 +
SOI(XS)

) ds + (2 — X,)ds,
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or equivalently, using (7),

A2
(24) aX, = 2v/X, dijs + (2 - X, + 27 Sf (X,)) ds.

Notice that the function

is continuously differentiable over [0,00), takes negative values on (0, 00)
and vanishes at 0. Pathwise uniqueness, and therefore also weak uniqueness,
holds for (24) by an application of the classical Yamada-Watanabe criterion
(see e.g. [32, Theorem IX.3.5]). The preceding considerations show that,
under the probability measure Qz and on the time interval [0, ¢], the process
X is distributed as the diffusion process on [0, c0) with generator

d? p—¢® N d
£—2T@+<2—7‘+2 gpl (7’))@

started from ¢. Write X for this diffusion process, and assume that X starts
from ¢ under the probability measure P;. Note that 0 is an entrance point for
X , but, independently of its starting point, X does not visit 0 at a positive
time (indeed this follows from the fact that X does not visit 0 at a positive
time).

Standard comparison theorems for stochastic differential equations (see
e.g. [32, Theorem IX.3.7]) can be used to compare the solutions of (15) and

(24), and it follows that X is recurrent on (0, 00).
We next observe that the finite measure p on (0, 00) defined by

p(d0) == ' (0)% /% de

is invariant for X. Indeed, we have, for any bounded continuous function h
on (0, 00),

/ A0 @' (0)% 2 By [n(X,)]
(0,00)
_ /(0 a ' (0)% % QU[n(X,)]
’ / X t
- /(Om) Al ' (0) Ee[h(X0) &/ (Xe) exp (5 /0 ds (1= 20(X,))) |

— [ argerern)
(0,00)
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where the last equality follows from (23). We normalize p by setting

_r
p((0,00))

From the known results about the convergence of positive recurrent diffu-
sion processes toward their stationary distribution (see Chapter 23 in Kallen-
berg [19]), the distribution of X; under P, converges to p in variation norm
as t — oo, for any £ > 0. Consequently, for any bounded Borel function g
on [0,00), and every ¢ > 0,

5=

(25) Elg(%0) = [ 905

We claim that (25) still holds if ¢ may be unbounded but is assumed to
be nonnegative, monotone increasing and such that [gdp < oco. To see
this, fix £ > 0 and write II;(¢,d¢") for the distribution of X, under P,
Using comparison theorems for stochastic differential equations (see e.g. [32,
Theorem 1X.3.7]), we can, for every choice of ¢ > ¢, couple a solution X! of
(24) starting from ¢ and a solution X2 starting from ¢ so that )?t? > )A(/tl for

all ¢ > 0. It follows that

/ / 1 oo/'\ / /
[ mueaerge) < - [ #taw) [ M ag(e)
1 < / /
< /W/O p(du)/ﬂt(u, de’)g(l')
1 —~ 19 /
= =g [ a0

Applying the above display to the function g1(4 ), where A > 0, we get
that

U AN / / 1 . ~ ! /
0% [Inatig@) - [ ) < s [ A,

Since ¢ is integrable with respect to p, the right-hand side can be made
arbitrarily small, by choosing A large enough. Our claim now follows by
letting ¢ — oo, using the fact that g1}y 4 is a bounded Borel function.

We can thus apply (25) to the nonnegative increasing function

I
=5
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which is such that [gdp = — [ ¢/(¢)d¢ = 1. Note that for this particular
function g,

Edlg(X0)] = Qilg(X0)] = £ Eylexp (- /0 a1 - 20(x)) |
It follows from (25) that, for every ¢ > 0,
e—t/2 t R
tgrgo—mm[exp(—/o s (1= 20(X.)))| = [ 945 p((oloo))
1
= f(o’oo) ds @’(5)265/2'

This gives the first assertion of the proposition.
The second assertion is now easy. By the first assertion, there exists a
constant K such that, for every r > 0,

Eo[exp ( — /Ords (1— 2@(Xs)))} < K.

Since the function ¢ is monotone decreasing, a comparison argument gives
for every £ > 0 and 7 > 0,

Eg[exp (—/OTds(l—ng(Xs)))} < Eo[exp (—/Ords (1—290(XS)))] <K.

This completes the proof of the proposition. O

To simplify notation, we set

Cp := /000 ds ¢'(s)% e®/? Z//’Y(dg)’Y(dgl)Q(gfj_l)'

COROLLARY 11. For every ¢ > 0,
lim ®,(c) = Poo(c)

where
cs

1
Poo(c) = 00/7((15)2(6_'_8_1)~

PRrROOF. By definition, we have
D,(c) = C/ dfe_ce/QEg[exp(—/ ds (1—2¢(XS)))]
2 Jo 0
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From Proposition 9 and an application of the dominated convergence theo-
rem, we get

: I R S AR A () s
Jim @ (e) = 2/0 dbe i x < Co )

The limit is identified with ®(c) by a straightforward calculation. O

3.3. The invariant measure. For the purposes of this section, it will be
useful to introduce the set of all pairs consisting of a tree 7 € T and a dis-
tinguished geodesic ray v, which we can represent by an element of {1,2}.
We formally set

T =T x {1,2}".

We can define shifts (o,),>0 on T* in the following way. For r = 0, o, is
just the identity mapping of T*. Then let » > 0 and (7,v) € T*. Write
v = (v1,v2,...) and v, = (v1,...,v,) for every n > 0. Also let z,, be the
unique element of 7, such that z,y < v . Then, if £ = min{n > 0: 2, > r},
we set

o(Tov) = (Tlerw] s (. vk -)).

Informally, o,.(7,v) is obtained by taking the subtree of 7 consisting of
descendants of the vertex at height r on the distinguished geodesic ray, and
keeping in this subtree the “same” geodesic ray. It is straightforward to verify
that o, 0 05 = 0,4 for every r,s > 0.

Under the probability measure P ® P, we can view (I, W) as a random
variable with values in T*. Write ©* for the distribution of (I', W,). Then
O is not invariant under the shifts o,, but Corollary 11 will give an invariant
measure absolutely continuous with respect to ©*.

PROPOSITION 12.  The probability measure
A (AT dv) := & (C(T)) ©*(dT dv)
1s invariant under the shifts o, r > 0.
ProOOF. Let r > 0. We have
o (T, Weo) = (0, W),

where I'") and Wég) are as in the previous sections.
By Proposition 8, we have, for any bounded measurable function £ on T,

E® E[F(TM)] = / e(dT) ®.(C(T)) F(T).
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Write v for the harmonic measure of a Yule-type tree 7. At this point we
use the flow property of harmonic measure. By Lemma 7 and the preceding
identity, we have also, for any bounded measurable function F' on T*,

E @ B[RO, W) =Eo £ / Vet (d) F(T0), )]

= [ewn @) [vriav) kT
(26) - / 0% (AT dv) &, (C(T)) F(T.v),

since ©*(dT dv) = ©(dT)v7(dv) by construction.
If we now let r — oo, Corollary 11 gives

lim E @ E[F(T®, W) = / O (AT dv) B (C(T)) F(T,v)

r—00

noting that the functions ®, are uniformly bounded thanks to the last
assertion of Proposition 9. Let s > 0. If we replace F' by F o o, in the
last convergence, observing that F o o, (I'("), Wég)) =Foos00,.(,Wy) =
FIE W™, we get

/ O (AT dv) ®oo(C(T)) F(T,v) = / 0% (AT dv) 8oy (C(T)) F 0 0(T, V),

which was the desired result. O

ProOPOSITION 13.  For every r > 0, the shift o, acting on the probability
space (T*, A*) is ergodic.

PROOF. We take r = 1 in this proof, and we write ¢ = o1 for simplicity.
We essentially rely on ideas of [27] (see also [29, Chapter 16]). However our
setting is different, because our trees are not discrete, and also because we
consider ordered trees rather than unordered trees in [27]. For this reason,
we will provide some details. We write m; for the canonical projection from
T* onto T, and let A be the image of A* under this projection, so that

AdT) = o (C(T)) ©(AT).

We define a transition kernel p(7,d7’) on T by setting

p(T.d7") = ) vr({v e {1,2}" : & < v}) b7(yy(dT").

z€T
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Informally, under the probability measure p(7,d7’), we choose one of the
subtrees of T above level 1 with probability equal to its harmonic measure.
Then it follows from Proposition 12 that A is a stationary probability mea-
sure for the Markov chain with transition kernel p. Indeed, Lemma 7 shows
that we may obtain this Markov chain under its stationary measure A by
considering the process

Zo(T,v) :=m(on(T,v)), n=0,1,2,...

on the probability space (T*, A*). Note that Zy(7,v) =T.

Write T for the set of all sequences (79,77, ...) of elements of T. By
[29, Proposition 16.2], if a measurable subset F' of T is shift-invariant for
the Markov chain Z, in the sense that 1p(Z2y, 21,...) = 1p(21, Z2,...) a.s.,
then there exists a measurable subset A of T such that

1F(Z()7Zh-~-) = 1A(Z()), a.s.

and moreover

p(T,A) =14(T), A(dT) as.

We let T be the set of all sequences (79,71, ...) in T, such that,
for every integers 0 < i < j, T7 is a subtree of T* above generation j — 4
(i.e., there exists a point z € 7?_1 such that 77 = T*[z]). Note that T

is a measurable subset of T> and that (Zo(7,v), 21(T,V),...) € T for
every (T,v) € T*. If (T°,7,...) € T™, there exists v € {1,2}"¥ such that
T7 = Z;,(T°,v) for every j > 0, and we set ¥(7°,T1,...) = (T v). Note
that v is a priori not unique, but for the previous definition to make sense
we take the smallest possible v in lexicographical ordering (of course for the
random trees that we consider later this uniqueness problem does not arise).
In this way, we define a measurable mapping ¥ from T into T*, and we
have ¥(2o(T,v), Z1(T,v),...) = (T,v), A* as.

Let us now prove the statement of the proposition. We let B be a mea-
surable subset of T* such that 0~1(B) = B, and we aim at proving that
A*(B) = 0 or 1. To this end, we set F = ¥~1(B), which is a measurable
subset of T C T, Furthermore, we claim that F' is shift-invariant. To see
this, we have to verify that

{(Zo,Zl,...) GF}:{(Zl,ZQ,...) GF}, a.s.
or equivalently

{\I’(Zo,zl, .. ) S B} = {\I/(Zl,ZQ, .. ) S B}, a.s.
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But this is immediate since by construction ¥ (21, Zs,...) = 0o¥ (2, Z1, .. .)
a.s. and 0~ 1(B) = B by assumption.

From preceding considerations, we then obtain that there exists a measur-
able subset A of T, such that (2, Z1,...) € F ifand only if Z; € A, a.s., and
moreover p(7T,A) = 14(T), A(AT) a.s. Since ¥(Z(T,v), Z1(T,V),...) =
(T,v), A* a.s., it also follows that we have (7,v) € B if and only if T € A,
A* as.

However, from the property p(7,A) = 14(T), A(dT) a.s., one can verify
that A(A) = 0 or 1. First note that this property also implies that p(7, A) =
14(T), ©(dT) a.s. Hence, ©(dT) a.s., the tree T belongs to A if and only
if each of its subtrees above level 1 belong to A (it is clear that that the
measure p(7,-) assigns a positive mass to each of these subtrees). Then, if
pr = P(#I'1 = k), for every k > 1, the branching property of the Yule tree
shows that

O(4) = 3 prO(4)
k=1

which is only possible if ©(A) = 0 or 1, or equivalently A(A) = 0 or 1.
Finally, we also get that A*(B) =0 or 1, which completes the proof. O

3.4. End of the proof. Recall that vy stands for the harmonic measure
of a tree T € T. With this notation, we have v = vp. For every r > 0, we
then consider the nonnegative measurable function F,. defined on T* by the
formula

FT(Tv V) = VT(BT(V’ T)),

where By (v,r) denotes the set of all geodesic rays of 7 that coincide with
the ray v over the interval [0, r]. We claim that, for every r, s > 0, we have

Friy=F, x Fyoo0,.
Indeed, if we write o,.(7,v) = (T, v(")), this is equivalent to saying that

vr(Br(v,s+7r))
vr(Br(v,r))

= vty (B (v, ),

and the latter equality is an immediate consequence of Lemma, 7.
If we set G, = —log F;- > 0, we have for every r,s > 0,

Gs+r =G, +Gsoo0,
and the ergodic theorem (with Proposition 13) implies that

La, Mos avay).
S

§—00
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Since A* has a strictly positive density with respect to ©*, the latter con-
vergence also holds ©* a.s. Recalling that ©* is the distribution of (T, W),
this exactly gives the convergence (1), with 8 = A*(G;). This completes
the proof of Theorem 3, except that we have not checked that 8§ < 1. We
will do this in the next proposition, and then we will complete the proof of
Proposition 4 by deriving the explicit formulas (3) for 5 in terms of the law
~ of the conductance C(I'").

PropoSITION 14.  We have 5 < 1.

PROOF. Here again, we strongly rely on ideas from [27] (see also [29,
Chapter 16]). We start with some notation. If 7 € T and x € 77, we set

vid(z) = vr({v e {1,2}V 1 z < v}).

Clearly (v3())ze7; is a probability distribution on 7;. We also set, for every
TeT,
U(T) = liminf e™" #7, € [0, o0].

r—00
It is well known that the preceding liminf is a limit, ©(d7) a.s., and that
the distribution of U(7T) under ©(dT) is exponential. It follows that, for
O-almost every T € T, we can also define, for every x € Ty,

Ur(z) = lim e " #T,_1[x] = éU(T[:C]),

T—00

and, if we set
Ur(z)
ur(x) =
the collection (u7(z))ze7; is a probability distribution on 77.
By a concavity argument, we have

(27) Z vr(z) log (uT(x)> <0

*
z€T1 VT(x)

and the inequality is even strict if (v5-(2))ser; # (ur())zer;. It is easy to
verify that the latter property holds with positive probability under ©. To
give a precise argument, recall the notation used in Section 2.2 to define the
Yule tree I', and consider the event

1
E::{y@<17yl>1; y2>§}ﬂ{#P1=9}7
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which clearly has positive probability. On this event, write x1,...,x9 for
the elements of I'; listed in the lexicographical order of V. On the event
E, we have vfi(x1) > 1/8, because Brownian motion (with drift 1/2) has
probability 1/2 to hit the ancestor of 21 at height 3/4 before the other point
of I'3 4, and then probability at least 1 — e 12 >1 /4 to escape to infinity
before returning to the first branching point of I'. On the other hand, the
branching property of the Yule tree shows that, conditionally on the event
E (which only involves the part of the tree below height 1), the random
variables up(z1),...,ur(zg9) have the same distribution. It follows that we
have up(z1) < vf(x1) with positive probability on E.
Next we have

8= A*(Gy) = /log <VT(BT1(V1))) A*(dT dv)

= / Z vr(z) log (1/*7—1(x)) A(dT)

z€T1
< /mezﬂ vr(z) log (uTl(ac)> A(dT),

where the strict inequality follows from (27) and the fact that (v7-(2))ze7; #
(ur(z))ger; with positive probability under ©, hence also under A. Next,
recalling the Markov chain (Z,) introduced in the proof of Proposition 13,
we have

/ 3 vi) log<u7_1(x)>A(dT) = / 3 v (a) log( e([frg])))A(dT)

z€T1 z€T1
—1 +/log (U(Z")) A* (AT dv)

=1

because Zy and Z1 have the same distribution under A*, and we also use the
fact that log U(T) is integrable under ©(d7) hence under A(d7). Together
with the preceding display, this completes the proof. O

Proof of Proposition 4. The first assertion of Proposition 4 follows from
Proposition 6. To complete the proof of Proposition 4, we start by estab-
lishing the first half of formula (3), that is,

_ 2 [ (dr)y(ds)y(dt) - log
[T (dr)y(ds) 72 .
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We use the notation of the beginning of this section, and we first fix e > 0
and define a function H. on T* by setting

0 if 2y > €,

HeTv) = { Slogur({v € (L2 v <v}) iz <e

where we write T = (z, ),y as previously, and we recall the notation v,, from
the beginning of Section 3.3. Clearly, H.(T,v) < G.(T,v), and H.(T,v) =
G(T,v) if 2y, > &. More generally, H. 0 0,.(T,v) = G. o 0.(T,v) if there
is at most one index ¢ > 0 such that r < zy, < r + ¢. It follows from these
remarks that, for every integer n > 1,

n—1
(29) Gi > ZHl/nOUk/n
k=0
and, for every (T,v) € T*,
n—1
(30) Gi(T,v) = lim_ > Hijnoopm(T,v).
k=0

Let us then investigate the behavior of A*(H.) when ¢ — 0. It will be
convenient to write 71y and 7(3) for the two “subtrees” of T obtained at
the first branching point (formally 7;) corresponds to the collection (z;, —
2z )vey, for i = 1 or 2). We observe that, if i = 1 or ¢ = 2, the exit ray of
Brownian motion on 7 will belong to {(i,v,vs,...) : (va,vs,...) € {1,2}}
with probability

C(Tuy)
C(Tay) +C(Te))
Thanks to this observation, we can write
A*(H.)
C(Tny) C(Twy)
— [ 0@T) ®n(C(T)) s 1
[ eum e <)+ ey 5 et + 6
C(Ti2y) C(Ti2y)
+ |
C(Try) +C(Taay) 2 C(Ty) + c’(T@)))
C(Tay) C(Tny)
= 2 [ 0AT) @ (C(T)) 1., . 1 ,
Jetn e < e(Toy) + C(Tay) 8 C(Twy) + C(T))

by a symmetry argument. An easy calculation gives

C(Ty) +C(T2y)
e + (1 —e72)(C(T1)) +C(T(2)))

C(T) =
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Since, under ©(dT), 7(1) and 7(7 are independent and distributed according
to ©, and are also independent of z4, we get

or . am
C(T)+C(T") C(T)+C(T’)

N(HL) = —2/ O(dT)e(dT")

P C(T) +¢(T")
X/O dze q)w(e_z—i-(l—e Z)(C(T)JrC(T’)))'

Note that the function (7, 7") — C(ngrz)(T’) log C(T)S—TC)(T’) is integrable with

respect to the measure ©(d7)O(d7”’), and that @ is bounded and contin-
uous. We can thus let € — 0 in the preceding expression and get

(31) lim EA _ _2/ OAT)OWAT) ou(C(T) +C(T"))
c(7) c(7)
X log .
C(T)+C(T") ~C(T)+C(T"
Since the limit in the preceding display is finite, we can use (30) and Fa-

tou’s lemma to get that A*(G1) < oo, and then (29) (to justify dominated
convergence) and (30) again to obtain that

A*(Gy) = lim nA* (Hl/n)

n—o0

coincides with the right-hand side of (31). Finally, we use the expression of
., to obtain formula (28).

We will now establish the second half of formula (3), which will complete
the proof of Proposition 4. We let Cy, C1,Co be independent and distributed
according to v under the probability measure P. Then, the denominator of
the right-hand side of (28) can be written as

CoCy
E|l0—F——|.
[Co +C1 — 1:|
On the other hand, the numerator is equal to
[ CoCy og(cl + Cg)]
Co+Ci+Cy—1 C1
_E [Co(cl + C2) log(Cy + CQ)] _E |:(C() +C2)Cy log(Cl)}
Co+Ci+Cy—1 Co+Ci+Cy—1
=E[f(C1 + C2)] — E[g(C1 + C2)]

where we have set, for every z > 1,

. C():L'
1) =B [

Cox

_ .
Co z—1 OgC0:|

loga:] and g(x):E[
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Using (13), we replace E[f(C1 + C2)] by E[f(C1)] + E[C1(C1 — 1) f'(C1)], and
similarly for g, to obtain

CoC1
E —E =FE|———=1
€1+~ Elg(Cr + €] =B | o 1ony|
Co(Co — 1)C1(C1 — 1) CoC1(C1 — 1)
E 1 E|{—0—r—*
+ |: (Co+cl—1)2 OgCl + Co+C—1
CoCy Co(Co — 1)C1(C1 — 1)
—E|———7-—1 —E 1
I:C() +C -1 OgCU] I: (Co+Cy —1)2 08 Co
_E CoC1(Co — 1)
Co+C—1
1 CoCq (Co +C — 1) —CoCy
=—-FE
2 Co+C—1
T2 <E[C°] " [CQ+Cl - 1]) ‘
If we substitute this in (28), we arrive at
2
vy _EGE
e
Co+C1—1

which gives the second half of (3) and completes the proof of Proposition 4.

Remark. Despite all that is known about the distribution v (see Sec-
tion 2.3), it requires some work to derive the fact that 5 < 1 (Proposition 14)
from the explicit formulas of Proposition 4. The approximate numerical value
B = 0.78... is obtained by first estimating v using Proposition 6 (or more
precisely the convergence of ®*()) to +, for any probability measure A on
[1,00)), and then applying a Monte-Carlo method to evaluate the integrals
in the right-hand side of (3).

4. Discrete random trees. In this section we prove Theorem 1 and
Corollary 2. We first explain why discrete reduced trees converge modulo
a suitable rescaling toward the continuous reduced tree A. This leads to a
first connection between the discrete harmonic measures and the continuous
one (Proposition 18). Combining this result with Theorem 3, one gets a
first estimate in the direction of Theorem 1 (Corollary 19). The recursive
properties of Galton—Watson trees are then used to complete the proof of
Theorem 1. Corollary 2 is proved at the end of the section.
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4.1. Notation for trees. We consider discrete rooted ordered trees, which
are also called plane trees in combinatorics. A plane tree 7 is a finite subset

of -
u=|Jn,
n=0

where NV = {@}, such that the following holds:

(i) o €.
(ii) If u=(u,...,u,) € T\{@} then @ := (u1,...,up—1) € 7.
(iii) For every u = (uy,...,uy) € T, there exists an integer k,(7) > 0 such

that, for every j € N, (u1,...,up,j) € 7 if and only if 1 < 5 < k(7).

In this section, we say tree instead of plane tree. We often view a tree 7 as
a graph whose vertices are the elements of 7 and whose edges are the pairs
{u,u} for all u € 7\{D}.

We will use the notation and terminology introduced at the beginning of
Section 2.1 in a slightly different setting. In particular, |u| is the generation
of u, uv denotes the concatenation of u and v, < stands for the genealogical
order and u A v is the maximal element of {w € U : w < u and w < v}.

The height of a tree 7 is

h(7) = max{|v| : v € T}.

We write 7 for the set of all trees, and 7, for the set of all trees with height
n.
Let 7 be a tree. The set 7 is equipped with the distance

1
d(v,w) = 5 (Jv| + wl| = 2fv A w]).

Notice that this is half the usual graph distance. We will write B, (v, r), or
simply B(v, r) if there is no ambiguity, for the closed ball of radius r centered
at v, with respect to the distance d, in the tree 7.

The set of all vertices of T at generation n is denoted by

T = {v €7 |v]| =n}.
If v € 7, the subtree of descendants of v is
7] = er v =<'}

Note that 7[v] is not a tree with our definitions, but we turn it into a tree
by relabelling its vertices, setting

Tl :=={w el :vwe 7}
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If v € 7, then for every i € {0,1,...,|v|} we write (v); for the ancestor of
v at generation i. Suppose that |v| = n. Then B, (v,i) N7y = T[(V)p—i] N Tn,
for every i € {0, 1,...,n}. This simple observation will be used several times
below.

Galton—Watson trees. Let 6 be a probability measure on Z,, and assume
that 6 has mean one and finite variance o2 > 0. There exists a unique
probability measure GWy(d7) on .7 such that the following two properties
hold:

(i) The law of kg (7) under GWy(dr) is 6.

(ii) Let k& > 1 such that (k) > 0. Then under GWy(d7 | kg(7) = k),
the subtrees 7[1],...,7[k] are independent and distributed according
to GWy.

A random tree distributed according to GWy will be called a Galton—Watson
tree with offspring distribution 6 (see e.g. [23] for a discussion of Galton—
Watson trees).

For every integer n > 0, we let T be a Galton-Watson tree with off-
spring distribution #, conditioned on non-extinction at generation n. In par-
ticular, T is just a Galton-Watson tree with offspring distribution . We
suppose that the random trees T are defined under the probability mea-
sure P.

We let T*" be the reduced tree associated with T which consists of all
vertices of T(™) that have (at least) one descendant at generation n. A priori
T*" is not a tree in the sense of the preceding definition. However we can
relabel the vertices of T*", preserving both the lexicographical order and the
genealogical order, so that T*" becomes a tree in the sense of our definitions.
We will always assume that this relabelling has been done.

Note that |u| < n for every u € T*". It will be convenient to introduce
truncations of T*". For every s € [0, n], we set

Ry(T™)={veT":|v|<n-—|s]|}.

We then consider simple random walk on T*", starting from the root
@, which we denote by Z" = (Z}')k>0. This random walk is defined under
the probability measure P (as previously, it is important to distinguish the
probability measures governing the trees on one hand, the random walks on
the other hand).

We let

H, =inf{k > 0:|Z}| =n}
be the first hitting time of generation n by Z", and we set

Sn =25 .
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The discrete harmonic measure p,, is the law of ¥, under P. Notice that u,
is a probability measure on the set T, of all vertices of T*" at generation
n.

We start with a lemma that gives bounds on the size of level sets in T*".

LEMMA 15. There exists a constant C' depending only on 6 such that,
for every integer n > 2 and every integer p such that 1 < p <n/2,

E[(log 7#ET;'ffip)4]1/4 < C'log n and  E[(log #T:)"Y4 < C logn.
p

PROOF. Set ¢, = P(h(T©®) > n). By a standard result (Theorem 9.1 of
[5, Chapter 1]), we have

(32) In ~ —5 as n — oo.
Then, for every p € {0,1,...,n},

E#T,) = Ef#{v € T, - (T [w]) > p}]
= (qn) ™" [#{v e TV h(TOR) > p}).

By the branching property of Galton—Watson trees, the conditional distri-
bution of #{v € T : W(TO[]) > p} knowing that #T\ = k is the
binomial distribution B(k, g,). Hence,

E[#TY
BTz, = 20 o

We can find a@ > 0 such that the function x — (log(a+ x))* is concave over
[1,00). Then,

E[(log #T;,)"1"/* < E[(log(a + #T;,))"]"/* < log(a + E#T;", )
= log(a + q—p),

n

and the bounds of the lemma easily follow from (32). O

2. Discrete and continuous reduced trees.
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4.2.1. Conwvergence of discrete reduced trees. Recall from Section 2.1 the
definition of the continuous reduced tree A. For every € € (0, 1), we have set
A, ={zr e A:H(x) <1—¢e}. We will implicitly use the fact that, for every
fixed e, there is a.s. no branching point of A at height 1 — . The skeleton
of A, is defined as

Sk(As) ={@}u{veV\{g}:Y; <1-—¢}
={gtu{veV\{g}: (1,Y) € Ac}.

Consider then a tree 7 € . such that every vertex of 7 has either 0,1 or
2 children. It will be convenient to write %, for the collection of all such
trees. With 7 we associate another tree denoted by [r], which is obtained
by “removing” all vertices that have exactly one child. More precisely, write
S(1) for the set of all vertices v of 7 having 0 or 2 children. Then we can
find a unique tree [7] such that there exists a bijection u — w, from [7]
onto S(7) that preserves both the genealogical order and the lexicographical
order of vertices. We call this bijection the canonical bijection from [7] onto

S(1).

[ ] e \ {) ) \/ ! \/ 1 ) 1 1
il I I 1 (= I | | 'I' 5 i i N P00 N/ ] \_’L‘:J
I N / lil T N T ANV N =

"N ’ N , o ° o—8 °
B ’ oy SN s P 7%
g \ ) I N~ /A
L ‘\ / N o B /'%
N \\ /I i i ool
AY \ 1 \ /7 1
\ N \ Ty i

.
\

FiG 6. Setting of Proposition 16. On the left, the tree A, its truncation A. and the skeleton
Sk(A:). On the right, a large reduced tree T™™ of height n, its truncation Re,(T*") and
the associated binary tree [Ren(T™™)].

PROPOSITION 16.  We can construct the reduced trees T*" and the (con-
tinuous) tree A on the same probability space (2, F,P) so that the following
properties hold for every fized € € (0,1) with P-probability one.

(i) For every sufficiently large integer n, we have Ren(T*) € Fm and
[Ren (T*™)] = Sk(A,).
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(ii) For every sufficiently large n, such that the properties stated in (i) hold,
and for every u € Sk(A.), let wy® denote the vertexr of S(Ren(T*™))
corresponding to w wvia the canonical bijection from [Ren(T*™)] onto

S(Ren(T*™)). Then we have

.1
lim —|w,
n—oo n

=Y, A (1l—¢).

See Figure 6 for an illustration of Proposition 16. This proposition is es-
sentially a consequence of classical results on the convergence in distribution
of reduced critical Galton-Watson trees, see in particular [33] and [14]. A
simple way of proving Proposition 16 is to use the convergence in distribu-
tion of the rescaled contour functions associated with the trees T toward a
Brownian excursion with height greater than 1 (see [23, Corollary 1.13]). By
using the Skorokhod representation theorem, one may assume that the trees
T( and the Brownian excursion are constructed so that the latter conver-
gence holds almost surely. We then use the relation between the Brownian
excursion with height greater than 1 and the continuous reduced tree A,
which can be found in [22, Section 5] (this is a particular case of a more gen-
eral result connecting reduced Lévy trees with the so-called height process,
see [11, Section 2.7]). Let us briefly explain this relation.

€t

J 7, 7 ¢

Fic 7. The relation between the Brownian excursion with height greater than 1 and the
continuous reduced tree A. For each 0 < a < 1, the number of vertices of A at height a
corresponds to the number of “subexcursions” above height a that hit level 1.
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We write (e)o<t<¢ for a Brownian excursion conditioned to hit level 1.
We associate with this process a collection (Y, )yey of nonnegative random
variables defined as follows. If J = inf{t € [0,¢] : e, = 1}, J = sup{t €
[0,] : e = 1}, we set Yy := min{e; : J <t < J'} and we also let J, be
the a.s. unique time in [J,J'] such that e;, = Y. Then, we let Y7 be the
minimum of e between J and sup{t < J, : e, = 1}, and Y2 be the minimum
of e between inf{t > J, : ¢, = 1} and J’. The construction is continued by
induction (compare Figure 7 and Figure 4). According to [22, Section 5], the
collection (Yy)yey has the distribution described in Section 2.1: This shows
that the tree A can be embedded in the graph of e in the way suggested by
Figure 7. Moreover, for every a € [0, 1), the number of vertices of the tree A
at height a corresponds to the number of excursions of e above level a that
hit height 1 (to be precise, a vertex which is a branching point of the tree
should be counted twice).

Once we know that the rescaled contour functions associated with the
trees T converge a.s. to a Brownian excursion with height greater than 1,
the various assertions of Proposition 16 follow, with the continuous reduced
tree A constructed as explained above from the limiting Brownian excursion.
We leave the details to the reader.

Let us comment on the properties stated in Proposition 16. In property
(ii), we have Y,, > 1 —¢ if and only if u is a leaf (i.e. a vertex with no child) of
Sk(A;). Furthermore, if u is a vertex of Sk(A.) which is not a leaf, the vertex
wy°, which is well defined for n large enough, does not depend on . More
precisely, suppose that 0 < § < ¢, and suppose that n is sufficiently large
so that the properties stated in (i) hold as well as the same properties with
e replaced by d. Then, if u € Sk(A,) is not a leaf of Sk(A.), we must have
wt = wﬁ’a. On the other hand, if u is a leaf of Sk(A.), then we must have
lwi¥| = n — |en), and wi® is an ancestor of wi®. We leave the verification
of these properties to the reader.

4.2.2. Convergence of conductances. Let i be a positive integer and let
T € 7 be a tree such that h(7) > i. Consider the new graph 7’ obtained by
adding to the graph 7 an edge between the root @ and an extra vertex 0. We
let C;(7) be the probability that simple random walk on 7’ starting from &
hits generation ¢ of 7 before hitting the vertex 9. The notation is justified by
the fact that C;(7) can be interpreted as the effective conductance between
0 and generation 4 of 7 in the graph 7/, see [29, Chapter 2].

PROPOSITION 17.  Suppose that the reduced trees T* and the (continu-
ous) tree A are constructed so that the properties stated in Proposition 16
hold, and that the Yule tree I' is obtained from A as explained in Section 2.2.
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Then

nCp(T™) 225 C(I).
n—oo
We omit the easy proof, as this result is not needed for the proof of
Theorem 1.

4.2.3. Conwvergence of harmonic measures. Our goal is now to verify that
the discrete harmonic measures u,, converge in some sense to the continuous
harmonic measure p defined in Section 2.1.

For every x € A, = {z € A: H(z) =1 — ¢}, we set

pe(z) = p({y € 0A 1z < y}).

Similarly, we define a probability measure u;, on T7™ len] by setting

N;(u) = Nn({v €ETpiu< U})’

for every u € T len)” Clearly, py, is also the distribution of (3,,),,_|cp-
PROPOSITION 18.  Suppose that the reduced trees T*™ and the (continu-
ous) tree A have been constructed so that the properties of Proposition 16
hold, and recall the notation (wz’s)ueSk(AE) introduced in this proposition.
Then P a.s. for every x = (v,1 —¢) € IA,,
lim i, (wy ) = p* ().
n—oo
PROOF. Let § € (0,¢) and set T5 = inf{t > 0: H(B;) =1—-4d} < T.
Define a probability measure 15(®) on dA. by setting for every z € A,

159 (z) = P(z < Bry).

Similarly, we write u;‘” for the distribution of the hitting point of generation
n—|dn| by random walk on T*" started from &, and we define a probability

measure pf{(a) on T*" by setting

n—|en|
() = uP {w € T 5 0 < w}),

for every v € T len)”

It is easy to verify that

lim 150 (2) = p° ()
6—0
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for every z € dA,, P-a.s. Indeed we have the bound |u=® (z) — pf ()| < d/e,
which follows from the fact that there is probability at least 1 — §/e that
after time Ty Brownian motion will hit the boundary 0A before returning
to height 1 — ¢ (and if this event occurs then for z € A, we have z < Br
if and only if < Bry). By similar arguments, one has P-a.s.

lim (hmsup < sup s (v) — yi(@)) =0.
6—0 n—oo veT*n

In view of the preceding remarks, the convergence of the proposition will
follow if we can verify that for every fixed § € (0,¢), we have a.s. for every
x=(u,1—¢) €A,

(33) lim @ () = O (z),
n—oo

By considering the successive passage times of Brownian motion stopped
at time T in the set {(v,Y, A (1 —90)) : v € Sk(As)}, we get a Markov chain
X ) which is absorbed in the set {(v,1 — §) : v is a leaf of Sk(As)}, and
whose transition kernels are explicitly described in terms of the quantities
Yy, v € Sk(Ay).

Let n be sufficiently large so that assertions (i) and (ii) of Proposition 16
hold with ¢ replaced by d, and consider random walk on T*" started from &
and stopped at the first hitting time of generation n — |dn]. By considering
the successive passage times of this random walk in the set {wﬁ"s v €
Sk(As)}, we again get a Markov chain X ()" which is absorbed in the set
{wy ® . v is a leaf of Sk(As)} and whose transition kernels are explicit in
terms of the quantities |w]|, v € Sk(Ay).

Identifying both sets {(v,Y, A (1 —9)) : v € Sk(As)} and {wﬁ"s NS
Sk(As)} with Sk(Aj), we can view X and X" as Markov chains with
values in the set Sk(Ajy), and then assertion (ii) of Proposition 16 implies

that the transition kernels of X (9™ converge to those of X (). Write X, éf) for

the absorption point of X, and similarly write Xéi)’” for the absorption

point of X" We thus obtain that the distribution of Xéf)’” converges to

that of Xég). Consequently, for every u € V such that x = (u,1 —¢) € 9A,,
we have

lim P(u < X0 = P(u< X9).

However, from our definitions, we have

P(u=< XQ) = n"(a),
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and, for n sufficiently large, noting that w;® coincides with the ancestor of
wi? at generation n — |en| (see the remarks after Proposition 16),

Pu < X0y = 120 (me).

u

This completes the proof of (33) and of the proposition. O
Recall that, if v € U, (v); is the ancestor of v at generation i < |v|.

COROLLARY 19. Let & € (0,1). We can find gy € (0,1/2) such that the
following holds. For every e € (0,g¢), there exists ng > 0 such that for every
n > ng we have

E® E Ulog i (Sndncteny) - mogeﬂ < ¢llogel.

PROOF. Recall our notation Bq(x,r) for the closed ball of radius r cen-
tered at z € A. Fix n € (0,1). Since Br is distributed according to p, it
follows from Theorem 3 that there exists €9 € (0,1/2) such that for every
e € (0,e0) we have

(34) PP (‘ log u(ABa(Br,2¢)) — Bloge| > (n/2)] loge]) <n/2.

Let us fix € € (0,e0). We now claim that, under P ® P,

(35) B (S en)) 2 p(Ba(Br,22)).

To see this, let f be a continuous function on [0, 1]. Since the distribution of
(Zn)n—|en) under P is 5, we have

E® E[f (0 (Snbntn)]| =E[ 30 () fu5 ().

ueT*n

n—l|en]

By Proposition 16, we know that P a.s. for n sufficiently large,

Yo m@ @)= Y up(wp®) fug(wy)

ueT*" z=(v,1—e)€dA,

n—|en]|

and, by Proposition 18, the latter quantities converge as n — oo toward

Y w(@) f(iF (2) = Blf (u(PBa(Br, 20)))].

€A
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Our claim (35) now follows.
By (34) and (35), we can find ng = ng(¢) > e~ ! such that for n > ny we
have
P® P ([log 5, ((En)n—(en)) — Bloge| > nllogel) <.
It follows that

E @ E [[log 1, ((Sun-(eny) — Bloge|’]

1/2
< P logel? +1'/*E @ B [log 5, () eny) — Bloge] ']

1/2
(36) < (n*+2n"?B%)|logel* + 20 *E® E[ |log 5, ({Zn)n—(en) ) |4] :

Let us bound the last term in the right-hand side. It is elementary to verify
that the function g(r) = (rAe™) |log(rAe~*)|* is nondecreasing and concave
over [0, 1]. It follows that

5] 4 g g
B Jlog 15, () 1en)[* | = D s w)og s (w)*

uET;[Lm”

< D (@ ne ) log(un(u) Aem )| + 41
uET:‘L’iLmJ

= > glun(w) +4*
uET:‘L”_LEnJ

*n *N —1 4
<# n—|en] X g<(#Tn—Lan) ) +4
4
< [log #T3 Ly| +2 4%

We now use Lemma 15 to get
4
E @ E| [log 45 (Saln-ten))|' | <2 x 4+ E[[10g#T3 L[]

<2 ><44—i—C'4<log LFZJ){

By combining the last estimate with (36), we get that, for every n > ng(e),

E @ E [[log 5, ((Suhn-(eny) — Bloge’]
< (% +20"/2B%)| loge|* + 20'/%(29/2 + C?| log £[%).

The statement of the corollary follows since 7 was arbitrary. O
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4.3. Proof of the main result. We need a few preliminary lemmas before
we can proceed to the proof of Theorem 1.

4.3.1. Preliminary lemmas. Our first lemma is a discrete version of Lem-
ma, 7. This result is well known and corresponds to the “flow rule” for har-
monic measure in [27]. We provide a detailed statement and a brief proof
because this result plays a key role in what follows.

We consider a plane tree 7 € Z,, and we write Z(7) = (ZJET))kZO for
simple random walk on 7 starting from @ (we may assume that this process
is defined under the probability measure P). We set
HO =inf{k >0:]2"| = n},

n

and zﬁf) = Zg()T). We let ug) be the distribution of Eq(f). We view uq(f) as a

measure on 7, which is supported on 7,.
For 0 < p < n, we set

L}(OT) = Sup{k‘ < Hg—) : |Z;(CT)| = p}‘

Clearly 37 € 7(27),], and therefore 77, = (1),
p P

LEMMA 20. Letp € {0,1,...,n—1} and z € 7,. Then, conditionally on
<E%T)>p = z, the process

(1) )
( (LS +R)AHT ) k>0

is distributed as simple random walk on T|z| starting from z and conditioned
to hit T[z] N7, before returning to z, and stopped at this hitting time. Con-
sequently, for every integer q € {0,1,...,n—p}, the conditional distribution
of
wy (B-(2Y),9))
) (B (S5, n = p))

knowing that <E%T))p = z is equal to the distribution of

Mfﬁ? (Br] (Eiﬁ[ﬁ), q))-

PROOF. The first assertion is easy from the fact that the successive (non-
trivial) excursions of Z(7) in the subtree 7[z] are independent (and indepen-
dent of the behavior of Z(7) outside 7[z]) and have the same distribution as
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the excursion of random walk in 7[z] away from z. We leave the details to
the reader.

Let us explain why the second assertion of the lemma follows from the
first one. Clearly, the distribution of the hitting point of 7[z] N 7, by simple
random walk on 7[z] starting from z and conditioned to hit 7[z] N7, before
returning to z is the same as the distribution of the hitting point of 7[z] N7,
by simple random walk on 7[z| starting from z. Let MSJ)’Z be the conditional
distribution of E%T) knowing that (Eg)h) = z. We get from the first assertion

of the lemma that ,ug)’z is equal to the hitting distribution of 7[z] N 7, for

simple random walk on 7[z| started from z (note that we are here interested
in the subgraph 7[z| of 7 and not in the “relabelled” tree 7[z]). It also follows
that, for every integer ¢ € {0,1,...,n — p}, the conditional distribution of

knowing that <E,(f)>p = z coincides with the distribution of

Now notice that, on the event {<Z,(1T)>p =z}, M%T)’Z(BT(Z,(J), q)) is equal to

(B2, 9)) _
(B3 n = p))

This gives the second assertion of the lemma. O

_ Let us come back to the (random) reduced tree T*". If 1 < i < n,
T*"[(X)n—s] is the subtree of T*" above generation n — i that is “selected”
by harmonic measure, and T*"[(X,), ] is the tree obtained by relabelling
the vertices of T*"[(X,,),—i] as explained above. It is not true that the dis-
tribution of T**[(X,),—;] under P ® P coincides with the distribution of
T* under P, because harmonic measure induces a distributional bias. Still
the next lemma gives a useful bound for the distribution of T**[(%,,),—;] in
terms of that of T*!. We recall the notation C;(7) from Section 4.2.2.

LEMMA 21.  For everyi € {1,...,n—1} and every nonnegative function
F on 7,

E® E[F (T"[(Sp)n—i])] < (i + 1) E[C;(T*) F(T*)).
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ProOF. Fix i € {1,...,n— 1} in this proof. Recall our notation R;(T*")
for the tree T*" truncated at level n — i. From the branching property of
Galton—Watson trees, one easily verifies the following fact: Under P, condi-
tionally on R;(T*"), the (relabelled) subtrees T*"[v], v € T . are indepen-
dent and distributed as T** (to make this statement precise we can order
the subtrees according to the lexicographical order on T} ).

Consider the stopping times of the random walk Z™ which are defined
inductively as follows,

Uy =inf{k >0:|Z}| =n—i},
V= inf{k > UP : |20 =n—i— 1},

and, for every j > 0,

UPy = inf{k > VP |27 = n—i},

T =inf{k> Ul (2 =n—i—1}

Set Wi = Z{}n for every j > 0. Then, under the probability measure P,

(WH)j>0is a Markov chain on T}™ ., whose initial distribution and transition

J
kernel only depend on R;(T*").

Now observe that

n—i’

<En>n—z = WJ%
where jg is the first index j such that

(37) sup |Z}| = n.
If j > 0 is fixed, then, conditionally on the Markov chain W™, the probability

that (37) holds is C;(T*"[W}']).
Thanks to these observations, we have

EF(T7[(En)n—i])]

i E[ F(T W) Ci(T*”[W]”])ﬁ (1 - Ci(T*”[Wg‘]))}
J=0 =0

We then use the simple bound C;(T) > H%, which holds for any tree T with
height greater than or equal to . It follows that

o0

E[F (T™{(Sn)nil)] < 3 (1- ZH)'E[F(T*”[W;])ci(T*”[W;]).
j=0
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For every u € U with [u| = n —4, let 77 (u) = P(W}' = u), and recall that
7T;L<U) only depends on the truncated tree R;(T*"). Then, for every j > 0,

E E|F(T W) GT WD =E | > () T [u]) C:(T[u])
ueTs

= B[F(T") C(T")],
by the observation of the beginning of the proof. We conclude that

7=0
= (i + 1) E[F(T*) C;(T*)],
as desired. .

Our last lemma gives an estimate for the conductance C;(T*?).

LEMMA 22.  There exists a constant K > 1 such that, for every integer
n>1,

*n K
E[C,(T*™)?] < CESIE

PRrROOF. Obviously we can assume that n > 2, and we set j = [n/2] > 1.
An immediate application of the Nash—Williams inequality [29, Chapter 2]

gives
#T"
J
(just consider the cutsets obtained by looking for every integer £ € {1,...,j}

at the collection of edges of T*" between generation ¢ — 1 and generation ).
Then,

E[(#T)? = E[(#{v e T : (TOR]) > n— jH2 | i(TO) > n)
= g 'E[(#{v e TV (TOR]) > n — 51?2

As we already observed in the proof of Lemma 15, the conditional distri-
bution of #{v € T : A(TO[v]) > n — j} knowing that #T" = k is the
binomial distribution B(k, g,—;). It follows that

E[(#{v e T : n(TOR]) > n — j})?]
= 2 E(#T)] + (gnj — ) EH#T)]

- qu—jo'zj + qn—j-
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We conclude that
E[C.(T™)?) < (%)™ (2250% + auy).
and the statement of the lemma follows from (32). O
4.3.2. Proof of Theorem 1. We will prove that
(38) E ® E[|log pn () + Blogn|] = o(logn), as n — oo.
Theorem 1 follows, since (38) and the Markov inequality give, for any § > 0,
P® P (| log pn(Xn) + Blogn’ > §logn) — 0,

and therefore

E[P(un(En) <n P70 or pp(Sn) > n_6+5)} — 0.

n—oo
Since by definition p, is the distribution of 3, under P, the last convergence
is equivalent to the first assertion of Theorem 1.

Fix &€ > 0 and let € > 0 and ng > 0 be such that the conclusion of
Corollary 19 holds for every n > ng. Without loss of generality, we may and
will assume that ¢ = 1/N, for some integer N > 4, which is fixed throughout
the proof. We also fix a constant « > 0, such that alog N < 1/2.

Let n > N be sufficiently large so that N1*°8"] > ng We then let £ > 1
be the unique integer such that

Nt < n < N

Notice that

logn << logn'
log N - T logN

(39)

Our starting point is the equality

Nn(zn)
Hn(BQ:mN))
f .
Mn(B(Zm NJ*I))
+2 18T B M)

(40)  logun(Ey,) =log

+10g p1n(B(S0, N*)).
j=2
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To simplify notation, we set

pin(En)
At i=log ————+—— + Blog N,
pin(B(Xn, N))

pin (B (En, Nj_l))
pin(B(En, N7))
A}y = log i (B(Sn, NY)) + Blog(n/N*).

—_

A

= log + pBlog N for every j € {2,...,/},

From (40), we see that

{41 /41
(41) E@EHlogun(anmognH :]E@EHZA?H <Y E®E[A7].
j=1 i=1

We will now bound the different terms in the sum of the right-hand side.

FIRST STEP: A PRIORI BOUNDS. We verify that, for j € {1,...,¢+ 1},
we have
(42) E® E[|A}|] < (CVEK + B) log N,

where C' is the constant in Lemma 15, and K is the constant in Lemma 22.
Suppose first that 2 < j < ¢. Applying the second assertion of Lemma 20
(with p = n — N7 and ¢ = N’~!) to the tree T*", we obtain that, for
every z € T'" ., the conditional distribution of A;? under P, knowing that

(Xn)n_Ni = 2, is the same as the distribution of

log uly, (B, ", N1)) + Blog N.

(T [2])

(T"ED s the distribution of Y

Recalling that g

under P, we get

A | (Sahaons =2 < B [[loguy, " (BEG, ™, N)]] + slog N

(43) = Gj(T™[z]) + Blog N,

where for any tree 7 € Ty,

Gi(r) = [ 1)) 108 3) (B, (0. 59 1)

= Y WG og 1) G

ZETNj _Nji—1

In the latter form, G;(7) is just the entropy of the probability measure that

(1)

assigns mass j1,;(7[z]) to every point z € Ty;_yj-1. By a standard bound
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for the entropy of probability measures on finite sets, we have G;(1) <
log #7xni_ni—1 for any tree 7 € Fy;. Recalling (43), we get

E® E[|A}|] <E® Ellog #Ty;_ni-1[(En)n—ni]]l + Blog N
<(NV+1)E [CN]-(T*Nj) log #T}*V]}fim_l} + flog N

. i 911/2 N 1/2
< (V4 DE [ (TN))°] T B [(log # T3 i) + Blog N
; 1/2
<VEE [(log#T y,0)°] 7+ Blog N,

using successively Lemma 21, the Cauchy—Schwarz inequality and Lemma 22.
Finally, Lemma 15 gives

- 1/2
E[(log #T3 yi0)°] " < Clog,
and this completes the proof of (42) when 2 < j < /.

The cases j = 1 and j = £ 4 1 are treated on a similar manner. For
j = £+ 1, we observe that the same entropy bound gives

Elllog ma(BEw NN = 32 (T [y]) |og 1 (T y])| < log #T7" ..
yeT

It follows that
E ® B[ log j1n (B(Sa, N)) ] < Eflog #T7" ] < C log N,

by Lemma 15 and using the fact that N¢ < n < N+,
Finally, for the case j = 1, we use exactly the same argument as in the
case 2 < j </, to get

d

and we obtain similarly, using Lemma 21, Lemma 22 and Lemma 15,

log ,U%(B(EnaJV))H < Ellog#T," [(En)n—n]],

E® Elog #T3 [(Sa)n-n]] < (N + D E [CN(T™) log #TH']
< VK E[(log #T3")?"/?
< C\/Elog N.

This completes the proof of (42)
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SECOND STEP: REFINED BOUNDS. We will get a better bound than (42)
for certain values of j. Precisely we prove that, if |alogn| < j < /¢, we have

(44) E® E[|A"[] < \/¢K log N.

Let us fix j € {|alogn],...,£}. Recall that we have then N7 > ng. From
(43), we have

(45) ENAT]) = EIE; (T [(En)n-ni])];

where, if 7 € Ty,

Fr) = 18108 NGy = | [ g)an) (1085 V7)) + o )|
Using Lemma 21 as in the first step, we have
EE(|A}]] = EQE [Fy(T™[(Ea)n o)) < (N +DE |Cs(TN) F(T)].

We then apply the Cauchy—Schwarz inequality together with the bound of
Lemma 22 to get

E® E [|A}]] < VK E[F;(T*N)2]1/2
1/2

=VKE

(/ ps (dy) Jlog puys (B(y, N771)) + 51ogN\>2]

' 1/2
< \/fﬂ*l[/um(dy) |log iy (B(y, N771)) +610gNﬂ
- 971/2
—VKE®E [\bguNj(B(zNj,Nﬂ— )) + Blog N| }
LN 2 1/2
= \/E-E@E Ulogu]\?j <<2Nj>Nj_Nj71> —G—BlogN‘ :| ,

where the last equality follows from the definition of the measures f;, at
the beginning of Section 4.2.3. Now recall that 1/N = ¢ and note that
NJ — NJ=1 = NJ — ¢NJ. Since we have N7 > ng, we can apply the bound
of Corollary 19 and we get that the right-hand side of the preceding display
is bounded above by v/¢K log N, which completes the proof of (44).

By combining (42) and (44), and using (41), we arrive at the bound

E®FE H log pn(Xn) +,6’logn|] < LalognJ(C\/E—Fﬁ) log N + ¢ +\/EK log N
< (a(C\/EJr B)log N + \/ﬁK) logn,

imsart-aop ver. 2014/10/16 file: Harmonic-Tree-AOP.tex date: August 26, 2015



THE HARMONIC MEASURE OF BALLS IN RANDOM TREES 59

which holds for every sufficiently large n. Now note that & > 0 can be chosen
arbitrarily small. The choice of £ determines the choice of N, but afterwards
we can also choose a arbitrarily small given this choice. We thus see that
our claim (38) follows from the last bound, and this completes the proof of
Theorem 1.

4.4. Proof of Corollary 2. In what follows we always implicitly restrict
our attention to integers N > 1 such that P(#T(® = N +1) > 0. For
such values of N, T(N) is distributed as T(?) conditioned on the event
{#TO) = N + 1}. We write (Ct(N))[)StSQN for the contour function of the
tree T(N) (see e.g. [23] or [31, Figure 6.2], where the contour function is
called the Harris walk of the tree). By a famous theorem of Aldous [3], we
have the convergence in distribution

(46) ( ’ Cé%)ogtgl)Nﬂ (e,0<t<1)

2\/N v —00

where (e¢,0 < ¢ < 1) stands for a Brownian excursion with duration 1. Since
h(T(N)) is just the maximum of the contour function, it follows that

1 (d) 2

(47) N h(T(N)) N = 012%}(1 et.

Consequently, for every n > 0, we can choose a constant A > 0 such that
for all sufficiently large N, the probability P(h(T(N)) > Av/N) is bounded
above by 7. Thanks to this remark, it is enough to prove that the convergence
of Corollary 2 holds when n and N tend to infinity in such a way that
n < BVN, for some fixed constant B. For future reference, we note that
(47) implies that, for every sufficiently large N and every nonnegative integer
n such that n < BV/N,

(48) P(h(T(N)) > n) > ¢,

for some constant ¢ > 0.

If 7 € 7 is a tree, we write 7<,, for the tree that consists of all vertices of
T at generation less than or equal to n.

LEMMA 23. Let e > 0. We can find § € (0, %) such that, for every
sufficiently large N, and every mnonnegative integer n with n < BV N, we
have

P(#T(N)_n < (1-8)N|h(T(N)) > n> >1-—c.
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PROOF. As a simple consequence of (46), we can find > 0 sufficiently
small so that, for every sufficiently large N and for every integer n with

0<n<nVN,
PUA(T(N)) 2 n} N {#T(N)<n < 5 ) > 1 - =

So we may concentrate on values of n such that nv/ N <n < BvN.
We then observe that there exists § € (0, %) such that, for every a €
[%an, %JB],

1
(49) ]P(/ dt1ie,>q) < 0| sup e; > a) <e.
0 0<t<1
This bound follows from standard properties of linear Brownian motion. We
omit the details.
We now claim that the result of the lemma holds with the preceding value
of §. To verify the claim, observe that from the properties of the contour

function,

1 2N
N+1—#T(N)§n:2/0 dtl{Ct(N)>n}'

It readily follows that

P(#T(N)Sn > (1-0)N ’ h(T(N)) > n)

1 2N (N)
— >
—[P( /0 dtl{CéN)> }<5N—{—1‘ OftligNCt n)

1 1 o N n
=2 /0 L aym) ctmiormm < O 7] S8, 570 2 75m):
If the conclusion of the lemma does not hold, we can find a sequence Nj
converging to +oo, and, for every k, an integer n; with nv/N, < ng <
B+/Nj, such that the probability in the last display, evaluated with N = N,
and n = ng is bounded below by e. But then, by extracting a convergent
subsequence from the sequence (ny/v/Ni) and using the convergence (46),
we get a contradiction with (49). This contradiction completes the proof. [

As previously, we let T stand for a Galton-Watson tree with offspring
distribution 6, conditioned on non-extinction at generation n. Corollary 2
is a simple consequence of Theorem 1 and the following comparison lemma
applied, for every fixed § > 0 and € > 0, with

A, = {7’ €T\ {vern :n P70 <uDw) <n Y} <1- 5}.
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LEMMA 24. For every n > 0, let A, be a subset of 7. Assume that
P(ng € A,) — 0 as n — oo. Then we have

P(T(N)Sn e A, | H(T(N)) > n) 0

n<BvVN

PRrROOF. Throughout the proof, we consider positive integers n and N
such that n < BV/N. Let 7 € 7, and set m = #7 — 1 (m is the number
of edges of 7) and p = #7,. From (32), we see that there exists a constant
co > 0 such that, for every n,

(50) P(TY) =7) > conP(TY) = 7).

n

We then evaluate

PUTE, =7} 0 {(#T0 = N +1})
P(T(N)<n =7) = - P(#TO) = N 4+ 1)

Let 6 be the probability measure on Z defined by (k) = 0(k + 1) for every
k > —1, and let Z be a random walk on Z with jump distribution 0 started
from 0. A standard result (see e.g. [23, Section 1]) states that #T() has
the same distribution as the hitting time of —1 by Z, and by Kemperman’s
formula (see e.g. Pitman [31, p.122]), we get that P(#T©®) = N 4+ 1) =
(N + 1)7'P(Zy41 = —1). From a classical local limit theorem, we obtain
the existence of a constant ¢; > 0 such that

(51) PHTO = N +1) > ¢ N73/2

(recall that we consider only values of N such that P(#T(®) = N 4 1) > 0).
Then, using the branching property of Galton-Watson trees, we have, if
m < N,

(52) PUTY =7} n {#TO =N +1}) = P(TY) = 7) x F(p, N —m +p),

where, for every integer ¢ > p, F(p,{) is the probability that a forest of p
independent Galton-Watson trees with offspring distribution 6 has exactly
¢ vertices. By the same arguments as in the derivation of (51),

(53) F(p,0) = 2 P(Z = —p) < cap 7,

with some constant cs.
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Next let § € (0,1) and suppose that m < (1 —§)N and p < §~'n, so that
in particular N —m + p > dN. Under these conditions, (51), (52) and (53)
give

(54) P(T(N)<n =17) < ¢ 'e2d 2 nP(TY) = 7).

Let G'y,, ; be the set of all trees 7 € 7, such that #7 < (1 — )N,
let G’éé be the set of all trees 7 € .7, such that #7, < 6 'n, and set
GNns = Gy, sNG,, 5. Comparing (50) and (54), we obtain that the density

n)

of the law of T(N)<,, with respect to that of T(<n is bounded above, on the
set G .5, by a positive constant Cs independent of n and N (but depending
on §). If ¢ > 0 is given, we can use Lemma 23 to find § > 0 such that for
every sufficiently large N and every integer n with 1 < n < BV N we have

P (T(N)<n € Glypg | A(T(N)) 2 0) > 1~

| ™

On the other hand, Theorem 1.13 in Janson [17] gives the existence of a con-
stant K independent of N such that, for every integer n > 1, E[#T(N),] <
K n. Choosing § smaller if necessary, and using (48), we see that we have
also, for every integer n with 1 < n < BV/N,

P(T(N)<n € Gy | A(T(N) 2 0) 21— =,
Finally, if A,, is a subset of 7, with 1 <n < BvVN , we have
P(T(N)<n € An | H(T(N)) > n)

SP(T(N)<n € Gyps | A(T(N)) > n)
+P(T(N)<n € Ay NGyns | H(T(N)) > n)
Cs

(n)
POR(T(NY) P(TL € Ay).

>n) =n

Letting n, N — oo with the constraint n < B+ N, and using the assumption
of the lemma together with (48), we see that the last display eventually
becomes less than 2e. This proves the lemma. ]

<e+

5. Complements.
5.1. A different approach to the continuous results. In this section, we
briefly outline another approach to Theorem 3, which is based on a different

shift transformation on the space T*. Informally, if (7,v) € T*, we let
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S(T,v) be obtained by shifting (7, v) at the first node of 7. More precisely,
if T corresponds to the collection (z,)yey, and v = (v1,v2,...), we set

S(Tv V) = (7Ev1)7 G)

where v = (v2,v3,...) and, for i =1 or i = 2, 7(;) is the tree corresponding
to the collection (z;, — 2 )vey, in agreement with the notation of Section 3.4.

PROPOSITION 25. For every r > 1, set

s
= d dt)———.
) = [ [ataontan "
The finite measure k(C(T)) - ©*(dT dv) is invariant under S.

PROOF. Let F be a bounded measurable function on T*. We have to
prove that

(55) /F o S(T,v)k(C(T))O©*(dT dv) = /F('T, v) k(C(T))©*(dT dv).

Recall that ©*(dT dv) = O(dT)vy(dv) by construction. If we fix 7 € T,
the distribution of the pair (v1,Vv) under v is given by

C(T())
(T(1y) +C(T2))

/ vr(dv) 1=y 9(V) = 5 / V7, (du) g(u)

where i € {1,2} and g is any bounded measurable function on {1,2}". It
follows that the left-hand side of (55) may be written as

- C(Ta)
LIPS T €T g €T o, ()

We then observe that under ©(dT) the subtrees 7(;) and (5 are independent
and distributed according to ©, and moreover we have

1-U )—1
Tv) +C(T(2))

e(T) = <U+C(

where U is uniformly distributed over [0, 1] and independent of (7(1y, 7(2))-
Using these observations, and a simple symmetry argument, we get that the
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quantity (56) is also equal to

1
) /O dz / O(AT) O(dT") vy (du) F(T, u)

C(T) 1—z -1
*C(T) + (T w((o+ c(T) + C(T’)) )

_ / O* (AT du) F(T,u)

</ [ 0T e oy (e e w ) )

Hence, the proof of (55) reduces to checking that, for every r > 1,

! r —x \—
(57) K(r) :2/0 dx/@(dT/)r—l—C('W)K((x—'_r—l—lC(T’)) 1).

To verify (57), let Cy,C1,C2 be independent and distributed according to +,
and let U be uniformly distributed over [0, 1] and independent of (Cp,C1,C2)
under the probability measure P. Note that by definition, for every x > 1,

zCq
r+Ci+C—1

) = |

It follows that the right-hand side of (57) can be written as

r G (U+ r+co) -

O et (U L) 1—1]

—27’E[ G ]
N (C1+Co—1)UCy+7r)+1-U)+Co+r

2E

:rE[ C1+Co ]
(Cl—i—Cg—l)(U(Co—i—T)—i—l—U)-f—Co-i-T
TIE[ C1+Co ]
(Cl +C2)(U(Co—|—7“—1)—|—1)—|—(Co+7“—1)(1—U)
=rkE !
B¢
_T+C0+C—l
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where C = (U + Clljrlé )~L. By (2), C is distributed according to ~. Since C is
also independent of Cy, we immediately see that the right-hand side of the
last display is equal to k(r), which completes the proof of (57) and of the
proposition. O

One can verify that the shift S is ergodic with respect to the invariant
probability measure obtained by normalizing x(C(7T)) - ©*(dT dv) (we omit
the proof). One then applies the ergodic theorem to the two functionals de-
fined as follows. First we let Z, (7, v) denote the height of the n-th branching
point on the geodesic ray v. One immediately verifies that, for every n > 1,

n—1
Z, = Zzl o S°.
1=0

If A= [k(C(T))O*(dT dv), it follows that

(58) %Zn ag 41 / Z0(T V) K(C(T)) ©*(dT dv).

n—oo
Note that the limit can also be written as

| log(1 —U)| ﬁ((U+ 1_U>1>]

A'E
C1+Cq

with the notation of the preceding proof. Secondly, if x,, v stands for the n+1-
st branching point on the geodesic ray v (with the notation of Section 2.2,
Xnv = ((V1,...,0n), Znt1(T,v)) if v=(v1,0v2,...)), we set for every n > 1,

H,(T,v) =logvr({uc {1,2}" : x,, < u}).

It is then also easy to verify that

n—1
H, = Z HioS'
=0
and we have thus
1 *a.s. _
(59) Lo, @ g1 / Hi(T,v) £(C(T)) ©°(dT dv).
n n—oo

The limit can be written as

s ) o0+ 255 ]
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By combining (58) and (59), we now obtain that the convergence (1) holds
with limit

28 as o () (U + d58) )]
E[l1og(1 - U)|n( (U + Cllggz))_l)}

We leave it as an exercise for the reader to check that this is consistent with
the other formulas for 8 in Proposition 4.

—p

5.2. Supercritical Galton—Watson trees. One may compare our results
about Brownian motion on the Yule tree to the recent paper of Aidékon [1],
which deals with biased random walk on supercritical Galton—Watson trees.
To this end, consider the supercritical offspring distribution #(™ given by
oM(1) =1 — 1 and 6" (2) = LI T is the (infinite) Galton—Watson
tree with offspring distribution 6, then 7™ viewed as a metric space
for the graph distance rescaled by the fact n~!, converges in distribution in
an appropriate sense (e.g. for the local Gromov-Hausdorff topology) to the
Yule tree I'.

Consider then the biased random walk (Z,gn))kzo on 7 with bias pa-
rameter A = 1 — 1 (see e.g. [28] or [1] for a definition of this process).
Since the “mean drift” of Z(™ away from the root is 5 +o(n™!), it should be
clear that the rescaled process (ZEZ% . J)tZO is asymptotically close to Brow-
nian motion with drift 1/2 on the Yule tree, in a sense that can easily be
made precise.

An explicit form of an invariant measure for the “environment seen from
the particle” has been derived by Aidékon [1, Theorem 4.1] for biased ran-
dom walk on a supercritical Galton—Watson tree (see also [16] for a related
result in a different setting). In the unbiased case such an explicit formula
already appeared in the work of Lyons, Pemantle and Peres [27], but in the
subsequent work of the same authors [28] dealing with the biased case, only
the existence of the invariance measure was derived by general arguments. It
is tempting to use Aidékon’s formula and the connection between the A(™)-
biased random walk on 7 and Brownian motion with drift % on the Yule
tree to recover our formulas for invariant measures in Propositions 12 and
25. Note however that the continuous analog of Aidékon’s formula would be
an invariant measure for the environment seen from Brownian motion on
the Yule tree at a fixed time, whereas we have obtained invariant measures
for the environment at the last visit of a fixed height (Proposition 12) or the
last visit of a node of the n-th generation (Proposition 25). Still the reader
should note the similarity between the limiting distribution in [1, Theorem
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4.1] and the formula for the invariant measure in Proposition 25. Indeed, we
were able to guess the formula for x in Proposition 25 from a (non-rigorous)
passage to the limit from the corresponding formula in [1].

Appendix. In this appendix, we sketch a proof of Proposition 5, which
is based on the relation between the continuous reduced tree A of Section
2.1 and the Brownian excursion conditioned to hit level 1. This relation was
described after Proposition 16 (see Figure 7) and we retain the notation
introduced after this proposition. In particular, (e;)o<i<¢ is a Brownian ex-
cursion conditioned to hit level 1 defined under the probability measure P,
and A is the associated continuous reduced tree.

We fix € € (0,1) and let N. > 1 be the number of excursions of e from
1—eto 1. We let (R{, ST), (R5,55), ..., (Y., Sk.) be the time intervals cor-
responding to these excursions listed in chronological order. For convenience,
we also set R = S; = oo if i > N.. The key ingredient of our proof is the
following lemma. We write (By);>¢ for a linear Brownian motion that starts
from  under the probability measure P,, and Ty = inf{t > 0: B; = 0}. We
also let n. be the law of a Brownian excursion above level 1 — ¢ conditioned
to hit level 1. Agreeing that the excursion stays constant after returning to
1 — &, we can view n. as a probability measure on the space C(Ry,R;) of
all continuous functions from R, into R,.

LEMMA 26. Let F,G,H be three nonnegative measurable functions on
C(R+,R+). Then,

ZF e(rz—1)+)1>0) G((€(rete)nse)1>0) H ((€(sz4)nc)i=0)

= g E1—o[F((Benty)t>0)] ne(G) Er—< [H ((Biaty )1>0)] -

The proof of this lemma is straightforward. First note that, for every
i > 1, the law of (e(rs11)ase)i>0 under P(- [ No > 4) is n.. Then, since S7
is a stopping time for every integer ¢ > 1, we get by applying the strong
Markov property at time S7,

ZF €(R: 1)+ t>o)G((e(Rg+t)A55)t>0)H((e(sg+t)Ag)t>0)]

— Z E |:]-{Sf<oo} F((e(re—ty+)e=0) G((e(Rf—H)/\Sj)tzO)}
=1

x Fi_. [H((Bt/\To)tZO)]‘
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On the other hand, using the fact that the law of (e;)o<t<¢ is invariant under

time reversal ((e¢)o<t<¢ and (e¢—¢)o<¢<¢ have the same law), we also obtain
that the sum in the second line of the last display is equal to

E

N,
> G((es:—tyvre)i=0) F(es: 4ac)e=0)
=1

-F X E1_¢[F((Biaty)1>0)]

Ne
Z G((e(Sf—t)ng)tzo)
i=1

= E[N:]ne(G) E1—< [F((Biary)t>0) ]

giving the desired result since E[N.] = %

Let us informally explain why Proposition 5 (or the equivalent statement
in terms of the tree A) follows from the lemma. To make the connection
with Proposition 5 we take e = ¢™", so that the factor % becomes the multi-
plicative factor €” in the formula of Proposition 5. We first recall that every
vertex v of A at height 1 — & corresponds to one excursion of e above height
1—e that hits level 1, and we observe that the tree of descendants of v will be
coded by this excursion in the same way as A is coded by e. Hence this tree
of descendants is distributed as a scaled copy of A (and the scaling factor
will disappear when we do the logarithmic scale transformation to return
to the Yule tree). Then, we need to consider the subtrees branching off the
ancestral line of v, and we can first look at those subtrees branching on the
right of the ancestral line. Supposing that v corresponds to the excursion
during the time interval (RS, S7), the latter subtrees exactly correspond to
all excursions of the process (e( Se+t) A¢)t>0 above its past minimum process
that hit level 1, and the level at which a subtree branches is the starting
level of the corresponding excursion. The formula of Lemma 26 then leads
us to consider the excursions of (B, )e>0 above its past minimum process,
under the measure P;_.. If f1,..., fy stand for these excursions, and if h;
denotes the starting level of the excursion f;, It0’s excursion theory shows
that the point measure Zfi 10(h;, ;) s Poisson with intensity

1j0,1—(h) b n1—p(df).

1—h
Recalling that € = ™", the image of the measure 11 ;_(h) % under the
logarithmic scale transformation » = 1—e~° is the measure 1 ,(s) ds. This
explains the form of the intensity of the Poisson measure A in the statement
of Proposition 5, noting that the factor 2 comes from the fact that we also
need to consider the subtrees that branch on the left of the ancestral line
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(these are treated in a similar manner, considering now the excursions of
(e st_t)+)t20 above its past minimum process that hit 1).

Although we avoided introducing the notation that would be needed to
make the previous arguments precise, the reader will easily turn these argu-
ments into a rigorous proof of Proposition 5 based on Lemma 26.
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