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Abstract

We consider the model of Brownian motion indexed by the Brownian tree, which has appeared
in a variety of different contexts in probability, statistical physics and combinatorics. For this model,
the total occupation measure is known to have a continuously differentiable density (`x)x∈R and we
write ( ˙̀x)x∈R for its derivative. Although the process (`x)x≥0 is not Markov, we prove that the pair
(`x, ˙̀x)x≥0 is a time-homogeneous Markov process. We also establish a similar result for the local
times of one-dimensional super-Brownian motion. Our methods rely on the excursion theory for
Brownian motion indexed by the Brownian tree.

1 Introduction
The Ray-Knight theorems, which give the Markov property of the process of local times of linear
Brownian motion in the space variable, at certain particular stopping times, are some of the most
famous and useful results about Brownian motion. The goal of the present work is to discuss a similar
Markov property of local times for the model of branching Brownian motion which we call Brownian
motion indexed by the Brownian tree. Here the Brownian tree is conveniently described as the random
continuous tree T coded by a Brownian excursion under the Itô measure, and may also be viewed as a
free version of Aldous’ Continuum Random Tree (the word “free” means that the volume of the tree is
not fixed). The tree T is equipped with a volume measure Vol whose total mass is the duration σ of
the excursion coding T . Given the Brownian tree T , we can consider Brownian motion indexed by T ,
which we denote by (Va)a∈T . We view Va as a label assigned to the “vertex” a of the tree, in such a
way that the label of the root is 0, and labels evolve like linear Brownian motion along line segments
of T . The total occupation measure of Brownian motion indexed by T is the measure Y defined by

〈Y, g〉 =
∫
g(Va) Vol(da),

for every nonnegative measurable function g on R. We write N0 for the (σ-finite) measure under which
T and (Va)a∈T are defined.

Let us emphasize that the pair (T , (Va)a∈T ) plays an important role in a number of different areas
of probability theory, combinatorics or statistical physics. In particular, this pair is the key ingredient
of the Brownian snake construction of super-Brownian motion [17]. When conditioned on having a
total volume equal to 1 (this just means that the coding Brownian excursion is normalized), T becomes
Aldous’ Continuum Random Tree also known as the CRT [2], up to an unimportant scaling factor 2,
and Y then corresponds to the random measure called ISE [3]. Both the CRT and ISE appear in a
number of combinatorial asymptotics for discrete trees possibly equipped with labels (see e.g. [6, 7, 18]).
Other applications, involving multidimensional versions of (Va)a∈T , include interacting particle systems
(see e.g. [8]) and models of statistical physics [11, 13]. More recently, the pair (T , Va)a∈T ) has been
used as the basic building block for the construction of the models of random geometry that arise as
scaling limits of large random planar maps (see in particular [19, 26]).
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The measure Y has (N0 a.e.) a continuous density denoted by (`x, x ∈ R), and we call `x the local
time of (Va)a∈T at level x. The function x 7→ `x is even continuously differentiable on R. The latter
property is proved in the recent paper [9], and a slightly weaker statement had been obtained earlier
in [7] (both [7] and [9] deal with ISE, but a straightforward scaling argument then shows that the
preceding properties also hold for Y under N0). As a matter of fact, the existence of a continuously
differentiable density for Y under N0 can also be derived from older results of Sugitani [29], which
were concerned with (one-dimensional) super-Brownian motion. We write ˙̀x for the derivative of the
function x 7→ `x.

By analogy with the classical Ray-Knight theorems, one may ask about the Markovian properties of
the process (`x, x ∈ R), or simply of (`x, x ≥ 0). Informally, it seems clear that this process cannot be
Markovian: To predict the future after time x ≥ 0, one should at least know the value of the derivative
˙̀x, and not only `x. The main result of the present work shows that the additional information provided
by the derivative suffices to get a Markov process.

Theorem 1. The process ((`x, ˙̀x), x ≥ 0) is time-homogeneous Markov under N0. Moreover the two
processes ((`x, ˙̀x), x ≥ 0) and ((`−x, ˙̀−x), x ≥ 0) are independent conditionally on (`0, ˙̀0).

Note that a simple symmetry argument shows that ((`x, ˙̀x), x ≥ 0) and ((`−x,− ˙̀−x), x ≥ 0) have
the same distribution (in particular, the law of ˙̀0 is symmetric). One may be puzzled by the fact that
N0 is an infinite measure. However, for every ε > 0, the event where `0 ≥ ε has finite N0-measure
(the distribution of `0 under N0 has a density proportional to `−5/3, cf. [23, Corollary 3.1]) and the
statement of the theorem can be formulated as well under the probability measure N0(· | `0 ≥ ε).

Let us now discuss an analog of Theorem 1 for super-Brownian motion. We consider a one-
dimensional super-Brownian motion (Xt)t≥0 with branching mechanism φ(u) = 2u2 and initial value
X0 = αδ0, where α > 0 is a constant. Note that the choice of the multiplicative constant 2 in the
formula for φ is only for convenience and by scaling one could as well deal with the case φ(u) = c u2

for c > 0. By results of Sugitani [29, Theorem 4], the total occupation measure

Y :=
∫ ∞

0
Xt dt.

has (a.s.) a continuous density (Lx)x∈R with respect to Lebesgue measure, and this density is
continuously differentiable on (0,∞) and on (−∞, 0). Let L̇y stand for the derivative of the mapping
x 7→ Lx at y 6= 0. When y = 0, both the right derivative L̇0+ and the left derivative L̇0− exist, and
L̇0+ − L̇0− = −2α. By convention, we set L̇0 = L̇0+.

Theorem 2. The process ((Lx, L̇x), x ≥ 0) is time-homogeneous Markov with the same transition
kernel as the process ((`x, ˙̀x), x ≥ 0) of Theorem 1. Moreover the two processes ((Lx, L̇x), x ≥ 0) and
((L−x, L̇−x), x ≥ 0) are independent conditionally on (L0, L̇0).

By symmetry, the two processes ((Lx, L̇x), x ≥ 0) and ((L−x,−L̇(−x)−), x ≥ 0) have the same law,
where L(−x)− = L−x except when x = 0. In particular, the law of L̇0 + α is symmetric. Theorem 2 is
derived by adapting the method of proof of Theorem 1, using the fact that the process (Xt)t≥0 can be
constructed from a Poisson point measure with intensity αN0 (see [17, Chapter IV]).

Let us explain the main ideas of the proof of Theorem 1. It is well known that the classical
Ray-Knight theorems can be proved by excursion theory, using in particular the independence of
excursions above and below a given level. Our proof of Theorem 1 follows a similar approach, but
we now rely on the excursion theory developed in the article [1] for Brownian motion indexed by
the Brownian tree. Let us fix h > 0 for definiteness. As in the classical setting, one is interested in
describing the connected components of the set {a ∈ T : Va 6= h} together with the distribution of the
Brownian labels Va assigned to each connected component. Leaving aside the connected component
containing the root of T , which is called the root component and plays a particular role, we call any
such component (equipped with its labels) an excursion above or below h, depending on the fact that
labels are greater or smaller than h. For any excursion above or below h, one can make sense of a
quantity called the boundary size of the excursion, which measures how many points of the closure of
the component have a label equal to h. Moreover, the boundary sizes of the components other than the
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root component are exactly the jumps of a continuous-state branching process with stable branching
mechanism ψ(λ) =

√
8/3λ3/2, which we denote by (X hr )r≥0 and whose initial value Zh is the so-called

“exit measure” from (−∞, h) (Zh corresponds to the boundary size of the root component). Roughly
speaking, the results of [1] imply that the excursions above or below h are independent (and are also
independent of the root component) conditionally on their boundary sizes. The point in deriving
Theorem 1 is now to understand the conditional distribution of the boundary sizes of excursions above
level h given the excursions below h (and the root component). To this end, we first observe that
the classical Lamperti representation allows us to write (X hr )r≥0 as a time change of a stable Lévy
process U with no negative jumps started at U0 = Zh and stopped at the time T0 when it first hits
0. The boundary sizes of excursions also correspond to the jumps of this (stopped) Lévy process.
Distinguishing excursions above and below level h amounts to assigning a label +1 or −1 to each of
these jumps. One can construct two independent Lévy processes U ′ and U ′′, such that, on one hand,
U ′0 = Zh and the jumps of U ′ are the jumps of U with label −1, on the other hand, U ′′0 = 0 and the
jumps of U ′ are the jumps of U with label +1 (in such a way that U = U ′ +U ′′, and the Lévy measure
of U ′, or of U ′′, is half the Lévy measure of U). Finally, one can prove that the local time `h is equal
to T0 and moreover its derivative ˙̀h is equal to 2U ′′T0

= −2U ′T0
. From these observations and some

additional work, one gets that the conditional distribution of the boundary sizes of excursions above
h, knowing the excursions below h and the root component, is the distribution of jumps of the Lévy
process U ′′ conditioned to be equal to 1

2
˙̀h at time `h, and this conditional distribution only depends

on the pair (`h, ˙̀h). This leads to the desired Markov property.
It is interesting to compare Theorem 1 with the main result of [22], which gives the distribution

under N0 of the random process (Xx)x≥0 whose value at time x ≥ 0 is the sequence of boundary
sizes of connected components of {a ∈ T : Va > x} in noincreasing order (these are the boundary
sizes of excursions above level x, in the language of the preceding paragraph). The process (Xx)x≥0
is identified as a growth-fragmentation process whose Eve particle process is determined explicitly.
Note that `x is a measurable function of Xx: By [22, Proposition 26], `x can be written, up to a
multiplicative constant, as the limit of δ3/2 times the number of components of Xx greater than δ,
when δ → 0. Similarly, Lemma 10 below shows that ˙̀x is equal to twice the suitably renormalized
sum of the components of Xx (some renormalization is needed because the sum is infinite). However,
despite the fact that (Xx)x≥0 is a Markov process with known distribution, it does not seem easy to
infer from this that the process (`x, ˙̀x)x≥0 is also Markov.

The recent paper of Chapuy and Marckert [9] deals with the random measure ISE and addresses
topics closely related to the present work with very different (combinatorial) methods based on discrete
approximations. In particular, [9] proves that the density of ISE is continuously differentiable and
discusses the regularity of the derivative. The study of discrete analogs also leads [9] to conjecture that
the derivative of the density satisfies a stochastic differential equation involving the density itself and
the distribution function of ISE (that is, the integral of the density over (−∞, t]). One may observe
that conditioning the total volume of T to be equal to 1 (as in the definition of ISE) makes it hopeless
to get a Markov property of the type of Theorem 1.

The paper is organized as follows. Section 2 gives a number of preliminaries including a precise
definition and properties of the “exit measure process” (X hr )r≥0 and of the measures N∗,zh that are used
to describe the distribution of excursions above or below the level h. In Section 3, we briefly recall the
relations between super-Brownian motion and our model of Brownian motion indexed by the Brownian
tree, and we explain how Sugitani’s results in [29] can be used to study the regularity of the process
(`x)x∈R (more precise results about this regularity are derived in [9]). Section 4 is devoted to technical
estimates about the measures N∗,zh , which play an important role in the subsequent proofs. The proof
of Theorem 1 is given in Section 5. Section 6 then explains how the same method of proof can be used
to derive Theorem 2. Finally, Section 7 gives several open questions and complements. In particular,
we explain how Theorem 1 provides information about the model of random geometry known as the
Brownian sphere, which has been studied extensively in the recent years.

Acknowledgements. This work was motivated by a very stimulating lecture of Guillaume Chapuy
at the CIRM Conference on Random Geometry in January 2022. I thank Guillaume Chapuy and
Jean-François Marckert for keeping me informed of their on-going work [9]. I also thank Loïc Chaumont
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for a useful conversation at the 2022 PIMS Summer School in Probability.

2 Preliminaries

2.1 Snake trajectories

We use the formalism of snake trajectories and we recall the main definitions that will be needed
below. We refer to [1] for more information. A (one-dimensional) finite path w is a continuous mapping
w : [0, ζ] −→ R, where the number ζ = ζ(w) is called the lifetime of w. The space W of all finite paths
is a Polish space when equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t ∧ ζ(w))− w′(t ∧ ζ(w′))|.

The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For every x ∈ R, we set Wx = {w ∈ W :
w(0) = x}. The trivial element of Wx with zero lifetime is identified with the point x of R.

Definition 3. Let x ∈ R. A snake trajectory with initial point x is a continuous mapping s 7→ ωs from
R+ into Wx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s ≥ 0 : ωs 6= x}, called the duration of the snake
trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s ≥ 0).

(ii) (Snake property) For every 0 ≤ s ≤ s′, we have ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)].

We will write Sx for the set of all snake trajectories with initial point x, and S for the union of the
sets Sx for all x ∈ R. If ω ∈ S, we often write Ws(ω) = ωs and ζs(ω) = ζ(ωs) for every s ≥ 0, and we
omit ω in the notation. The sets S and Sx are equipped with the distance

dS(ω, ω′) = |σ(ω)− σ(ω′)|+ sup
s≥0

dW(Ws(ω),Ws(ω′)).

A snake trajectory ω is completely determined by the knowledge of the lifetime function s 7→ ζs(ω) and
of the tip function s 7→ Ŵs(ω): See [1, Proposition 8]. For ω ∈ Sx and a ∈ R, we will use the obvious
notation ω + a ∈ Sx+a.

Let ω ∈ S be a snake trajectory and σ = σ(ω). The lifetime function s 7→ ζs(ω) codes a compact
R-tree, which will be denoted by T = T (ω) and called the genealogical tree of the snake trajectory.
This R-tree is the quotient space T := [0, σ]/∼ of the interval [0, σ] for the equivalence relation

s ∼ s′ if and only if ζs = ζs′ = min
s∧s′≤r≤s∨s′

ζr,

and T is equipped with the distance induced by

dζ(s, s′) = ζs + ζs′ − 2 min
s∧s′≤r≤s∨s′

ζr.

(notice that dζ(s, s′) = 0 if and only if s ∼ s′, and see e.g. [18] for more information about the coding
of R-trees by continuous functions). Let p(ω) : [0, σ] −→ T stand for the canonical projection. By
convention, T is rooted at the point ρ := p(ω)(0) = p(ω)(σ), and the volume measure Vol(·) on T is
defined as the pushforward of Lebesgue measure on [0, σ] under p(ω). As usual, for a, b ∈ T , we say
that a is an ancestor of b, or b is a descendant of a, if a belongs to the line segment from ρ to b in T .

By property (ii) in the definition of a snake trajectory, the condition p(ω)(s) = p(ω)(s′) implies
that Ws(ω) = Ws′(ω). So the mapping s 7→ Ws(ω) can be viewed as defined on the quotient space
T . For a ∈ T , we set Va(ω) := Ŵs(ω) whenever s ∈ [0, σ] is such that a = p(ω)(s) — by the previous
observation this does not depend on the choice of s. We interpret Va as a “label” assigned to the
“vertex” a of T . Notice that the mapping a 7→ Va is continuous on T . We will use the notation

W∗ := min{Ws(t) : s ≥ 0, t ∈ [0, ζs]} = min{Va : a ∈ T },
W ∗ := max{Ws(t) : s ≥ 0, t ∈ [0, ζs]} = max{Va : a ∈ T },
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and we also let Y(ω) be the finite measure on R defined by setting

〈Y, f〉 =
∫ σ

0
g(Ŵs) ds =

∫
T
g(Va) Vol(da), (1)

for any bounded continuous function g : R −→ R+. Trivially, Y is supported on [W∗,W ∗].

2.2 Re-rooting and truncation of snake trajectories

We now introduce two important operations on snake trajectories. The first one is the re-rooting
operation (see [1, Section 2.2]). Let ω ∈ Sx and r ∈ [0, σ(ω)]. Then ω[r] is the snake trajectory in Sω̂r
such that σ(ω[r]) = σ(ω) and for every s ∈ [0, σ(ω)],

ζs(ω[r]) = dζ(r, r ⊕ s),
Ŵs(ω[r]) = Ŵr⊕s(ω),

where we use the notation r ⊕ s = r + s if r + s ≤ σ, and r ⊕ s = r + s− σ otherwise. By a remark
following the definition of snake trajectories, these prescriptions completely determine ω[r].

The genealogical tree T (ω[r]) is then interpreted as the tree T (ω) re-rooted at the vertex p(ω)(r):
More precisely, the mapping s 7→ r ⊕ s induces an isometry from T (ω[r]) onto T (ω), which maps the
root of T (ω[r]) to p(ω)(r). Furthermore, the vertices of T (ω[r]) receive the same labels as in T (ω).

The second operation is the truncation of snake trajectories. For any w ∈ Wx and y ∈ R, we set

τy(w) := inf{t ∈ (0, ζ(w)] : w(t) = y} ,

with the usual convention inf ∅ =∞. Then if ω ∈ Sx and y ∈ R, we set, for every s ≥ 0,

νs(ω) := inf
{
t ≥ 0 :

∫ t

0
du1{ζ(ωu)≤τy(ωu)} > s

}
(note that the condition ζ(ωu) ≤ τy(ωu) holds if and only if τy(ωu) = ∞ or τy(ωu) = ζ(ωu)). Then,
setting ω′s = ωνs(ω) for every s ≥ 0 defines an element ω′ of Sx, which will be denoted by try(ω) and
called the truncation of ω at y (see [1, Proposition 10]). The effect of the time change νs(ω) is to
“eliminate” those paths ωs that hit y and then survive for a positive amount of time. The genealogical
tree of try(ω) is canonically and isometrically identified with the closed subset of T (ω) consisting of all
a such that Vb(ω) 6= y for every strict ancestor b of a (different from ρ when y = x).

Finally, for ω ∈ Sx and y ∈ R\{x}, we define the excursions of ω away from y. We let (αj , βj),
j ∈ J , be the connected components of the open set

{s ∈ [0, σ] : τy(ωs) < ζ(ωs)}

(note that the indexing set J may be empty). We notice that ωαj = ωβj for every j ∈ J , by the snake
property, and ω̂αj = y. For every j ∈ J , we define a snake trajectory ωj ∈ Sy by setting

ωjs(t) := ω(αj+s)∧βj (ζ(ωαj ) + t) , for 0 ≤ t ≤ ζ(ωjs) := ζ(ω(αj+s)∧βj ) − ζ(ωαj ) and s ≥ 0.

We say that ωj , j ∈ J , are the excursions of ω away from y.

2.3 The Brownian snake excursion measure

Let x ∈ R. The Brownian snake excursion measure Nx is the σ-finite measure on Sx that satisfies the
following two properties: Under Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive excursions of linear
Brownian motion, normalized so that, for every ε > 0,

Nx
(

sup
s≥0

ζs > ε
)

= 1
2ε ;
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(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean x and
covariance function

K(s, s′) = min
s∧s′≤r≤s∨s′

ζr.

Informally, the lifetime process (ζs)s≥0 evolves under Nx like a Brownian excursion, and conditionally
on (ζs)s≥0, each path Wr is a linear Brownian path started from x with lifetime ζr, which is “erased”
from its tip when ζr decreases, and is “extended” when ζr increases. The measure Nx can be interpreted
as the excursion measure away from x for the Markov process in Wx called the (one-dimensional)
Brownian snake. Note that the preceding informal description applies as well to the Brownian snake,
except that, in that case, the lifetime process evolves like a reflecting Brownian motion in [0,∞). We
refer to [17] for a detailed study of the Brownian snake with a more general underlying spatial motion.

As usual for excursion measures, we can state a Markov property under Nx. Let u > 0 and let F
and H be two nonnegative measurable functions defined respectively on the space of all continuous
functions from [0, u] into Wx and on the space of all continuous functions from [0,∞) into Wx. Then,

Nx
(
1{u<σ} F

(
(Wr)0≤r≤u

)
H
(
(Wu+s)s≥0

))
= Nx

(
1{u<σ} F

(
(Wr)0≤r≤u

)
E∗Wu

[
H
(
(Ws)s≥0

)])
, (2)

where, for every w ∈ Wx, P∗w denotes the law of the Brownian snake started from w and stopped when
the lifetime process hits 0 (see [17, Section IV.4]).

For every r > 0, we have

Nx(W ∗ > x+ r) = Nx(W∗ < x− r) = 3
2r2

(see e.g. [17, Section VI.1]). In particular, Nx(y ∈ [W∗,W ∗]) <∞ if y 6= x. We will use the first-moment
formula under Nx, which states that, for any nonnegative measurable function F on Wx,

Nx
( ∫ σ

0
F (Ws) ds

)
=
∫ ∞

0
dtEx

[
F
(
(Br)0≤r≤t

)]
, (3)

where B denotes a linear Brownian motion that starts from x under the probability measure Px (see
[17, Chapter 4]). We also recall the re-rooting invariance property of N0 [25, Theorem 2.3]. To state
this property, it is convenient to modify a little the definition of a re-rooted snake trajectory in the
preceding section: if ω ∈ S0 and r ∈ [0, σ(ω)], we set ω̃[r] = ω[r] − ω̂r (we just shift the snake trajectory
ω[r] so that it belongs to S0 instead of Sω̂r). Then, for any nonnegative measurable function F on
[0,∞)× S0, we have

N0

(∫ σ

0
dr F (r, ω̃[r])

)
= N0

(∫ σ

0
dr F (r, ω)

)
. (4)

The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define θλ(ω) ∈ Sx√λ
by θλ(ω) = ω′, with

ω′s(t) :=
√
λωs/λ2(t/λ) , for s ≥ 0 and 0 ≤ t ≤ ζ ′s := λζs/λ2 .

Then θλ(Nx) = λNx√λ.
Let us now define exit measures. We argue under Nx, and fix y ∈ R\{x}. Then, the idea is to make

sense of a quantity that “measures” the number of paths Ws that hit level y and are stopped at that
hitting time. Precisely, one shows [21, Proposition 34] that the limit

Lyt := lim
ε→0

1
ε2

∫ t

0
ds1{ζs≤τy(Ws), |Ŵs−y|<ε}

(5)

exists for every t ∈ [0, σ], Nx a.e., and defines a continuous increasing function called the exit local
time from (y,∞) (if x > y) or from (−∞, y) (if y > x). The exit measure is then defined by Zy := Lyσ,
and we have Zy > 0 if and only if y ∈ [W∗,W ∗], Nx a.e. This definition of the exit local time and
of Zy is a particular case of the theory of exit measures, see [17, Chapter V] where a different but
equivalent approximation of Lyt is used. It follows from the approximation (5) that Zy is Nx a.e. equal
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to a measurable function of the truncated snake try(ω). We will use the following formula, for every
λ > 0,

Nx
(
1− exp(−λZy)

)
=
(
|x− y|

√
2/3 + λ−1/2

)−2
. (6)

See formula (6) in [10] for a brief justification. In particular, we have Nx(Zy) = 1.
We now recall the special Markov property of the Brownian snake under N0 (see in particular the

appendix of [20]).

Proposition 4 (Special Markov property). Let x ∈ R and y ∈ R\{x}. Under the measure Nx(dω), let
ωj, j ∈ J , be the excursions of ω away from y and consider the point measure

Ny =
∑
j∈J

δωj .

Then, under the probability measure Nx(dω | y ∈ [W∗,W ∗]) and conditionally on Zy, the point measure
Ny is Poisson with intensity Zy Ny(·) and is independent of try(ω).

2.4 The exit measure process at a point

Let us consider a snake trajectory ω distributed according to Nx. An important role in this work will
be played by a process (X xr )r>0, such that for every r > 0, X xr measures the “quantity” of paths Ws(ω)
that have accumulated a local time at x exactly equal to r. The precise definition of X xr belongs to
the general theory of exit measures and we refer to the introduction of [1] for more details (roughly
speaking, one needs to consider the Brownian snake whose spatial motion is the pair consisting of a
linear Brownian motion and its local time at x, and then the exit measure from the set R × [0, r)).
One proves that the process (X xr )r>0 is distributed under Nx according to the excursion measure of
the continuous-state branching process with branching mechanism ψ(u) =

√
8/3u3/2 (in short, the

ψ-CSBP, we refer to [17, Chapter II] for basic facts about CSBPs). This means that, if N =
∑
k∈K δωk

is a Poisson point measure with intensity αNx, the process X defined by X0 = α and, for every r > 0,

Xr :=
∑
k∈K
X xr (ωk),

is a ψ-CSBP started at α (see [22, Section 2.4]). In particular, (X xr )r>0 has a càdlàg modification
under Nx, which we consider from now on. We take X x0 = 0 by convention and call (X xr )r≥0 the exit
measure process at x.

Still under Nx, we can also define the exit measure process at y for any y 6= x. We can either rely
on the general theory of exit measures, or use the point process

∑
j∈J δωj of excursions away from y

(as in Proposition 4) to define for every r > 0,

X yr :=
∑
j∈J
X yr (ωj)

(note that the quantities X yr (ωj) make sense by the special case y = x treated before). We also set
X y0 = Zy. It follows from Proposition 4 and the preceding considerations that, under the probability
measure Nx(· | y ∈ [W∗,W ∗]) = Nx(· | Zy > 0), conditionally on Zy, the process (X yr )r≥0 is a ψ-CSBP
started at Zy and is independent of try(ω). Again we call (X yr )r≥0 the exit measure process at y.

2.5 The positive excursion measure

Under N0, the paths ωs, 0 < s < σ, take both positive and negative values, simply because they behave
like one-dimensional Brownian paths started from 0. We will now introduce another important measure
on S0, which is supported on snake trajectories taking only nonnegative values. For δ ≥ 0, let S(δ)

0 be
the set of all ω ∈ S0 such that sups≥0(supt∈[0,ζs(ω)] |ωs(t)|) > δ. Also set

S+
0 = {ω ∈ S0 : ωs(t) ≥ 0 for every s ≥ 0 and t ∈ [0, ζs(ω)]} ∩ S(0)

0 .
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There exists a σ-finite measure N∗0 on S0, which is supported on S+
0 , and gives finite mass to the sets

S(δ)
0 for every δ > 0, such that

N∗0(G) = lim
ε→0

1
ε
Nε(G(tr0(ω))),

for every bounded continuous function G on S0 that vanishes on S0\S(δ)
0 for some δ > 0 (see [1,

Theorem 23]). Under N∗0, each of the paths ωs, 0 < s < σ, starts from 0, then stays positive during
some time interval (0, α), and is stopped immediately when it returns to 0, if it does return to 0.

In a way analogous to the definition of exit measures, one can make sense of the “quantity” of
paths ωs that return to 0 under N∗0. To this end, one proves that the limit

Z∗0 := lim
ε→0

1
ε2

∫ σ

0
ds1{Ŵs<ε}

(7)

exists N∗0 a.e. See [1, Proposition 30] for a slightly weaker result — the stronger form stated above
follows from the results of [21, Section 10]. Notice that replacing the limit by a liminf in (7) allows us
to make sense of Z∗0 (ω) for every ω ∈ S+

0 .
The following conditional versions of the measure N∗0 play a fundamental role in the present work.

According to [1, Proposition 33], there exists a unique collection (N∗,z0 )z>0 of probability measures on
S+

0 such that:

(i) We have N∗0 =
√

3
2π

∫ ∞
0

dz z−5/2 N∗,z0 .

(ii) For every z > 0, N∗,z0 is supported on {Z∗0 = z}.

(iii) For every z, z′ > 0, N∗,z
′

0 = θz′/z(N
∗,z
0 ).

Informally, N∗,z0 = N∗0(· | Z∗0 = z). It will be convenient to write

n(dz) =
√

3
2π z

−5/2 dz, (8)

so that n(dz) is the “law” of Z∗0 under N∗0. We note that the convergence (7) also holds N∗,z0 a.s., with
Z∗0 replaced by z ([21, Corollary 37]), and we record the formula

N∗,z0 (σ) = z2, (9)

for every z > 0 (see e.g. [22, Proposition 10]).
It will be convenient to write Ň∗,z0 for the pushforward of N∗,z0 under the mapping ω → −ω.

Furthermore, for every h ∈ R, we write N∗,zh , resp. Ň∗,zh for the pushforward of N∗,z0 , resp. of Ň∗,z0 ,
under the shift ω 7→ ω + h.

The next theorem relates the measures Nx and N∗0 via a re-rooting transformation. Recall that, for
every ω ∈ S and every s ∈ [0, σ(ω)], ω[s] denotes the snake trajectory ω re-rooted at s (Section 2.2).

Theorem 5. [1, Theorem 28] Let G be a nonnegative measurable function on S. Then,

N∗0

(∫ σ

0
dr G(ω[r])

)
= 2

∫ ∞
0

dbNb
(
Z0G(tr0(ω))

)
.

As a first application, we can take G(ω) = g(ω(0)) where g : R −→ R+ is measurable. Since
Nb(Z0) = 1 for every b > 0, it follows that

N∗0

(∫ σ

0
dr g(Ŵr)

)
= 2

∫ ∞
0

db g(b). (10)
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2.6 Excursion theory

We now recall the main theorem of the excursion theory developed in [1]. We fix x ∈ R and y ∈ R.
We consider a random snake trajectory ω distributed according to Nx. The goal of this excursion
theory is to describe the connected components of {v ∈ T (ω) : Vv 6= y}, and the evolution of labels on
these connected components (there is an obvious analogy with classical excursion theory for linear
Brownian motion). Let C be a connected component of {v ∈ T (ω) : Vv 6= y}, and exclude the case
where C contains the root ρ of T (ω) (this case occurs when y 6= x). If C denotes the closure of C, there
is a unique point u of C with minimal distance from the root (in such a way that all points of C are
descendants of u) and we have Vu = y. Following [1], we say that u is an excursion debut (from y). We
can then code the connected component C and the labels on C via a snake trajectory which is defined
as follows. First we observe that there are exactly two times s0 < s′0 such that p(ω)(s0) = p(ω)(s′0) = u,
and the set p(ω)([s0, s

′
0]) is the subtree of all descendants of u — here we implicitly use the fact that

a branching point of T cannot be an excursion debut. We first define a snake trajectory ω̃(u) ∈ S0
coding the subtree p(ω)([s0, s

′
0]) (and its labels) by setting

ω̃(u)
s (t) := ω(s0+s)∧s′0(ζs0 + t) for 0 ≤ t ≤ ζ(s0+s)∧s′0 .

We finally set ω(u) := try(ω̃(u)) and we observe that the compact R-tree C is identified isometrically
to the tree T (ω(u)), and moreover this identification preserves the labels. Also, the restriction of the
volume measure Y(ω) to C corresponds via the latter identification to the restriction of Y(ω(u)) to
R\{y}.

We say that ω(u) is an excursion above y if the values of Vv for v ∈ C are greater than y (equivalently
the paths ω(u)

s take values in [y,∞)), and that ω(u) is an excursion below y if the values of Vv for v ∈ C
are smaller than y. We note that the terminology is a bit misleading, since an excursion away from y,
as considered in Proposition 4, will contain infinitely many excursions above or below y.

Recall from Section 2.4 the definition of the exit measure process at y, which is denoted by (X yr )r≥0.
If y /∈ [W∗,W ∗] (which does not occur when y = x, and is equivalent to Zy = 0 when y 6= x), there are
no excursion debuts from y. For this reason, we suppose that Zy > 0 when y 6= x in the following lines.
By Proposition 3 of [1] (and an application of the special Markov property when y 6= x), excursion
debuts from y are in one-to-one correspondence with the jump times of the process (X yr )r≥0, in such a
way that, if u is an excursion debut and s ∈ [0, σ] is such that p(ω)(s) = u, the associated jump time of
the exit measure process at y is the total local time at y accumulated by the path ωs. We can list the
jump times of (X yr )r≥0 in a sequence (ri)i∈N in decreasing order of the jumps ∆X yri = X yri −X

y
ri−. For

every i ∈ N, we write ui for the excursion debut associated with ri.
The following theorem is essentially Theorem 4 of [1]. We write N(y)

x = Nx(· | Zy > 0) when y 6= x,
and N(x)

x = Nx.

Theorem 6. Under N(y)
x , conditionally on (X yr )r≥0, the excursions ω(ui), i ∈ N, are independent, and

independent of try(ω), and the conditional distribution of ω(ui) is

1
2
(
N∗,∆X

y
ri

y + Ň∗,∆X
y
ri

y

)
,

where ∆X yri = X yri −X
y
ri− is the jump of X y at time ri.

To be specific, Theorem 4 of [1] deals with the case y = x (in that case, try(ω) is trivial), but then
an application of the special Markov property (Proposition 4) yields the case y 6= x.

2.7 A path transformation of Lévy processes

The classical Lamperti transformation [16] shows that the continuous-state branching process (X yr )r≥0
of the preceding section can be obtained as a time change of a stable Lévy process with no negative
jumps. In this section, we state a path transformation of Lévy processes that will be relevant in
forthcoming proofs. Let β ∈ (1, 2), and let (Us)s≥0 be a (centered) stable Lévy process with index
β and with no negative jumps, such that U0 = a > 0. Then the Laplace transform of Us − a is well
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defined and given by E[exp(−λ(Us − a))] = exp(c s λβ) for every λ > 0, where c > 0 is a constant. We
say that the Laplace exponent of U is c λβ . For every t > 0, we write (Ubr,a,t

s )0≤s≤t for the associated
bridge of duration t from a to 0, that is, for the process (Us)0≤s≤t conditioned on Ut = 0. We refer to
[12] for a precise definition and construction of this bridge.

We then set
T0 := inf{s ≥ 0 : Us = 0}.

and we consider the following transformation of the path of U over the time interval [0, T0]. Let R
be a nonnegative random variable which is uniformly distributed over [0, T0] conditionally given the
process U . For every s ∈ [0, T0], we set

Ũs =
{
UR+s − UR + a if 0 ≤ s ≤ T0 −R;
UR+s−T0 − UR if T0 −R ≤ s ≤ T0.

Lemma 7. The conditional distribution of (Ũs)0≤s≤T0 knowing that T0 = t is the law of (Ubr,a,t
s )0≤s≤t.

A discrete version of the previous statement, for centered random walks with negative jumps of
size −1 only, is easy to prove from the arguments based on the cyclic lemma that lead to the classical
Kemperman lemma — see e.g. Section 6.1 of [28]. Then Lemma 7 follows by applying a suitable
invariance principle. Alternatively, Corollary 8 of [5] gives the analog of Lemma 7 when U is replaced
by a linear Brownian motion, and Section 4 of the same paper explains how this can be extended to
the setting of processes with cyclically exchangeable increments (which is more than we need here).

In order to apply Lemma 7, we note that the collection of jumps of the process Ũ over the time
interval [0, T0] is the same as the collection of jumps of U over the same interval. Write D(R+,R)
for the Skorokhod space of real càdlàg functions on R+, and D0(R+,R) for the subset of D(R+,R)
consisting of functions with compact support. Then, if g is a nonnegative measurable function on R+,
and F is a nonnegative measurable function defined on D0(R+,R) such that F (w) only depends on the
sequence of jumps of w ordered in nonincreasing size, we have

E
[
g(T0)F ((Us∧T0)s≥0)

]
= E

[
g(T0)F ((Ũs∧T0)s≥0)

]
=
∫
πa(dt) g(t)E

[
F ((Ubr,a,t

s∧t )s≥0)
]
, (11)

where πa stands for the law of T0. In other words, the conditional distribution of the sequence of jumps
of (Us)0≤s≤T0 (ordered in nonincreasing size) knowing that T0 = t is the distribution of the sequence of
jumps of (Ubr,a,t

s )0≤s≤t.

3 The connection with super-Brownian motion
In this section, we briefly recall the connection between the Brownian snake excursion measures Nx
and super-Brownian motion, referring to [17] for more details. We fix α > 0, and consider a Poisson
point measure on S,

N =
∑
k∈K

δωk

with intensity αN0. Then one can construct a one-dimensional super-Brownian motion (Xt)t≥0 with
branching mechanism φ(u) = 2u2 and initial value X0 = αδ0, such that, for any nonnegative measurable
function g on R, ∫ ∞

0
〈Xt, g〉dt =

∑
k∈K
〈Y(ωk), g〉, (12)

where Y(ωk) is defined in formula (1). In a more precise way, the process (Xt)t≥0 is defined by setting,
for every t > 0 and every nonnegative measurable function g on R,

〈Xt, g〉 :=
∑
k∈K

∫ σ(ωk)

0
drltr(ωk) g(Ŵr(ωk)),

10



where ltr(ωk) denotes the local time of the process s 7→ ζs(ωk) at level t and at time r, and the notation
drltr(ωk) refers to integration with respect to the nondecreasing function r 7→ ltr(ωk) (see Chapter 4 of
[17]). We are primarily interested in the total occupation measure

Y :=
∫ ∞

0
Xt dt.

It follows from the results of Sugitani [29, Theorem 4] that Y has (a.s.) a continuous density (Lx)x∈R
with respect to Lebesgue measure, and this density is continuously differentiable on (0,∞) and on
(−∞, 0). On the other hand, for every ε > 0, the event A where the point measure N has exactly
one atom ω∗ such that W ∗(ω∗) ≥ ε has positive probability, and, conditionally on this event, ω∗ is
distributed according to N0(· |W ∗ ≥ ε). Furthermore, on the event A, formula (12) entails that the
restriction of Y to (ε,∞) coincides with the restriction of Y(ω∗) to the same set. It follows that, a.s.
under the probability measure N0(· |W ∗ ≥ ε), Y has a continuously differentiable density on (ε,∞).
Since ε was arbitrary, and using a symmetry argument, we easily conclude that Y has a continuously
differentiable density on (−∞, 0) ∪ (0,∞), N0 a.e.

In fact, we can remove the “singularity” at 0. Indeed, we may use the re-rooting invariance property
of N0 (formula (4)) to obtain that Y has a continuously differentiable density on R\{x}, Y(dx) a.e., N0
a.e. It follows that Y has a continuously differentiable density on R, N0 a.e. — as already mentioned,
this fact also follows from the results of [9], which are proved via a completely different method. As in
the introduction above, we write (`x, x ∈ R) for the density of Y (under N0) and call `x the local time
at level x. The derivative of `x is denoted by ˙̀x.

4 Technical estimates
The following lemma is a key ingredient of the proof of our main result.

Lemma 8. (i) For every z > 0 and ε > 0,

N∗,z0

(∫ σ

0
ds1{Ŵs<ε}

)
= ε4 f( z

ε2 ),

where the function f : (0,∞) −→ (0,∞) is continuous and satisfies u−1f(u) −→ 1 as u→∞.
(ii) There exists a constant C such that, for every α ∈ (0, 1] and ε ∈ (0,

√
α ], we have

ε−4N∗0

((∫ σ

0
ds1{Ŵs<ε}

)2
1{Z∗0≤α}

)
≤ C
√
α.

Proof. (i) For every z > 0, we set

f(z) := N∗,z0

(∫ σ

0
ds1{Ŵs<1}

)
.

A scaling argument (using property (iii) stated before Theorem 5) gives, for every z > 0 and ε > 0,

N∗,z0

(∫ σ

0
ds1{Ŵs<ε}

)
= ε4 N∗,ε

−2z
0

(∫ σ

0
ds1{Ŵs<1}

)
= ε4 f( z

ε2 ).

A similar scaling argument shows that, if z′ > z > 0,

f(z′) = N∗,z
′

0

(∫ σ

0
ds1{Ŵs<1}

)
=
(z′
z

)2
N∗,z0

(∫ σ

0
ds1{Ŵs<

√
z/z′}

)
≤
(z′
z

)2
f(z),

so that the function z 7→ z−2f(z) is nonincreasing.
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We now use formulas (7) and (5) to observe that we can write Z∗0 = Θ(ω[r]) for every r ∈ (0, σ), N∗0
a.e., and Z0 = Θ(tr0(ω)), Nb a.e., for every b > 0, with the same measurable function Θ on S given by

Θ(ω) = lim inf
ε→0

1
ε2

∫ σ(ω)

0
ds1{ω̂s<ε}.

An application of Theorem 5 then gives for every u > 0,√
3

2π

∫ u

0
dz z−5/2 f(z) = N∗0

(
1{Z∗0≤u}

∫ σ

0
dt1{Ŵt<1}

)
= 2

∫ 1

0
dbNb

(
Z0 1{Z0≤u}

)
.

Then, let b > 0. By Proposition 3 of [24], we know that the density of Z0 under the measure
Nb(· ∩ {Z0 6= 0}) is the function

z 7→
( 3

2b2
)2

Υ( 3z
2b2 ),

where the function Υ is defined on (0,∞) by

Υ(x) = 2√
π

(x1/2 + x−1/2)− 2(x+ 3
2)ex erfc(

√
x).

Notice that Υ(x) = 2√
π
x−1/2 +O(1) as x→ 0, and Υ(x) = 3

2
√
π
x−5/2 +O(x−7/2) as x→∞.

It follows that, for every u > 0,

Nb
(
Z0 1{Z0≤u}

)
=
∫ u

0

( 3
2b2

)2
Υ( 3z

2b2 ) z dz =
∫ 3u/(2b2)

0
zΥ(z) dz,

and by integrating this with respect to Lebesgue measure on (0, 1), we get√
3

2π

∫ u

0
dz z−5/2 f(z) = 2

∫ 1

0
dbNb

(
Z0 1{Z0≤u}

)
= 2

∫ ∞
0

dz zΥ(z)
(√3u

2z ∧ 1
)
.

Differentiating both sides with respect to u (we use the properties of Υ and the fact that z 7→ z−2f(z)
is nonincreasing to justify this differentiation for all but countably many values of u), we get√

3
2π u

−5/2f(u) =
√

3
2 u
−1/2

∫ ∞
3u/2

dz
√
zΥ(z).

and therefore, for every u > 0,
f(u) =

√
π u2

∫ ∞
3u/2

dz
√
zΥ(z).

The properties of f stated in the proposition follow from this explicit expression and the asymptotics
of Υ(x) as x→∞.

(ii) We use a scaling argument to write

ε−4N∗0

((∫ σ

0
ds1{Ŵs<ε}

)2
1{Z∗0≤α}

)
=
√

3
2πε

−4
∫ α

0
dz z−5/2 N∗,z0

((∫ σ

0
ds1{Ŵs<ε}

)2
)

=
√

3
2πε

4
∫ α

0
dz z−5/2 N∗,ε

−2z
0

((∫ σ

0
ds1{Ŵs<1}

)2
)

=
√

3
2πε

∫ ε−2α

0
dz z−5/2 N∗,z0

((∫ σ

0
ds1{Ŵs<1}

)2
)

= εJ( α
ε2 ),

where we have set, for every a > 0,

J(a) := N∗0

((∫ σ

0
ds1{Ŵs<1}

)2
1{Z∗0≤a}

)
.
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In order to prove (ii), we thus need to get the bound J(a) ≤ C
√
a when a ≥ 1.

To this end, we apply Theorem 5 with

G(ω) = 1{ω(0)<1} 1{Θ(ω)≤a}

∫ σ

0
du1{Ŵu(ω)<1},

where the function Θ was introduced in the first part of the proof. It follows that

J(a) = 2
∫ 1

0
dbNb

(
Z0 1{Z0≤a}

∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
,

where we recall the notation τ0(w) = inf{t ∈ (0, ζ(w)] : w(t) = 0}, for w ∈ W.
Let us fix b ∈ (0, 1) and set

K(a, b) = Nb
(
Z0 1{Z0≤a}

∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
.

Then K(a, b) ≤ e K̃(a, b), where

K̃(a, b) = Nb
(
Z0 e

−Z0/a
∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}

)
.

Let (L0
s)0≤s≤σ denote the exit local time from (0,∞) as defined in formula (5), and recall that Z0 = L0

σ.
Then,

K̃(a, b) = Nb
( ∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}L

0
u e
−L0

σ/a
)

+ Nb
( ∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}(L

0
σ − L0

u) e−L0
σ/a
)
,

and the two terms in the right-hand side are equal, by a simple time-reversal argument. Let us consider
the second term, and bound e−L0

σ/a by e−(L0
σ−Luσ)/a. Using the Markov property under Nb (cf. formula

(2)), we get

K̃(a, b) ≤ 2Nb

(∫ σ

0
du1{Ŵu<1,ζu≤τ0(Wu)}E

∗
Wu

(
L0
σ e
−L0

σ/a
))
, (13)

where we note that the definition of the exit local time also makes sense under P∗w for every w ∈ Wb

with τ0(w) =∞, see [17, Section V.1].
Let w ∈ Wb such that τ0(w) =∞. For every λ > 0, we compute

E∗w[L0
σe
−λσ] = − d

dλE
∗
w[e−λL0

σ ].

We use Lemma V.5 of [17], which says that the evolution of the Brownian snake under P∗w is described
by a Poisson measure P on [0, ζ(w)]× S with intensity 2 dtNw(t)(dω), in such a way that

E∗w[e−λL0
σ ] = E∗w

[
exp

(
− λ

∫
P(dtdω)Z0(ω)

)]
= exp

(
− 2

∫ ζ(w)

0
dtNw(t)(1− e−λZ0)

)
.

Using also (6), we get

E∗w[L0
σe
−λσ] = − d

dλ

(
exp

(
− 3

∫ ζ(w)

0
dt
(
w(t) +

√
3

2λ
)−2

))
.

It follows that

E∗w[L0
σe
−λσ] = 3

√
3
2 λ
−3/2

(∫ ζ(w)

0

dt
(w(t) +

√
3/2λ)3

)
exp

(
− 3

∫ ζ(w)

0
dt
(
w(t) +

√
3

2λ
)−2

))
.

We take λ = 1/a and substitute the identity of the last display in (13). From the first moment formula
(3), we get

K̃(a, b) ≤ 6
√

3
2 a

3/2
∫ ∞

0
dtEb

[
1{t≤κ0,Bt<1}

(∫ t

0

ds
(Bs +

√
3a/2)3

)
exp

(
− 3

∫ t

0
du
(
Bu +

√
3a
2
)−2

)]
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where (Bt)t≥0 is a linear Brownian motion that starts from b under the probability measure Pb, and,
for every x ∈ R, κx = inf{t ≥ 0 : Bt = x}. To simplify notation, let us write a′ =

√
3a/2. It follows

that

K̃(a, b) ≤ 6
√

3
2 a

3/2 Eb

[ ∫ ∞
0

ds
(Bs + a′)3

∫ ∞
s

dt1{t≤κ0,Bt<1} exp
(
− 3

∫ t

0
du (Bu + a′)−2

)]

= 6
√

3
2 a

3/2 Eb+a′

[ ∫ ∞
0

ds
(Bs)3

∫ ∞
s

dt1{t≤κa′ ,Bt<a′+1} exp
(
− 3

∫ t

0
du (Bu)−2

)]

≤ 6
√

3
2 a

3/2
∫ ∞

0
dsEb+a′

[
(Bs)−3 exp

(
− 3

∫ s

0
du (Bu)−2

)∫ ∞
s

dt1{t≤κa′ ,Bt<a′+1}

]

= 6
√

3
2 a

3/2
∫ ∞

0
dsEb+a′

[
(Bs)−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}EBs

[ ∫ ∞
0

dt1{t≤κa′ ,Bt<a′+1}
]]

where we have applied the Markov property at time s. We then claim that there exists a constant C1,
which does not depend on a, such that, for every x > a′,

Ex

[ ∫ ∞
0

dt1{t≤κa′ ,Bt<a′+1}
]
≤ C1. (14)

Clearly, we may restrict our attention to x ∈ (a′, a′ + 1], and it then suffices to bound

Ey

[ ∫ ∞
0

dt1{t≤κ0,Bt<1}
]

for y ∈ (0, 1]. Writing pt(y, z) = (2πt)−1/2 exp(−|z − y|2/2t) for the Brownian transition kernel, a
standard application of the reflection principle gives

Ey

[ ∫ ∞
0

dt1{t≤κ0,Bt<1}
]

=
∫ ∞

0
dt
∫ 1

0
dz (pt(y, z)− pt(y,−z)) ≤ C2

∫ ∞
0

dt (t−3/2 ∧ 1) ≤ C1,

with some constants C2 and C1.
Thanks to (14), we arrive at

K̃(a, b) ≤ C3 a
3/2

∫ ∞
0

dsEb+a′

[
(Bs)−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}

]
(15)

where C3 = 6
√

3
2C1. At this stage, we use the absolute continuity relations between Brownian motion

and Bessel processes (see e.g. Section 2 of [30] or [25, Proposition 2.6]) to get, for every s > 0,

Eb+a′

[
(Bs)−3 exp

(
− 3

∫ s

0
du (Bu)−2

)
1{s<κa′}

]
= (b+ a′)3 Eb+a′

[
(Rs)−6 1{Ru>a′,∀u∈[0,s]}

]
,

where (Rt)t≥0 denotes a Bessel process of dimension 7 that starts at x under the probability measure
Px. Recalling that b ∈ (0, 1) and a ≥ 1, the right-hand side of the last display is bounded above by
C ′Eb+a′ [(Rs)−3 1{Rs>a′}], for some constant C ′ independent of b and a. From (15), we get

K̃(a, b) ≤ C ′C3 a
3/2 Eb+a′

[ ∫ ∞
0

ds (Rs)−3 1{Rs>a′}

]
,

and we have

Eb+a′

[ ∫ ∞
0

ds
(Rs)3 1{Rs>a′}

]
≤ E0

[ ∫ ∞
0

ds
(Rs)3 1{Rs>a′}

]
=
∫
R7

dz
|z|3

G(z) 1{|z|>a′} ≤
C ′′

a
,

where G(z) = c |z|−5 denotes the Green function of Brownian motion in R7, and C ′′ is a constant.
Finally, we have obtained the bound K̃(a, b) ≤ C ′′C ′C3

√
a, and it follows that J(a) ≤ C

√
a, with

C = 2eC ′′C ′C3. This completes the proof.
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5 Proof of Theorem 1
Let us write M(R) for the space of all finite measures on R, which is equipped with the topology
of weak convergence and the associated Borel σ-field. We define a transition kernel from (0,∞)× R
intoM(R) as follows. For (t, y) ∈ (0,∞)× R, we use the notation Ubr,t,y for the bridge of duration t
from 0 to y associated with the stable Lévy process with no negative jumps and Laplace exponent
1
2ψ(λ) =

√
2/3λ3/2. Let ηk, k ∈ N, be the sequence of jumps of Ubr,t,y ranked in nonincreasing order.

We define Q((t, y), dµ) as the probability measure onM(R) obtained as the distribution of∑
k∈N
Y(ωk)

where, conditionally on Ubr,t,y, the random snake trajectories ωk are independent, and, for every k, ωk
is distributed according to N∗,ηk0 . This definition makes sense because, using formula (9),

E
[∑
k∈N
〈Y(ωk), 1〉

∣∣∣Ubr,t,y
]

= E
[∑
k∈N

σ(ωk)
∣∣∣Ubr,t,y

]
=
∑
k∈N

(ηk)2 <∞, a.s.

As usual, if F is a nonnegative measurable function onM(R), QF stands for the function on (0,∞)×R
defined by

QF (t, y) =
∫
Q((t, y),dµ)F (µ).

We extend this definition by setting QF (0, y) = F (0) for every y ∈ R.
In order to prove Theorem 1, we will now argue under the measure N0. Recall the definition (1) of

the random measure Y and, for every h ∈ R, let Yh−, resp. Yh+, denote the restriction of Y to (−∞, h),
resp. to (h,∞). We also let Ỹh+, resp. Ỹh−, be the pushforward of Yh+, resp. of Yh−, under the mapping
x 7→ x− h. The key to the proof of Theorem 1 is the following proposition.

Proposition 9. Let h ≥ 0. Let F1 and F2 be two nonnegative measurable functions onM(R). Then,

N0
(
F1(Yh−)F2(Ỹh+)

)
= N0

(
F1(Yh−)QF2(`h, 1

2
˙̀h)
)
.

Both assertions of Theorem 1 follow from Proposition 9. Just note that (`h+x)x>0 is the (continuous)
density of the measure Ỹh+, so that Proposition 9 immediately show that the process (`h+x, ˙̀h+x)x≥0 is
independent of (`h+x, ˙̀h+x)x≤0 conditionally on (`h, ˙̀h), and moreover its conditional distribution does
not depend on h. The second assertion of Theorem 1 follows from the case h = 0 of Proposition 9.

Proof of Proposition 9. We will use the fact that the local time `h can be expressed in terms of the
exit measure process (X hr )r≥0 via the formula

`h =
∫ ∞

0
drX hr . (16)

See [22, Proposition 26] when h > 0, and [23, Proposition 3.1] when h = 0.
We first consider the case h > 0. We note that the event `h = 0 occurs if and only if Zh = 0 (by

(16) and the fact that X h0 = Zh). On the event {Zh = 0}, we have Ỹh+ = 0 and QF2(`h, ˙̀h) = F2(0).
Thanks to this observation, it is enough to prove the formula of the proposition (when h > 0) with
N0 replaced by the conditional probability measure N(h)

0 (dω) := N0(dω | Zh > 0) = N0(dω |W ∗ > h).
Recall from Section 2.4 that, under the probability measure N(h)

0 , the process X h is independent of
trh(ω) conditionally on Zh.

We rely on the excursion theory presented in Section 2.6 above, and we consider the excursions
above and below level h, which are denoted by ω(ui), i ∈ N, in Section 2.6. To simplify notation, we
write ω(i) instead of ω(ui) in this proof. Recall that each excursion ω(i) corresponds to a jump time ri
of the exit measure process X h. We write δi := ∆X hri for the corresponding jump. The conditional
distribution of the collection (ω(i))i∈N knowing the process X h (and trh(ω)) is given by Theorem 6.

For every i ∈ N, let ηi = 1 if ω(i) is an excursion above h and ηi = −1 otherwise. Notice
that, conditionally on the exit measure process X h (and on trh(ω)), the random variables ηi, i ∈ N,
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are independent and uniformly distributed on {−1,+1}. We write I+ = {i ∈ N : ηi = +1} and
I− = {i ∈ N : ηi = −1}. By remarks following the definition of excursions above and below a level, we
have

Yh− = Yh−(trh(ω)) +
∑
i∈I−
Yh−(ω(i)) (17)

and
Yh+ =

∑
i∈I+

Yh+(ω(i)). (18)

By the classical Lamperti transformation [16], we can write (X hr )r≥0 as a time change of a Lévy
process stopped upon hitting 0. More precisely, we have for every r ≥ 0,

X hr = U∫ r
0 dtXht

,

where (Ut)0≤t≤T0 is a stable Lévy process with no negative jumps and Laplace exponent ψ, which is
started at U0 = Zh and stopped at its first hitting time of 0. Note that we have in particular∫ ∞

0
drX hr = inf{t ≥ 0 : Ut = 0} = T0.

Recalling (16), we have thus `h = T0. We observe that (Ut)0≤t≤T0 has the same jumps as X h. Hence,
for every i ∈ N, δi is the jump of U occurring at a certain time si ∈ [0, T0].

The values of the process U are determined by (X hr )r≥0 only up to time T0. With a small abuse of
notation, we can assume that the Lévy process (Ut)t≥0 is defined at all times under the underlying
probability measure N(h)

0 (dω) (and is independent of trh(ω) conditionally on Zh). Let (tj)j∈N be the
jump times of U (listed according to some measurable enumeration) and, for every j ∈ N, let γj = ∆Utj
be the corresponding jump. Notice that, if j ∈ N is such that tj ≤ T0, there exists a unique i ∈ N such
that tj = si and γj = δi.

We may also assume that we have assigned a random snake trajectory ωj to each jump time tj
of U , in such a way that, if tj ≤ T0, we have ωj = ω(i) where i ∈ N is the unique index such that
tj = si, and, conditionally on U , the random variables ωj , j ∈ N, are independent and the conditional
distribution of ωj is

1
2N
∗,γj
h + 1

2 Ň
∗,γj
h .

If j ∈ N, we set εj = +1 if ωj is an excursion above h and εj = −1 otherwise. We note that the “labels”
εj , j ∈ N, are independent and uniformly distributed over {−1, 1} (and are also independent of the
process U). We set J+ = {j ∈ N : εj = +1} and J− = {j ∈ N : εj = −1}.

Let U ′ be the (centered) Lévy process that is obtained from U by “keeping only” the jumps with
label −1. More precisely, noting that the Lévy measure of U is the measure n(dz) defined in (8), we
have for every t ≥ 0,

U ′t = Zh + lim
α↓0

( ∑
j∈J−,tj≤t,γj>α

γj −
t

2

∫ ∞
α

xn(dx)
)
.

We also define U ′′t = Ut − U ′t, so that

U ′′t = lim
α↓0

( ∑
j∈J+,tj≤t,γj>α

γj −
t

2

∫ ∞
α

xn(dx)
)
. (19)

Observe that U ′ and U ′′ are two independent (centered) Lévy processes with Laplace exponent 1
2ψ,

such that U ′0 = Zh and U ′′0 = 0, and also note that U ′T0
+ U ′′T0

= UT0 = 0.
At this point, it will be convenient to condition on the value of Zh, and, for every z > 0, we

introduce the conditional probability measure P(z) := N(h)
0 (· | Zh = z), in such a way that U ′0 = U0 = z,

P(z) a.s. Then let g be a nonnegative measurable function on R+, and let G1 and G2 be two nonnegative
measurable functions on R+ × D(R+,R), such that, for every t ≥ 0, the mapping w 7→ G1(t,w) is a
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(measurable) function of the collection of jumps of (w(s), 0 ≤ s ≤ t), and similarly for G2. If πz(dt)
denotes the law of T0 under P(z), we have then

E(z)[g(T0)G1(T0,U ′)G2(T0,U ′′)] =
∫
πz(dt) g(t)E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t]. (20)

By Lemma 7 and the subsequent remarks, we know that the conditional distribution of the collection
of jumps of (Ut)0≤t≤T0 knowing that T0 = t is the distribution of the collection of jumps of the bridge
of duration t from z to 0 associated with the Lévy process U . Recalling that the signs εj are assigned
independently knowing U , it follows that, for every t ≥ 0,

E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t] = E(z)[G1(t,U ′)G2(t,U ′′) | Ut = 0]. (21)

Now note that Ut = 0 is equivalent to U ′′t = −U ′t. Using the independence of U ′ and U ′′, we can verify
that

E(z)[G1(t,U ′)G2(t,U ′′) | Ut = 0] = E(z)[G1(t,U ′)Φ(t,−U ′t) | Ut = 0], (22)

where we use the notation Φ(t, a) := E(z)[G2(t,U ′′) | U ′′t = a] for every a ∈ R (this function does not
depend on z). The identity (22) may be derived from elementary manipulations. Alternatively, we
may proceed as follows. We set Ũs = U ′s if s ∈ [0, t] and Ũs = U ′t + U ′′s−t if s ∈ [t, 2t], so that, under
P(z)(· | Ut = 0), (Ũs)s∈[0,2t] is a Lévy process conditioned on Ũ2t = 0. Then (22) is nothing but the
usual Markov property at time t for the Lévy process bridge.

Thanks to (21) and (22), we get

E(z)[G1(t,U ′)G2(t,U ′′) | T0 = t] = E(z)[G1(t,U ′)Φ(t,−U ′t) | T0 = t],

where we also use the fact that U ′t is a measurable function of the jumps of U ′ over [0, t]. Recalling
(20), we finally get that

E(z)[g(T0)G1(T0,U ′)G2(T0,U ′′)] =
∫
πz(dt) g(t)E(z)[G1(t,U ′)Φ(t,−U ′t) | T0 = t]

= E(z)[g(T0)G1(T0,U ′)Φ(T0,−U ′T0)]. (23)

Next let H,A,B be nonnegative measurable functions on the space of snake trajectories. By
Theorem 6, we have

N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
))

= N(h)
0

(
H(trh(ω))

∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)
)

= N(h)
0

(
H(trh(ω))E(Zh)

[ ∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)
])

The quantities ∏
i∈I−

Ň∗,δih (e−A),
∏
i∈I+

N∗,δih (e−B)

are functions of the jumps of U ′ and U ′′, respectively, over the time interval [0, T0]. Hence, we can use
(23) to get, for every z > 0,

E(z)
[ ∏
i∈I−

Ň∗,δih (e−A)
∏
i∈I+

N∗,δih (e−B)
]

= E(z)
[ ∏
i∈I−

Ň∗,δih (e−A) ΦB(T0,−U ′T0)
]
,

where ΦB(t, y) is the expected value of the quantity∏
k∈N

N∗,akh (e−B)
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where the numbers ak, k ∈ N are the jumps of the bridge of duration t from 0 to y, for a Lévy process
with no negative jumps and Laplace exponent 1

2ψ (we again refer to [12] for the construction of this
bridge). We finally conclude that

N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
))

= N(h)
0

(
H(trh(ω))

∏
i∈I−

Ň∗,δih (e−A) ΦB(T0,−U ′T0)
)

= N(h)
0

(
H(trh(ω)) exp

(
−
∑
i∈I−

A(ω(i))
)

ΦB(T0,−U ′T0)
)
. (24)

Lemma 10. We have U ′T0
= −U ′′T0

= −1
2

˙̀h, where ˙̀h denotes the derivative at h of the function
x 7→ `x.

Let us postpone the proof of Lemma 10. Since we already know that T0 = `h, we have
ΦB(T0,−U ′T0

) = ΦB(`h, 1
2

˙̀h) in formula (24). Next let f1 and f2 be two bounded measurable functions
on R, and consider the functions F1 and F2 defined on M(R) by Fi(µ) = exp−〈µ, fi〉, for i = 1, 2.
Recalling (17) and (18), we see that an appropriate choice of the functions H,A,B in (24) gives

N(h)
0

(
F1(Yh−)F2(Ỹh+)

)
= N(h)

0

(
F1(Yh−) Φ(f2)(`h,

1
2

˙̀h)
)
,

where Φ(f2)(t, y) = QF2(t, y), with the notation introduced before Proposition 9. We have thus obtained
the special case of the formula of Proposition 9 when F1 and F2 are as specified above, and a standard
monotone class argument (see e.g. Lemma II.5.2 in [27]) gives the general case. This completes the
proof in the case h > 0.

Consider now the case h = 0. It seems plausible that one could derive this case by passing to the
limit h→ 0 in the formula obtained for h > 0. However, a rigorous justification of this passage to the
limit leads to certain technical difficulties, and, for this reason, we will use a different argument based
on the re-rooting property of N0. For ω ∈ S0 and r ∈ [0, σ(ω)], recall the notation ω̃[r] introduced
before formula (4), and note that we have N0 a.e.

Y0
−(ω̃[r]) = Ỹ ω̂r− (ω), Y0

+(ω̃[r]) = Ỹ ω̂r+ (ω), `0(ω̃[r]) = `ω̂r(ω), ˙̀0(ω̃[r]) = ˙̀ω̂r(ω), ̂̃ω[r]
σ−r = −ω̂r.

Let F1 and F2 be nonnegative measurable functions onM(R). From formula (4) and the preceding
display, we get

N0

(∫ σ

0
dr 1{ω̂r>0} F1(Ỹ ω̂r− (ω))F2(Ỹ ω̂r+ (ω))

)
= N0

(∫ σ

0
dr 1{ω̂r>0} F1(Y0

−(ω̃[r]))F2(Y0
+(ω̃[r]))

)

= N0

(∫ σ

0
dr 1{ω̂σ−r<0} F1(Y0

−(ω))F2(Y0
+(ω))

)

= N0
(
〈Y0
−, 1〉F1(Y0

−)F2(Y0
+)
)

(25)

On the other hand, the left-hand side of (25) is also equal to

N0

(∫
Y0

+(dx)F1(Ỹx−)F2(Ỹx+)
)

= N0

(∫ ∞
0

dx `x F1(Ỹx−)F2(Ỹx+)
)

=
∫ ∞

0
dxN0

(
`x F1(Ỹx−)F2(Ỹx+)

)
=
∫ ∞

0
dxN0

(
`x F1(Ỹx−)QF2(`x, 1

2
˙̀x)
)
, (26)
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where we use the case h > 0 of Proposition 9 in the last equality. Finally, replacing the function F1(µ)
by (〈µ, 1〉)−1F1(µ), we deduce from (25) and (26) that

N0
(
F1(Y0

−)F2(Y0
+)
)

=
∫ ∞

0
dxN0

(
`x (〈Ỹx−, 1〉)−1 F1(Ỹx−)QF2(`x, 1

2
˙̀x)
)
.

The right-hand side of the preceding display remains the same if we take F2 = 1 and replace F1(Y0
−) by

F1(Y0
−)QF2(`0, 1

2
˙̀0): Note that the pair (`0, 1

2
˙̀0) is a measurable function of Y0

−, such that the same
function applied to the measure Ỹx− gives (`x, 1

2
˙̀x). The case h = 0 of Proposition 9 now follows.

Proof of Lemma 10. To simplify notation, we write (only in this proof) P for the probability measure
N(h)

0 and E for the corresponding expectation. We have already noted that U ′T0
= −U ′′T0

, and so we
only need to verify that U ′′T0

= 1
2

˙̀h. We first observe that

1
ε2

(∫ σ

0
ds1{h<Ŵs<h+ε} − ε `

h

)
= 1
ε2

(∫ h+ε

h
dx `x − ε`h

)
=
∫ 1

0
dy
(`h+εy − `h

ε

)
−→
ε→0

1
2

˙̀h, (27)

P a.s. On the other hand, we have∫ σ

0
ds1{h<Ŵs<h+ε} =

∑
i∈I+

∫ σ(ω(i))

0
ds1{h<Ŵs(ω(i))<h+ε} =

∑
j∈J+,tj≤T0

∫ σ(ωj)

0
ds1{h<Ŵs(ωj)<h+ε}. (28)

For every j ∈ J+ and ε > 0, set

γεj = 1
ε2

∫ σ(ωj)

0
ds1{h<Ŵs(ωj)<h+ε}.

Recall that, conditionally on X h and on {j ∈ J+}, ωj is distributed according to N∗,γjh . By (7) and the
remarks following the definition of N∗,z0 , we have γεj −→ γj = ∆Utj as ε→ 0, for every j ∈ J+, P a.s.

Let α > 0. Since the set {j ∈ J+ : γj ≥ α, tj ≤ T0} is finite, it follows that∑
j∈J+,γj≥α,tj≤T0

γεj −→
ε→0

∑
j∈J+,γj≥α,tj≤T0

γj , P a.s. (29)

For every ε > 0 and 0 ≤ u < v ≤ ∞, we set

Γε(u, v) = ε−2
∫ v

u
n(dz)N∗,z0

(∫ σ

0
ds1{0<Ŵs<ε}

)
= ε2

∫ v

u
f( z
ε2 ) n(dz),

with the notation of Lemma 8. We observe that

Γε(0,∞) = ε−2N∗0

(∫ σ

0
ds1{Ŵs<ε}

)
= 2
ε

by (10). Moreover,
Γε(α,∞) =

∫ ∞
α

ε2 f( z
ε2 ) n(dz) −→

ε→0

∫ ∞
α

z n(dz), (30)

by dominated convergence (justified by Lemma 8 (i)).
By construction (and standard properties of Lévy processes), the point measure∑

j∈J+

δ(tj ,γj ,ωj) (31)

is Poisson with intensity dt 1
2n(dz)N∗,zh (dω). In particular, for 0 ≤ u < v ≤ ∞, we have

E
[ ∑
j∈J+,u≤γj<v,tj≤t

γεj

]
= t

2Γε(u, v).
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Then, using a classical formula for Poisson measures (see formula (3.19) in [15]), we have

E
[( ∑

j∈J+,γj<α,tj≤t
γεj−E

[ ∑
j∈J+,γj<α,tj≤t

γεj

])2]
= t

2

∫ α

0
n(dz)N∗,zh

((
ε−2

∫ σ

0
ds1{Ŵs≤h+ε}

)2
)
≤ Ct

√
α,

where the last bound holds by Lemma 8 (ii) provided that α ≥ ε2. Under the latter condition, we can
apply Doob’s inequality in L2 to the martingale

M ε
t :=

∑
j∈J+,γj<α,tj≤t

γεj − E
[ ∑
j∈J+,γj<α,tj≤t

γεj

]
=

∑
j∈J+,γj<α,tj≤t

γεj −
t

2Γε(0, α)

and we get, for every K > 0 and ε ∈ (0,
√
α ],

E
[

sup
t∈[0,K]

( ∑
j∈J+,γj<α,tj≤t

γεj −
t

2 Γε(0, α)
)2]
≤ 4CK

√
α. (32)

Let us fix β > 0. We observe that the convergence in (19) holds uniformly when t varies in a
compact set, at least along a suitable sequence of values of α decreasing to 0 (see e.g. the proof of
Theorem 1 in Chapter 1 of [4]). So we can choose α > 0 small enough so that

P
(∣∣∣∣∣
( ∑
j∈J+,γj≥α,tj≤T0

γj −
T0
2

∫ ∞
α

z n(dz)
)
− U ′′T0

∣∣∣∣∣ > β

)
< β. (33)

By choosing α even smaller if necessary, we may also assume thanks to (32) that, for every ε ∈ (0,
√
α ],

P
(∣∣∣∣∣ ∑

j∈J+,γj<α,tj≤T0

γεj −
T0
2 Γε(0, α)

∣∣∣∣∣ > β

)
< β. (34)

Once we have fixed α, we can use (29) and (30) to get that, for every small enough ε > 0, we have

P
(∣∣∣∣∣
( ∑
j∈J+,γj≥α,tj≤T0

γεj −
T0
2 Γε(α,∞)

)
−
( ∑
j∈J+,γj≥α,tj≤T0

γj −
T0
2

∫ ∞
α

z n(dz)
)∣∣∣∣∣ > β

)
< β. (35)

By combining (33), (34) and (35), and using Γε(0,∞) = Γε(0, α) + Γε(α,∞), we obtain that, for ε
small,

P
(∣∣∣∣∣
( ∑
j∈J+,tj≤T0

γεj −
T0
2 Γε(0,∞)

)
− U ′′T0

∣∣∣∣∣ > 3β
)
< 3β.

Since β was arbitrary, we have proved that

∑
j∈J+,tj≤T0

γεj −
T0
2 Γε(0,∞) −→

ε→0
U ′′T0

in probability. Now recall from (28) that
∑

j∈J+,tj≤T0

γεj = ε−2
∫ σ

0
ds1{h<Ŵs<h+ε}.

Since we have also Γε(0,∞) = 2/ε and T0 = `h, we conclude that

1
ε2

∫ σ

0
ds1{h<Ŵs<h+ε} −

`h

ε
−→
ε→0
U ′′T0

in probability. Comparing with (27), we obtain the desired result U ′′T0
= 1

2
˙̀h.
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6 Proof of Theorem 2
This proof uses essentially the same arguments as the proof of Theorem 1, and for this reason we
will skip some details. We suppose that the super-Brownian motion (Xt)t≥0 is constructed (under
the probability measure P) from a Poisson point measure

∑
k∈K δωk with intensity αN0 in the way

explained in Section 3. As previously, we write Y =
∫∞

0 Xt dt for the total occupation measure of X.
Recall that (Lx)x∈R is the (continuous) density of Y, and that, for x 6= 0, L̇x stands for the derivative
of y 7→ Ly at x, and by convention L̇0 is the right derivative at 0.

For every h ≥ 0, we let Yh
−, resp. Yh

+, be the restriction of Y to (−∞, h), resp. to (h,∞), and we
write Ỹh

+ for the pushforward of Yh
+ under the shift x 7→ x− h. The proof of Theorem 2 then reduces

to checking the analog of Proposition 9, namely the identity

E[F1(Yh
−)F2(Ỹh

+)] = E[F1(Yh
−)QF2(Lh, 1

2 L̇
h)], (36)

where F1 and F2 are nonnegative measurable functions onM(R), and QF2 is defined as in the previous
section.

Consider first the case h > 0. We note that

Lh =
∑
k∈K

`h(ωk)

as a consequence of (12) and the fact that there are only finitely many k ∈ K such that W ∗(ωk) ≥ h.
We can then consider the exit measure process (Xh

t )t≥0, which is defined by

Xh
t :=

∑
k∈K
X ht (ωk).

Note again that there are only finitely many nonzero terms in the right-hand side. Then (Xh
t )t≥0 is

(again) a ψ-CSBP, which now starts at

Xh
0 = Zh :=

∑
k∈K
Zh(ωk).

We may write Xh as the time change of a Lévy process U = (Ut)t≥0 started at Zh, in such a way that∫ ∞
0

Xh
t dt = T0 := inf{t ≥ 0 : Ut = 0},

and we have
Lh =

∑
k∈K

`h(ωk) =
∑
k∈K

∫ ∞
0
X ht (ωk) dt =

∫ ∞
0

Xh
t dt = T0.

There is again a one-to-one correspondence between the jump times of Xh and the excursions
of ωk above and below h, for all k ∈ K (such that W ∗(ωk) ≥ h). We can list these excursions in
a sequence (ω(i), i ∈ N) as we did in the preceding section, and we let I−, resp. I+, be the set of
all indices i such that ω(i) is an excursion below h, resp. below h. Then, conditionally on the exit
measure process (Xh

t )t≥0, the excursions (ω(i), i ∈ N) are independent (and independent of the point
measure

∑
k∈K δtr(ωk)), and the conditional distribution of ω(i) is 1

2(N∗,δih + Ň∗,δih ), where δi is the jump
associated with ω(i).

We may then construct the Lévy processes U ′ and U ′′ from U in a way exactly similar as we
constructed U ′ and U ′′ from U in the previous section, and we have U ′ + U ′′ = U , so that U ′T0

= −U ′′T0
.

We can now follow the same route as in the proof of Theorem 1 to arrive at the analog of formula
(24), which reads

E
[
H
( ∑
k∈K

δtrh(ωk)
)

exp
(
−
∑
i∈I−

A(ω(i))
)

exp
(
−
∑
i∈I+

B(ω(i))
)]

= E
[
H
( ∑
k∈K

δtrh(ωk)
)

exp
(
−
∑
i∈I−

A(ω(i))
)

ΦB(T0,−U ′T0)
]
, (37)
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with the same function ΦB as in (24). We already know that T0 = Lh, and, to complete the proof of
(36), we need to verify that U ′T0

= −1
2 L̇

h. This is done by exactly the same method we used to prove
Lemma 8, using the approximation

1
ε2

(∫ h+ε

h
Lx dx− εLh

)
−→
ε→0

1
2 L̇

h (38)

instead of (27).
Let us consider then the case h = 0. We start by observing that

L0 =
∑
k∈K

`0(ωk).

This identity is less immediate than the corresponding one when h > 0, because the sum now involves
infinitely many nonzero terms, but it is derived in the proof of [23, Corollary 3.2]. We can define the
exit measure process (X0

t )t≥0 at 0 by setting X0
0 = α and, for t > 0,

X0
t =

∑
k∈K
X 0
t (ωk).

As recalled in Section 2.4, we then know that (X0
t )t≥0 is a ψ-CSBP started at α. Moreover, we have

L0 =
∑
k∈K

`0(ωk) =
∑
k∈K

∫ ∞
0
X 0
t (ωk) dt =

∫ ∞
0

X0
t dt,

where the second equality follows from (16).
As in the case h > 0, there is a one-to-one correspondence between the jump times of X0 and the

excursions of ωk above and below 0, for all k ∈ K — now all k ∈ K are relevant, but this creates
no difficulty, since X 0(ωk) and X 0(ωk′) have no common jump time if k 6= k′. We can list these
excursions in a sequence (ω(i), i ∈ N) as above. By a direct application of [1, Theorem 4], we again
get that, conditionally on (X0

t )t≥0 , the excursions (ω(i), i ∈ N) are independent, and the conditional
distribution of ω(i) is 1

2(N∗,δi0 + Ň∗,δi0 ), where δi is the jump of X0 associated with ω(i). The Lamperti
time change of X0 yields a Lévy process U started from α, up to time T0 := inf{t ≥ 0 : Ut = 0},
and we can again consider the Lévy processes U ′, resp. U ′′, obtained by “keeping” the jumps of U
corresponding to negative excursions, resp. to positive excursions, and such that U ′0 = α and U ′′0 = 0.
By the same arguments as in the proof of Theorem 1, we arrive at the analog of (37) (without the
term H(

∑
k∈K δtrh(ωk)) which is now irrelevant). Since we already now that T0 =

∫∞
0 X0

t dt = L0, it
only remains to verify that U ′T0

= −U ′′T0
= −1

2 L̇
0. This follows by a straightforward adaptation of the

proof of Lemma 8, using (38) with h = 0. This completes the proof of Theorem 2.

Remarks. (i) In the case h = 0, if instead of using (38), we consider the approximation

1
ε2

(∫ 0

−ε
Lx dx− εLh

)
−→
ε→0
−1

2 L̇
0−,

the same method leads to the equality U ′T0
− α = −1

2 L̇
0−. Since we have also U ′T0

= −U ′′T0
= −1

2 L̇
0,

we get that L̇0 = L̇0− − 2α, which is consistent with the results of [29].
(ii) It is certainly possible to derive (36) more directly from (a stronger form of) Proposition 9. This
would still require some technicalities, and we preferred to use the preceding approach which consists
in adapting the proof of Proposition 9 to a slightly different context.

7 Remarks and complements

7.1 The transition kernel of (`x, ˙̀x)
Our proof of Theorem 1 yields a complicated expression for the transition kernel of the Markov process
(`x, ˙̀x) (or of the process (Lx, L̇x) of Theorem 2). First observe that we can use Theorem 5 to verify
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that Y(ω) also has a continuously differentiable density on (0,∞), N∗0 a.e. By a scaling argument the
same holds N∗,z0 a.e. for every z > 0. In other words we can make sense of (`x, ˙̀x) for every x > 0, N∗,z0
a.e. For t > 0 and y ∈ R, recall the notation Ubr,t,y for the bridge of duration t from 0 to y associated
with the centered stable Lévy process with Laplace exponent 1

2ψ, and write (ηk)k∈N for the sequence
of jumps of Ubr,t,y ranked in nonincreasing order.

Let x > 0. Then, under N0, the law of (`x, ˙̀x) knowing that (`0, ˙̀0) = (t, y) is the distribution of( ∑
k∈K

`x(ωk),
∑
k∈K

˙̀x(ωk)
)

where, conditionally on Ubr,t,y, the random snake trajectories ωk are independent, and, for every k, ωk
is distributed according to N∗,ηk0 . This expression readily follows from Proposition 9.

We note that there are finitely many nonzero terms in the sums of the last display. To see this,
observe that, for every z > 0,

N∗,z0 (W ∗ ≥ x) = N∗,10 (W ∗ ≥ x/
√
z) ≤ C z3

x6 ,

where C is a constant and the last bound follows from [22, Corollary 5]. Hence,

E
[ ∑
k∈K

1{`x>0}

∣∣∣Rbr,t,y
]
≤ Cx−6 ∑

k∈K
(ηk)3 <∞, a.s.

It would be desirable to obtain a simpler description of the transition kernel of (`x, ˙̀x) !

7.2 Towards a stochastic equation

The paper [14] gives formulas for the local time of a super-Brownian motion (Xt)t≥0 started at δ0 and
its derivative, in terms of the martingale measure M associated with (Xt)t≥0 (see [27, Section II.5] for
the definition and properties of M). With our notation, formula (2.11) of [14] states that, for every
fixed 0 < x < y,

L̇y − L̇x =
∫ ∞

0

∫
(sgn(x− z)− sgn(y − z))M(dzds),

where sgn(z) = 1{z>0} − 1{z<0}.
By applying the Dubins-Schwarz theorem (as explained in the proof of [14, Theorem 2.3]), it follows

that one can find a linear Brownian motion (Bt)t≥0 started at 0, such that

L̇y − L̇x = B4
∫ y
x
Lz dz.

This suggests that (L̇x)x>0 should satisfy a stochastic differential equation of the form

dL̇x = 2
√
Lx dβx

where (βx)x≥0 denotes a linear Brownian motion. This equation is very close to the one that is
conjectured to hold for the density of ISE in [9]. Note however that the equation in [9] involves an
additional drift term, which should arise from the conditioning involved in the definition of ISE.

As a final remark, the stochastic equation in the last display is of course reminiscent of the equation
dXx = 2

√
Xx dβx which (by the Ray-Knight theorems) holds if Xx is the local time at level x > 0 of a

positive Brownian excursion distributed according to the Itô measure.

7.3 Brownian geometry

The Brownian sphere, or Brownian map, is a random measure metric space (m, D, vol) that arises as
the scaling limit in the Gromov-Hausdorff sense of many different classes of random planar maps (see
in particular [19, 26]). The Brownian sphere is constructed as the quotient space m = T / ≈ of the
Brownian tree T for an equivalence relation ≈ defined in terms of the labels (Va)a∈T , and the volume
measure on m is just the pushforward of the volume measure Vol on T under the canonical projection.
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Under N0(· | σ = 1), we speak of the standard Brownian sphere (with total volume equal to 1), but it
is also of interest to consider the “free” Brownian sphere defined under N0. The equivalence relation ≈
is such that we have Va = Va′ whenever a and a′ are two points of T such that a ≈ a′. Thanks of this
property, one can make sense of the label Vx for any point x of m = T / ≈.

The Brownian sphere comes with two distinguished points, namely x0, which is the equivalence
class of the root of T , and x∗, which is the equivalence class of the point of T with minimal label
(in a sense that can be made precise, these two points are uniformly distributed over m). Moreover,
we have D(x∗,x) = Vx − Vx∗ for every x ∈m: up to a shift, labels correspond to distances from the
distinguished point x∗. The next proposition is then a straighforward consequence of the preceding
results. To simplify notation, we write m∗ = −Vx∗ = D(x0,x∗).

Proposition 11. For every r ≥ 0, let Vr be the volume of the closed ball of radius r centered at x∗
in the Brownian sphere m. Then, N0 a.e. the function r 7→ Vr is twice continuously differentiable on
[0,∞), and we denote its first and second derivative by V ′r and V ′′r . Moreover, the random process
(Vm∗+r,V ′m∗+r,V

′′
m∗+r)r≥0 is time-homogeneous Markov under N0.

Proof. By the definition of the volume measure on m, and the formula for distances from x∗,

Vr = Vol({a ∈ T : Va ≤ r −m∗}) =
∫ r−m∗

−∞
`x dx.

From the fact that x 7→ `x is continuously differentiable, we thus get that the mapping r 7→ Vr is twice
continuously differentiable, and moreover V ′m∗+r = `r and V ′′m∗+r = ˙̀r. Then we just have to apply
Theorem 1.

Informally, V ′r represents the “area” of the sphere {x ∈m : D(x∗,x) = r}. Furthermore, Lemma
10 allows us to interpret V ′′r as twice the (renormalized) sum of the boundary sizes of connected
components of the complement of the closed ball of radius r centered at x∗: in the canonical projection
from T onto m, these connected components correspond to the excursions above level r −m∗ (see the
beginning of [21, Section 12]).
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