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CHAPTER 1

Iniroduction

1. Historical sketch and program of the course.

The physical Brownlan motion attracted the interest of the British
botanist Robert Brown in 1828 . The mathematical study of the Brownlan motion
started in 1900 when the French mathematician Louls Bacheller guessed several
important properties of this preocess, including a weak form of the Markov
property, and the Gausslan distribution of Brownian motion at a fixed time. A
more rigorous derivation of the Gaussian character of the one-dimensional
marginals was provided by Albert Einstein in 1905. The firgt complete
construction of Brownian motlon as a continuous stochastic process 1s due to
Norbert Wiener in 1923. Later, in collaboration with Paley and Zygmund, Wlener
proved the non-differentiability of the Brownian paths, which had been
conjectured by the French physicist Perrin.

Much of what we know about Brownian motion is due to Paul Lévy. Lévy
discovered many remarkable sample path properties, as well as several
important distributions connected with Brownian motion. Lévy also introduced
the local times of 1linear Brownian motion, which have given rise to many

important developments.

Since Lévy's work, linear Brownian motion has been studied extensively,
sometimes with the help of Ité'w stochastic calculus, which among other appli-
cations yields a very simple construction of local times. The bocks of Knight
[Kn], Revuz and Yor [ReY] amd Rogers and Williams [RoW] contain much informa-

tion about properties of one-dimensional Brownian motion.

Multidimensional Brownian wasg not neglected after Lévy : see in particu-
lar Chapter 7 of It6 and Mc Kean [IM]. However several questions ralsed by
Lévy were left aside until very recently.

In the last few years, there hag been much interest in properties of
planar Brownian motion : e.g. geometric properties of sample path (Burdzy,
Mountford, Shimura,...), asymptotic distribvutions (Pitman, Yor,...) or multi-
ple peints and intersection problems (Dynkin, Rosgen,...). The purpose of these

lectures iz Yo provide a detailed account of a number of these recent
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developments, We will mainly consider sample path (that is, almost sure)
properties, although for instance Chapter Il presents a proof of the

celebrated Spitzer theorem on the winding number of planar Brownlian motion.

We also restrict our attemtion to the two-dimensional case (with the
important exception of Chapter VI). Sometimes the extension to higher dimen-
sions is possible If not straightformward (this 1s the case for Chapters III,
I1V), sometimes on the contrary the extension is impossible or has no meaning
(this is the case for most of the results concerning multiple points).
Generally speaking, planar Brownlan motion has several very nice properties,
which disappear 1inm higher dimensions. Thiz can be explained by the
relationship between Brownian motion and holomorphic functions, and alsc by
the fact that the dimension 2 iz critical for Brownlan motion, meaning that a
planar Brownlan path, on the time interval [0,®), is dense in the plane

although it does not hit a given peint.

In Chapter II, we recall the conformal invarlance of planar Brownlan
paths and we uge 1t to derive thelr first basgic properties. The maln topics of

the next chapters are :

~ the existence of the exceptional polints of the path called cone points
(Chapters III-IV);

- the smoothmess of the convex hull of the planar Brownlian path, on the
time interval {0,1] (Chapter III) ;

- the connected components of the complement of the Brownian path (Chapter
Vil

~ the shape of the Brownian path mnear a typical point of the boundary of

one such component (Chapter V);

~ the area of a tubular neighborhood of the path, and more generally of
the so~called Wiener mausage (Chapterg VI-VIII);

- the existence of polnty of finite and infinite multiplicity (Chapters
VIII-IX);

~ the assoclated "self-intersection local times" (Chapter VIII);

-~ the rencrmalization of self-intersections and its application to asymp-

totic expansions of the area of the Wiener sausage (Chapters X-XI).

It is worth noting that most of the previous topics are related to
questionsg ralsed by Lévy. The non-existence of angular peoints on the boundary
the convex hull of a Brownlan path was stated without proof im [Lé4, p. 240].

Az for the boundary of the complement of the Brownian path, it is interesting
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to compare the twist points theorem of Chapter V with Lévy’s assertion that
“la plupart des points de cette frontiére ne sont accessibles que par des
chemins trés compliqués, le long desquels 1'angle polaire n'est pas borné"
[Lé4, p. 239]. Lévy [Lé4, p. 325-329] also raised many questions about
multiple points, and most of them can be answered using the modern notion of
Intersection local time. See in particular Chapter IX for a rigorous verslon
of Lévy's heuristic assertion that "un point double cholst sur la courbe n'a

aucune chance d'étre triple" [Lé4, p. 325].

2. Some comments aboui the proofs.

Generally speaklng, we do not assume much from the reader, except for
some well-known facts such as the strong Markov property or the Brownian
scaling property, which both play an egsentlial role throughout this work. We
use stochastic calculus only to derive the conformal invariance of planar
Brownlan paths 1n Chapter II. Some classical results of probablilistic
potential theory are used in Chapters VI and XI. They are recalled in detail
at the beginning of Chapter VI. In Chapter V, we use a rather involved result
of complex analysis, namely Mc Millan's theorem. It is presumably possible,
and 1t would have been more satisfactory in a sense, to prove at least part of
this result using Brownlan motion. This however would have taken us too far,

and we simply recall this theorem without proof in Chapter V.

An important concept in this work is the notlon of local time. We use the
term leccal time Inm a very wide sense. A local time is a random measure suppor-
ted either on the state gpace R® of the process or on R, the set of Limes
(or even on R‘ % R+ , when we conslder double polnts, etc...). This random
measure is supported on a certain class of exceptional points of the path (in
the first case) or on a get of exceptional times. For instance, the local time
at 0 of a linear Brownlan metion B may be viewed as a random measure sup~
poerted on the zero set of B. Note that the zerc set 1s a set of exceptlonal
times since for every t > 0, Bt # 0 w.p. 1. As is well-known, this local
time is very useful when investigating various properties of the zero set. In
thege lectures, we do not use the local times of linear Brownian motion
(except in a remark of Chapter Il and, up to some extent, in Chapters X, XI).
However, in Chapters IV, VIII, we construct local times assoclated with
certain classes of random sets, and we then apply these local times to various
sample path properties. A typlical example is provided by Chapter IX, where we
use Intersection local times {associated with points of finite multiplicity)

to get the existence of points of infinite multiplicity.

The previously mentioned toplcs are related to varlous problems in pro-
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bability theory or in other branches of mathematics and physics. The shortest
proof of the existence of cone points uses the notion of reflected Brownian
motion in a wedge, which has been studied extensively in the last few years.
Many properties of planmar Brownlan motion can be proved from complex analysis
via the conformal invariance theorem (Theorem II-1). A typlcal example is the
twist pointzs theorem of Chapter V, whose proof uses both McMillan’s theorem
and a weak form of Makarov’'s theorem on the support of harmonic measure. The
asymptotics of the volume of the Wiener sausage glve information about certain
problems connected with the heat equation. The mathematical notion of inter-
section local time was motivated by the models of polymer physics, as well ag
by Symanzik's approach to quantum fleld theory. In the same connection,
Dynkin's renormalization for multiple selif-intersections of planar Brownlan
motion was lnspired by the renormalization techniques of fleld theory. It was
not possible in these notes to explain all the connecticons between Brownlan
motion and various problems of mathematics or physics. It should however be
kept in mind tha!t these connections often motivated the proof of the results

that are presented below.

Remerclements. Je tlens icl & remercler 1’ ensemble des participants de
1’Ecole d’Eté de Probabllités de St-Flour pour 1'intérét qu'lils ont porté a ce
cours et leurs remarques souvent pertinentes. Je remerclie tout particuliére-~
ment Paul~Louls Hennequin pour 1'excellente organisation de 1'école d’'été. Je
veux aussl remercier Chris Burdzy et Jay Rosgen pour leurs commentaires sur la
premiére version de ce travall. Enfin, Je remercie Nicoclas Bouleau pour la
simulation de trajectclre brownienne plane, réalisée au CERMA, qui illustre ce

cours.
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Interconnections between chapters.

Chapter IV

am

Chapter II —— Chapter III

\\\\N Chapter ¥

Chapter VII

Chapter VI —— Chapter VIII —— Chapter IX

H
Chapter XI ««—— Chapter X

Main notation.

The complex Brownian motion is denoted by (B,)

t't=0 ° As

or (Z,o ) 20 -

usual, Bo (or 20 ) = z under the probablility Pz,
Blu,v] = { Bs ;S8 sV}
m denctes the Lebesgue measure on C = R (or on B in Chapter VI).
The Brownian transition density is dencted by:
P, (x,y) = (2rt)™! expl~ly-xI%/2t)
For ze€C and >0,
Diz,e) = {yel; |z-yl<el} , D=D0,1)

Tc(z)ainf{tzO; IBt—zlﬁl’-'}

If K isa subset of € and € > 0,
eKk={ey; yek},

z=K = {z=-y; yek},
TK =4inf{ t 20 ; Bt ek} (inf & = + o )
TK(z) = Tz~K = inf{ t =z 0 ; B ez- K}

dim A denotes the Hausdorff dimension of a subset A of R and

diam A 1% the diameter of A .
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CHAPTER 1II

Basic properties of planar Brownian motlon.

1. Conforwal invariance and the skew-product representatlon.

Throughout this chapter, Z = (Zt. t = 0) denotes a complex-valued
Brownian motion started at z, € ¢ . This simply means that the real and
imaginary parts of 4 are two independent linear Brownian motions. The
rotational invariance property of planar Brownlan motlon states that for any
8 € R , the process emzL is again a complex Brownlian motien, which starts

at eiezo . This iz easily proved by checking that the real and imaginary

parts of eie ZL are independent linear Brownian motions. This result is
slightly extended by considering mappings of the type ¢(z) = az + b , with
a # 0 . Then using the scaling property of Brownian motlien, we obtain that:
¢r(2t) = zﬁ

where A = jal and 2Z' 1¢ a complex Brownlan motlion started at ¢[zo) . In
particular, the image of a Brownian path under ¢ is a (time-changed)
Brownian path. A very important theorem of Lévy shows that the latter property
still holds if we only assume that ¢ is locally tangent to a mapping of the
type z — az + b, that is if ¢ 1is conformal. More precisely, we have the

following result.

Theorem 1. Let Y be an open subset of € , such that z, € U, and let
¢ : U —> C be holomorphic. Set

ruwinf{tzo;ZtGU}S*'m

Then there exists & complex Brownian motion Z' such that, for any t & [0,1’U),

¢(2t) = 2&
t

where .

C :J’ 1¢' (2 )1° ds .
O -3

t

Remark. At any point z, & U , the holemerphic functioen ¢ ig “locally
tangent” to the mapping 2z —— ¢(zl) + ¢'(21) (z - 21) . Notice that the



121
derivative of t —» C_ 1is precisely |¢'(zt)|2.

Procof : Set ¢ = g + th , so that g and h are harmonic on U . By the Ité

formula appllied to g(Zt + 123) , Wwe get for t < Ty

t dg 1 t ag 2
g(z,) = glz) + Io %z 4z} + Io @) a2

and similarly,

t t
_ 8h 1 &h 2
n(z,) = hlz)) + L} Bz ) azt + Jo Bz, az’

This shows that Ht = g(Zt) N Nt = h(Zt) are two continuous local martingales
on the stochastic interval [O,rU) .

dg . 6h Bg _ _5h , .
A% 3y ' 3y i It follows that:
t
<M> = <N> = J |¢ (2 )I2 dg = C
t t o s t

By the Cauchy-Riemann equations,

<M,N> = 0 .
t

By a standard result of stochastic calculus, the last twe properties imply the

existence of two independent linear Brownian motions such that, for t € [U,IU)

The desired result follows, with 2] = B: + iBf .o
Notice that, in the previous procf, the Brownian motion A is
determined from Z only on the time interval [D.rU) . As a matter of fact,

when P[ ¢, < « ] > 0 , in order to define 2; for s z C , 1t may be

U T
necessary to enlarge the underliying probability space. This fact is
unimportant in applications of Theorem 1.

The proof of Theorem 1 algc ylelds the formula:

t
¢(2L) = ¢(20) + jo @ (23) dz_ .

t
Here the "complex stochastic integral” I ¢’(ZB) d2s ig obviously defined by:
0

t ¢
I ¢ (2 )dZ = I (Re ¢’ (Z ) dZ' = Im ¢'(Z ) d2°)
0 8 8 0 B 8 - k-1
t 1
+ 1J (Re ¢’ (Z ) dZ*® + Im ¢’ (Z )dZ})
D 8 B8 1 B

Theorem 1 can be used to interpret (and sometimes to prove) many results

of complex analysis in terms of planar Brownian motion. On the other hand, it
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allows one to prove properties of Brownlan motion using holomorphic functions.
We shall be interested in thig second type of appllcations. We first use
Theorem 1 L0 establich the polarity of single polintg for planar Brownlan

motion.

Corollary 2 : lLet z, € A {zD} . Thern,
P[Zt=z1 for some t =0 1 =0 .
Let m denole Lebesgue measure on € . Then,

m({ z, ;t=0 })=0 , a.s.

Proof : We may assume that 2z, = 1, 2 = 0. Let T = (rt. t z0) bea

planar Brownian motion started at 0 . By Theorem i,

exp(rt) % th

where t
C =‘[ exp(2 Re T ) ds ,
t 8
b
and 2’ ig a complex Brownian motion started at 1 . It ig immediate that
llmtaw Ct =+ w, a.% , so that

{(Z,;t=0}r={expl, ; tz0} as.

Obviously, 0 ¢ { exp I"t 7t 20}, and we get the desired resuli, with 2
replaced by 2’ . This however makeg no difference since the two processes Z,
2’ have the same distribution.

Te get the second assertion, write

El m({ Zt ptE0h = E[ I dy 1(2t= z for some t = U)]

= I dy P[ 2 =z for some t =0 ] =0 .o

As a second consequence of Theorem 1, we get the skew-product represent-

ation of planar Brownlian mction.

Theorem 3 : Suppose theat z, ® 0, and write z, ¥ exp(r + 18} , with r e R
and B = arg(z) ¢ (-m,al . There exist two independent linear Brownian motions

B, ¥ , started respectively at r, 8 , such that, for every t 2 0,
Z = exp( BH + 1 Ty )
t t
where t u

Ht=I d52=inf{u20,‘[ exp(28 ) dv > t } .
0 1Z | ] v
s

Remark. Corollary 2 shows that Ht is well-defined for any t = O .
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Proef : The "natural" method would be to apply Theorem 1 to ¢(z) = Log z ,
that is to some determination of the complex logarithm. This appreoach however
leads to certain minor technical difficulties (due to the fact that one cannot
take U =€ \ {0} t ). Therefore we will use another method, similar to the
proof of Coreollary 2.

We may assume that z, = 1 and thus r =68 =0 . Let T = F: + 1rf be
a complex Brownian motlon started at 0O . By Theorem 1,
(1) exp rt = th y
h
waere t

C = I exp(2 ?1) dg
t 0 3

Let (Ht, t 2 0) be the inverse function of Ct :
= 5
H = I exp(-2 Fé ) du = I du 3
® 0 - 01z

1 , =
since expl FH ) o= IZuI . By (1) with t = Hs,

N 1 2
2B = exp( FH + 1 FH

This is the desired result, with g = r , T = ré ,» eXcept that we have

replaced Z by 2Z'
To complete the preoof, we argue as follows. Theorem 1 is equivalent to
saying that, if

B, = ( log 12] ) i ,
inf{ s ; fz 12,17 du > ¢ }

v, = (arg 2 )

tnf{ s ; S 1217 au>t} '
then B , ¥ are two independent linear Brownlan motions. Observe that §B, 7
are deterministic functions of the process Z . Therefore thelr jeint
distribution depends only on that of Z . p

Ancther appreoach to Theorem 3, avoiding the use of Theorem I, would be to

check that:
t zZ' dz! + 2% o v oz az® - 2% a2t
log 12| =r + J s 8 & = LS S .

£

, arg 2t = g + J
¢ IZEI

2 2

0 12 |

5
apd then to use the same argument as in the proof of Theorem 1 in order to
write log IZtI , arg Zt ag time-changed independent linear Brownlan motions.

Notice the intultive contentzs of Thecrem 3 . When Iztl ig large, then

Ht increases slowly, so that arg Zt alse varles slowly.
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The formula

logEZti =8 u
inf{fuz0, J exp(Zﬁv) dv > t }
0

shows that |Z2] is completely determined by the linear Brownian motion g
{and conversely). This ig related to the fact that {Z] 1is a Markov process,

namely a two-dimenslonal Bessel process. On the other hand, arg Zt = is a

L

L
linear Brownian motlon time-changed by an independent increasing process. The
independence of 7y and Ht is especially important in applications of the

skew-product representation.

2. Some applications of the skew-product representation.

We start by proving that plamar Brownlan motion iz recurrent.

Theorem 4 : For any open subset U of €,

P[ limsup { 2t e}l =1
Lo

Proof : We may take z, = 1, Us=nDp{0,e) for ¢ € (0,1} . Theorem 3 glves:
toglz | = By
and the obvicus facts: limtew Ht =+ @, liMinfsam ﬁs = -~ m imply
liminf logEZ | = ~-® a.z. n

Lo
From now onh, we asgume z, # 0 , Let (Bt, t 2 §0) be the continuocus

determination of arg Zt such that 60 = arg z, € (~n,=r]

Progosition 5 : With probability 1 ,

limsup 6, =+ o , liminf 8, = -
L t-30

Proof : Simllar to that of Theorem 4 , using now Bt = ?H
t

Remark. We can use the previous results to prove the conformal invariance of
harmonic measure, In a special case that will be used in Chapter V . Let é =
C v {w} dencte the Riemann sphere and et V be a simply connected subset of
C ¢ such that c N V has a nonempty interior. Let D be the open unit disk
of € . The Riemann mapping thecrem yields a one-to-one conformal mapping f
from D onto V . The value of [ at ¢ may be chogen arbitrarily, so that

we can impose f(0) # o . By Fatou's theorem, the radial limits
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e

iim f(rei ; fe™™)

r<i,r<l

]

#

exist for de-a.a. & € [0,2n). We take U=D if weg VvV, U=D\ {f (e)}
iIf € V and we will apply Theorem 1 to ¢ = fIU , With z, = 0 . Notice that

the distribution of Zt is the uniform digtribution e(dZ) over ai (by
U
rotatlonal invariance, and Corollary 2 if o e V).
Let Z' be ancther Brownlan motlon started at zé = F(0) and let IQ =
inf{ t ; Z; g€ V } (r& < o a.s. by Theorem 4). Theorem 1 implles that the

timit

1im £(2)
tor, t
U
exlsts a.s. and is distributed as 2;. . Furthermore, using the skew-product
V'

representation and some well-known properties of linear Brownian motion, 1t 1is
easy to check that this 1imit colncides a.s. with ?(zt ) . We conclude that
U
Fz '@ Z;. . In other weords, the harmenic measure in V relative to z;
u v
is the image of &(df) wunder f .

Theorem 4 and Propesition 5 are stralghtforward applications of the
skew-preduct representation. The idea of these applications is that many
properties of & can be derived by looking at the independent Brownian
motions B, 7 and taklng account of the time-change Ht . Until now, we only
used the simple fact limcam Ht = + w ., For further applications, it is
important tco control the asymptotlc behavior of Ht . We know that Ht has a
simple expression in terms of the Brownian moticon £ . The next lemma relates
the agsymptotic behavior of Ht to that of an even simpler functional of B8 .
This result is a key ingredient in the proof of several asymptotic theorems

for planar Brownian motion.

Lemma 6 : For every A > 0, set:

M =lg  cveon , ™ ointezo, g 21y
|3 A 2 1 |3
AL
Then, 1
A T(§ 108 ©) b obabiiity o
(log £yt ! Lt >
Remark. For every x > 0 , B(A) is a 1linear Brownlan motion started at
Aﬂloglzol . Therefore, Lemma 6 entails in particular that 4 (log t)™° H

converges in distribution towards the hitting time of 1 by a linear Brownlian

motion started at 0O .
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Proof : By scaling, we may assume Izol = 1 , so that 30 = 0 ., To simpiify
notation, we write

let £ >0 and rf’}i = inf{ t =0, ;3,(;") =1+ ¢} . We first prove that:

(2) Pla?n > 1™ | s 0
t 1+€
Lm0
Since
u

Htulnf{uzo..[Dexp(EBdev>t}.

we have
2n(2)
AT
£ H > T::i } o= { I e exp(28 ) dv < t }
0
L [
= { > log } exp[BBv) dv < 1 }
0

(recall that 2x = log t). However,

Az.r(/\) (A

1 148 log A 1 3 (A)

7Y log I exp(sz) dv = =SS 4 oy log JT exp(2a 8, ) dv
0 0

(1)

td}

T log A 1 I 1+8 (1)

= 5 * 5% log exp(2h Bv ] dv
o]

since the processes B(A) are identlcally distributed. We now use the fact

that, for any continuous function f : ﬁ’ —s R, forany t > 0,

t
i% log f exp(2x f(v)) dv ———s sup f(s) .
0 A [0,t]

It follows that
(1)

log 1€ exp(2A B ) dv ———> sup
v {1}
A->to [0, T 1
D 1+2

B =1+¢ , a.s.
s

Y
]t

and thus

2T(A)

i% log j 1+8 exp(2a B(A)) dv Probablility
0

v A

This completes the proof of (2). Exactly the same arguments give:

LA < T | s ©

t 1-2
L0

which completes the proof of Lemma 6. @
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The next theorem, due to Spitzer (1958), gives precise information on the

order of 9t when t 1lg large.

2 B converges in distribultion towards the
log ¢ t

standard symmelric Cauchy distribution. Equivalently, for any x € R,

2 dy
lim P[ —— 8 s x 1 = Ix e T
Loxo tog t "t -~ (1 + yz)

Theorem 7 : A5 t 2> o ,

Proof : For A > 0 , write

79) 5%72 (t = 0) .
ATt
Take A = a(t) = % log t as previously. Then,
e, =T LS 7(2
t A H
t
Hence, by Lemma 6,
Alg - w(;\)(.r(?\)) Probability .
t 1
A0
To complete the proof, note that the variable r(h)(TEA)) obviously converges

(o0}

T(m)(Tfm)) where Tim) = inf{ t =z O , 31 w 1},

in distribution towards

and B(w)' 7(m)

are two independent linear Brownian motions started at 0 . It
(m)(Tfm)) and to check

that it iz that of a standard symmetric Cauchy distribution (an alternative

is easy to compute the characteristic function of

method 1 to observe that the process (y(m)(Tim)), a = 0) ig a symmetric
Lévy process, stable with index 1 , hence must be a symmetric Cauchy process:

this iy Spitzer’s construction of the Cauchy process). o

Lemma 6 can be applled to the proof of other asymptotic theorems for
planar Brownlan motion. Let us mention the following result of Kalllanpur and
Robbins, which vields information on the time spent by the Brownian path in
domaing of the plane. Let f : £ ——s R‘ be a bounded measurable function

with compact support. Then,

2

t
J f(Z ) ds _%5L¢ [% J £y dyJ g
leg ¢ Y0 & e
where ¢ denotes an exponential variable with parameter 1 . When f is
radial, that ig flz) = f(|zl), Lemma & ylelds a simple proof of this
convergence. Dencte by L:{ﬂ) the local time of the Brownian motion £ at

level a , at time t . Then,
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t t
(2 dg = d
JO ') < IO f(exp ﬁH ) ds

3

2

Pl >

log t

t
Jﬁ flexp B“) exp ZBu du

Pl >

-2

H
J)‘ ' flexp A 3(:)) exp(2x a(i)) dv
0

]
>

LY I flexp Aa) exp(2ra) L2 (E(A)) da
R A%,

© Aﬁilog r

= I r f{r) L (B(A)) dr
0

A Ht

]

A 0

by Lemma 6. To complete the proof, note that L

r £ ar| 10 L)
T(m)
1

0
Ti"’)
general case (f nonh radlal) can theh be handled using the Chacon-Ornstein

8™y 2 2 ¢ . The

ergodlc theorem.

Via a scaling argument, we can use Theorem 7 to get information about the
behavier of the process Z in small time. Suppose now that z, ™ o . Of
course we can no longer define e, . However, by Corcllary 2 and the Markov
property, we know that 2L * (0 for every t > 0, a.s. Hence, for every e>0 ,
we may conslider s[c,ll , defined as the variation of (a continuous
determination of) arg 2t between times £ and 1 . By scaling,

e, 1) o 10
Therefore, Theorem 7 and the Markov property imply the convergence in
distribution of 2llog elw1 9[8'1] towards a standard Cauchy distribution. An
application of the zero-one law also glves, a.g. for any & > 0,

limsup 8
-0}

® + o , llminf s
230}

Informally, on any interval [0,8], the Brownian path performs an infinite

le,5] le,8] © 7

number of windings around 1ts starting pelnt.

3. The Hausdorff dimension of the Brownian curve.

In this section, which 1s independent of the previcus two ones, we

propose to compute the Hausdorff dimension of the Brownian path. We have
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already noticed that the Lebezsgue measure of the path is zero a.s. Nonetheless
we will check that its Hausdorff dimemnsion is 2 , which shows that in a sense
the Brownian path is not far from having positive Lebesgue measure (see Lévy
[Lé4, p. 242-243] for comments about the area of the planar Brownian curve).
We first recall the definitions of Hausdorff measure and Hausderff

dimension. Let h be a continucus monotone increasing function from R* into
d

E’ . For any Borel =ubset A of R , the Hausdorff measure h-m(A) is
defined by:
h-m(A) = lim [ inf ] bldtam R) ]
30 {Ri}E?e(A} i
e>{

where diam{R’} denctes the diameter of the set R! , and, for e > Q¢ , Re{A)
is the collection of all countable coverings of A by subsets of rR® of
dlameter less than ¢ ., Notice that the 1limit exiwtis in [CG,»} since the
infimum is a nonincreaging function of ¢ .

In what follows, we only congider functions h such that h(2x} s C hix)
for some tonstant € , and we are interested in knowing whether h-m(A) > O ,
or h-m(A} < w . To thig end, we may restrict our attention te coverings by
balls, or cubes, or reectangies (notice for ingtance that any bounded subset R
of R is contained in a ball of diameter 2 diam R }.

& It can be proved that

For any a > 0 , we set ha(X) = x
hd—m{A) = Cé mlA)

for some universal constant Cd >0 . It is alsec easy to check that, for any
Borel subset A of R, there exists a number dim A € [0,d} such that:

h&~m(A} =

+ @ if o < dim A
o if o > dim A

The number dim A is the Hausdorff dimension of A . If A = U An , We have
nelN

dim A = sup dinm An
n

Theorem 8. With probability 1, for every t > 0,

dim( { Z_ ; Ossst } ) =2 .

dim({Zs;Ossst}) =2 -8 ,
for any & > 0 . We introduce the random measure

£
alA) = '[0 1,(2) ds
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Fix & > 0 . We will prove that, w.p. 1 , there exists a constant p(e) > 0
such that, for any subset A of € with diam A < plw) ,

(3) a(A) = 16 (diam A )58 .

Then, if (Rl) g a countable covering of { 2s ; Os=s=t } by sets of
diameter less than pl{w) , we have

2=8 1 1 o1
Z (diam R ) 5z Z pR) 2 o= pl{ 2 ; Ossst }) = gz ¢ .

Therefore, h, _~m({ 2s ; Dssst }) > 0 and dim({ 2s ; D=s=¢ }) = 2-8 .,

2~3
It remains to prove (3). Suppose first that A 1s a square of the type

A = [u,u+r] x [v,v+r] . For every integer p = 1t , we evaluate
t
E[p(A)P] = E[U 1 (z)ds]p] = E[I de ...ds  1,(Z ) ... 1,0z ) ]
o A s [0,t]F 1 rp A 8, A Sp
= pt . .
p! I dyl...dyp j d51"'d5p P, (zo.yi)pS g (yl.yz).,.ps s (y;ﬁl,yp)
AP 1 2 1 p p-1

Osg =, ..=g 5t
i P

t P
% pt [ sup J dy I dsg ps(z.y) ]
zel YA [

At thls pelnt, we use the easy bound:

t
J ds ps(z.y) = C [ 1+ log, ! ] e—lz—yl
a lz-yl

and after integration over A we get
Elp(A)P] s pt P p(m(a))

where ¢(x) = x (1 + log¢1/x). It follows that, for A > 0 small enough, for

any square A ,
1(A)
E[expk@mA}] = 2,

Then, by the Tcheblcheff inequallty, for every r > 0,
(4) Pl p(A) 2 r p(m(A)) ] 5 2 exp ~Ar .

The proof of (3) is now easlly completed. Denote by A(m,j,k) the dyadic
square [J27, (J+1)27°] x [k, (k+1)2"]. By (4) ,
2n 22n

) } PLatam, gk = p(2-8)n

] € «

Therefore, by the Borel-Cantelli lemma, we may w.p. 1 find no(w) such that:

a(An, §,x)) = 2~ (28
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for every n z no(w) L d, ke {~2an.n,22”} . The bound (3) now follows: use
the fact that any set A such that diam A < 172 1is contained in the union
of 4 dyadic squares A(nm,j,k) , with n such that diam A = 2™ = 2 diam A .o

The previous proof is certainly not the shortest one (in particular, the
connection between Hausdorff measures and capacities can be used to give a
very short proof). It lg however interesting as 1t serves as a prototype for
the evaluation of the Hausdorff dimension of random sets. The upper bound is
usually easy (here it was trivial) because 1t suffices to construct good
coverings. The lower bound requires the introducticn of an auxiliary measure
(a "local time”) which is in a sense uniformly distributed over the random
sey. See Chapter IV for an application of this technigue to cone points and
[L9] for an application to multiple points of the Brownian path. In the latter
case, the auxiliary measure is provided by the intersection 1local time
introduced in Chapter VIII.

Bibliographical notes. The conformal invariance of Brownian paths was stated

by Lévy (see [Lé4, p. 254]), with a heuristic proof. 4 (succinct) proof using
stochastic calculus was provided by McKean [MK, p. 109] (see alsc [IMK, p.
279-280] for a different approach). Several results related to Theorem 1, and
& detailed proof of the needed argumenis of stochastic calculus, may be found
in Getoor and Sharpe [GS] (see also the Chapter 5 of Revuz and Yor [ReY]).
Applications of Theorem 1 io complex analysis are given in Davis [Dal and
Durrett [Du2]. Corollary 2 and Theorem 4 are due to Lévy (Lévy's proof of
Corollary 2 is elementary, it uses only the scaling properties of Brownian
motion, see [Lé4, p. 240-241]). The skew-product representation is stated in
Ité and McKean [IMK, p. 265] , in the more general seiting of d-dimensional
Brownian motion., Theorem 7 was first proved by Spitzer [Spll, using explicit
caleculations of the Fourier iransform of 6t . The basic idea of our proof is
due to Durrett [Dull (see also Pitman and Yor [PYl) and Le Gall and Yor [LY],
the latter paper dealing with diffusions more general than Brownian motion).
See [KR] for the original proof of the Kallianpur-Robbins law. Pitman and Yor
[PYL1,PY3] (see alsc the Chapter 13 of [ReY]) have obtained limit theorems
which extend Spitzer’'s result and the Kallianpur-Robbins law in many respects.
A typical example is the determination of the asymptotic joint distribution of
the winding numbers around several points of the plane [PYll. Theorem & lis
only a weak form of Taylor's resull on the exacl Hausdorff ieasure of the
sample path of planar Brownian metion [Ti] . See Lévy [Lé2] and Ciesielski and
Taylor {CT] for the analogous theorem In higher dimensions, and [Ll] for a
unified appreoach to these results.
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CHAPTER III

Two~zided cone polnts and the convex hull of planar Brownian motion.

1. The definition of cone points,

We consider a standard complex-valued Erownlan motion (Bt,t z 0)
, With
probability 1, the curve (Bus .0 < g 5 1) performs an infinite number of

windings arcund the polnt Bt. The same is true for the curve (Bhs,0< S5 Lt}

started at 0. As was noticed in Chapter II, for every fixed t > 0

These results hold for any fixed t with probability 1. It is matural to ask
whether there can be excepticnal times (depending on w) for which these
propertles fail te hold. A simple gecmetrlc argument shows that there must
exist such times. Write

B =B +1 B

t t t
and set :

T=1inf{t =0 ; B = sup B}
Y psger G

It is very easy to see that 0 < T <1 a.s. Furthermore the definition of T
shows that both curves (BT_E.O =5 5 T) and (BTW,O < s 5 1-T) 1lie in the

hyperplane {X = B;}‘ Therefore the previous properties cannot heold for t = T.

Fig. 1
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Definition : Let o ¢ (0,2r) and t > 0. We say that Bt is a two-sided cone
point with angle a If there exist & > 0 and a closed wedge wa with
veriex Bt and angle o, such that the two curves (Bbm,o < s = &) and
(va‘o < 8 % 3} lie inside the wedge L We say that Bt is a one-sided
cone point with angle o if the same property holds for one of the two curves
(Bt+s.0 = s = §), (Bt_s.o %53 8)

The point Er constructed above is with probablility 1 a two-sided cone
peint with angle =n. One may ask whether there exlist two-slded cone peoints
with angle less than . We shall see that the answer is no and that thls fact
is closely related to the non-existence of "corners” on the boundary of the
conveX hull of (B',O % 5 % 1), One-slded cone peints will be studled in the
next chapter.

2. Estimates for two-sided cone points.

As we have already observed, for any fixed t > 0, B, is w.p. 1 not a
cone polnt. It will therefore be convenient to introduce a weaker notion of
“"approximate cone peoint”. Fix A > 0 and let =z e © N\ {0}, Write the skew-
product decompositlon of the Brownian motion z - Bt :

z-B = Rt exp( i 8,) (9o = argl(z) € (~m ; wnl).
Set :
Te(Z) # inf{s # 0 ; R_= ¢},

§,(z) = inf{s = T _(z) ; R = A}.

For e < |z|, we say that z 1s an c~approximate (two-sided) cone point with
angle o If :

o
Vs=s(z), |e| =5,
Nete that we do not regquire 2z to belong to the Brownlan curve. We will
discuss later the connection between cone peints and approximate cone points.
Notice that z is an c-approximate cone point iff the curve (B .0 5 g = Se(z)}
s

ties inside the wedge {z - r e'?’ ; r =z 0, |7] = %}.

We will now get upper bounds on the probablility that z ig an
¢-approximate cone poiﬁt; Clearly, the only non~trivial case is when 90 =
arg(z) e (—%,%), which we assume now. The basic Idea ls to split the interval
(0. s.(2)] as [0, Tc(Z)} v [Té(z]. Sc(z)] and to bound separately the
corresponding probablilities, making use of the Markov property at time Tg(zL
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The skew-product representation gives us

log Rt = Bn
t t

4

where Ht = j R;z dg and B,y are two imdependent linear Brownlan motions,
0

with BO = loglzl and 7, = arg(z) . Clearly,

Hrs(z) = inf{u, Bu = log £} =: wlog e
Therefore,

{¥s =T z), |85| sHY=(vusc

.
2 ’ Ez‘ut 55}

log €

The probability of the last event iz easy to estimate. We note that vlogs

and ¥y are independent and we make use of the following classical lemma.

Lemma 1 : Let (Wt,t = 0) be a standard linear Brownian motion started at O,

and let a < 0 < b. Then for every t > 0 ,

] 2. 2
4 (2k+1)ab (2k+1)%n
Plvs = t, a=s=W =bl= } sin [w-:u———] exp - ———— t.
s (oo (ZKFTIm b-a 2(b-a)2
Proof : (see e.g. Feller (1971}, p. 342) The function
p(t.x) = Pl¥s s t, asx+W =b]
solvesg g% = %—A@ in (0,w) x (a,b), with Dirichlet boundary conditions and
initial wvalue 1. This equation 1is sclved by the usual eigenfunction

expansion. o

It follows that
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14
PIV U 2 0 0o 17,05 31

" 2. 2z
4 o fi2ketin{as2-arg(z)) _ (Zk+1)7n
kEU (2k+1Vn j“n[ [ ] ﬁ[exp 2e® “log c]
. E 4 4 (2k+1)m(a2-arg(z))f ¢ J(2k+1)n/a
" oo ZKFDE sin w T=[ :

uging the well-known formula for the Laplace transform of hitting times of

points for linear Brownian motlon:
1 =exp - Irl¥ 2a .

In this chapter, we will only need the following simple consequence of the

Elexp ~ A ¢r+log|z|

previous explicit formula. There exists a constant C, independent of 2z e €,
e &(0,1), such that :

(1) P[v s 5T (2), |o| = g] = c eV

Formula (1) is trivial when [z} = 2¢ and follows from the previocus expansion
when |z| > 2=z.

Let (%;) be the canonical filtration of B. Our next geal is to bound
P[V s e [T (2),8_(2)], |e | = I ?Te(z)],

The Markev property at time Te(Z) leads us to consider a Brownian metion

MR

started at some point of D{z,e) := {y,|z-y| =% ¢}, and to bound the probabil-
ity that it exits D{z,A) before exiting the wedge {2~relu ;r=0,|u] o= %}.
However the previous calculations apply as well to this situation. Therefore

we get the bound :

. « R
(2) Plv s e (r,) s 0 Je | #§ 1 y%‘z}] s ¢ ("
Let ez'A denote the set of all e-approximate two-gided cone points with

angle . The next lemma follows readlly from (1) and (2).

Lemma 2 : There exists a constant Ca such that ;

-/ czu/a

lzlwn/a A

o, A
Plz e ec ] = C“

As a simple consequence of Lemma 2, we get that for any compact subset K

of €~ {C}, for ¢ € (0,1),

=3 1740 8

a, AL o, A v
Eln(x n &}° %)) = J'K azPlz e 63 s ¢C , e
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go that, by Fatou's lemma,

(3) in iof € 27 m(K n 657 < w, a.s.

e 30

This fact will be the main ingredient in the proef of the following thecrem.

Theorem 3 : Let ra denote the set of all two-sided cone points with angle a.
Then, with probability 1,

(i) if o € (C,m), r,=2;

(11) if a € [n2m), dinT =2- 28
{(dim i*a denotes the Hausdorff dimension of Fa).

Remark : In case (i1), 1t can in fact be proved that dim Td =2 - %E {see

Evans [Evii}.

Proof : We set

8“'A= n aa,A
>0
and
o = U %A
A>D

It is easy to check that z € & uf z= Bt for seme t > 0 , and, for some

8 >0, the curves (B,,0 =s =1t), (B _,0=s =35) lle inside the wedge
iu

«
Wa(z) ={y=z-re ;rezo, |ul = i}'

In particular, 6% is contained in TI°.

Fig. 3
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Consider first the case « € (0,n). We make use of the following simple

cbservation. Fix A > 0, then for ¢ small, if z & Ba’A , any peint y of
the form y = z + re'® with 0 = r = ¢, |u] < 5 belongs to Bz'A/Z

5 (see
fig. 3).

It follows that for any compact subset X of €\ {0},

o, AS2

2
(4) m(ec

nKlzc £ 1
[ o« (a“'Anxga)

for some €y > 0 (here Kt denotes the ¢-nelighborhood of K). Since 2n/a > 2,
(3) and (4) glve

o, A

) nK=8g , a.s.

Since this is true for any A > 0 and any compact subget K we conclude that

Tt is then quite easy Lo show also that r“ = ¢ a.s. Firgt observe that
we may replace B by any of the Brownian motlons Bip] = Bp+t - Bp , for all
rational p. Then choose o« € (a,n) and notice that we may find a finite
number of wedges with vertex 0 and angle &' sUch that any wedge with vertex
0 and angle & is contained in one of these. From the fact that Qa, =@
a.s. and the rctaticnal lnvariance of Brownian mcotion it is easy to deduce
that T =@  a.s.

We now turn to the case o > n (we may forget about the case « = m). It

will be enough te show that for any A > 0O,

o, A <

dinm © - 2n

[+

2

Indeed the previous arguments then show that, for any o > «, ra is centained
£

in a countable unicn of sets of the type a* ’A, hence has dimension less than

2~ 2m/u’ .
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Let K be a compact subset of € \ {0}. For every n z 1 , denote by En
the collection of all squares Q] Rt 27, (1+1)27) x [§ 27, (41027 for
i.J € Z. Let

No= L 1
" o6 (@nkae™h o)

WA

be the number of sguares in En that intersect K n @™'". We observe that for

n large, for every square QTJ which intersects Ba’A we may find a
subset of Q?+1 s of meagure larger than ca2“2n‘ which is contained in
gt A2 (here Ca is some positive constant depending on « ). See [ig. 4.

g-27"

This shows that

(5) c, 2% N = n( BA2 0k ).
n g.27" 4.2™"
Then (3} and (5) limply :
lim tnf 222 v o, as
n-> w »

From the definition of Hausdorff measures we ccnclude that

dim(ea’A nkK)s= %E ,  a.s. [s]

3. Applicatloen to the convex hull of planar Brownlian motion.

Let H be a compact convex subset of €. We say that H has a corner at

ze s if H 1is contained in a wedge with vertex z and opening « < m.

Theorem 4 : Let L > G. With probability 1, the corwvex hull of {BS.O = 5 = t}

has no corners.

Proof : Denote by Ht the convex hull of {Bs,ﬁ = 5 = t}. Spitzer’s theorem
implies that w.p. 1, Bo and Bt belong to the interior of Ht. Suppose that
Ht has a corner at z. It is then clear that 2z must belong to {BS.D =5 = t),
and therefore z = Bs for some s € (C,%t). But then =z would be a two-sided

cone point with angle « < m, which contradicts Theorem 3. o

Repark : We will see in the next chapter that, at certain excepticnal times

t, the convex hull of (B ,0 s 5 s t} will have a corner at 2z = Bt. This
5

fact is closely related to the existence of one-sided cone peints with angle

a < m.
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As a consequence of Theorem 4 we get that the boundary of the convex hull
of {B‘,O = s % t}, parametrized by the argument, is with probablility one a

¢'~curve. We also get the following result.

Theorem S : With probability one, the convex hull of {Bs,G % 8 =t} has no

isolated extreme points, and the set of all extreme poinits has dimension O.

Proof : Let H be as above. It is easy to check that any extreme point of
Ht must belong to {BE,D = s =t} (this is true for the convex hull of any
continuous curve). It follows that the szet of extreme points is contained in
the set of two-sided cone pelnts with angle n, hence has dimension O by
Theorem 3. Finally, If z = Bs 1s an isolated extreme point, the set Ht must,
alsc be the convex hull of {2z} v (Hu N D(2,8)) for some & > 0 (use the
Krein - Milman theorem). However this Impllies that Ht has a corner at =z
(otherwise 2z would not be extremal) and so the desired result follows from

Theorem 4. O

4. The flrst intersectlon of a line with the Brownian path.

For any v € R let Dy be the horizontal line Dy = {x + 1y ; x € R}.
Fix t > ¢ and set B[C,t] = {Bs,e =g %t} , and

®(y) = sup{x ; % + iy e B[O, t]}

(by convention sup @ = -w).

x(y) + iy

Fig. 5

If we imagine a particle coming from infinity along the line Dy . the point
x{y) + iy 1is the first hitting point of the Brownian path by thls particle.
One might expect this peint to be a two-slded cone point. The next resuit

shows that this is usually not the case.

Theorem & : With probability one, for dy-almost all y € R, either x(y) = -
or, for any 8 > 0

{x{y) + iy + r et r> o, lul < 8} n B(O,t] = & .
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Proof : Thecrem 3 shows that for every 8 > 0

dim I' <1, a.s.
2m-

B
Let p denote the projection plx + 1ly) = y. It follows that

dim p(T

< .G,
2n-e) 1, as

and so
m(p(?zn_e)) =3, a.s.,

where m denctes Lebesgue measure on R . Taking a sequence (en) decreasing
to 0, we get

m| U p(rzn_s)] =0, a.s.

a>0
which gives the statement of Theorem 6. D
Remark : The previous proof shows that a statement analogous to Theorem &

holds simultaneously for all directions, for (almost) all lines of the chosen
direction.

The result of Theorem 6 can be stated in a slightly different form as
follows. With probability one, for any 6 > O

la

{x(0) + re” ; r >0, |u| < 8} n Blo,t] * o

To check that this property holds, apply the Markov property at time & > O
small, and use the fact that the law of B; is abscliutely continuous w.r.t.
Lebesgue measure.

Biblicgraphical noles. The non-existence of angular poinis on the convex hull

of planar Brownian motion was already stated in Lévy [Léd4, p. 239-240], but
without a convincing proof. Detailed proofs were given by Adelman [All, E!
Bachir [EB] and more recently by Cranston, Hsu and March [CHM]. The latter
paper also discusses the smuothness of the boundary of the convex hull.
Further results in this direction have been obtained by Burdzy and San Martin
[BSM]. The approach taken here is inspired from [L7], although this paper
deals with one~sided cone points. Theorem 5 is from Evans [Evl], who has also
obtained precise estimates on the Hausdorff dimension of cone points (Theorem
3 is only a very weak form of Evans’ resulils). Finally, Burdzy [B3] contains
many interesting results along the lines of Theorem 6 and Shimura (Sh3] treats

a problem closely related to two-sided cone points with angle = .
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CHAPTER IV

One-sided cone polints and a two-dimensional verslon of Lévy's theorem

on the Brounlan supremum process

1. & local time for one-sided cone points.

In this chapter, B = (Bt,t =z 0} 1is again a standard complex-valued
Brownlian motion started at 0. Let o € (0,n]. We shall be interested in a
special clagss of one-slded cone pointg with angle «. We set

W ={z=r eis

- s rzo, |8 s %}.

Observe that wa ig convex since o 5 m. Set

Ha ={t 20 ; ¥s s t, Bt - BB € Wd}

o
8% =B it eH)

B -W
Fig. &

Notice that O e A“, According to the definitions ¢of the previous chapter any
z € 8% \ {0} 1= a one-sided cone polnt with angle «. This gives only a
rather gpecial class of one-sided cone points. However it is easy to see that
much useful infermation (such as existence or non-existence, Hausdorff measure

propertiesg...) can be derived from the consideration of this szpecial class.

We intend to show that &% (or HJ) ® {0} if « > w/2. To this end, we
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will construct a non-trivial measure supported on A%\ {0}. This measure, the
so-called local time of cone polints, will alsc be extremely useful when
investigating various properties of the cone points. The Ilocal time is
constructed by approximation from the (sultably normalized) Lebesgue measure
on a clags of approximate cone points similar to the one used in Chapter III.

For e > 0 we set

@
Ac ={zeC;: ¥s % Te(z), z - BE € wa}

where T (z) = inf{s ; |BB - z| = e}

Lemma 1 : (i) For z = 0,

1im c—n/a Plz € AZ] = ha(z),
30
where
4 5. RO 74 R
16 e c05(—a) r if 8 € ( ».2),
h{re” ) =
-4
oo
0 if 8 & [-a.n)] \ (- E'i)

The convergence is uniform when =z varies outside a neighborhood of 0.

(ii) There exists a constant Ca such thatl for any =z # O, for any
e e (0,1],

-

-u/
£ P{z € Ag] = C, | z| e,

Proof : Clearly Pz € Az} =0 if z eW . Suppose 2z €W and let (8 ) be
the continuous determination of arg(ZHBs) suych that 8, = arg(z) . In the

previous chapter we have cbtalned the expansion, valid for |z| > e,

Xy -
Plzea]=Fl¥ssT(z), o | 3al
4 (@G - arglD) o ity
= L e 51“[ % ] Tz ’

Both assertions of Lemma 1 are immediate consequences of this formula. o

We shall alsoc need estimates for the probability that two or more glven

peinteg belcong teo Ag,

Lemma 2 : (i) For z,2" € C\ {0}, z = 2’

m  (ee’) U

Plz € 8, , 2’ €4,,]=h(2) h(z'-2) +h (z') b (z-2').
e, 2’0 & x
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(ii) There exists a constant C; such that for any n = 1, Zoooaz distinct
peints of © N\ {0} and €,...4E € (0,11,

24 @x n n

Plz e A’ ,....2_ €A _1=(C)Y ¥ n

g n g * gex 1=t

-

e 4 -2 |
Ze(i)” Zeli-1) :

{(z ...

L3 E:m)
Here £ denotes the set of all permutations of {1,...,n} and for c e X ,

zﬁ[o) = O by convention.

Proof : (1) We may assume that =z ¢ wa , 2~z & wm , or z' € wa , 2=2' & wa,

Indeed, if not the case, Pz A: , 2" € Az,] #ill be zero for e,e

smail
encUgh. Suppose 2z € wa , 2~z € wa. For e,e' small, the conditions 2z & Az .
AN Az, force Te(z) < T?.(z’). Also, If 2z & Aﬁ , we have automatically
B[O,Te(z)} cz~-W < 2 - L (because L is a convex cone !) and it is then
enough to check that B[Te(z).Te.(z’)} ¢z - wm. The desired result follows
from Lemma 1 (1) by using the Markov property at time Tc(z).

Fig. 2

(1i) We only treat the case n = 2. The lidea 1s to deal separately
with the cases Tci(zt) s Tcz(za) and Tel(zz) = ‘I‘el(zl). Suppose first that

|z2 - zl| z 2(:1 + cz). Then the Markov property at time TE (zx) and Lemma 1
H

{i1) give the bound

/4 o 4 |22—zii Bk Lo
P[zie Ae . 28 Ac s Te (zi) % Te (za)] = F‘[z1 € Ae ] Ca[ 5 ] (ca)
1 2 1 2 1
2 ne -/ IS o
s C 2 (|z}||z2 21|) (e e}
@ o
If |z2 - 21| s 2(e, + ) we can directly bound Pl[z e A£1 .z, € AtzL

Supposing for instance E1 = €, we write
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o o -4 ~-nSo M
Plz e Acl v Z,8 Aez} =P[zes ]=C szl €,
n/e -/ n/o
®C 4 (|21||22 le) ( 122)
since in this case |z -~z | s4 e_. -]
2 i 2

Theorem 3 : Suppose o € (m/2,m]. With probability 1 there exisis a (unique)

Radon measure b, on C such that, for any compact subset K of C,

~A/x

1, (K) = L% - lim e m(A: n K.
50

Moreover, for any e,M > O, there exists w.p. 1 a constant Cs M[w] such

that, for any square [u,u+r] x [v,v+r) contained in [-M,M]*,
n

2——g
o

(1) pa([u.u+rl x [v,v+rl]) = Ce w ¥

The measure o is w.p. 1 supported on 8%, Furthermore u“(D{O,s)) > 0 for

any ¢ > 0, a.s,

QA

Ccrcllarz 4 : If a e (n/2,n], 2% 2 {0} a.s. More precisely, dim 2% =2 -

Proof of Corgllary 4 : Let « & (n/2,m]l. Notice that p ({0}) = 0 by (1).
Therefore B, is a non~trivial measure supported on Aa N {0}, which implieg
s * {0},

The upper bound on dim A“ follows from arguments exactly similar to
those used in the proof of Theorem III.3. The key ingredient is now the fact
that

1im inf ¢ V%

m(Ag NK)<w , a.s.
€30

The lower bound follows from (1). Let (Rl) be a covering of A% n [-M,M)?

by squares contained in [—H,le. Then, a.s.,

T
2-—2
D @an®)) ¢ = (S 07 T rR) = (€ 07 p (6% 0 MM
i ’ i *

since My g supported on &%, Using the last assertion of Thecrem 3 we get

that dim 8% 2 2 - E - ¢ a.s. o

Remark : Since &% {B .s € Ha}‘ a result of Kaufman [Ka] implies that
D— B

dim H =1 - & a.s.
o 20
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. IS 74 o N o
Elu, 0 by o (K] =j dz dz' (ee”) V" Plz ¢ &7 ,2" € 65,1
j % 4

Lemma 2 and the dominated convergence thecorem imply that

s:1::1_’0 E[”a.c(m“a.e’ ()] = 2 J dz dz ha(z)ha(z -z)

* Kk

(notice that the function |z]_"/a is locally integrable since « > w/2). It
-3 a o g x

follows that (“oc,e(K))S:)O is Cauchy in L, so that we may set :

- 2
p (K) = L°=lim p (x).
o 50 @x,&

Lemma 2 {i1) and Fatow's lemma give the bound

n
- . -R/ Y, w Il nl(1-n/2a)
E[E, ()] s nt(C)) j dz ...dz_ 1g1|z‘ -z, | = 0t (C7) m(K)

:1

K

(notice that, if m(K) is fixed, [ Iz - y17™% 4z is maximal when K is a
disk centered at y , with radius w2 n(K)¥? ). This bound and the
multidimensional version of the Kolmogorov lemma imply the existence of a
continuous version of the mapping (a,b,c,d) —2 ﬁ“[[a,bl x l¢,d]}  (for asb ,
csd ). Denote by na([a,b] x [e,d]) this continuous version. Obvicusly
pd[[a.b] * [c¢,d]) 1s a nondecreasing functien of [a,bl x [c¢,d] . Standard
measure~-theoretic arguments show that p.a(-) can be extended tc a Radon
measure on €. Furthermore, the monotone class theorem glves “a(K) = “a(K)
a.g. for any compact K.

It remaing to prove (1). The previous bound on the moments of ua(K) and
the arguments of the proof of Thecrem I1-8 give (1) for any dyadic square

contained in [—M,M]z. A simple covering argument completes the proof of (1).

Let us check that B, is a.s. supported on & . Let R be a compact

rectangle with rational coordinates. We have

u“(R] = lim inf pais[R) a.s.
€ >0
Note that A" = [ &7 and that every 47 1is closed. It follows that, on
ex0

{R n 8% = @} we have for ¢ small R n Az = @ %o that B, S(F‘.) = 0 and
u‘x(R) = 0.

Finally a scaling argument glves

Plp, (D(0,1)) > 0] = P[u_(D(0,€)) > O} = P[¥e > O, #,(D(C.e)) > O].

However P[p,a{D(O,l] > 0] >0 since
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E{u, (D(0,1))] = zig E[ud'E(DEO,l))} «-»{ b (2)dz
& bto,1)

by Lemma 1. It is easy to check from the construction of B, that the event
{¥ve > O, ua(D(O,c)) > 0} 1s asymptotic. The 0-1 law then gives the desired

result. o

Remark : For any t & Ha v {0}, the convex hull of {BE,O = & % t} has a
corner at Bg‘ with opening (less than) «. This comes in contrast to the fact
(Theorem I1I-4) that for a fixed t, w.p. 1 the convex hull of {BE.O =g =<t}

has no corners.

2. A stable process embedded in two-dimensional Brownian metion.

At this point, we have proved that, for « > m/2, Aa # {0} so that in
particular there exist ocne-sided cone points with angle «. We will prove in
the next section that Aa = {0} for a = g . In the present section we will
use the local time constructed in Theorem 3 to get certain interesting
probabllistic properties of the sets Aa and Ha'

Let (?t) denote the canonical filtration ¢f B. A random closed subset

H of m+ is called (%;)wregenerative if 6e# and:

(1) vt =z 0, {(s,0) ; 8 = t, s € H(w)} is B{O bl © ?t measurable
(3[0 t] denotes the Borel o-fleld on [0,t])

(ii) For any (@t) stopplng time T such that T e H a.s., the set
{(th)‘,t € H} 1is Independent of ?T and distributed as H.

With every regenerative et H we can asscclate its local time process
(%), deflned up to a multiplicative constant. The process (&) is cadliag, non
decreasing and (?t)—adapted. It is characterized (up to a multiplicative

constant) by the followlng twe properties :

(1) Lo = 0 and lt increases only on H.

(11} For any stopping time T such that T e H a.s., the process EI =

£ =~ L 1is independent of ¥_ and distributed as (L).
T+t T T 3

Theorem 5 : Let o € (E,x}. The set A% is an (?tywegenerative set. Iis

local time may be defined by -

z‘f =k ({B.0 s s = t}).
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Set

Tf = inf{s, £Z >t} < 2.5.

The process (Tt) is a stable subordinator with index 1 - mn/2x. The process
(B[tt)) is a two-dimensional stable process with index 2 - w/w. In particu-
tar, (Bi(Tf)) is a siable subordinator and (BZ(T?]) is a symmetric stable
process. Finally, Ha coincjides with the closure of the range of % and ﬂa

colncides with the closure of the range of B » .

Before proving Theorem 5 let us discuss the limiting case o = w. In this

case it 1s easy to check that

H = {t; 8 = su 5%,
1 3 wst 8
1

t
which by a famous theorem of Lévy is a (one-dimensional) reflecting Brownian

g0 that Hz coincides with the zero set of the process SUP_ oy B; - B,
motion., Therefore, H1I ig distributed as the zero set of a linear Brownlan
motion, which iz the typical example of a regenerative set. Moreover, 8?
(= C SUP_ ¢ B:) is distributed as (C times) the local time process at 0 of
a linear Brownian motion, so that Tt is a stable subordinator with index
/2. Fimaly, B'(r}) = C't (the stable subordinator with index 1 |) and
BZ(Tf) ig a symmetric Cauchy process., The latter fact was first discovered by

Spitzer [Spl] and has been used since by many authors.

In conclusion, when « = m, the different assertions of Thecrem 5 are
well-know facts. It turns out that all of them carry over to the general case
o € (%,n]. It 1z interesting to note that the last assertions of Theorem 5

give a probablilistic description of the random sets H& and A%

Proof of Theorem 5 : Let T be a stopping time such that T € Ha a.s. Let

T
B

denote the Brownlan motion B'Y = B - B (t=zo0)
t T+t T

Fig. 3
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Then B[T) iz Independent of ?T. Moreover, a simple geometric argument shows

that :

H{T)

{(t-T), .t e H )} =H

»

with an obvicus notation. The fact that HcC is an ?t—regenerative set

follows at cnce.

Note that 2? = p&(B[D,tl) increases only on H“. Furthermore, the

construction of B easily gives :

Ty (T}
(

ua(B[G,T+t]) = ua(B[O,Tl) + uaEB[T,T+t.l) = u‘x(B[G,TI) +p (B [0,T]).

x

Therefore EL:“_~ 8:) is independent of FT and digtributed as [ﬂf)‘ It
follows that (£} 1is a local time for H .

By the general thecory of regenerative sets, (Ta is an # -subordinator
t o
T

t
(this algo follows from the previous arguments) so that (B{'L'(:]) ig also an

F @ -Lévy process. Next, fix A > ¢ and set

T
t
§t-»AB .
LA
Then, for any ¢ > G,
- o
e = Abes v

and after some easy manipulations,

~e FI =0 o
T . , B(t} = A B(T ).
t t/Aa n/a t t/aa'"”“
It follows that T 1s stable with index 1 ~ w/2« and B o T {5 stable
with index 2 - n/a.
Geometric considerations entall that Biora is a subordinator and B et™
is symmetric. Finally, the general theory of regenerative sets chows that Ha

is the closure of the range of . o

3. A two-dimensional version of lévy’s theorem on the Brownian supremum

gPOCBESn

Let X = (Xt,t =z 0) be a standard linear Brownlan motion started at O

and St = sup_, XB. A theorem of Lévy states that the process S - X is a

(one-dimensional) reflecting Brownian motion, i.e. is distributed as |X|. As

we noticed in the previocus section, thiz theorem is closely related to the

gtructure of Hn’ which coincides with the zero set of Sup__, B: - B:. Ve

will now prove that for any o« € (rn/2,w) , H can also be interpreted as the
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zero set of a two-dimensional reflecting Brownian motion in the wedge Ua.
This result 1s related to a two-dimensional version of Lévy's thecrem.

We flrst recall a few basic facts about reflecting Brownian moticn in a
wedge.

W
o
Fig. 4
we set D = {r e i rzo} p = (e’ r=o0) Let 6,0 ¢ (0n),
and
ilas2-0,) “i(w/2-8,)
e1 = £ N 32 = e .

A process £ = (2t ; t 2 0) with valued In W“ is called reflecting Brownian

motion with angles of reflection 91 , 92 if

Z =Y +a e + A% e
t t t o1 vo2
where

Y is a two-dlmensional Brownian motion

. Ai,A2 are two continucus non-decreasing processes adapted to the fil-

tration of Y, and Al (resp. Az) increases only when Zte D1 {resp. Zte DEL

This is not the most general presentation of reflecting Brownian motien
in a wedge. It will however be sufficient to our purposes, Notice that 1t is
far from obvious (and in fact not true) that such a process £ exists for all
values of 81,62. Assuming that Z existg, 1t can be proved that {t, Zt = 0}
contains non-zero times Iff & + 92 > n. To check the sufficiency of this

b

condition, one introduces the function: For r > ¢ , and |6 = /2 ,

91—82 61+92-n
5 ) , where £ = e >0,
An application of Ité's formula shows that w(Zt) ig a local martingale on

the time interval [G,t) , where =t = Inf{ g ; ZE =0 } . The proof can then be

w(reis) = rg sin( €6 +

completed by standard arguments (zee [VW] for detalls).
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If K is a compact subset of €, the intersection of all cones of the
type z - wa that contain X 1is again a cone of the same type, which is the

smallest one that contaings K .

Theorem 6 ; Let o € (G,x). For every t & G, let St be the verlex of the
smallest cone of the type z - W, that contains B[0,t]. The process S - B

is a reflecting Brownian motion in wa with angles of reflection 91 = 92 = .

Fig. 5

Coralllary 7 : Aa # {0} Iff a > n/2.

Proof of Corcllary 7 : Note that H“ is exactly the zerc set of S-B. Then we
may apply the previous criterion observing that 31+ ea= 200 > iff o > w/2.
In fact, we do not need this criterion. The case o > n/2 was treated iIn

Corcllary 4. Then it suffices to check that & 2 ® {0}. However when o = n/2,

/2
Wa s a gquadrant and the directions of reflection are normal. It
follows that St—Bt = iBLI e1“/4 + thf ewiﬁ/4 , where 8, v are two

independent linear Brownian motions. By Corollary 1I-2, {t ; St—BL=0} = {0}. o

Proof of Theorem 6 : Set f. = e'®Z | ¢ = ¢71%2 e nave :

B =U f +V f{_,

t t 1 e "2
where U,V are two (correlated) linear Brownlan motions. It is easy to check
that

S =U £ + Vt f2

>

where Ut = gup U , v o= sup V . Then,

ast ® 314
St - Bt =B Ut fl * V. fz
Now notice that ét increases only when U, = ét that is when S =~ B, € D,
and similariy for Qt . This gives the desired representation with e, = f2,

e =1f , hence 8 = 8§ = qa. [+]
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If we combine Theorem 6 and Theorem S5 we get that, for a certain class of
reflecting Brownian motions in a wedge, the zero set iu exactly the closure of
the range of a stable subordimatcer. This resuit in fact holds in great
generality (see Willlams [Wi3]).

As a by-product of the previcus statements, we get the following result.
Suppose that g, y are two linear Brownlan motions started at O , correlated
in the sense that <3,7>t = p t , for some constant po . If p > 0 , the set
{tzo, ﬁ; = sup, BB and ¥,OTSUp o ¥, }  is non-empty and is distrib-
uted as the range of a stable subordinator. If p = O, this set is empty.

Using the arguments of the proof ¢f Theorem II1.3 it iz easy to deduce
from Corcllary 7 that there are no cne-sided cone points with angle o < n/2.
The problem of the existence of one-sided cone points with angle n/2 remaing

open.

4. More about the first intersectlon of a line with the Brownian path.

At the end of Chapter III we obtalned the following result. For t = O set

x, = xtEO) = sup(B[O,t] n R).

Then, for a fixed t > O, with probablility 1 for any 8 > O,

(2) (x, + WB) n Blo,t] =@
(Wb denctes the interior of HB}
B
t
-
7 n
X, + 5
el R
oV v *
e
e

Fig. &

We will now show that this property faills to hold at certain exceptional times
t : these exceptional timez wlll be such that Bt € R and Bt is a one-
sided cone point with angle « € (m, 2nm).

Fix e« € (0,2m). I1f B8 = 2mr-«, property (2) is equivalent to the fact
that BI[O,t] 1is not contained in L

For any t =z 0 dencte by Rt € R the vertex of the smallest cone of the
type r - W (r € R) that contains B[0,t].
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n - /2

R®

Theorem 8 : The process R = B is a reflecting Brownlan motion in the wedge
E o e t i
L with angles of reflection § = g = w/2 (equivalently e = e 7 1). In

particular, the zero set of R = B coniains non-zero (imes il a > 7.

Observe that if R = B!. = 0 for t > @ then obvisusly x, = R and
t

BiD, t] ¢ X, = Hm , s0 that property {2) does not hoid for B = 21 = a.

Proof of Theorem 8 : The proel is similar (o that of Theorem 6. It is easy Lo

- 1 2 i - c0s8 X
check that Rt s sup__, (B + ;Bsg cotg a/2) where cotg x 8 g - Next

ohsecrve that Rt increases only when
1 2 . ]
B, + |B| cotg w/2 = sup (B, + [E]| cotg as2)
sst
and this condition is cleariy equivalent fo Rt - Bt € Dl u Da.

The last asserticn follows from the general criterion given in Section 3
{when @ 2 ®, the given resulf is equivaleni to the polarity of simple points
for the symmetric Cauchy process : recall Spitzer's consiruction of the Cauchy

process...). [#]

it is again possible to aveid the use of fthe general criterion. One
possibility is to contruet the local time of the sef {t'Rt = B} in a way
similar to what we did in Section 1. The analogues of the sets Ae are Lhen
subsets of R‘ and the key technical ingredient is the fact that the function
|xi'u‘m is locally integrable on B if a > =

Still another methed would be to extend Cerellary 4 to the casc x>
{this can be done but is non-trivial). We get that dim .t\{z >1 i f & > om.

- o .
Then some Hausdor(f measure argumenis show that & = {8} musl intersecl any

fixed horizontal line with positive probability. Finally the zero-one law
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entalls that A% - {0} intersects R w.p. 1.

Bibliographical Notes . One-sided cone poinis with angle less than n were
discovered simultanecusly by Burdzy [Bll and Shimura i{Sh2] (see also [Shl]

for a related work). A very simple proof of their existence has been given by
Adelman {A2]. The approach developed in this chapter follows closely [L71,
with the important simplification that we deal only wilth the case &« < =

This aproach is certainly not the shortest one, but it leads to the local time
of cone points, which plays an Important role In many applications. In
particular, the local time allows one to understand how the process behaves
Just before arriving at a cone point (see [L7] and also [B31 for certain
related results). Sharp results about the Hausdorff measure of cone poinls are
given in Evans [Evll. The construction of the symmetric Cauchy process
recalled in Section 2 was given by Spitzer [S1]. The idea of Theorems 6 and 8
was discovered Independently in El Bachir {EB] and in [L7] . However, Iii seems
that this idea was incorrectly applied in IEB], where the obligque reflection
property of the process S ~ B  was unnoticed. See also Burdzy [B3] for
applications of this idea and for many results related to Theorem 8.
Information about reflected Brownian motion in a wedge may be found in
Varadhan and Williams [VW] and in Williams [Wil], [Wi2]. The fact thalt the
inverse Jocal time at the vertex Is a stable subordinator is proved in great

generality in Willfams [Wi3].
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CHAPTER V

Burdzy's theorem on twist points.

1. Twist points of the planar Brownian motlon.

We consider a standard complex-~valued Brownlan motlon (Bt’ t = Q)
started at 0. We denote by F the unbounded connected component of € \ B[O,1]
(B{O,1] = {Bs. O =xs g % 1}). Then &8F consists of all points of B[0,1] that
can be reached from the "exterior” of BI{0,1] along a continuous curve. In
other words, =2z € B[0,1] 1g in B8F 1iff there existy a comntinuous function ¢ :
[6,1] — € such that :

(1) ¢(s) e F ¥ = e [0,1) ,
(2) @w(l) = 2 .

Let =z € OF . We say that 2z 1g a twist point of 8F if there exists a
continucus function ¢ satisfying (1) and (2] and such that:

limsup argle(s) ~z) = + o ,
s1,8<1

liminf argle(=s) - 2) = - @
@1, u<l

Here and in what follows arg(g(s)-z) denotes a continucus determination of
the argument of g(s) - z . Fig. 1 gives a very crude idea of the shape of

the boundary near a twist point.

N
N T
ZN \ |
QSN
N\
< 3
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It i1s a simple exercise to check that any polnt of &F that is also a
two-sided cone point Is not a twist polint. Two-sided cone pelnts form a dense
subset of O8F (indeed this ig true for two-sided cone points with angle n ).
Nonetheless the next theorem shows that, in a sense, most of the points of &F

are twist points.

Theorem 1 : With probability 1, in the sense of harmonic measure almos! all

poeints of 8F are twist points.

We can rephrase Thecorem 1 as follows. Let B’ be ancther complex

Brownlian motion, Independent of B and started at zl #* 0 . Let
T=inf{ t = 0, B € B{0,11 }.
Then the point B% iz w.p. 1 a twist point of &F.
The proof of Theorem 1 uses the following three ingredients.
{a) A theorem of McMillan in complex analysis.

(b) Certaln estimates on harmcnic measure.

(c) The bounds on the Hausdorff dimension of two-sided cone points
derived in Chapter III.

2. Some resulis in complex analysis.

It will be convenlent to work on the Rlemann sphere t=¢u { @ }. Then,
F:=Fu { o } 1s a sgimply connected open subset of ¢ . By the Riemann
mapping thecrem, we may find a one-to-cne analytic mapping f from the
open unit disk D onto F. By Fatou's theorem, for de a.a. 8 & [0,2rn], the
radial limit

1im f(reie)
r-l
r<1

exists, This limit 1s simply denoted by f(eie) .

In our situation, € \ F 1% locally connected and it can be shown (see
Pommerenke {Po,Chapter IX]) that the radial limit exists for every 8 ¢ {0,2n),
and that the extended mapping f : D — F U 8F iz contlnucus and onto. Notlce
that this extended mapping needs not be one-to-one (in fact, im the present

setting, f will net be one-to-ome : 1t canm be shown that is

T
|8k
one-to-one iff &8F has no cut points, and two-dimensional Brownian paths do

have cut peints, as was recently shown by Burdzy).
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For any & € 80 and r € (0,1), we define the Stolz angle S({,r) as
the interior of the convex hull of {&} U D(0,r) . We say that f has angular
derivative w at § if, for any r € (0,1)

tm f£lz) - £(L) o
z2 3L z ¢
z € S(Z,r)

—

~ ~
/ N £

Fig. 2

Finally, we say that { € 8D 1is an f~twist point 1f arg(f(z) -f(g)) lis
unbounded above and below along every curve Im D ending at & . Clearly, if

f hag a nonzerc angular derlvative at £ , £ cannot be an f~twist peint.

The following theorem due to McMillan {MM] plays a basic role in the
proof of Theorem 1.

Theorem. For a.a. { € 8D , either f has a non-zero angular derivative at ¢
or ¢ is an f-twist point.

Let us turn to the proof of Theorem 1 , using McMillan's theorem. We
denote by T, the set of all f-twist points and by Af the set of all
points ¢ € 8D such that f has a non-zero angular derlvative at ¢ . We

alse dencte by TBF the set of all twist points of &8F . We observe that:

-1
f(ar N\ Ta Yo (8D Tf )

F
Indeed, let ¢ € 8D be such that f(g) 1is not a twist point of &F . Then,
for any curve (g¢(t), 0 =t < 1) in D endingat & ., (fle(t)), 0 =t < 1)
is a curve in F ending at f(&) , so that arg(f(p(t)) - (L)) must be
bounded above or below.

Using the conformal invariance of harmonic measure (see Section II-2), it
ig then enough to check that 48D \ 'i‘r hag Lebesgue measure 0 . However,
McMillan’s theorem states that &0 \ (Tr U Af] has measure zero. To complete

the proof, 1t sufflces to prove that Af has measure 0 , or, by the
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confermal lnvariance of harmonic measure agaln, that f(Af) iy contained in a

zet of harmonic measure zero. We need the following elementary lemma.

Lemma 2 :Suppose that =z = f({) for some ¢ € Af, Then, for any a < n ,
there exist € > 0 and an open wedge “a with vertex z and angle « such
that (wa n D(z,e)) ¢ F.

Fig. 3

Proof: Fix r € (0,1) and denote by Fi u FZ u l"3 the boundary of the Stolz
angle S(L,r) , as on Flgure 3 . Then f(S(L,r)) is a g¢imply connected subset
of F with boundary f[ril u f[le u f(ral. The fact that f has a non-zero

angular derivative at ¢ implies that f(S(L,r)) contains D(z.cr) I} wa for
r
some £ > 0 and some open wedge “a with vertex z and angle « - Moreover
F
by choeslng r close to one, we can get o as cloge to m as desired. o

It follows from Lemma 2 that f(Af) is contained in the set of two-sided
cone peints with angle B of the Brownlan path B , for any B < n . The
results of Chapter III give

dim f(Af) = 0.

To complete the proof of Theorem 1, it suffices to prove that, for any
subset H of 8F such that dim H = 0 , the harmonic measure of H is zero.
Thls follows from Makarov's theorem, which states (in particular) that the
harmonic measure of H 1is 0 as soon as dim H < 1 , Clearly ., we do not need
the full strength of Makarov's thecorem. In the next sectlon, we wlll give a
probabilistic proof of a much weaker statement, which nonetheless suffices to

complete the proof of Thecrem 1
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3. An estlimate for harmonic measure

[ 21

The results of this section apply te any simply connected open set F c

such that € \ F contains more than one point. We fix z, € Fand we let

H

B, be the assoclated harmonic measure on &F . In preobabilistic terms

o
ui{Aa) = FZGEST € Al
where T = inf { t 20 , B e¢F P

Propozition 3: There exisis « > 0 such that p(H) = 0 as soon as dim H < a.

Proof : Without logs of generality we may assume that w e F, = > d{zD,BF) > 1

and diem {8F) > 2 . Let =z € 8F. We write P for ?z and we first loock for

a bound on :
P18T € D(z,e}]
Set
T, =T (2)=inf { t=0; |B ~z| s¢}
and

L z} = 1}

We claim that, on { BT € D(z,e)} , z belongs toe the unbounded component of
[N B[L1’Tc}‘ Indeed, if this were not the case, the component of 2z would be
contalined in D{z,1) , and =0 would be the conhected set € N F (which is
contained in € \ B[LYTEI on { BT e D(z,e)}). This gives a contradiction
since we have assumed diam(3F) > 2.

For every integer m 2= i, set

T =inf{t=0; |B ~z] =2 ™}
{m) t

- e . - P —m+1
L(w} = gup{ t < T{m) : EBL z| 2 }

By the previocus arguments,

m
~m
P{QT e D(z,2 )i = P{kgz Ak}
where

A= { z belongs to the unbounded compoment of € \ B{L(k).T(k)]L

However, the strong Markov property implies that the events Ak , ko= 1,2,
are independent, and a sgcaling argument shows that they have the scame
probability ¢ < 1 (uze the skew-product representation to check that ¢ < 1}.
Therefore,

PlR, € Biz,2™1 = "

and alse for ¢ € {0,1/2),
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PIB, & D(z,e)] = e,

for some constant a > 0.
It ig then easy te check that Proposition 3 holds with « = a, Indeed if
dim H < a we may find a coverlng of H by disks D(zl,ci] with z, € H,
€, € (0,1-2), in such a way that
% (e)® s &

where & is any fixed positive number. Then

a
Pz [BT €eHl = ¥ l:'z {BT € D(zl’ei)] s ¥ (ti) = 3
0 1 o i
and so Pz [BT € Hl = 0, since & was arbitrary. o

Q

Bibliographical notes. Theorem 1 is due to Burdzy [B31 . The idea of this

result was already present, in a heuristic form, in Lévy [L&, p.239] (see
Chapler I). Our proof is somewhat different from Burdzy's orne and perhaps
simpler. The needed results of complex analysis, including the proof of
Mchillan's theorem, may be found in Pommerenke {Pol. Burdzy {B4] proves the
existence of cut points on two-dimensional Brownian paths. Proposition 3 is a
first step towards a probabilistic proof of Makarov's theorem [Mal. K. Burdzy
has pointed out that his recent work with G.F. Lawler [BL1,BL2] allows one to
prove Proposition 3 with g = 1/7° . See also Bishop [Bll for some recent
related work. An interesting problem is to determine the Hausdorff dimension
of ©8F (in the notation of Section }}. Mandelbrot has conjectured that the
dimension of 8F is 4/3 . See Burdzy and lLawler [BL2} for some recent

progress on this problem.
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CHAPTER VI

Asymptotics for the Wiener sausage.

1. The definitlon of the Wiener sausage.

In this chapter, B 1is a Brownlan motion in RY. As usual we make the

convention that B starts from y wunder the probabllity Py , and we write
P for P
Q

Definition : Let K be a compact subsel of md and a, b e R+ . a = b, The
Wiener sausage Sx(a,b] is defined by

SK(a,b) «{yeR ;y-~ B, e K for some s & [a,bl} = U (B, + K)

S Y

B +K - L T

Fig. 1

When K i a closed ball centered at 0 , Sx(a.b) ig a tubular neigh-
borhecod of Bia,bl.

We shall be interested in the following twe problems:
(i) What iz the asymptotic behavior of m(SK(O,t)) as t 5w ?
(1) What is the asymptotic behavior of m(SsK(O,l)) as e » 07
Notice that a scaling transformation gives

m(S, (0,)) (@) 22 g (0,1))

e

so that, up to some extent, questions (1) and (1i) are equivalent.
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Let us briefly discuss question (1). The process m(SK(O,t]) is sub~

additive, meaning that
m(SK(O,t+s)) = m(SK(O.t)) + m(SK(O,s)) @ 8

where 6t is the usual shift on Brownlan paths. Thig property is cobvious since
m(SK(O,s]) ¢ 8, = m(SK(t,t+s)} and SK(O,t+s) = SK(O,t] v SK(t.t+s]. Then
Kingman's subadditive ergodic theorem gives :

1
a.s.,L

! m(SK(O,t)) ey Cx

(1} r
for some constant Cx x 0 If d=z 3, CK can be identified as the Newtonian
capacity of K. However, if d =1 or 2 (d = 2 1is the cnly interesting case)
Cx = 0 for any compact set K ., so that (1) does not give much Information on
the limiting behavicr eof m(SK(O,t))

In this chapter we will put the emphasls on question (ii). Cur approach
is independent of Kingman's theorem and applles as well to any dimension dz2.
Furthermere, 1t may be extended to diffusion procegses more general than
Brownian motion,

For simpliclty we write SCK = Scx(o'l)' Our approach censlgts of two

steps of independent interest:
1. Estimation of the mean value E[m(sex)L
2. Bounds on the fiuctuations of m(SEKL

The proofs make use of certaln results of probabilistic potential thecry that

are recalled in the next section.

2. Potential-theoretic preliminaries.

Let & dencte an exponential time with parameter A > 0, independent of
B. It will be convenlent to work with the process B kllled at time ¢, which
is a symmetric Markov process with Green functlon :

L]
Ga(x,y) = GA(yux) = f ds e
a

AS
ps(x.y]

where ps(x,y) = (2ng)V? exp - |y—x|2/25. It i easily checked that -

- if d =z 3,
(2) G, (x,y)  ~ G (x,y) = Cly-x|"" s
ly=x|0
- if d = 2,
(3) G, (x,y) ~ 1 iog 1
AT . n Ty—=xl -
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Let K be a compact subset of m“. Aggume that K is non-polar and set
'i‘K = Inf{t ; Bt € K} = + .

A baslc formula of probabilistic potential theory gives the hitting probabil-
ity of K for the process B killed at time . For any v € Rd N K,

(4) Py(Tx <L) = I Ga(y,z) ui(dz]
K

where pi iz a finite measure supported on K, the A~equilibrium measure of
K. The total masg of u: i dencted by CA(K) and called the A-capacity of
K. The fact that K 1is non-polar 1s egulvalent to CA(K) > 0 for some (or
for any) A > 0. Finally,

-1
(5) 6,® = (inf [ utay) utaz) 6,(y,2)]
ueP(K)

where P({K) denctes the set of all probability measures supported on K.

The previous results also hold for A =0, i.,e. & = + w , when d z 3J.

The quantity CO(K) iz the Newtonian capacity of K.

We now cobserve that vy e Ssx iff Ty-c; = 1. It will therefore be impor-~

tant tc get information om the distribution functiom of T

y~ek’
Lemma 1 : Suppose that ¥ is non-polar.
(i) If d=z= 3,
C,(eK) ~ %% ¢ ()
50
and, for any y = 0,
. 2-d _
i$ e PIT_ o < €] = C,(K) G,(0,y)
(ii) If d =2,
C,(eX) ~ m (log 1e)
e£30
and for any y = 0
éig (log 1/€) P[Ty-cx <] = mG,(0,y)
(i1i) There exists a constani CA _ such that, for any ¢ € (0,1/2),
y e &%,
(log 178)" if d =2,
PIT, o < &1 %€y G, (0,y/2) x ,
e ifdz 3.



CA(CK) = [ inf
ueP ()

163

-1
I u(dy) p(dz) GA(ey,cz)] .

If d = 3, the desired result follows from (2). If d = 2, (3) gives

1 1
CA(eK) ~ [ﬁ log s inf

a0 peP(K)

To get the other assertions of (1),

Fl

Ty-EK < c] = I

y-ecK

and note that p
y=-ck

Finally (1ii) follows easily from (4) and (i), (ii) when

is trivial if |yl s 2e. o
3. Estimates for E[“(Sexn'

We have

Eln(S_ )] = E[I ay 1

Therefeore we need estlmates for

F[T

-1
u(dy)p(dz) log ﬁ] = & 1o 1+ consty

(11), simply write

A A
GA(O,Z) uy_cx(dz) GA(O,Y) “y-ax(y K}y,

-0

(y-eX) = Ca(y~cx) = CA(sK),

ly| » 22 , and

K(y)] = Idy PIT, o = 1]

= 1] as ¢ -+ 0. However these

y-£K

estimates are easlly derived from Lemma 1. In this section and the next ones,

¥ 1is a non-polar subset of Rd, dz 2

that E{m(SK)] = f dy PETy*cK

Lemma 2 : Let
(i) If d=z 3,

1im 2 P[T

-0

(ii) If d = 2,
e300

Proof :

Denote by wc(ds]

e-30 0

L >0, ye R {0}

y-£K

Let us concentrate on the case d = 2
the law of T
y-£kK

(when X 1is polar, it iz immediate

=1 ] =0, o that m(SK] =0 a.s.).

t
s t] = C(K) I p_(0,y) ds.

0

4

lin (log 1) PIT, S tl=n j p,(0,y) ds.

0

(the cage d =z 3 1g similar).

. Lemma 1 (11) glves

[

A

@
1im {log é) j e 7€(ds] =rG(0,y) =n I e " p_(0,y)ds.

0
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Since this result holds for any A > 0 it follows that the sequence of
measures |log civs(ds) converges weakly towards the measure = pB{G,y)ds. In
particular,

t
15m (log ) v_(10,¢1) = n | p (0,y)ds. o
0 e’ e o s

Theorem 3 : (i) If d 23,

tm ¥ Eln(s_)] = CK)
e300

(11} If d = 2,

1in (log 1) EIM(S,)] = T
£-0
Proof : Consider the case d z 3 (the case d = 2 1is exactly similar). Then

i
. ad _ 2-d . .
tin ¢** Efn(s_)} = 1in ¢ Idy PIT_,, 5 1] j'dy CK) J p_(0,y)ds = C(K).
-0 £-0 o

Note that the use of dominated convergence is justified by Lemma 1 (iii}, the
bound
A
P[Ty—CK 1] =se P[Ty-cx < g

and the fact that the function Gk(o,y/zi i1s integrable over & o

The previcus arguments yleld as well the following slightly stronger
result, Take d 2 3 for instance. Let [ be a bounded Borel function on Rd.
Then

i 1
1im ¢ E{Idy iy} IS {y)]= C(X) de f(y)J ds p {4,y)= C(X) E” ds £(B )].
£30 ek 0 ® 0 &

Remark : The previocus proofs, as well as those of the next section, depend
heavily on the tools of probablilitlic potential theory that we have recailed in
Section 2. When K 18 a ball, say when X 1s the unit bail of Rd. it is
pogssible to give elementary proofs of all the previous results. Note that in
this case

Ty—cx = Tc(y} r= inf{t ; iEt -yl # g}

The idea 1s then to compute the expected time spent In the ball of radius ¢

centered at v, in two different ways. Take d = 2 for definiteness. Then,

c ® -As 2
E{ E(EB -yfﬁc)ds] = ds e dz p;(%,z) 8;0 ne GA(O,y).
9 = 0 | z~y|se
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On the other hand, assuming that Jy] =z e , we have by the Markov property at
time Tc{y),

<

E{Jc 1(588~yise)ds] = PIT_(y) < ] EVC[J

1( iB;y |se )ds] '
0

0

where vy, is such that Eye - y| = e. Easy calculations show that

4
2 1
Ey U Y "ylﬁc)ds] ® J 4z G, ly,.2) e log g
£ s €30
& {z~y|se

and we recover Lemma I (1i) in this special case.
4. Bounds on var(m(S“)).

It turns out that, 1n order to get bounds on var(m(S“)), it is important
to estimate the volume of the intersection of the Wiener sausages
corresponding to two disjoint time intervals. We start with a lemma which
gives bounds on the volume of the intergection of two independent Wiener
sausages. We denote by B’ another Brownian motlen independent of B and

alsc started at O wunder P. The associated Wiener sausage is denoted by S::x'

Lemma 4 : There exisis a constant c¢ = C, ¢ such that, for e e (D,1/2),

+

c (log 17e)"2 if d=2 ,
2
ce if d=3 ,
E[n(Sg, N St':x)alv2 *1 4
ce log l/e if d=4 ,
c gl if d=35

Proof : We have :

V2 L .
EIn(S,, n S,,)°] Iay dzPly eS__ nS,, z€S
= Idy dz Ply € Sex’ z € Sex}

=J-dy dz P[T =1, T

Houwever

= = = N
P[Tr-en S LT, =1 PETy—ex ST ex S *PIT, o < Tyex 1

The Markov property gives the bound
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P{Ty-cx = Tz-c; =1 s E[ {T y-eK 51} EB(T ex [Tz-sx * li
= ¢ s(e)? 1(0.2) 6,(0.5%)
where sle) = (log 1€} 1f d =2, e7° if d = 3. The last bound follows

from Lemma 1(1i1) by dealing separately with the cases |z~y| > 4, |z~y| = 4e.
Then,

Elm(S_, n S, ) ]= Idde[[c s(e)? (G;‘(o,”)ﬁm(o,z Cae SR GA(O.Z)GR(Usyz ))] A 1]

and after some easy calculations we get the desired bounds (note that for dz4,

GA(O,y/Z) is not square-integrable). o

Theorem 5 : There exists a constanlt ¢ = S, e such that, for ¢ € (0,1/2)

c(log 1/e) 2 if d=2,
(var m(sem))“’2 s{ ce® 1log 1/e if d=3,
c et if dz 4.

Proof : Set h(e) = (var m(s_))'"". Crude bounds show that h is bounded
over [0,1]. The bagic idea of the proof iz to get a bound for hig) in
terms of h(evZ). Our starting point 1s the trivial ldentity

n(S,.) = m(S, (0,1/2)) + m(s_ (1/2,1)) - m{S_ (0,1/2) n S_(1/2,1)).

Set B; = B B" = B - B for 0=t s 1/2. Then B', B"

w2t 1R T o 1/2+1 1/2
are two independent Brownian motions started at 0, run on the time interval

[0,1/2]. Furthermore, with an obviocus notation,

n(S,,(0.1/2)) n s“(vz,l)) = m(s;K(0,1/2] n sgx(o,l/z))

and we can apply the bounds of Lemma 4 to the Iatter quantity.
On the other hand, the variablesg m(SEKEU.I/Z)). m(S“(l/z,l)) are in-
dependent and identically distributed, and a scaling argument gives :

(d) ,-as2
m(SsK{O,I/ZJ) = 2 m(SsﬁK),

Then, by the triangle inequality,

e

2
(var m(scx))”zs (2 var m(S_ (0,1/2)))""%+ (var m(s,,(0,1/2) n 5, (172, 10"

so that:
(1-djs2 21/2

hie) s 2 hievZ) + E[m(S], (0,172) A s“ (0 172137}
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It remains to apply the bounds of Lemma 4 and to discusg according to the
value of d.

If d=2, we get :

hie) s 272 n(ev@) + c(log 17e)2

Set kle) = (log l/e)2 h(g). For any p € (24/2,1), for e small, we have
k() = p k(ev2) + c.

This implies that k 1s bounded over (0,1/2).

If 4 =3,

1

hie) = = h(ev2) + ¢ e°.

B

Set k(¢) = ¢™° hle). Then
k(e) = k{evZ) + c,

whlch implies
kie) 5 ¢ log l/e,

The case d z 4 1is similar., o

5. The maln results.

Theorem 6 : If d = 2,

1im (log 1/¢) m(Scx) = ;.
30

If d=3,

tm e m(s_) = C (K).
£330

In both cases, the convergence holds in the L?—norm, and a.5. If K Is

star-shaped, that is if eK c K for ¢ € (0,1),.

Proof : The Lz-convergence is eagsy from Thecrem 3 and Thecrem 5. Simply

(S¢)
i Erar Rl IR

When K 1is star-shaped, n(SeK) is a monotone increasing functiom of

obgerve that :

€. We may therefore use a monotonicity argument to restrilct our attentlon to a
. 2
suitable sequence (ep). For instance, if d = 2, we take sp = exp - p.

Theorems 3 and 5 then imply that :
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=] m(Se K)
v E[[ —F - I]ZJ < @
p=1 E[m(s_ )}
P
which gives
m(Ss 1{)
tim ——P2 =1, a.s. O

P E[n(S, )]
P
The 1imiting behavior of m(SK(O,t.]) as t —» w can be deduced from
Theorem & by the usual scaling transformation . The results are even better

since m(SK(O,t]) ig always a monctone function of t.

Theorem 6" : If d = 2,

11n 198 % (s (0,1)) = 2n.
.4
tm

If d=3,

1
iim T m(SK(O,t)) = Co[K)‘
L

In both cases the convergence holds a.s. and in the L norm.

Remarks : It is Interesting to observe that, when d = 2, the limiting
behavior of m(Sex) as ¢ tends to 0O does not depend om K (provided K
is nen-polar). This fact is closely related to the recurrence properties of
planar Brownian motion. It can be explained as follows. Let H, KX be two
compact subsets of R® such that H c X and H s non—pelar. Then the
conditicnal probabllity of the event {Ty—cn = 1} knowing that {Ty-ex s 1)
tends to 1 =as e tends to 0. This can be checked by applying the Markov
property at time Ty-ex and then usling a sultable scaling argument and the
recurrence of planar Brownian motion.

Theorem 6 is alsc related to the fact that the Hausdorff dimemsion of the
Brownian curve is 2. In particular, for d = 3, the order of magnitude of the
volume of a tubular neighborhood of the Brownlan path is the same as would be
that of a portion of plane. Note that for a C1 curve the volume of a tubular

neighborhood is of order g%t

6. A heat conductlon Eroblem.

The previcus results are closely related to the following heat conduction
problem. Assume that the compact set K Is held at the temperature 1 from
time t = 0 to + w, whereas the surrounding medium R® \ K 15 at the
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temperature 0 at time t = 0. Clearly the temperature in the surrounding
medium will increase, and one is interested in the total enhergy flow in time
t from K to the surrounding medium, More precisely, the temperature at time

t, at x € VK solves the heat equation :

Wwith boundary conditions
U.(O.X) = 0:

1im uw(t,x) = 1,
XX

for any t > 0, x regular point of &K.

Then uft,x) has the following probabilistic interpretation :
ult,x) = P[T = t] .
®x K

The quantity of interest is

Ex(t) = f ult,x)x .
aN'Y

Now observe that :

m(K) + E (1) = I PIT, % tldx = f P[T_, % tldx = E[m(S (0,t)].
Rd

Rd

Therefore the limlting behavior of En{t) is given by that of m(SK(O,t)):

L

- If d= 2, EK[t) ~ 2 log—t H

to

- if d= 3, EK(t) ~ C(K) t .
b

Bibliographical notes. The strong law of large rnumbers for the Wiener sausage

in R , d = 3, was first derived by Kesten, Spitzer and Whitman (cf [IMK,

p.252-253] , [S3, p.40]1). See Spitzer [S4] for a derivation using Kingman's

subadditive ergodic theorem. Our approach is inspired frem [L3], [L10] and
Sznitman [Sz] . The relevant results of probabilistic pelential theory may be
found in the book of Port ard Stone [PS] . Sharp estimates for the expected
volume of the Wiener sausage were first derived by Spitzer [S2]. These
estimates are refined in [L11] for d = 3 and in [L12] for d = 2 (see also
Chapter XI of the present work). The bounds of Lemma 4 and Theorem 5 are
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sharp: see {L31, [L5] (and Chapter VIII) for additional information aboul
intersections of independent Wiener sausages. The application developed in
Secticn 6 is taken from Spitzer {(S2]). Other applications may be found in XKac
fK]. Certain large devialions results for the volume of the Wilener sausage,
also motivated by physical applications, are proved in Donsker and Varadhan
[DV]). The results of this chapter can be externded to processes more general
than Brownian motion in R .See Chavel and Feldman [CF1]l, [CFZ2] for the case
of Brownian motion on a Riemannian manifold. Sznitman [Sz] deals with elliptic
diffusion processes in R : roughly speaking, the behavior of the sausage of
small radius remains the same as for Brownian motion, However, iIf one
considers hypoelliptic diffusion processes (that is diffusion processes whose
generator satisfies the sirong HSrmander condition), then the volume of a
tubular neighborhood of the path may become much smaller; see Chaleyat-Maurel
and Le Gall {CML]. Hawkes [H] considers the sausage associated with Lévy
processes: Kingman's theorem can still be applied to the behavior in large
time of the velume of the sausage. Weinryb I[W1] extends Theorem 6 by
considering u(mESEK)) for ceriain measures u such as the Lebesgue measure
on a hyperplane. Finally, a discrete analogue of the volume of the Wiener
sausage is the number of distinct siltes (or the range) visited by a random
walk. Discrete versions of Theorem 6 are proved in Dvoretzky and ErdSés [DE]
{see alsoc Spitzer [S3, p. 38-40] and Jain and Pruitt [JPI).
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CHAPTER VII

Connected components of the complement of a planar Brownian path.

Let B = (B:’t z 0) be a complex-valued Brownlan motlon, and B[D,1] =
{BB;O = 5 s 1}. It seems very likely, and can be proved rigorously, that with
probability 1 the open set € \ B{0,1] bhas an infinite number of connected
components. The following guestion was ralsed by Mandelbrot, Let Nc denote
the number of connected components whose area is greater than ¢ > 0. What is
the limiting behavicr of Ns as £ goes to 0 7 Mandelbrot conjectured that
N, ~ £ Lle) for some slowly varying function L such that I; wiLluwdu < w.
The goal of this chapter is to prove that Mandelbrot's conjecture holds with

L(e) = 2n(log e) 2

The problem of determining the asymptotics of Ne is closely related to
the study of the planar Wiemer sausage. To explain this, denote by ws the
union of all connected components whose area 15 smaller than me®. It 1is
obvious that W, is contained in 88(0,1) {the Wiener sausage of radius ¢
asseciated with the unit disk). The conmverse Iinclusion is also "almost true".
Precisely, if y € € belongs to Se(o,l), then, with a probability close to
1, ¥y will also belong to wt. Thiz fact is explained by the recurrence
properties of planar Brownian motion: if B comes within a distance ¢ of ¥y
before time 1 then B will come much closer with great probability, anmd 1t
will be very likely that the connected component of y is contained in
D{y,e) (these heuristic arguments can easlly be made rigorous). We conclude

that T
m(ws) ~ m(Ss(O,l)) ~ ————
llog el
by Theorem VI-6.

It turns out, but is now non-trivial, that much more is true. For any
fixed a e (0,1),
w N n _ mlliog A|

€30 |iog el |tog Ael |1og el2

(1) m(we] - m(whe)

Notice that nch) - m{W. is closely related to the number of connected

Ac)
components with area between n(hc)z and me”. Most of this chapter is
devoted to a rigorous formulation and proof of (1) . The asymptotics of Nc

then follow rather easily.
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1. Estimates for the probability distribution of the area of the connected

component of a given point.

Throughout this section, we assume that the Brownian motiom B starts at
1 and, for any R > 0 , we set : Th = 1n£{t,§Bt| = R} . We denote by ﬁH
the connected component of € N\ B[O,'I‘R] that contains 0.

Lemma 1 : There exisls a positive constant « such that, for any R z 2,

P[E, is unbounded] s R™%.

Proef : Fix p > 1 and denote by ﬁ{n] the connected component of
C N\ BT n,T n+i] that contains ¢. For any n z 1,
PP -1
P[E is unbounded] = P[ n {¢ is unbounded}|.
pn k=0 {k)

The strong Markov property shows that the events (€ is unbounded} are

(x)
independent. By scaling they also have the same probability ¢ < 1. Hence,

P[E  is unbounded] = c".
n
Lemma 1 now follows easily. o

Remark. If ER is bounded then obviously it is contained in D{Q,R). Using a
scaling argument we obtaln the following result. Suppose now that lBol £ g
and let & & 2¢ , then, with a probability greater than 1 - (er8)% , the
connected component of € \ B{O,Tal that contains 0 1is contained in U(0,5).

This form of Lemma 1 will be used on several cccaslions.
For any r € (0,1), set
P(R,r) = P[n(E,) = n rL.

Our first goal is to obtaln good estimates for P{(R,r) as R — w and r —» 0.
We follow the ldeas described in the introduction. Firstly,

P(R.r) = P[T_ < Tl = log R _
r log R~ log r

On the other hand, we may get a lower bound on P{(R,r) by conditioning on
{T < TR}, applying the Markov property at time T and using the

n n
/2 r/2

remark after Lemma i to bound the probabllity that QR is not contained in

D{0,r). For every n = 1,

log R
log R - logr +n log 2

-nel

P(R,r} = P[T < T](1-2"%) =
r/Zn

(1 - 2%,
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If we choose n = [K log log R] with K large encugh we get :

log R -%
P(R,r) = Tog R —Tog © ¥ 0(loglog ) (1t + 0((leg R} 7))

for any M > 0.

In what follows, we shall be interested in estimates as R —— w, holding

uniformly in r. We will always assume that
(tog RYY = [log r| = (log R)'’%,

for some ¥ > 0. The previous bounds give

_ log r loglog R
{2) P{R,r}) = 1 + Tos R + O log R )

We now fix A € (0,1) and set

Q{R.r} = P(R,r) - P(R,Ar}.

llog Al
Iog R

loglog R )
(log R)5/4

lemma 2 :+ 4s R — + o, Q{R,r} = + O unifoermly for

(10g RY? = flog ri s (tog R)"™

Proof : Notice that a brutal application of (2) gives nothing. The idea of the
proof is to compare Q(R,r)} and Q(R,Ar) using a scaling transformation, and
only then to apply (2).

The event A = {zx(ar)’ s m(€ ) = nr’}  is contained in {T_ < T}. By

the remark following Lemma 1, and the previous arguments,
P(A) = P(A_n {8 < D(0,1)}) + O((log R)™).
(use the bound flog r| = (log R}¥ ). we now want to estimate GQ(R,Ar) =

P(Ahr)' Ncte that Akr is trivially contained in {TA < T;} . We define E; as
the connected component of € \ BiO’TAa} that contains 0, and we set :

A = {n(3r)" s m(e;) = n(ar)%}.
As previously,
P(A) = P&’ n {€, < D(0,A)}) + O((log R
r
However, by the Markev property and scaling,
P(A* n {€ < D(O,M)}) = P(T, < T) P(A_ n {6 c D(0,D}).
The peint is that, on the set {6; c D{G,A)} . ﬁé is alse the connected

component of € \ B[TA'TARE that contains 0 .

We now want to compare the sets A; and A, . The problem is that €

may be smaller than ﬁ; because of the portien of the path between times TA

R

R
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and Tn' However, by Lemma 1 we may choose K > 0 large enough so that ﬁ'; is
contained in D(0, (log R)*) except on a set of probability o((log R)°). It
follows that,

P[A> \ A, ] s O({log R)*°) + P(A"} P( inf (B | < (log R)")
r Ar r u
[Ty T,]
R R
s 0((log R + (1-POR,A’T) n'f"ixﬁém = = 0((log R

1/2

by (2) and our assumption |log rl| = (leg R)"°. A similar reasoning gives

-3/2
)

P(A,, \ A’) = O((1og R)

Ar
and we get:

s -3/2

PlA, 1 = P[Ar] + 0({log R 77%)

From the previous considerations, we obtain

-3/2

PlA, 1 = P[T, < T.J PIA] + O({log R)"%)

or equivalently

(3) Q(R,Ar) = Q(R,F)(1 + 1"3 2y + o((10g R,
Now let H = 1 be an integer such that N = (log R)}'"2. By (23),
N1 log AN w32
P(Rr)—P(th)— E Q(R]\r)w-r--——r(l— +10 R))+0(N (log R) )
4 1s2
uniformly for (log R) = |log r| = (log R)'°. Furthermore,
2
log AN Ilog Al N
1-(1+ "y = + 0
log R log R (log R)?
which gives
N -3/2
P(R,r) - P(R,Ar) = N(1 + Oly5x)) QR, 1) + o(N*(1og R)™¥3y,
However, by (2),
_ N, _ Nlleg al logleg R
P(R,r) - P(R,A"r) = =28 + o= 50,
so that we obtain :
_ llecg Al lcglog R -3s2
(1 + 0( ]) Q(R,r) = Tog ® 0( Tog R + N(log R) ).

We now take N = [{log R)iM} to complete the proof. o
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2. Aszggtctics for Ne'

We now take BO = 0. We will apply the previocus estimates to the asympto-
tics of Ne' Most of this section is deveted te a rigorous proof of {1). For
simplicity, we set

Up = ¥ M Ve

so that Uc is the union of all components whose area is between n(he)z and
me®. We will obtain the Hnmlting behavior of m(Uc) by a method similar to

the one we used for the area of the Wlener sausage in Chapter VI,

Prcgcsiticn 3: As & ws 0,

E[m(Ua)} _ wllog Al . 1

of ).
{log c)2 {log c)z

Proof : For ¢ > 0 small encugh we define & = 3{¢) > ¢ Dby the condition

8 -
e, o
exp(llog &1 ")

Note that |log 8| ~ |lleg el =as € —» 0. Let y € € \ D(0,8). Set
Ta(y) = inf{s = 0 ; IBs -yl < &)
and

-_ , - -4
Ra(y) = inf{s = T5(Y) H IB‘ yl > (log 3) '} .

Notice that {y e Ue} < {TS(Y] = 1)}. We denote by &ly), resp. ﬁa(y), the
connected component of € N\ BI0,1], resp. € X\ B[Ta(y),Ra(y]]. that contains
y. Then,

(4) IPly € U} - P[T,(y) = 1 ; n(ae)® s m(E (y)) 5 me]|
s PITly) = 1 5 n(ae)® s (€ (y)) = ne” ; Bly) = 6 (y)]
+ PIT(y) 5 15 nl(ae)® 5 m(B(y)) = ne? ; Ely) = € ()]

We proceed to bound the right side of (4). We have

(5) P[Taiy) =1 ; niae)? = m(@a(y)) < ne’ 3 E(y)sﬁa(y)] = P[Ta(y)S 1= Ra(y]}
+ PIT,(y)sR (y)S1:(BIO, T, (y)] v BIR,(y),1]) n &, (y) # 2 ;m(Ae)*sn(8 (y))sne"].

It is very easy to check that :

PIT4(y) = 1 = Ry(y)] = P[IB~y| s (log 8)7'] = (log 3)™ y,(y),
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for some integrable function W: : & — R’. Next, Lemma 1 gives

PIm(8,(y)) = ne® , €.(y) n (C\Dly,8))*o | ¥ = o(11og &7

1
Taty)
uniformiy in y € €. It follows that the second term of the right side of (5]
is bounded by :

PT,(y)=1]0(I10g 317+ P[T,(y)=1 ; inf B, [<5 ;n(le)zzrm(i%’é(y)):sm:z}
[Ry(y), R (y)+1]

-4
= P[T,(y)s1] [O(Ilog s3I+ Q(Q‘-’i;; , % ) P[ inf IB 1 < 5}}
{R (y)iR (y)+1] u

using the Markov property at Ta(y) and at Ra(y), It follows from Lemma VI-1
{111} that

logllog &l

P[ inf IB | < 6] = O Tieg a7 )"

Ry (), Ryly)+1]  ®

Then using Lemma 2 and Lemma VI-1 (111) again we conclude that the right side
of (5) is bounded by

log|log &

l1og &1° o

for some integrable function wa : € —> R*.

Similar arguments show that the second term of the right side of (4) is
bounded by :
logllog fl dg(y)
llog &1

for some integrable function ¢3 + T — R, It follows that :
+*

log|iog 3|

dey Ply € U] - Idy PIT,(y) = 1 ; nlae)®s m(E,ly))s me®]i= of —
og

However, by the Markov property at time Taiy). if Iyl > &,

{log st 2

PIT;(v) =15 n(he)® = m(85(y)) s me®] = P[T,(y) = 1] Q-5 3
s0 that
{log 3)™* -
Eln(u,)] = .[dy Ply & U] = E[n(s,(0.1))] (2820, £y + ot10g 5)7).

Proposition 3 now follows from Lemma 2 and Theorem VI-3 (ii). b
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Propasition 4 : There exists a constant K such that, for any ¢ € (0,172},

var(m(U_)) = K |log el ™7

Proof : The main idea is the same as in the proof of Theorem VI-5. We let Bx,
B dencte two independent complex-valued Brownlan motions started at 0. For
every v € T \ (Bi[0,1/2§ v Bzio,}./zé) we denote by 8 (y), resp. E‘i(y).
€*(y) . the connected component of € \ (31{0.1/2] v B%[0,1/21), resp.

£\ B'10,1721, ¢ \ B°[0,1/2], that contains y. We set :

i

U = {y 5 wlae)® = n(E () = we?),

{y 3 nlxe)® = m(@‘{y)) = xcz} {1 =1,2}.

o
1]

Obvicusly m(Ué) and m(Us) are identically distributed, so that var :n(Ue) =
var m(U;:). The key step of the proof is to show that m(U;} is not too
different from m(U,) + m(UZ).

Lemma 5 : There exists a constant X' such that, for ¢ e {0,1r2},
E[(m(U}) - m(U}) - mUZN*] s K frog €17

Proef : We first observe that :

s i 3 5 i 2
(6) Im(U)-mUD-n(UZ)] = m(UNUL v UD)) + m(UINL) + mUINIL) + (U A UD).

Let us bound

E[m(Ul \ U2)7] = E[f dydz1, Iyt ().
v\ Ui
£ £ £ £

We take & = 3(¢) =as in the proof of Proposition 3. It follows from Lemma 1

(and the remark after this lemma) that:

E[m(U} \ UL)%) = s{f dy dz 1 1, w1, @)
{8,(y)eDly,8);6,(2)cD(z,8)} UNU, UL

+ O(ltog 1™™

Now notice that, 1f y e UL\ U, and 640y} < Dly,3) , then B°10,1/21 must
intersect D{y,3} . It follows that

Efm(ul \ uL)’] = Ef[dy daz 1Ui(y) 1,(2) 1 (y) 1 (2)] + O(Ilog el™

Ue S5 55

= Idy dz Ply € U;, z e U;} Ply € Sg, ze Sg] + o(fleg ei™™),
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where Sg = S;(O,I/Z) denotes the Wiener sausage assoclated with B, Recall
from Chapter VI (see the proof of Lemma VI-4) the bound

(7) Ply € 85, z € S1] s Cliog 8)™° (G,(0,y/2) + C (0,2/2)) & (0, (2-y)/2).

The problem is then to get a suitable bound on Py € Ué, z e U;}. Let T;[y).
R;(y] be as previously, with B replaced by B . e suppose that |z~y| =
llog 51" and we restrict our attention to the case T;(y] = Té(z). Lemma 2

and the Markov property at time T;(z] give

1 1 1 )
Ply € Ue V2 € Uc ; Ta(y)s Ta(z)}

s PITL(y) = Th(2) s 3 5 mE'(Y)) = n(ae)® ; m(€'(2)) = nlae)® ]

(log 3)°*

A 1
5 ,w§)) + P[Té(z)ﬁﬁﬂ;(z)}

= P[T} (y)sTj(2)s5; m(8 (y))= m(ae)?) (1 - B(

-3/4

1 o 1 1 1
s C llog 8177 PIT}(y)s T,(2)s 3 (€' (y))z m(2e)?) + P[T (2)2 5= Ry(2)],

using (2). Here ﬁl(yl denctes the connected component of € N B[O,R;(y)}
that contains y. Clearly the term IﬂT;(z) ] % # Ré(z)] is bounded by
Cllogd|™®. Therefore it suffices to bound

P[T} (y)= 'r;(z) <1l a@ ) 2 eae)®)

1
2

GX(O‘(z—y)/Z) . N -, 2
=C TR s T P[T4ly) =5 ; m(& (y)) = nlae)]

—11i/4

H

C' | log & Gl(O,y/Z) G}(O.(z—y)/Z).

This first bound uses the Markov property at time R;(y] and Lemma VI-1 (iii).
The second- ome follows from the same lemma, the Markov property at T;[y]
and (2).

We conclude that, fer any y,z such that |z-y| & |log 5172,

1 1 1 i
(8) Ply € U, .z« Us ; Ts(y)s Té[Z)]
/2 -8
s ¢ |log e Glto,yfz) G!(O.(z—y]/z) + 0fllog ] ).
Combining (7) and (8) gives the bound :

Em(U} \ 0))%] 5 C l10g e1™2
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Obvicusly the same bound holds for E@(Uz N U;)ZL Similar arguments give
even better bounds for the other two terms of the right side of (&). o

We now complete the proof of Proposition 4. We set hig) = (var m(Uc)f/%

Notice that (U::) and m(Uz) are independent and that

@ 2, @)

1
m(U,) m(U2)

1
3 ™Ugy3)
by a scaling argument. Then Lemma 5 implies

/2 -1i/4

(var m(Ua}) = (var(m{Ué} + m{uZ})sz + O(flog el )

i/2
2

= -11/4).

(var m(UeVE))h? + Oflog e}
Therefore,

hie) s 272 n(ev2) + 0ll1og ™)

and Proposition 4 follows using arguments similar to those of the proof of
Theorem VI-5. p

We may now state the main result of this Chapter. For u < v, N[u )

denctes the number of connected components of € \ BiD,1] whose area belongs

te the interval [u,v} (im particular N, = N[e,w}y

Theorem 6 : With probability 1, for any & > (,

-1 -1

‘(log win
Ut - v

Iim [ sup

fu,v) _ 23! ] = 0.
uad * vE(1+3)u

In particular,
1im ¢ (log e)* N = 2x, a.s.
e30 £

Proof : Propositions 3 and 4 give

1im (log A™° m(U ) = nllog Al, a.s.
oo A®

Let ﬁ{u v) be the number of connected components with area in {Ru?,nvzy
Note that :

ntl .0

(HAZn)—i m(U n) = }Ti £ (na2n+2)-1 zn(U n).
A (A", A% A

Therefore, w.p. 1,
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(9) llog Al s liminf A*(log A N
N0 (A", AN
% limsup A™(log A")° N . = J}ﬁgﬂ
D ™ ah A
Fix an integer p = 1 and set A’ = AP, Since
1

Z: N *
[Aml,an) 1=0 [R’ npﬂ*l'x npﬂ)

it follows from (9) that :

p-1 _
1108 AL "9 AP oy inine A%(10g A™ W "
Py N (A™, A%
2n na2 = Ilog Al Pl -(21+2) /p
= limsup A7 (leg A7) N . & —— A .
N (A", 2% P 450
Cheosing p large we conclude that
2n 2 = 1 w2 1 ]
1im A% (log AM® N # |log Al N ds = 5 (A1), aus.
100 [Anfl.an) 0

A simple monotonicity argument allows us to improve this convergence to

n x*(10g %)% A Ju-d? as.,

%0 x,ex)

for any o > 1. Equivalently,

Hm u (log u® N

= 2n(1 - g‘z), a.5.
w0

{u,ou)

Thecrem § follows easily from this last result. o

Bibliographical notes. Mandelbrei ([Mal, Chapter 25) raises some interesiing

questions about the connected components of the complement of a planar
Brownian path. Motivated by these questions, Mountford [Mc] has oblained a
weak form of Theorem 6. The main ideas and lechniques of this chapter are
taken from [Mcl, although the form of Theorem 6 given above is from [L13]. We
refer to the latter paper for additional details in the proofs (the estimates

of [L13] are somewhat sharper than those presented here).
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CHAPTER VIII

Intersection local times and first applications.

1. The intersectlon local time of p Aindependent Brownian paths.

Let p = 2 be an integer, amd let Bl,...,BP denocte p Independent

Brownian motions in Ra , started at xl,...,xp respectively. The
Intersection local time of BI,...,EP is a random measure a(dsl,...dsp) on
(IR’)p , supported on
P .pt o w BP
{(t!,...,tp)&(ﬂ*) ’Bt; Btp }

The fact that the latter set is non-—empty wlth prebability 1 is more or less
equivalent to the existence of p-multiple polints for the planar Brownlan
path. In our approach, the non-emptiness of this set will follow from the fact
that it supports a non~trivial measure.

The measure oc(dsl.. .dsp) is formally defined by :

w b S Pt op
a(dsi. . .dsp) w 6@ [le BSZ] - .6(61 [B”p.,1 st] dsl. . .dsp

where 6(0) denctes the Dirac measure at 0 . Eguivalently,
= 1 P
a(dsl...dsp) = U dy a(y)[Bg]“-B(y)[Bs] ] dsl...dsp.
2 1 P
R
We will use the latter formal expression as a starting point for our

construction., The ldea is to replace the Dirac measure at y by a suitable

approximation. We set :

e 2,-1
é(yl(z) = (ne”) ID(ylm(z) ,
and
- ! P
ac(dsl.. .dsp) = we[Bsi. ...,BsJ dsx...dsp
where

]
€
«ps(zi,....zp) = I jEi é(y)(zj) dy.
k2

2
= ces2 ¥ .
Notice that cpc(zl, e ,zp) ¢e(21+x' . zp x) for every x € R
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Theorem 1 : There exlisis w.p., 1+ a (random) measure a(dsi...dsp) on (ER")P
such that, for any A',...,A" bounded Borel subsets of R .

lim o (A" x ... x A7) = a(a' x ... x AP)

£30
in the Ln~norm, for any n < .

The measure a(+<) [s 2.s5. supported on

1 P
{(s,...,8)Y:; B =..,=8B } .
{ 1 P s:1 s;’
With probability 1, for any je {i,...,p} and any t =0,
(s, = t}) = 0.
Finally,
(1) E[a(A’ X .. % A")“] = j dy,...dy
n
(®%)"
P ) n
*h ds;---ds ¥ [ps Yo Wl Py (Yo-(k—n'ya'(k))]
(ah oer ot Kokt
where Zn is the set of all permutations of {i,...,n} and
J Jape
{A) {(s ,,.,,sn) e (A)y ; 0= § < ... <8 }.

Proof : First step. We first check the L2~convergence of ae{A1 %...x APy, It

suffices to prove that

Un Efa (A x...x A") s (A X ox APY]
e, e’ 50

exists and is finite. By Fubini’s theorem,

(2)  Efoe (s x...x &%) a (A x...x ATY]

J' dydy"* &[I dsds’ E[ﬁ’: CHEMN )]]
j=1 2 {yi* B (y)
ah

{ dydy*

It 1s obvious that, for (s5,8”) € (Aj}f .

L=
L ]

;U 3 dsds’ E[a‘:y)(s’ (v’ (L) (*:(B )5(”(33')”'
(A

im E[ (&) & (B’.)] =px\y)p, lv.y).
e,e' 0 {y*)t = 8 8'~8

The only problem is thus to Justify the use of dominated convergence. We will

find a function ¢(y,y'.s,8") such that, for every M >0 ,
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P
(3 J dydy* J ds ds' w(y,y’,s,s’)] <
to,u1?

and for any vy,y € R® , [8,8") € (O,m]f , €,¢ € (0,1),

€ .y <€ j o s .
(4) E[ﬁ(y](B') S(y'](Bs')] s p(y-x",y",8,87 ).

The existence of such a functiom justifies the passage to the limit under the

integral sign in the right side of (2).
1

Clearly we may assume that x° = 0 , and we drop the superscript J
what follows. We first consider E[6iy#8')] fer s > 0. If |yl = 2¢ , then

obviously
€
E[6(y)(Bs)] = ps(0,y/2).
If |yl < 2e , then

E[afy)(es)] s (me?)™ A (zrs) ™t s a(lyl™? A s").

Therefcre, e
E[},,(B)] = u(y,s)
where :
_ -2 -1
wiy,s) = 4 l(lyISZJ lyl™ A 8 + pB(O,Y/Z).
Notice that :
(5) yly,s) ds = Cn Gxto,y)
o]
o
where G (x,y) = I e " ps(x,y] ds.
o]

We now bound E[afy)(Bs) afy,](BB,)]. The easy case 1s when
Z2(e+e’ ). Then the Markov property at time s gives :

ly* -yl

BlsS ,(8,) 8% . (8,01 = EI8T ()1 B, (0.X5Y) = w(y.8) b, _(0.X30)

in

>

Suppose now that |y’ -yl < 2(e+e’)(=4). If ¢ = &' , the Markov property gives

‘E[afy)(as) 5‘(’;,](35,)} = E[aiﬂ(Bs)z [(nc'z)"x\ (Zn{s'-s))"]

= 16 yly,s) {ly' -yl (s’-5)7).

, , 2
If ¢ < ¢, then we discuss separately each of the cases s'-s > ly'-yl|” ,

g'-5 = Iy’—yla. If &'-5 > Iy’—ylz, then obviously

5% \(8) 35, (B0] 5 ELSS,,(B)] (2n(s’ -))"x ply,s) (Iy’ yIals -7,

Finally, if s'-s s |y'—y|®, &' <&,
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€ e’ - 2.-1 e’ N voar
E[a},,(B)) 37, (B.)] = (ne”) 'E[8T . (B )] s 16 Iy -yI™ wiy’,57)

s 16 (ly -yl 2als' =517} wly’,s).
The previous estimates show that (4) holds with
ely,y',s,8") = (wly,s) + wﬁy’.S'])[ps,_B(U,[y'-y)/Z) + 16(|y'—y|'2,«(s'-s)'*)].

Nete that

¥ * ? + Y y’ y' —y
J[O 2 dsds’ gly,y’ ,s,5’) = Cn (G:(O,z) + Gl(O.z )] Gx{ﬁ. S ]
e

so that (3) is clearly satisfied (the key ingredient is the fact that &, (0,y)
is in L7 for any p < w).

Second step : The first step allows us to set :

a(A' x .ox A = L% - 1im (A x o0 AD).
€30
, and that the n"-moment of

a(A' x ... x AP) is the right side of (1). To this end, it is enough to

We now check that the convergence holds im L"

obtain the convergence of
b [ %,
(6) Efa (A" x ... x A7)7]

P g s
= f dy,...dy_ [ [J dsi...dsn E[ 1 S(Y )(BS )]]
(R 1=1 (Ah)® k=1 x x

4 n
= dy ...dy. 1 1L [ ds ...ds E[ n 3" (8! )}] )
Lmzln t e € ] 0)e ' " ks Yoo S5
<

Iin
Clearly, for (51....,sn) e {A ]( .

)

n n
1im E[ n s (8’ )] =p Ky ) opop._. ly , .
ms (yo‘(k]) s, = &) vo B TS,y Te1) o

€20 ) 4

Again we have to justify dominated convergence. This is similar (in fact

easier) to what we did in the first step. Indeed, the Markov property at times

s N s ver 28 leads to :
n-1 n-2 1
bl 3 3
E[ n s (B )]stlz,';[y —x,s]x...xéw[y -y ,S -8 ]
ot (ya,{k]) 5, T (1) 1 F(n) Toin-1)"Tn n-%
with the same function 1] as above (consider separately the cases
|ya‘(k)—y0'(k-1)l 4e¢ , and lyo*(k)—yﬂk—i)l < 4e). Then the bound (5)

Justifies the passage to the 1lmit in the right slde of (6).



185

Third step : We will now construct a random measure wof-) such that for
any Ai,..., AT, oc(:ﬁ\1 X ... X Ap) = &(A1 X ..o X AP) a.s. We first consider
the case A’ = Eaj.bj], 2 S bj = M. Then by applying the (generalized) HGlder
inequality to the right side of (1) we get :

E[&(Al X .. X Ap)“]

. 1/p
P n P
1yP 3
s{n!) jgl[ , ndy’. . .dyn[J‘ J l-lc:lsl. ..ds]‘l psi(x .yl)kgzpsk_sk-i(yk_l,Yk)] ]
4 (R™) (A 1,
o [ a,b n 0,b-a e
“(n)’ dy ...dy G (x ,yi)P me (yk_i,yk)p
i=2 ! (IRZ]n k=2
where

v
G Yix,y) = J‘ ds ps(x,y).
u

It is easy to check that :
J. dy GPV(x,y)? = Cp(v-u)
for some constant Cp (use scaling when u = 0). We conclude that :
~ .1 Pyn n P P n/p
() £laga x...xA)]a(c) ()’ b -a P
P y=1 1)

It follows from (7) and the multidimensional version of Kolmogorov's

lemma that the mapping
(al.bi,az,bz,...,ap,bp) — a[{ai,bil X...X [ap,bp}]

has a continucus version, denoted by a([ai,bi] Huw X [ap,bp]). Notice that
W.p 1, oc([ai,bi} M. o% [ap,bp]) is a nondecreasing finitely additive function
of [a},bl} Koo ® [ap,bp] {consider first the case of rationpal B bj).
Standard measure-theoretic arguments allow us to extend () to a Radon
measure on {R*]p.

If A(n) = A:n)
~ P ~
A x Ay x L. x Ap then a(A(n)) converges in L® towards a(A), (by (1)),

1
whereas oc(A{“]

® A2 % ... x A lincreases (resp. decreases) towards A =

); converges =a.s towards a(A). This observation and the

monotone class theorem easily give
‘x(}\l Hew o Ap) = ot(A1 He X Ap) , 8.8

for any As" .. ,Ap bounded Borel subsets of R‘.
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Fourth step : It remains tc check that « has the desired properties.
The fact that tx{{sJ = t}) =0 for every t = 0, a.5%, is obvious from the
continuity of

(ai,bi,..., ap,bp) e} a([ai,bl] Xaw X [ap,bp]}

Finally, suppose that A = [a1’b1} XX [ap,bp] is a closed rectangle with
rational coordinates. Then on the set

= . . 1 - 2 = = P =
4 = { w; An {[si.....sp) 3 BS = Bs e BS } a}
- 2 P

we have ae[A) = 0 for ¢ small, by the definition of o« Therefore o«(A) =0
a.s on 4, Since this is true w.p. 1 for any rectangle with rational

coordinates, the support property of o« follows at once. o

Remark. It was convenlent in the previous proof to assume that the starting
point of each Brownian motion was deterministic. However It is immediate that
Theorem 1 still holds in the more general situation where the starting peints
may be random. The right side of (1) should then be integrated with respect to
uh(dx’)...pP(dx®) where p'ldx’) stands for the initial distribution of B.

1

Propesition 2 : Suppose that BO = ... = Eg .

d}

(1) For any t =0, a>0, «([0,2t]) ‘¢ a a([o.tP).

(11) With probability one, for every t > 0, «([0,tF) > 0.

Proof : Without loss of generality we may take B; = ... = Bg = 0. Property (1)
follows from a simple scaling argument. Set

= ~1/2 o) =

Bt A th £ 1, ... ,ph

Then & ([0,t]) = At o ([0,At]P), which implies
€ A1/2c

&[{o,t}" = a7t «f[o.at?| a.s.
To prove (1i), notice that the events {a([0,t}) > 0} decrease as t
decreases. It follows from (1) that
Pla({0,1]%) > 0) = Pla({0,t]") > 0) = P[  {a({0,s]%) > O}]
g>»Q
However Pla(10,11") > 0] > 0 since Ela(l0,11")] > 0. The zero-one law
yields the desired resuit. o

Proposition 2 [i1) and Theorem 1 imply that, provided B; =...= B* , for

any ¢ > 0 , there exist tx’ - tp € (0,2) such that
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- = p
B v Bt'
1 P
In the case of arbitrary starting peints, one can use a scaling argument to

check that these equalities hold for some tl. . t.p € (0,0} , w.p 1.
Therefore the paths of Bl,...,Bp have a common point (different from their
starting polint),

2. Intersectlons of independent Wiener sausages.

Our goal in this section is to provide an approximation of the
intersection local time In terms of Wiener sausages. This approximation is
similar to the well-known approximations of the usual Brownian local time.

We fix a non-polar compact subset K of R?

and for J € {1,...,p} we
denote by Sén(D,t] the Wilener sausage asscciated with the Brownlan motion B!
and the compact set eK, on the time interval [0,t]
Scx(o't) = U (B +eK)
Ossst

As we have seen in chapter VI,

lim (log 1/¢) m(S] (0,t)) = =t ,

2 €30
in the L"-norm.
Theorem 3 : We have :
1im (log 1/2)° m(S::K[O,t.) A L..onsho,n) = #* ([0, t17).

€0

. 2
in the L -norm,

Fig. 1

Remark. The convergence of Theorem 3 holds in the L"-morm for any n < o .

However we shall restrict our attention to the Lz—ccnvergence.
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Proof : To simplify notation, we will assume that the starting peints B; # x’,

- Bz = x¥ are deterministic. We fix & > 0. Then

ag(EO,t]p) = j 2ds X (y)

R
where ] t
- e )
Xcty) = gl f ds a(yj(e.y
=1 Jp
Similarly,
nP(log 1/e) m[s‘ (0,t) n ... nsP (O,t)] = [ dy Y _(¥)
ex K £
2
R
where

P
Y (y) = JH1 [1: Ylog 1/e) Ky e séx(o,t))].

Therefore Theorem 3 Is equivalent to:

2
(8) lim E dy[X (y) - Ytty)] - 0.
£-0 Rz €

Write
P Pl
Xe(y] =q X.(y) . Y (y) = Y (y)
J=1 j=1
with an obvious nctation. Then

(9) E[[J'Rz ay (£, (y) - Ye(y))]?]

P P P
= f ] ;:umlz[Jn1 E[Xé()’) Xé(z)] -2 ni E[Xé[y] Yé(z)] +Jn1 g[\fé(y) Y::(zl]].
(R ) - J- =

We will 1investigate the 1limiting behavior of each term of the
right side of (9). We assume that y # z, y.z = x. Then,
t t
. 3 J
J ds { ds [p.(x ,y)p',_s(y,z] + ps(x ,z)ps,us(z,y]]
0

S

3 3
(10) 1lim E[Xe(y) xsiz)]
£-30

: Ft(xj. Yy, Zz).

Furthermore the bounds$ of the proof of Theorem 1 give :
E[xi(y) Xé(z)] = C[G}[D,y/Z) + Gi(O,z/Z)] GS(O,(z—y)/Z).

Next, we have :
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t

E[x;_(y) Yé(z)] = w2 e %(10g 1/e) E[” ds Imy’m(B:)]I[z € Sﬂ(o,t)]].
o

Set Téxtz) = inf{t = C ; B: € z-¢K}. Then,
L
) J
E[I(z € SCKEO,t]) J ds 1Df¥.El(B!i
4]

t t

- J e 3 3 1
= E[i(TcK(z]—t) I ) ds 1D(y,£)(35)] + E[{ ds 1D{y,t](Bs) I[s( TCK(Z)S t]].
T (2) c

Lemma VI.2 and the Markov property at time Téx(z) glve

t
-2, -2 ] J
éiz n e (log t/e) E[I[sz(Z) = t] f ds 1D{y.8](Bsﬂ
riyte)
t t
= j ds* psl(xj,z) j ds ps_s.[z.y).
o] 5*
Next,
t t
i 1 - - 3 1
EH 8 1y o 1[5 < T 5 4] EH i 10,00@ 15 < s4e.0)]
8] a

t
- ] 1 |
E[f ds 1D(y’c)(Bs) I[z € Se;(D'S) n SCK(s,t)]].
a

On one hand, Lemma VI.2 (11) implles
14

-2 -2 3 i)
lim "¢ “(log 1/¢) E[J ds 1D{y,e)(Bs) I[z € Sex[s't)]]
£50

t t

= [ ds pa(xj,y) J ds* ps,_s(y,z).
[a]

5
In fact we need a 1lttle more than the convergence of Lemma VI.2 (ii): A
simple compactness argument shows that this convergence holds uniformly when
y varles over a compact subset of R® N\ {0} . On the other hand, the Markov

property at Tcn(Z) and the bounds of Lemma VI.1 give :

t
-2 ] 3 3 - -1
¢ (log 1/¢) E[J ds lb(y,C)(Bs) I[z € SCK(O,S) n Stx{s,t]]] O[(log 1/¢) ]
g

as € tends to O, We conclude that
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1 i) - 3
(11) 1im E[Xc(y) Ye(z)] = Ft(x ¥, 2)-
£-0

Moreover, Lemma VI.1 and the previous arguments show that E[Xé(y) Yé[z)]
satisfies the same bound as E[Xé(y) Xé(zl].

Finally we consider
] i) _ e 2 i) 3
E[Yc(y) Yc(z)] =n “(log 1/g) P[Tcx(y] = t, Te&[Z) = t].

We have already noticed 1n the proof of Lemma VI.4 that this quantity
satisfles the same bound as E‘[Xé(y] Xé(z)]. Since

J - 3
P[’I‘ek(y) =t T,f(2) = t]
= P[TJ (y) =, z esl (r! (v t)] + P[TJ (z) =t, yes)(r! (2) t)]
&K €X' £K ' EK ' €K' €K ' '

Lemma VI.2 and the Markov property give

(12) lim sup E[Yé{y) Yé(z)] s F (x),y,2).
30 t

We mow pass to the limit in the right side of (9), using (:0), (11).
(12). Observe that the use of dominated convergence is Justified by our bounds

and the fact that Gi((},y) 15 in L" for amy n < w . It follows that :

im sup E[{-{ dy (Xe(y) - Ye(z))]z] 5 0.
2
R

£-20

This completes the proof of (8), and that of Theorem 3. o

3. Self-intersection local times.

We now consider only one Brownian motion B started at (., We are
interested in p-multiple points of the process B. The (p-multliple) self-

intersection local time of B 1s the Radon measure on
P
r = rrany H < <o, < R
:Tp {(s1 sp) € ([RJ 0= s, <5, sp}

formally defined by :

JS(:is1 dsp) = 6(01(]39 - Bs }... 6(0)(135 - Bs ) dsj...dsp.
1 -] p-t P
To construct B rigorously we proceed as in Section 1. For 2 > 0 , we set
Be(ds1' . .dsp) = 13P(51,_ - sp) 'pe(le‘ e .Bsp) dsl. . .dsp

where

roe
vc(zi,...,zp) = Idy jr-ll S(y](zj].
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We then have the following analogue of Theorem 1.

Theorem 4 : There exists w.p 1 a Radon measure B(dsi...ds) on ¥  such
L p P

that, for any compacl subset of ﬁfp of the form A1 % A2 e. X AP .
B(A1 x Aa X ,..0X Ap) = ii: ﬂe(A1 ® Az X ... 0% Ab) ,

in the L"-norm for any hn < o,

The measure B(-) is w.p. 1 supported on :

{(s,,....8) €9 3B, = ... =B }.

b P
Moreover, B({Sft}) =0 for any Je {l,...,p} and any t = 0, a.s.

i

Froef : We may find a countable collection of compact rectangles

m — = m m m m - ] m m ™m m
I" = [ai,bll X, . [ap,bp} (0 = a, =b <a, = b2 < L. < a = bp )
guch that
o
g =4 1",
P m=l
(i1) if m =2 m , I® A 1™ iz contained in a finite upiom of

"hyperplanes" {s‘1 =t} ;

{iii) any compact subset of STP intersects only a finlte number of

the rectangles ]m

Fix one of these rectangles I = [a:'bxl .. % [ap,bp} . For every J €

{1,...,p}, define a process (I‘:, 0=t = bJ - aj) by :
] _ -
l"t = Baj+t , for t e [0, bJ aJ} .

Gf course the processes i‘”l,...,r‘p are not independent. However, the
distribution of (i‘l. . ..,l"p) iz absolutely continucus with respect te that of
P independent Brownian motions, Mere precisely, define p probability
measures “1"“’“,; on R by

& (dy) if a =20
pl{dy) = (03_1 !
{2n) exp —-lyl dy if a, >0

and for j = 2 ,
uj(dy) = (207" exp —lyl dy

Denote by  Wl(dw...dw) the Joint distribution of (8',...,B%), where
B’....,B’ are independent and each B is a planar Brownian motion defined

on the time interwval [0, bj—aj], with initial distribation ;.tj. The
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distribution of (i‘is ce ,}"P) is then absoiutely continuous w.r, €. W . The
associated Radon-Nikodym density ‘can he written explicitly. and
straight{orward estimates show thal il belongs Lo L2y,

it follows {rom this observation and Theorem 1 (use also the remark after

Theorem 1) that there exists a [(random) measure Bi (dSi...ds) supported on

r

I such that, for any compact subset of I of the form A X.. X A
P

t .
B(A x,. . xA)=limB{AX...XA)
1 PP ey €1 P

I

in the La—nom for any n € @ Furthermore, B does net charge the

hyperplanes, and is rted 1;B=... 2B ).
iyperplanes. and is supported on {(sl, 'Sp) €1 ;B ; }

To compleie the proof of Theorem 4, we simply set :
™ I.
Y 8
It is easy Lo check that fB has Lhe desired properties. iz particular,

property (iii} ensures that # is a Raden measure, Q0

Proposition 5. With probability 1, for any 0§ s a <h

ﬁ[ 7 nla,bl® = 4w .
¥ 1

Proof : Wetlake & =0, b =1 (lhe extensien is trivial). Set

L=1,= Iﬁ'zp]x {Zp Zp} X...X [Zip-”'zg;_: ]

and more generally for any k 2 0 , L € {0,1,...,2 -1},

P =l 2 }x...x{& +k2[, L 2(p-1), "‘2‘2}

k
it is obvious that for any fixed k . the random variables (6(12),5 =
0,1,.,,,2‘—1) are  independent and identicatly distributed. Moreover, the

scaling argument of fhe proof of Proposition 2 gives
k -k
B(1,) ) o™ g1,

It [pilows that

k
2 -1
k - - o
E[lz-:; ﬂ(lz)} = EEI)=c>o

2‘-1
T 3(1;‘)] = 27 var(8(1))=- 2% .
£=1

Thereflore,
5[5 n [o, 11] [ Z 5(13)] o
k=o' £=1

Remark. As a consequence of Theorem 4 and Proposition 5, we get the existence
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of p~tuples {51""'Sp) € ?p such that Bsi=...=Bs , that is, the
existence of p-multiple gelfi-intersections, Our derivationpof this result is
certainly not the ghortest one. The construction of the self-intersection
local time however yields much useful information about multiple polintg {(see

in particular Chapter IX).

Proposition 5 leads us to the so-called rencrmalization problems. For
certain physical questions (especially in polymer models} it is desirable to
define a random varlable “measuring the number® of p-multiple self-
intersections of the Brownlan path, say on the time interval [0,1]. The
natural candidate would be 3(3P n [0,117) f this variable were finite. This
raises the guestion of whether it iz possible to define a “renormalized
zelf-Intersection local time" whose valvoe on the set ﬂp n [0,11%  would be
finite. The answer is ves. The case p = 2 s easy with the tocls developed
up to now, and will be treated in the next section. The general case Is much

harder and will be considered in Chapter X.

4. Varadhan's renormalization and an applicatioen to the Wiener sausage.

In this section, we take p =~ 2 and we set

g=9n 0,11 .
For any k=20 and £ ¢ {9,,.,r2k*1} we setl
® 2f 22+1 28+ 2E+2
A& = ket 0 ket ) K+t ' kel
2 2 2 2

Notice that the sets Az form a partition of ¥ {see fig. 2).

T}

172 1

Fig. 2
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Proposition 6. For any Borel subset A of J , the series

o 2 -1

¥ [ I (B(An A% - ELBGA o A;)])]

k=0 =g

converges a.5. and in L?. The sum of this series is denoted by w(A), and the
mapping A — w(A) 1Is called the renormalized self-intersection local time
of B.

Proof : Let «(-) denote the intersection local time of two independent
planar Brownian motionz started at 0. We first observe that B(A;) @

-k-1,2 e . s t . 2
(0,2 17). Indeed, take k = £ = 0. The processes Bt era-: Bi/E , IBt
= Bwan - Bx/z are two independent Brownian motions (defined on the time
interval [0,1/2}1 ) and, from our construction, it is obvious that B(Ag)
coincides with the intersection local time of B' and B° , on the square
[0,1/21°

Then, for any fixed k , the random variables B(A n A‘E), { e {0,.,,21‘

_1}
are independent, This is clear since B(A n A:) only depends on the
increments of B between times 2¢ 27 and (2e+2)27°%,

To complete the procf we bound
'3 k
z ! o | 2t PR ko2 k —k-1,2 -x
var| ¥ B(A n AE) =Y var[B(A n AE)]S ¥ E[B(AE) ]= 2 E[«([U.Z 1 )]: 27,
=0 i=0 -0
by Preoposition 2. D

We will now apply Proposition 5 to a theorem concerning the fluctuations
of the area of the two—dimensional Wiener sausage, By Theorem VI.6, thls area
ig of order w/(log 1/g) for ¢ small. The next theorem shows that the
fluctuations of this area around its expected value are related to the

(double) self~intersections of the process,

Theorem 7 : Suppose that K Is a non-polar compact subset of [Rz. Then,

2 2
51:_13.2 (log 1/2) [ m(SeK{O,i)) - E[m(SeK(O,I))} ] = - o y(T)

in the Lz-norm.

Proof : To simplify notation, we write (U} = U - E[Ul for any integrable

random variable U, Fix an integer n z 1 . We have:

2" i-1 4
(13) {m(S, (0.1} = T {m(S_ ("=~
i=1 2 2
1 Zk 1
" . 28 20+1 28+1 2842

- E BE {m(sex(zhs’zku)ﬁSex(zkn'zku))}'

k=0 =0
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i

Note that the wvariables wm(S (l:l,—~)) , 1 e {1,...,2"} are independent.
[24 3 211 211

Then, by scaling and Theorem YI.S,

n

2
(14)  E[( T mw“dﬁ.gnn?ﬂ=z”aﬂmm“w.§nff”
1=%

2% Eln(s__, (O.DNT
€2 3

h

2™ (1og 1/2) %,

for & small (depending onm mn). On the other hand, by Thecrem 3 and the
arguments of the proof of Proposition 6,

k
n-1 2 -1

2% 28+1 28+1 2842
{15) L*1im (log 17)° ¥ T {m(S_( , yns (-, N}
£50 xe0 £-0 €K 2k+1 2k+1 ex 2k+1 zk*i
k
2 n-~t a -1 "
=% L I ({B(A)) .
x=0 §&=0

and the latter sum is close to (7)) when n is large, by the definition of
Fata R

To compliete the proof, fix $ > 0. We can choose n  so that the right
side of (14) is smaller than (8/3) (log 17¢)°%  for e small, and the

La—norm of x
n-1t 2 -3
n%m—zfzm@m
=Q

k=0

is less than 3/3. Then by (13) and (15) the L%-porm of
{log 1/2)° {m(s, (0,11} ~ a® y(F)
will be smaller than & , for ¢ small. o
Remark. The minus sign in - #° y(¥) correspends te the intuitive idea that

1f there are many self-intersections then the area of the sausage will be

smaller,

Spitzer [Sp2] obtains the following expansion for the expected area of
the two-dimensional Wiener sausage:

Elm(S_(0,1))] = — %+ (1relog 2, rex)) + of i ),
ek log 1/ (log lre)® 2 (log 1/e)°

where [ denotes Euler's constant, and R(X) iz the 1logarithm of the



196

logarithmic capacity of K (see Chapter XI for a precise defimition). We can

combine thig expansion with Thecrem 7 to get:

m(s,, (0,1)) = —"— + . (MK7I08 2 | R(K) - @ #(T)) + R(e.K) ,
log i/¢ (log ire) 2

where

lim (log tse)® R(e.XK) =0 ,
50

in the Lz—norm. This result wiil be extended in Chapter XI , where we will

obtain a full asymptotic expansion of m[SeK(U,l)) . The k™ term of thls
expansion is of order |log eE“k and involves a random variable related to

the k-multiple self-intersections of B .

Bibliographical noles, The notion of inlersection local time was motivated by

physical problems: see In particular Edwards [E]l and Symanzik [Syl. In
appendix to Symanzik’s paper [Syl, Varadhan gave a construction of the
renormalized variable (J) (in the more difficult case of the planar Brownian
bridge), without introducing the intersection local time. The first work on
intersection local times is probably due to Wolpert [Wol. Dynkin [Dyi] gave a
general construclion of additive functionals of several Independent Markov
processes, which Includes intersection local limes as a particular case. See
also [Dy4l for results in the special case of Brownian motlon. Using a
different approach, depending on the (Gaussian characler of Brownian motlon,
CGeman, Horowitz and Rosen |[GHR] derived precise information abouti the
intersection local time of independent Brownian motions. The self-intersection
local time of Brownian motion has been studied extensively by Rosen ([R1l,
[R2})} amd Yor ([Y3}, [Y4}). Rosen [R5} has extended some of his results to
diffusion processes more general than Brownian motion. See also (L8] for the
intersection local time of Lévy processes. In the case of Brownian motlion,
Rogsen [R3] and Yor [Yi] prove Tanaka-like formulas for the intersection local
time, and apply these formulas to the Varadhan renormalization. See also Yor
[¥2] for a weak analogue of the Varadhan renormalization in three dimensions,
The results of Seciion 2 are from [L3] (at least in the case XK =D }, where
they were applied to estimates concerning the Hausdorff measure of multiple
points (see also Weinrybh [W2] for some extensions). The methods of Sections 3
and 4 are taken from [L2Zl. Theorem 7 was proved in [L2] in the special case K
=D, and then externded in [L10} . The latter paper also contains fluctuation
theorems for the Wierner sausage in higher dimensions. See also Chavel, Feldman

and Rosen [CFR] for an extension of Theorem 7 to Brownian motion on Riemannian
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CHAPTER IX

Points of infinite multiplicity of the planar Brownian motion.

Ag a simple conseguence of Theorem VIII-4 and Propesition VIII-S we get
that a planar Brownian path has p-multiple polnts for any integer p ., w.p.l.
Intersection local times certainly do net provide the shortest way of arriving
at this result. Nonetheless, they can be used to get much useful information
about multiple poinmits. In this chapter we will uze self-intersection local
times to prove the existence of points of infinite multiplicity. The proof
involves no technical estimate, mainly because the hard work has already been
done in the previocus chapter. The first section develops certain tocls which

are of independent interest.

1. The behavior of Brownlan motion between the successive hitting times

of a given multiple point.

Throughout thig chapter, B = (B{.t z 0) is a plamar Brownlan motion
started at 0 . For every integer p z 2, we denote by Bp the random measure

that was constructed in Theorem VIII-4.

Consider a double point 2z = Bs = Bt for some s < t . Opne may expect
that the path of B between times = and t looks like a Brownian loop with
initial point =z and length t-s . Recall that a Brownian loop with length T
and initial peint 2 is by definition a Brownian motion started at z and
conditioned to be at 2z at time T . A simple example will show that some
care is needed in order to make the previous affirmation rigorous. The easiest

way of congtructing a double point is to set

T=inf{tz1l;: Bt e B[C,1721 } ,
and
S = sup{s 5 1/2 ; B = B?} .

Notice that S < 1/2 < 1 < T a.s., and that S 1s certalnly not a stopping
time. The process (BS“u 0 % 1 2 T-8) turng out to be very diiferent from a
Brownian loop. Indeed, this process cannot perform small clogsed loops around
its starting point as a Brownian loop would do, because this would contradict
the definition of &,
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Fig. t

This example does not mean that our previous heuristic affirmation is
incorrrect. It can be explained by the fact that the double point B5 = BT is
in some sense exceptional. To avold these exceptlonal double points we will
have to average over all double points. Averaging will simply mean integrating

with respect to the seif-intersection local time.
We need some motation. For 0 = u = v we set ;

qu(t) =B

(i) Av - Bu

B {t) =B -B ,
v ou

(emt)Vu v

so that qu,vBu define (random) elements of the space C(Rz) of all conti-
nuous functions from R, into R.

If L =(L{t),0 =t sT) 1is a Brownlan loop with imitial point =z and
length r , we set L{t) =2 for t > r , by convention.

Finally, for anmy process T , we denote by r'*  the process I' stopped

at time t (I'(s) = T'(s A t)).

Theorem 1 : Let p = 2. Then, for any Borel subsel A of 57'p and any non—

negative measurable function F on C(Rz)p"l,
EU B(ds,...ds) F(B , B ... Bm)]
11 2 P
A
dss...ds 8
= — L E[F(T *, Liegr o by oe - PN
- iy e 1B_~ —i;8 -8
4 2m (52-31)...(&.p sp_x) 2 1 p p-i
where the processes i‘“,l“’,LJ {(J = {2,...,p}) are independent, r,r
+8 -8
I 4
are two planar Brownian motions started at 0 , and, for J € {2,...,p},

T is a Brownian loop with initial poeint 0 and length Sj“Sj .
B = B

In particular, let H be a Borel subset of C([Rz)p” such that, for

ds ...ds a.a. (s,,...,8)eT ,

i P i P P
B

PI(r t,L ,[")eH] =1,

O L
8,78, P .sp eap_1
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Th . P 5. . .. ds .a. -JAP
en, w.p. 1, for ,r;}p(ds,1 dfap) a.a. (s sp) € ETP ,

1

(0931,31832. - ,_pB&) € H.

Proof : The second assertlon follows from the first one by taking for F the
indicator function of the complement of H. We prove the first assertion in
the case p = 2 (the general case is simlilar). We may assume that F s
bounded and contlnuous and that A 1s a compact rectangle. Then it easily
follows from Theorem VIII-4 that

EU B(ds ds ) F(B , B . Bm)]= lim EU Bg(dsidsa) F( B, B, Bw)]
A 1 1 2 2 -0 A 1

{we write B‘; instead of Bc in Chapter VIII). However,
c - 3
EU Bz(dstde) F(oBs e Bs e Bm)]
A 171 2 e

= 3 g a -2
= I d51d52 (re™) E[m(D(B &) n D(Bs sE)) F(oBs » B‘s e BM)I.
A ¥ 2 t 12 e

Then yse the trivial observation

m(D[EQ ,8) A D(Bs ,8)) = m{D(0,e) n D(Bs —Bs ,e))

1 2 2 1
and condition with respect to B -~ B . It follows that :
B 8
2 1
€
EU 32(dsld52) F(oBsi,siBsz,szBm)] o J dsldszl dy psz_‘;i(o,y)
A A | v|=2e

x (me®y2 n(D(0,¢) n Dly,e)) EIF(B, . B
1 1

32 B o B B
To complete the proof notice that

8
1
1imE[F(B , B, B) |B ~B =y]=EFr 'L RaDy
y-0 N 0% tesyEy

and

_[ dy (ne®)™ m(Dly,e) n D(0,8)) = 1. b

Theorem 1 i certainly not a deep result. If we replace Bp(dsi...dsp)

by its formal definition

B,(ds,.. ds ) = 6(0)(852- Bsx)...a(o)(Bsp— B"p_l) ds,...ds
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then the flrst assertion of Theorem 1 becomes almost obvious. The second
assertion of Theorem 1 will however be useful azg it provides a {very weak)
form of the Markov property, at times which are typically not stopping times.
Indeed, 1t shows that, for a typical multiple peoint, the behavior of the
process before or after the successive hitting times of this multiple point is
similar te that of a Brownian motion or a Brownian leop. Notice that the
notion of intersection local time is needed to say what a "typical multiple

point® isg.

As a first application of Theorem 1, we ztate a result which shows that
the points of maltiplicity p+! are very rare among the p-multiple points.
Proposition 2 : With probability 1, for Bp—a.a. {sl,...,sp), the point
B = ..= Bs is not a (p+ll-muitiple point.

-3

1 P
Remark : Proposition 2 iz also valid for p = 1, in which case Bx should be
interpreted as the Lebesgue measure on R,. if ﬂp(dz) denotes the image

measure of Bp under the mapping (51""'5 Y— B, then Ep is in some
P -3
1

sense the canonical measure on the set of p-mulitiple points, and Proposition

2 shows that the measures tp(p = 1,2,...) are singular w.r.t. each other.

Proof : For ¢ € C{Rz) set
Clp)} = inf{t > 0 ; ¢ is constant on [t,w}}
{inf @ = + »} and
- 2.p¥1
H= (9,00, 0 ) € SO 5 Wt & 10,80 ))up () % ¢ (2lp,))
and for 3} =1,...,p, ¥t € (0,({¢j}),¢jft) * @1(0)}.
The polarity of single points for planar Brownian potion implies that H

satisfles the assumption of Theorem 1. The desired result follows from Theorem

N ]

2. Points of infinite multiplicity.

We say that two compact subsets X,X' of R have the same order type if
there exists an increasing homeomorphism ¢ of R such that ¢(K} = KX’

Theorem 3 : Lei K be a totally disconnected compact subset of R. Then with
probability 1 there exists a point =z of the plane such that {t = O, Bt = z}

has the same order type as K .
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Note that when K s a finite set, Theorem 3 Just says that there exist
points of multiplicity (exactly) p for any p. As a consequence of Theorem 3
we get the existence of peints of (exactly) countable multiplicity, as well as

the existence of points of uncountable multiplicity.

The proof of Theorem 3 relles on a key lemma, which itself ig an easy
consequence of Theorem 1. Let us first explaln the need for this lemma. We
start with a double point z = B =B (with r < g). Choose ¢ > 0 small

r B

{at least smaller than (=-r)/2) and consider the 4 paths er{, rB”e,
, B . We would like to say that these 4 paths are “"not too different”

5 5°C B B+E
from those of 4 independent Brownian motiong started at z. If this is the

case, the results of Chapter VIII allow us to find a common point other than

Z to these 4 pathe. That ig, we may find t el{r-e,r), u e€l(r,r+), v els-—¢,s),

w € (g,8+¢) such that B =B =B = B = z_. We may even choose =z au
|3 u v w 2 2

cloge to z, as we wish. We can then by simllar arguments constiruct a point

z, of multiplicity 8 close to z,. At the nth step we get a point z, of

n

maltiplicity 2. It should then be clear that, if the construction is
performed with enough care, the point 2z = 1lim z will be a polnt of Infinite

multiplicity (in fact {t ; Bt = z} will contain a Cantor set).

B-F B=B=B=8
r 8 t u v w
First step. Second step.

Fig. 2

The only trouble in the previcus arguments comes from the assertion "the
4 pathe rBrc"" are not too different from 4  Iindependent Brownlan
paths”. The next lemma will demonstrate that, for most of the double points
Br = Bs , these 4 pathy behave like 4 Iindependent Brownian paths, at least

for the properties that are of interest here.
Lemna 4 : With probability one, for B -a.a. (51""’5 Y and for any & > 0,
— P P

sz((sims,sl) P (si,si+6) oo X (sp—a,sp) P (sp.sp+6)) > 0.

Proof : For any compact rectangie R in 3p we may find a sequence (ck}

decreasing to 0 such that
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(1 B(R) = 1im B5(R),  a.s.

P ks P
We may assume that the same sequence (ck) works for any p and for any
rectangle with rational cocordinates. Then a monotomicity argument shows that
(1) holds simultanecusly for all (compact or non—compact) rectangles of 3p.
Finmally, let ap be the intersection local time of p Independent Brownlan
motions started at O (see section VIII-1). We may assume that, with the same

sequence (ck),
€
(2 « (R) = im « “(R),
P ko P

for all compact rectangles in (R‘)p, a.s.

Let  £,£,...,f e C(R") and let & = &(f) be as in the proof of

Proposition 2. If c(fl) <« for every 1 € {0,...,p-1}, set
] =
slfg £, £) ziiiunfj , dt dt,
0,5
2p _ _ _
soek(fo(qo ti),fl[tz),fi(c;: ta),...,fp_x[tap_z),fpmi(tzp_x tap_x).fp(tp))

where

2p 2p £
0o (202, ) = F Ay Tl s,z)
r

as la Chapter VIII. Otherwise, set 86(

By looking at the finite-dimensional marginal distributions, it is very

fgre-e£) = 0.

easy to check that, If L is a Brownlan loop with length a , for any & < as2,
the joint distributiom of (L(t),L{a-t) ; 0 = t = &) is absclutely contlimuous
with regpect to that of two independent Brownian paths. It follows from this
observation, (2), and Proposition VIII-2 (1i) that the set

B Can H PN >
Hos ((f.f. 0 f) s L(f . f,....f) >0, ¥8>0}
gatisfies the assumption of Theorem 1. Therefore wW.p. 1 for Bp—a.a.
(51""’Sp)’
(B, B ,... B, B)eH.
C s 8 8 B g §
1 1 2 i p P

Lemma 4 follows using (1) and the definition of Bip. o

Proof of Theorem 3 : We will show in detall how to construct a peint 2z  such

that {v ; BL = 2} contains a Cantor set, We set t? = 1/2, z, = B ., 8 =

1/4. We observe that for any & > 0
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L

5.5+ 8)) >0, as.,

1 1
32((5 -8,5) x (

by the arguments of the proof of Proposition VIII~6. By Lemma 4 applied with
p =2, we may find a pair (ti,t;; € (1/4,1/2) x (1/2,3/4) such that :

i

and, for any & > O,
H 1 1,3 1 H 1,8
B‘((ti—a,ti) x [ti.t1+6) x (ta—a,tz) * (tz,t2+5)) > 0.

We proceed by induction o n . At the " step we have constructed

n

: ATy L (M v 8 )

n n-1
(.- "tzn) € (t1 sn—l 1 2n-1' St n-1

in such a way that

and for any & > 0,

n n n n n n n n
an’l(EtX“S.tl) x (tx,t1+5) XoroX (tan—S,tzn) x {tzn,t2n+6)) > 0.

We set 6n = é (Sn_1 A min{t.':—t?_1 ;1= 2,..,.2n)). By the induction hypothe-

sis and Lemma 4 we find

n+% n+l n n n n
(t.1 NP & n+1) € (t1—an't1) x...x (t Wt n+5n)
2 2 2
guch that
Btm—i e Btm-l = zn+i
1 n+l
2
and for any 3 > O
n+l n+i n+i n+i
ﬂz(n+2) ((ts —6.t1 Y oxoox (b n+1,t el + &)} > 0.

2 2

Finally the continuity of paths implies that the sequence (zn) converges

towards some 2z € R°. Furthermore {t =0; Bt = z} centains the closed set

K= |U {t';;je{i,...,zn}}].

n=1 ‘m=n
Our construction (in particular the cholce of the constants Sn) ensures that
K 1ig a Cantor set.
By being a little more careful in the comstruction we can even get
K={t= O,BL = z},

which gives Theorem 3 in the case of a Cantor set.
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The general case requires some technical adjustments but no new idea. If
for instance X 1is the uniom of a Cantor set and an isolated peint located on
the right of ¥, we proceed as follows. We constiruct ti,t; as previocusly but
in the second step we "forget” about the path during (t;fal,t;) and we
choose

2,2 .2 1 1 1,1 I
(t:’ta’ta) € (tx_ax’t1) X (ti,t1+61) X (tg,t2+51)
so that for any & > O
2 2 2 .2 2 z 2 .2 2 .2
BS(Et1 S,tll x {ti,t1+5) X (tz—a,tz) x (tz,t2+6) b (ta,t3+6)) >0

{this requires a new version of Lemma 4). At the (n+1)th step we construct

n+i n+l n n n n n n
(t1 R 4 - ) e (tx—an’t1) x.o.o.x {t n_1,t n_1+6n) x {t - .t - +5n}
2+ 2 2 IS - SRS 1
so that
Btn+1 e = Btn+1 = zn+1
' 2y
and, for anmy & > 0 ,
B CEE™ =8, 6™ e (6™ e 8) s o (8™ M s (2™ LM 48y > 0
n+l 1 1 1 n n 1
2 41 F 2 S T 1

The point z = lim z will satisfy the desired condition, again provided the

construction ig done with enough care.

Bibljographical notes. The problem of the existence of points of finite

multiplicity for a d-dimensional Brownian path was completely solved by
Dvoretzky, Erdés and Kakutani [DK13, [DK2} and [DKT} in collaboration with
Taylor. See Kahane {Kh] for an elegant modern approach. The existence of
points of infinite multiplicity for a planar Brownian path was proved in
[DK3}. However the given proof is nol totally satisfactory: it seems that the
authors apply the strong Markov property at certain random times thal are
typically not stopping times. The malerial of this Chaplter is taken from
{Le]}, to which we refer for a more detalled proof of Theorem 3. Proposition Z
is a rigorous form of lLévy's iIntuitive staltement quoted in the iIntroduction.
See also Adelman and Dvoretzky [AD} for a weak form of this resull. Another
way of comparing the size of the sets of poinis of multiplicity p and p + 1,
that was suggested by Lévy [Léa, p. 325-329], Is to use Hausdorff measures.
The exact Hausdorff measure function for the set of p-multiple points is
o (x) = x® (log 1/x logloglog 1/x)P (see [L9], for p =1 , this result is due
to Taylor (Ti]). A weaker form of this result had been conjectured by Taylor
[T2} and proved in [L31.
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CHAPTER X

Rencrmalization for the powers of the occupation field

of a planar Brownlan motlon

1, The maln theorem,

Throughout this chapter B = (Bt, t = 0) denotes a planar Brownian
motion, which starts at =z under the probability Pz. Let p =2 be an
integer. In chapter VIII, we introduced the (p-multiple) self-intersection

local time of B aw a Radon measure on

ﬁfp = {(51""'5;:) : 0= s1 <...< sp},

supported on {(51,...,5")) : B =...= B }. This measure, denoted by ﬁp , is
5 8
1 p

guch that, for any compact rectangle A ¢ ﬁp .

1 = y v 3 ...ds
(1) B (A) ‘1:1—).:? Idy J'A «pe(Bsi) “’e(ng) ds,...ds_
in the Lz—norm. Here,
¥ = 241
polz) = (me”) ID[y,e)EZJ'

We know that, for every M > 0, 8(9 n [0,MI®) = « a.s, Our geal in this
PP
chapter 1g to define a renormallized version of 3p(3p n [0,4]1°).

By (1) we have the formal expression

Py o . ,
BT n 10,417 de J' ds,...ds_ a(y](Bgl)...a(y)
ETPn[O,Mlp

= %T Jdv [JJ; o S(yl(Bs)]p‘

More generally, we shall introduce renormalized versionsg of the quantities

J-dy fiy) [JJ; dg aty)(gs)]P’

for £ : € — R bounded measurable. In this way we define what may be called

(&)
P

the p-th power of the occupation field of B. Recall that the occupation
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field, or occupation measure, of B on [0,M] is the measure

f—)JMds £8 ),
0 B

whose formal density is
Iz ds & - (B').

As a matter of fact, the need for a renormalization of Bp 1g closely related

to the singularity of the occcupation measure wlth respect to Lebesgue measure.

We need some notation hefore stating our maln result, First notlce that
in (1) wz could be replaced by many cother suitable approximations of the
Dirac measure at y. In what follows, the most convenlent approximation willl
be the uniform probablility measure on the circle of radius e centered at v,
dencted by C(y,e). This leads us to the local time of B on Cfy,e). This
local time can be defined rigercusly in several ways. The most elementary

approach 1g te show that

(2) 1im

= ()
350 €

L
1
Ines [ l{t:w5<[Bs-—y|<t:+5} ds
0
exlsts in the Lamnorm, forany t 20, e (0,1) and y € € Alternatively,
iz[t) may be defined as (2me) '  times the usual (semi-martingale) local
time of [B'—y|. at level ¢ and at time t. Kolmogorov's lemma yilelds the
existence of a continuous version of (g,v,t) — I:(t). From now on we shall

only deal with this version.

The methods of Chapter VIII can be adapted to give :

(3) B (A) = lim I dy J' (ds ). .. 0 (ds )

4 £50 A S ! € e
for any compact rectangle A  (here 5;(ds) denotes the measure om R,
associated with the continuous nondecreasing function t — 5;(t)). We shall
not use (3) , except to motivate the next results, and we leave the proof as

an exercise for the reader.

For technical reasonsg that will appear later, it turns out to be very
convenient to work with Brownian motion killed at an Independent exponential
time. Therefore we fix A > 0 and we let £ denote an exponential time with

parameter A, independent of B, For any ¢ > 0 we set :
0
he = —Ec[gs(c)}‘

Motice that EiH:(C)} = -he whenever |z-y| = £ , by the rotatiomal inva-

riance of planar Brownian motion. It easily follows from (2) that
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o
~h, m[ ds e S J nc(O,dy) pB(e,y) ﬂj nc((},dy) Gl(c,y)
0 clQ,e) c(o,e)

where nc[o,dyJ is the uniform probability measure on C(0,e). Recall that
1
(1) Ga[y‘z) == KO(V§X|z~y|),

where KQ is the usual modifled Beswsel function. It follows that

, _1 1 1 flog(2/A) o2 1
(4') GﬁYJ)-"'mg]ry§+ﬁ [ > k| + ol|z-¥| h%}?ﬁﬁ

b
where x dencte Euler’'s constant. Hence,

L 1 1 1 [logl2sa) 2 1
(s) by = - = log g - o [mmjiwmmm k| +0|e" log 2

using the harmonicity of y — log|y|. We set
= 0,
Ap Ep n [0,Z3

It follows from (3) that :

1 v Yt des ¥rda \ = =
iig de TRAS) lin J‘dy L\p gds).. . £(ds ) = B (8) = =

in probability (in fact this limit also helds a.=.). We get a renormalized
version of § (Ap) by the following procedare, For every e > 0, we replace
5;[(]p/p! by ancther polynomial of 8:[c]. with the same leading term, and
coefficlents of lower degree depending on e. A saitable chelce of these

coefficients allows us to get an szconvergence as & goes to 0.

Theorem 1 : For every ¢ & (0,1}, p= 1 vgel
R R
"

] C

p p-1
QZ(u) = [

k=1 ' k~-1

For any bounded Borel function f : € —» R, set

Lo n Pyg¥

T = [ay £t QGeg@n).
Then, c
1im T°f = T F
esn P P
exists in the LGnorm.
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Remark : For p =1, it can easily be checked that
<
TS = ds £(B )
0

(zimply compute E[(Tf{p - Tiqp)zj, ete... ).

Most of the remainder of this chapter is devoted to the proof of Thecrem
1. Let ug briefly disgcuss the contents of thlg regult. In some sense, the
random variables Tpl {p = 2,3,...) provide the renormalized versions of
ﬂP(AP) that we aimed to define. In the next chapter, we will prove that these
quantities appear in the different terms of a full asymplotic expansion for
the area of the planar Wiener sasnsage. This result will also allow us to
relate Tzi to the renormalized self-intersection local time (for double
points) discossed in Chapter VIII, The proof of Theorem I for a general

function f 1s not more difficult than in the specilal case f = 1.

The =zimple form of the polynomlals Q: will be explained in the proof
below. Notice tha't we could use other approximations for the Dirac measure at
y : a result analogous to Theorem t would then hold, with (eszentially) the
game 1imiting wvarlables Tf, but the rencormalization polyncmials would
usually be much more complicpated. For instance, the approximation could be
given by the function gp; , 0 that Ez[c) should be replaced by

2 |© .
(re ) 1D(y,c)(Bs)ds'
0

However, already in this simple case, the renormalization polynomials cannot
be written explicitly (szee [Dy3,Dy5]).

2, Prellminary estimates.

The proof of Theorem 1 depends on certaln precise estimates that will be
derived in this section. We start with a lemma which explains the form of the

polynomlials Qz.

Lemna 2 : Set

Ap {(51" ,sp) ; O s, 5, g T}

Then, for every £ > 0, y e T,

D
P = " . "
Q£ (2)) «I E:(dsl) 1r=|2 (L:(d&.l) + hesgsl_i)(ds’)).

A
P
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Proof : First notice that the expression

p
Z:(dsl) 13_32 (E:(dsl) +h 8 ‘ NCER))
= -1

(s
glves a well-~defined signed measure on the set Ap. Furthermore we may expand
the product and get terms of the form

L ¥
(hs:) Eﬁ(dsi)\ . 'lg(dsjl—l)

3 ) 3 )
8('531—1) (ds Jl)ee(as 5;“1)‘ - (ds J2_1)

¥ y y
6(932%) (dsjz) tg{dsjaﬂ) s S{S}k-l}(dsjg) Ze(ds}kﬂ). . .£$(dsp)

where k & {0,1,..., p-1} and 1 < Jx < 32 <...< 3k = p. Next, if we

integrate such a measure over A;, , the effect of the Dirac masses is to force

8 =S, ., for i e {ji,..,,jk}, and we are left with the integral :
Ey(c}wk
k ¥ ¥ v k £
(he} j ts(dti) se(dtz). "tg(dt,,.,k} S (he) ooy -
A
Pk
p~1
Fimally, for every k, we have [ } possible cholces of Jz""’Jk‘ o
k-1

To simplify notation we write Glz-y) = Ga(y.z). Notice that G(z) 1is
a nonincreasing function of |z| . By (4) and well-known properties of the
function Ko' we may find two positive constants C,, m such that for any
v,z # 0, with |y|s/2 < [z} < 2|y],

|6{2) - 6ly)]| = € |z-y] (%f exp - n|y|}

(simply notice that the derivative of the function r — Ko(r) is bounded by
¢ exp ~ ar). We set glr) = 2 C, r exp(-nr/2). Note that g is

nonincreasing and that, under the previous assumptions on z, y ,

(6) 6(z) - Glyy| = |z-y| g(2|y|)

Lemma 3 : For every integer n 2 1, for x,v,z€ €, ¢,2¢" € (0,1/2),, set

,

m
x
p—

¥ z >4 z - -
le(dsl}lc.(ész)tt(ds:i)...Ec,(dsn}] if n is even,
YA

n

Hz_t.(x,y.z) = 4

3
X
e

Y z ¥ ¥ s .
Zc(dsi)ls, (dsz)tt(dsa). - .Zs(dsn)] iIf n is odd.
YA

n
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€ (0,1/2) such that |x-y| > 4(e v "),

H

Xx,y,2 € €L , &, €

Then, for any
and < g" < Zeg,

|z-y| > 8(e v &)

™l o

YoXy oETYy®
e e s (x,y,2) = G(“Z‘_) (="

{(x,y.2) - Gly-x)G{z~-y)

¥z, e
s ¢ (g(2]y-x| G2y + 2(n-1) (;(y )G( Y %5(|z-v|))-

=1, E:,(x,y,z) e H;(x,y) depends oniy on €, x, y ahd

Remark. When n
the bounds of Lemma 3 glve:
H (x,y) = G( O

B (x,y) - Gly-x)| 5 ¢ g(2|y-xI)

Proof : We use induction on n. For n =1,

(x.y,2) = H.(x,y)= E [£(£)] = J' n, (y,d%)G (w-x)

However, if w € Cly,e),
Glw-x) = G(Y—;‘) .

|Glu-x) - Gly—x)| = e g(2|y-x]|)

by (6) and our assumptions on X, vy, &. The desired bounds follow
2. Assume that Lemma 3 holds at the order mn-1. Using the

Now let n =

Markov property of Brownian motion kilied at time
H, (x,y.2) = E ¢ s ) 1°7t (B
g, e\ Y x oA R A - s,

0
B, € Cly,e). The induction hypothesis gives for
1

£ , we get

.z.y)]-

Notice that L;(dsl) a.e.,
any w € Cly,e),
tnzy) s 650 N = B

The first bound of the lemma foliows by using the case n = 1 .
Next, by the induction hypothesis again, we have for every w € Cly,e),



211
[ ( - G{z-w) G(z-y)™?|
e .¢c W,2,¥) {z=~w) 2=y
s ::[ 22| 2w )6(z=y)" 2 + 2(0-2) gllz-yDGEED™ ]

= e (2(n2)+1) gllz-y| )G .
Furthermore,
|GCz-w) - Glz-y}| = ¢ g(2|z~y|) .

It foliows that

e (a2,y) = Glz=y)™| = e (2(n-2)+2) gl|2z-y| 6™

and, by the first bound of the lemma with n =t ,

|He o O6y,2) = BT8R Glz-y)™| = 2(n-De 6(557) gl] 2y 6D

The proof is now completed by using the second bound of the iemma with n = I:

|EXH:(C)] - Gly-x)| = ¢ g2ly-x|) . o

3. Proof of Theorem 1.

The main step of the procf of Theorem 1 is the following key lemma.

Lemma 4 : There exisils a positive constant Cp such that, for any x,y,z € C,
e,¢e e (0,1/2), with |y-x| > 4(e v &"), |z-x| > 4(z v &), |z-y| > 8(c v &)
and e/2 5 ¢ = 2e,

|E, 10527 (2)) Q2. (€2, ()] = (Gly-x) + G(z=x)) Glz=y) 7"

< Ce|log | ((el|y-x|) + allz=x|)) Glz-y) + (G(5) + N &llzy])).

Proof : We use Lemma 2 to write :

x P
|Ex[o';(z;(c)) °Z=("-t(<’)1 = E[J' ZZ(dss) ng (a;(dsj) + hea(sjq)(dsj))
AP
£, (dt T £.(dt) + h_,8 {dt )
x R e'( 1) kEZ(e.( k) e’ (tk_l) k)

P

= ¥z
E"” u':":,(dsi...cl*sl> dt}.. .dtp)].
A xA
P P
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Here u:’:. is a signed measure on the product A? * Ap . We now need to order
si,....sp, ti,.,.,tp. Each possible order is asscclated with a nondecreasing
function ¢ : {1,...,p} — {0,%1,...,p} in the following way. For anmy such

function ¢, let

Fw = {(s!,...,sp, t ,...,tp) € Ap % Ap s Vie {1.....,p} tw( <s

s 1) <8 <ty

where by convention to =0, t v = . If ¢ # ¢ the corresponding sets ?w!
-]

Fw, are disjoint. Moreover (Ap x A?) - U ?w is contalned in
¥

U {sl = t}}
1,%e{1.....p}

and the p:’:,-measure of thigs set ig zero because of our assumptions on

y,z,e,&" {observe that p:’:, is supported on :
{(s--mus teennt ) 5 VAL |Bsi*y| =g, §Bti’z| =e'})

In view of the previous observations we may wWrite
Pra¥ P gpZ 2
i E;[Qc(lc(q}) Qc'(lc’{c))] N E Exi”e.e'{r@)]
Remark that we could ags well have introduced

F o={{s....,8, t,...,t)eA xA ;¥vied{l,...,p},
¥ 1 P P P P

A Ser1) <Y < Syrnren?

and that Fw =T, If and oniy if ¢ = #, where :

e(3) = sup{i, @fi) < 3} (sup e = 0).

We first consider the simple situation where both ¢ and 5 are stric-
tly monotone {in other words sl and si+1 are always separated by at least
one tj , and conversely). This can only occur in the following two cases

pli) = @1(1} =1 -1,
eli} = wz(i} 1= i,

We have first

< 4 (4 < 4
Ex[u;::,(rwl)] = Ex[j li(dsi) f £:,(&t1) J ..,J tz(dsp)j t:,(dtp)]_
0 S £ t s
1 1 p-1 P

(notice that the Dirac masses give no contribution, because of the cheolce of

¢ and because of the supporti property of p:’z, ). By Lemma 3,
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}E [_u"'z (I‘ }3 - Gly-x) G(z*y)ZP‘li

2p-1

< e (8(2]yx]) S(zy)™ + 2020-106(50 8|2y 16D,

Similarly, Lemma 3 gives :

|E [uy‘z (1" )] ~ Glz=x) G(z-—y)zP‘iI

s ¢ (g(2]|z-x|) G(z-y)* + z(2p—nc(-—)g(|z y| )G(z Yyer-2y,

Qur assumptions on y, z allow us te bound
Glz-y) = G( ZYy = Gle) = C |log el

The proof of Lemma 4 will be complete if we can check that the other
terms of the right side of (7) give a negligible contribution. Te¢ understand
why this is so, let us consider the easy case where ¢ 1s such that g{p) =

¢{p-1) = p, which implies that I"v is centained in

S ,..-48, Lt ,...,t); t <s <8 }.
G, et 1 P) P p-t P}
Then,
¥ix = ~¥, X ¥
Ex[uc.c'(rgo)] Ex[}' pg’t,(ds‘...dsp_idti...dtp) (tc({sp_j,i)) + hc]]
A xA
piop
Y%
where ue'e,(ds‘...dtp) is a signed measure on Ap_i % Ap , Supported on

{(51""tp) ; t:p<sp_1 and [BS - y| = e} and such that the bounded variation
p-1

process t —» “;'Z-({Sp.,f't}) is predictable. Replacing 2;((Sp—x‘<)) by

its predictable projection gives :

¥ix - =¥, X ¥
Ex[“e,e'(rqz)] = Ex U, “e,e'(dsf . 'dsp—idtf . .dtp)(EB [Bt(é}] + hg)] .
A %A Fo-1
-t p
By the very definition of he s
¥ = - =
EyC[et(q)] =-h, if |Ye y| = e
Therefore E [pe S:,(l" = in this case.

We now turn teo the general case where we only assume ¢ # L * 9, We

may restrict our attention to the case when , for some k € {1,...,p-1},

r c S ,...,8,t ,...,¢ st <t <5 <t < .. <5<t
¢ « 1? Tpt ! ’p)' kO k kel K+t k+2 w2 P p}
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(one should alsc consider the case

< < < < <...< <
r@ < {tk+1 sk Sk+1 tk+2 Sk+2 tp Sp}

and the symmetiric cases where the roles of 5, and 'c.l are interchanged ;

all these cases however are treated in the same way). Then,

B0 )1 =, U

g
e %1 >4
)% (ds . ds dt . .dtk)j (te(dsm)mca(Sk)(dsm))

A xh s
kK % %
(4 < < <
z ¥ ¥ z
% I te.(dtm)j eds ) .. Ec(dsp) zc,(dtp)}
s t t s
k+l k+i p~1 P
~Y, .
where Moo is a measure on Ak * Ak , Ssupported on {(51""’t’k) H t.k< s,
|B -y = €} and such that the bounded variation process t —
S

;’:_({s st}) is predictable. Crude bounds show that the total variatiom

I"‘Y- ! of ~YLE

Mo o Beleo satisfies :

ExU §1id T e,l(ds o.dsdt ...dt) (t;((sk,c)) + |nc|)]
A=A

k

= C [10g e|™ (&2 + 6

{use the bounds E [£(Z)} = ¢(XX) and sup E [£(L)] = C' [log ¢]).
% € 2 wet * >4

g
Next , in the previous formuia for |E [;.L""== (l" 3 we replace U ]

s
k+l

by its predictable projection, which coinclides with

2{p-k)~i
He’ - (Bs $Z.¥)s
k+1

in the notation of Lemma 2. By Lemma 3, for w € Cly,e),

IHEIP Wiy 29) - Gla- y)z(pﬂ()'—ll <Ce [log 8|2(P—k)-2 gl|z-y|)

{use again the bound G( YX) £ C Jrog €]) and it follows that

E[WDZ ()] - Glamy) P E” B IS, dn) (2((5,0) )]
A xA

= C ¢ |iog s]ap -2 GEX ) + G(——)) gllz~y|)
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by our previous bound on |u’'Z

M This completes the proof since
*

B[ B2, dt) (15, 0) + )l = 0,

by the same arguments as above (that 1s, by replacing E:((Sk.C)) by its
predictable projection), using the fact that u;';. is supported on {tk < sk}.s

We now need to bound the contribution of pairs {y.2) that do not

satisfy the assumption of Lemma 4.

Lemma 5. There exists a constant C; such that for every e, ¢'e (0,1/2) such
that e/2 = &' = 2¢ and every X, vy, z€ C ,

ELIQQELE) (2 @] s c log o®? 5T + cGFN° oZHY
Proof : We use the easy bound
Prp¥ ¥ 14 p-3
IQC(BS(C))I = £e(c) ( te(t) + Ihtl }
and we observe that l:{c) = 0 unless Tc(y) < & , where
T ly) = inf{ s ; |B-y| s ¢} .
Then the Cauchy-Schwarz inequality yields:
Prs¥ P b4 . rs2
E [1Q.(2.(8)} Q.. (£, Nl = Pl Ts{y) <g T, (2) <]
(p-1) 2ip-1),1/2
x E [20)%0@) « In 1®P7 22 ()€, (&) + In, )PP

Next we make use of the bound
-2 X Z=X z
PLTy) <& T,(2) <g1=sC liog el (G(Zz_) + 65 6(5Y)

which follows from the technlques of Chapter VI (to bound P{Tc(y)s Ts,[zl< cl,
apply the strong Markov property at Tc(y) and use Lemma VI-1 (111)) . Also

notice that for every Integer mz 1 ,

Yi®y m
sup Exlée(c) 1= Ih,l
yeC
(the supremum 1is attained for y € Cix,e) and in this case the

distribution of EZ(c) is expcnential with mean Ihcl)'
The previous bounds and another applicationm of the Cauchy-Schwarz

inequailty lead to:
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/2 is2

E [1Q2(EL(E)QE, (£, (€)1] s € l1og 1™ (6B + SN 65D

n P
x €' Ihhg, 7.

Lemma 5 folilows. o

We now turn to the proof of Theorem 1. We note that:
Pe P - Pyp¥ P (%
EITo 1261 = [dy dz £0) £(2) E QXD (. €)1

We then apply Lemma 4 and we use Lemma 5 to bound the comtribution of the

pairs (y,z) that do not satisfy the assumptlons of Lemma 4. We get:

[E (726 10,57 - zj' dy dz fly) f(2) Gly-x) G(z=y)®| = C ¢ {log ¢|*F?

whenever e'e€ [e/2,e], ¢ € (0,1/2) (notice that both functions &Gly), gl|y])
are integrable avec € }. The previous bound implies that for e' e [es2,g],

Per _ P 42 2p-2
ExE(th Tc,f) 1= 4C ¢ |log €] .

It follows that the seguence Tp_nf converges in the t®-norm. If TF
2
denotes its limit, it is then immedliate that :

TPf = 1% « 1im T
€30

This completes the proef of Theorem 1. o

4. Remarks.

The previous proof gives more information than is stated in Thecorem 1. We

get an estimate of the rate of convergence of T;f towards TPr :

Pr .. 2 2 2p-2
{8} E[TOf - )] s C ]2 ¢ [1og ¢
for some constant € independent of f. We have also obtained the second
moment of T'F :
E 1(T°6)7] = 2}‘ dy dz fly) £{2) Gly-x) G(z-y)*"?

and, more generaily,

Ex{TP{ '] = I dy dz £(y) £'(2) (Gly-x) + G{z—x)) G{z-y)*P"".
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Cne can also check that

Ex[r”"f ™) = ‘[dy dz fly) £'(z) Gly—x) Glz-y)*P,

and that
E[Tf T% '] = 0
x

whenever |q—p| z 2. These resuits are consequences of the following bounds,

which hold under the assumptions of Lemma 4,
(9 1E [Q] (2 b, (£, (8] - Glyx)G(z-y)*| = € liog eI™™" Fly-x,2-x)

and

(10) IE[QZ(EL(£)) Q2 (£, (€)1] =5 & llog €™ %™ F* (y—x,2-x)

where the functions F(y,z), F'(y,z) are integrable over % . To prove these

bounds, preoceed as in the proof of Lemma 4. In the first case one needs to

order s ,...,8 , t.,....t . The order g <t <g <t <,..<t <s is the
1 p+i 1 P 1t 2 2 p pti

only cone that glves a nonnegiigible contribution. In the second case atll

orders give negligible contributions.
Finally, it is easy to check that:
P -
Ex['i' fl1 =0,

for p z 2 {indeed, Ex[Tzf] =0 for every e > 0}

The proof of Theorem 1 can be adapted to yield Ln—-convergence for any
n & 1. The previous formulas have analogues for higher-order moments. For

instance the nth—mo;nent of TPr is
Pyl n
ELPY] = [ay .. .dy, £(v)---£(v) L T W) = You-)

where the summation is over all mappings ¢ : {1,2,....,np} — {1,...,n} such
that o{i) = o(i~1) for any i = 2, and card o'-l{j) =p for Je {1,...,n}
(by convention Ye(o) = x).

As a final remark, one may wonder what is the role of the exXponential
time £. The estimates of the proof of Theorem 1 depend heavily on the fact
that we are working with Brownlian motion stopped at an exponential time. Note
that changing A would only change he by an additive constant. Suppose that
we replace hs by

for some constant ¢ € R. Let T’Zf be defined accordingiy. Then it is imme-

diateiy seen that :



and therefore we may define
p wp p Pl
fr 2 1imn TFr =

: ] P
£50 k=1 k=1

Note that TPy can alsc he consldered as a renormallzed wversion of

Bp(Apn[O.l;)"). This corresponds to the non-uniqueness of the renormalization.

Bibliographical notes. The renormalizaticn for self-intersections of planar

Brownlan motion has been inspired by renormalizatfon in field theory: see
Dynkin |[Dy2] and the references in this paper. The existence of the
renormalized powers of the occupation field was derived by Dynkin [Dy3] (in a
slightly more general setting) using his isomorphism theorem belween the
occupation field of a symmetric Markov process and a certain Gaussian field.
Later (in I[Dy51, [Dyel, [Dy7]), Dynkin propesed a different approach, based on
& detailed combinatorfal analysis. The material of this Chapter Is taken from
[L12]. It has been inspired by Dynkin's second method, bul it avoids the
combinatorial analysis of Dynkin’s work. Qur construction is however not as
general as Dynkin’s one in [Dyé]. See alsc Rosen [R4] for a different methed
of renormalization (whose relationship with Dynkin's work is not clear) and
Rosen amd Yor [RY] for an approach based on stochastic calculus in the case of
triple self-intersections. The renormalized fields qu: appear In certain
limit theorems for planar random walks: see Dynkin [Dy6l.
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CHAPTER X1

Asymptotic expansions for the planar Wiener sausage

1. A random fleld assocliated with the Wiener sausage.,

Let Sx(a,b) denote the Wiener sausage associated with a planar Brownian
motlon B and a nonpelar compact subset K of mz, on the time interval
[a,b]l. By definition,

Sx(a,b) = U (Bs + K).
azgsh
Jur goal In thls chapter 1s to get a full asymptotic expansion for
m(Scx(O,t)) ag ¢ goes to 0. The different terms of this expansion will be
the renormalized seif-intersectlon local times introduced in Chapter X, for
all multiplicity orders p = 1. Note that the expangion at the order 2 has
already been derived in Chapter VIII,

n " 1 +x ~ log 2
(1) m(StK(O,t)) [

= " - RK) - n 'ar(ﬁf)]
leg /¢ (1og 1/“:)z 2

"e [( 10311/9)2] '

where &k denotes Euler’s constant, and o(F) is the renormalized self-
intersection local time that was defimed in Sectlon VIII-3 (note however that
the proof of (1) required Spitzer’s expansicn of E[m(SeK(O,I))D.

The approach of this chapter depends heavlly on the estimates of Chapter
X, but is independent of the results of Chapter VI and VIII (except for the
potential-theoretic rersults of Sectiom VI-Z). We wlll recover the expansion

(1), as well as Spitzer’s theorem, as a speclal case of Theorem 5 below.

From now on, we fix a compact subset K of Ra. We assume that K has

positive logarithmic capacity, that ls

1
cap(K) = exp ~ [ inf pldx) pldy) iog -— ) >0
peP(K) ”Kxx fyx

where #P(K) is the set of all probability measures supported on K. By
definition, R(K) = log cap(K).



220

As in Chapter X, it wiil be convenlient to deal with Brownian motion
killed at an independent exponential time ¢ with parameter A. As previously,
we iet Gly-x) = Gh(x,y) denote the Green function of the killed process. Set

T, = inf{t =z 0, Bt € K}.

As was recailed in Chapter VI, we have for every X € RA™K
A
(2) PIT, <= Ipx(dw) Glwx),

where pi , the aA-equilibrium measure of K, is a finite measure supported on
K. The A-capacity of K f{s CA{X) = pi{X) . and we have :

(3) cf,\(x)" = inf Iu(dx) pldy) Gly=x).
peP(x)

An lmportant role will be played by the constants a, defined for ¢ > 0 by

a_ = - CA{cK).

It easily follows from (3) and formula {4") of Chapter X that, as ¢ goes
to 0,

..1_==—..1.1
a n

1.1 [iog 2/
. n

L 22 - R{K)) + 0(e? 10g ).

For any bounded Borel function f on RZ. we set :

skt - J'ay fiy) 1 ).

ty
S (0,8

Theorem 1 : Let n = 1. Then, for any bounded Borel function f on R{

n
L PP
Scf = pgg_ (ac) T + Rn{s,f)

where the remainder Rn{e,f) satisfies :

lim |10g ¢|® E[R (e.£)%] = 0.
-0 n

In the special case f = 1, Theorem 1 provides an asymptotic expansion of
m(SeK(O,g}) in the L*-norm. Using scaling arguments it s then possibie to
check that a similar expansion holds for m(ScK{ﬁ,t)). for any constant time
t > 0. In fact, one can even get an almost sure expansion of m{SsK(U,t)) {see
the end of this chapter).

Let us briefly outline the proof of Theorem iI. Thanks to the estimate (8)
of Chapter X, it is enocugh to check that the given statement holds with TPf
replaced by Tzf. Then,
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E(s‘f+E a ) Peye= E|l|ay £(y) (1 {y) . FoPeig) ’
oL e o (Jav £ov G5, 0.0 * I GF @

= H dy dz f(y) f(z)
s P APy 2 P Prs?
x E[[l (y) + ¥ (a) Q.( (c))][l (z) +F (@)Y Qi (c))]].
SCK[U,C) p=1 [ e Scx((},c) p=1 e AN >

Expanding the product inside the expectation sign, we are led to study the
following three quantities :

Prgy¥ Ty p?
{a) E[Q_(£,(3)) Q£ (eN]
Thls quantity was studied in detall in Chapter X, In the speclal case
P =g . The general case offers no additlonal difficuity.

(b) Ply « S“[O,l;), z e Scxw'c)]'
Sharp estimates for this probability wiil be derived in Section 2.

(e) E[Qg(z;(c)) 1 (2)]-

Seg (018

This quantity will be studied in Section 4, after some prelimipary
estinates have been egtablished in Section 3.

2, The probability of hitiing iwo small compact gets.

From now on, we shall assume that the compact set K 18 contained in the
closed unit disk D (this restrictlon can be removed by a scaling argu-

ment). To simplify notation, we set

Tc(y) = Ty-ex = inf{t = 0 ; Bt € y - ek}
s0 that

Ply € 5_(0,8),2 € 5,,(0,8)] = PIT_(y) < g, T_(2) <]

Lemma 2 : Let n = 2. There exists a function F‘n € Li((RZ)Z,dy dz}, such
that, for any ¢ € (0,1/2), v,z ¢ R® with ly| > 4e, |z| > 4e, |z-y| > 4e,

n
IP[Tc[yK g, 'I'c(z)< - 5 (ae)p (G(y)+G(z))G(z"y)P_1|$ |10g s:l-n_1 Fn(y,z)n
p=2

Proof : We will glive details for mn = 2,3. It will then be clear that the

proof can be continued by induction on n. We first observe that

PIT (v) < &, T (2) < g] = P[T_y) s T(2) < &] + P[T(2) = T_(y) < &l
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Then,
PIT (y) s T (2) < £] = P[T,(y) % T.(2) < g} - P[T_(2) 5 T (y) s T,(z) <¢]

where
T;Ez) = inf{t = Tc(y) : Bt € z-¢K}.

By the Markov property at Te(y),
P[Tc[y) = T;(z) < c] = E[(Te(y) < Z) PBT ) [Tt(z) < c}],
&

Notice that By (yy €Y~ ek < Dly,e). By (2) and formula (6) of Chapter X, wve
£

have for any Ye € Dly,e),

A
(4) |Pyc[Te(2) < L] o+ a, Glz-y)| = I[I “ex(dw) G(2~w—y8)] *a, Glz~y) |
s |ag| sup [Gl2" =y} - Glz-y)|
z'eD(z,2e)

s Ce |log g|™! gt|zy])
where g 1s as in chapter X. Similariy,
|P[T () < €1 + a_, Glz-y)| = C e |log 2|7 gl]y])

and (2) also gives
PIT (y) < €1 = |a| 6).

It follows from these estimates that

(5) [PIT,(y) = To(2) < &] = a Gly) &(z-y)]

sCe |log | [5()2-’) gl|z-y|) + gl|y]) G(Z*sf)]

On the other hand, by applying the Markov property at TE(y) and then at
Tc(Z)’ one easlly gets

. -3 z Z-y. 2
(6) PIT,(2) £ T_(y) = Tj(2) < £] = C |1og €| [c(.z.) %Yy ]
This gives the case n =2 of the Lemma.

In the case n = 3, we agaln use {5) but we replace {6) by :

P[Tc(z) =T (ly) = T;(z) < L]

= P[T (2) 5 T,(y) = T(2) < g} - P[T_(y) = T (2) 5 T,(y) = Ti(2) < ¢]

where
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T;(y)

inf{t = Tﬁ(z). Bt ey - ek},

T;(z) inf{t = T;(y). Bt € z - ek},
The bound (4) and the Markov property give :
L 3 - - 3 " 2
IP[Tc(zJ s T ly) = Tc(z) <} - (a) G(z) Glz-y)7|

5 Ce |log c[“a [G(%) G(E%X) gl|z-y|) + gl|z]) G(E%X)a],

whereas it 1s easily checked that

P[Ts(yl = Te(z) = T;(y] = Tz[z) <g] =C |tog cl-a G(%) G(féi .

Remark : It lmmediately follows from Lemma 2 that

E[n(Sk£)%) ”dy dz £(y) f(z) PIT_ly) < & T (2) <]

f

n
2 22 (as)p de dz f(y) f(z) G(y) G(z~y)pwi + 0] tog el"““‘y
p=

3. A preliminary lemma.

The study of the Iimiting behavior of the term E[Q;(tz(q))ls (z)]

(0.%)
€K
requires the following lemma, which is analogous to Lemma X-3.
Lemma 3 : Let n=1 and n' = n or n-i. Set :
n,n* z z z o’
u, (x,y,2) = Ex[} E(ds)) £ (ds,).. .t (ds ) 1E 1g (s .s )(y)].
A = 3 S P ]

n

n
¥ ¥ 4
E‘[JA lc(dsi) le(dsa),..ec(dsn) 15 1SCK(51,S‘+1)(2)}.

V:’n!(x,y,z) .

n

where by convention s =0, s = .
=] nti

There exists a positive ceonstant Cnn, such thail, for any x, y, z € C,

v

e e (0,1/2), with |y-x| = 4e, |z-y| = 8s,

iUn,n’ n'+1

n+n’* I
£

(x,y.2) = |a_l Gly-x) &(z~y)

= Cn'n,c lac|“,+1 (gl2]|y=x|) G(z~y)n‘"' + G(Xéﬁ) g([z-y[)G(Eiz)n*n'ui)
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and, if n =1,

[vz’“'{x,y,z) ~ Ja ¥ Gly-x} &lz-y)™™ 7

[

n’ nn’ -1
= Cnﬂpc %ael

(2(2|y-x|} G(z-y) + G{ ) gl]z-y[ )G 4Y)nﬂ\~2)

Proof : We consider only the case of Un’n

and we further assume that n' =
n-1 . The other cases are treated in a slmllar manner.

We argue by induction on n. For n = 1,

1,0 - z
UC (X,Y:Z) = Ex [1(-1-8{)’)(() acfiTe(Y},C))]

Ex[l(.r:‘y}(c) £, (y)[cefcn}
€

by the Markov property. However, by Lemma X-3, for any Yo €Y - ek ¢ Diy,e),
|Ey Et;(c)} - Glz-y)| 5 e gl2lz-y)|
€
and 2 2y
E, Lo()] = 6(50).
Moreover, by {2},

[P IT (y) <& -~ |a_| Gly-x)| = ¢ |a] g(Zly—x})

and
|PIT,(v) < &1 s |a, | a5

The case n = 1 follows readily from these bounds. We alsc get the bound:

(7) Dx,y,2) = la,l G )G( )

Next suppose that n = 2 and that the desired resuit holds at the order
n-1. We have :

nni n-i,n-2

@, v.2)

4
{x,y,2) = {1(3.8{3,)«;) L (ds YU,

e(y)

where we have simply replaced

14 z (4 N n-1
£(ds )... E{ds) 1 (y)
e 2 g SC{(SE'Slii}
s s
1 n~1

by its predictable projection u” tine z(as V. 2).

1

To get the desired result at the order n , it now suffices to use the

induction hypothesis, the bound (7} and the bound
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EG(waS ) = Gly-z}] s ¢ gl|y-z})
1
which holds when iBs “z| s ¢ . o
5

4, Proof of Theorem 1,

As in Chapter X, the proof of our main result depends on a basic lemma

which we now state.

Lemma 4 : Let p 2 1. There exists a constani Cp such that, for any v,z € RZ,
€ e (0,1/2), with |y| > 4e, |2z| > 42, |z-y| > Be.

- if p=2,

2p-2

|E[QR(£(2)) 1 (2)] + az‘* Gly) Glz-y)

S0 (0.2)

2p~1 i

+a? (Gly) + G(z)) Gzy)® 4 aP" L) Gz

=c e |tog o[ ((lly]) + &tz &FFD) + G + 5N ellz-y| N
- if p=1,

§EHZ(§} 1 ()] + a(Gly) + G(2)) Glz-y) + az Glz} G(z—y)2|

§,,(0.2)

s €, e Jog e|® ((a(|y]) + 8ljz])) 6GFD + GG) + GG elzy|)) .

Proof : We assume that p 2 2 (the case p =1 Is easier). By Lemma X-2,

Pogy
E[Qc(taﬁﬁ)} ig {z1]

cx(o’g}
= EU as ) (5 ((ds )+ h_3 (ds ))] 1 (z)].
A e Ty, e € {s!_l) i SCK(O.C
P
Now Lhe key ldea 1s to write :

8. )
54 jop EFTTIn
with the usual convention s, = g, sg+i = L. It follows that
1
1 (z) = ¢ (-nltlty {z)
SCK(O,g} LeP (.ﬂ SEK(si'Si+i))
P iebl
where ?p denotes the set of all nonempty subsets of {0,1,...,p}, and |[L| =

Card(L}. Therefore,
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)= 1 nlE»

FPrg¥
EIQE @) 10,6 @ = I
P

¢L(B.y.2),

where

P
= ¥ ¥
@L[c,y,z) E[I te(dsi) 152 (tc(dsl) + hca(sl_,)(ds‘)) n 183;(51’5141)(2)]'

A lel
P
Suppose first that {1,....p~1} < L, which happens only in the four cases:
Lx = {0,1,...,p}. L, = {t.....phL L, = {0,t,...,p"1}, L, = {1,....p-1}.

In each eof these casgses, we can use Lemma 3 to analyse the behavior of
@L[e,y,z). Simply notice that
— 1(P+P = PP
@Li(e.y.z) = U, (0,z,¥), ¢L2(z,y,z) Ve (0,y,2)

= (PPt _ yPrp-t
¢L3(c.y,z) = Uc (0,2,v¥), ¢L4(8,y'2) = Vc (0,v.2).

Taking account of Lemma 3, we See that the proof of Lemma 4 will be
complete once we have checked that the other choices of L give a negliglible
contribution. This is very similar to what we did in the procf of Lemma X-4.
Set

k = sup{l € {},...,p~1}, L & L}

and assume for definlteness that p € L. Then we may write

g
nids ...ds ) I (té(dsm) + b s(sk)(dsm))

A -]
3 k

8 (c.y.2) = E[I

€ y < v P (
X Ffds )Y ¢|... Fds) 1 1 z)]
g k2 € jakat Serl®i0Siuy)
s s
k+t p-1
{notice that the Dirac measures 6(t)(dth4)' for 1 > k, have been dropped).
b
Here the random measure u(dsl...dsk) iz such that the process t — u({SKSt})

ls predictable ; furthermore 1t is easy to get the bound

E[[ |p|(dsl...dsk) (l;(c) + lhel)] = C |leg clk G{%)
A

j
<
We may replace ( ...] by its predictable projection and get :
s
ki
¢L(c,y.z) =
= E (ds....d i:(z”(ul + b5, (d gPehekelg )
pas, .. Sk) > Sn+1) e (sk)( sk¢1)) e sk+1’ Y
A 5

k k
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with the convention Ug’o(x.y.z) = Px[y € SeK(D,C)}. The remaining part of the
proof is entirely similar to the end of the proof of Lemma X-4. Simply use

Lemma 3 instead of Lemma X-3. D

We may now complete the proof of Theorem 1. Write

ue(y.z) o vé(y,z)

if there exists a function F € LY(€®) such that for e e (0,1/2),

lu ly.2) - v_ly.2)| = 108 e| ™2 Fly,z).
It is enough %to prove that
v P oPrgY & B P2
E[[isuw":)(y) . p-El a? Qe(te(c))] [Isﬂto,m(”') . p£1 a? ot(aau;))]] “ 0.
By Lemma 2,
2n+l . pt
E[Iscxm’c)(y) 18“(0.{)(7.)] - I, o 6« o@) o)

By Lemma 4 (and easy bounds when x =0 , y, z do not satisfy the assumptions
of this lemma), if pz 2,

1

E["z(‘;“;”‘su(o,.;)‘z)i « = af™ Gly) 6P - al G+ G(2)) Glz-y)*T

- az+1 Glz) G(z—y)2l> '

and, if p=1 ,

E[Q::(Z:{())I (2)] = - a_ (G(y) + Glz)} Glz-y) - az Glz) alz-y)°.

SCK[U.C)
Finally, Lemmas ¥-4, %X-5 give

E[QR(¢(2)) QBUEZ(2))] = (Gly) + G(z2))Glz=y)®™".

Furthermore, it was pointed out in Section X-4 (see formulas X-(2), X-(10))
that the proof of Lemma X-4 can be adapted to give:

+1 2p
E[Q:(z;(c)) Qz (zZu;))] = G{z) Glz-y)
E[Qe"(t;(c)) Q:(t:(c))] =0 if |g-p| = 2.

The desired resuit follows. o
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5. Further results.

Theorem 1 ylelds an asymptotic expansion of m(Ssx{O,i)) as ¢ goes to
0. A natural question is: can we replace ¢ by a constant time t 7 We first
have to define random variables T (t) tin such a way that T°(t) coincides
with TPl “conditionally on {Z = t}". The next theorem can be deduced from
Theorem 1 by using the scaling properties of Brownian motion,

Theorem 5 : There exisis a sequence of processes T° = (TP{t),t = 0}, adapted
tc the natural filtration of B, such that

™ a.s.

(L)

and the rfollowing holds. For every nz 1, t 2 ¢,

n
m(S, (0,t)) = = [ al T(t) + R (e),
p=1
where

iim |log e§n R (e} =0
£30 n

in the La—norm, and a.5. when K is star-shaped.

Remark : Both the constants a_  and the random variables TP(t) depend on the
choice of A (but not on the choice of ). Changing the value of A leads
to different equivalent expansions of m(SESED,t)). This corresponds to the
non-uniqueness of the rencrmaiization, which was already pointed out in
Chapter X.

The case n = 1 of Theorem 5 is exactly Theorem VI-6. The case n = 2

is equivalent to Theorem VIII-7. If we compare these two results we get :

T?(1) = ¢(F) + g,

for some constant Cl depending on A, Of course we could have proved this

more directly, by comparing the approximations of 1 and y(T).

By taking expectations in Theorem 5, one gets a full asymptotlic expansion
of E[m{Stx{O,t)} and by scaling an asymptotic expansion of EEm(SK(O,t)I as
t goes to infinity. The latter expansion refines a theorem of Spitzer in
{Sp2]l. These expansions Involve the gquantities E[TP(1)], which can be
computed by induction, using the fact that EITP(Z)] = 0 (see Chapter X) and
the scaling properties of Tk(t) . It is worth noting that the coefficlients of
the expansion for Eim{seito,t)} deperd on K only through the constant
R{X) . This should be compared with the similar resuiis in higher dimensions
fLiil.
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Bibliographical notes. The material of this Chapter is taken from [L1Z]. In

particular we refer to this paper for a detailed proof of Theorem 5. A recent
paper of Rosen [R7] gives analogues of Theorems 1 and 5 for the sausage
associated with certain stable processes. See alse Feldman and Rosen [FR] for
an extension of Theorem 1 to Brownian motion on Riemennian surfaces. The work
of Le Jan (LJ1 may provide an alternative approach tc the resulis of this
Chapter.
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