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Introduction

The main goal of this work is to investigate the genealogical structure of continuous-
state branching processes in connection with limit theorems for discrete Galton-
Watson trees. Applications are also given to the construction and various properties
of spatial branching processes including a general class of superprocesses.

Our starting point is the recent work of Le Gall and Le Jan [32] who proposed
a coding of the genealogy of general continuous-state branching processes via a real-
valued random process called the height process. Recall that continuous-state branch-
ing processes are the continuous analogues of discrete Galton-Watson branching pro-
cesses, and that the law of any such process is characterized by a real function
called the branching mechanism. Roughly speaking, the height process is a contin-
uous analogue of the contour process of a discrete branching tree, which is easy to
visualize (see Section 0.1, and note that the previous informal interpretation of the
height process is made mathematically precise by the results of Chapter 2). In the im-
portant special case of the Feller branching diffusion (¢(u) = u?), the height process
is reflected linear Brownian motion: This unexpected connection between branching
processes and Brownian motion, or random walk in a discrete setting has been known
for long and exploited by a number of authors (see e.g. [3], [11], [18], [39], [42]). The
key contribution of [32] was to observe that for a general subcritical continuous-state
branching process, there is an explicit formula expressing the height process as a func-
tional of a spectrally positive Lévy process whose Laplace exponent v is precisely the
branching mechanism. This suggests that many problems concerning the genealogy of
continuous-state branching processes can be restated and solved in terms of spectrally
positive Lévy processes, for which a lot of information is available (see e.g. Bertoin’s
recent monograph [5]). It is the principal aim of the present work to develop such
applications.

In the first two sections below, we briefly describe the objects of interest in a
discrete setting. In the next sections, we outline the main contributions of the present
work.

0.1 Discrete trees

Let
o0
u=|Jn"
n=0
where N = {1,2,...} and by convention N° = {#}. If u = (u1,...,u,) € N”, we set
|u| = n, so that |u| represents the “generation” of w. If u = (uy,...u,) and v =
(v1,...,vy,) belong to U, we write uv = (uy,...uUm,v1,...,0,) for the concatenation

of u and v. In particular uf) = Qu = u.



A (finite) rooted ordered tree 7 is a finite subset of ¢ such that:
i)0eT.
(ii) f v € T and v = uj for some u € Y and j € N, then u € 7.

(iii) For every u € 7, there exists a number k, (7)) > 0 such that uj € 7 if and only
if 1 <j < ku(T).

We denote by T the set of all rooted ordered trees. In what follows, we see each
vertex of the tree 7 as an individual of a population whose 7 is the family tree. The
cardinality #(7) of T is the total progeny.

If 7 is a tree and u € T, we define the shift of 7 at u by 0,7 = {v e U :uww € T}.
Note that 6,7 € T.

We now introduce the (discrete) height function associated with a tree 7. Let
us denote by u(0) = @, u(1),u(2),...,u(#(7) — 1) the elements of T listed in lexi-
cographical order. The height function H(7T) = (H,(7);0 < n < #(7T)) is defined
by

H,(T)=u(n)], 0<n<#(T).
The height function is thus the sequence of the generations of the individuals of

7T, when these individuals are visited in the lexicographical order (see Fig.1 for an
example). It is easy to check that H(7) characterizes the tree 7.

121 122
11\ 127 13 ’r ’r
1 2 r r
0 123 7)1 2 3 #(T)-1
tree 7 contour function height function

Figure 1

The contour function gives another way of characterizing the tree, which is
easier to visualize on a picture (see Fig.1). Suppose that the tree is embedded in
the half-plane in such a way that edges have length one. Informally, we imagine the
motion of a particle that starts at time ¢ = 0 from the root of the tree and then
explores the tree from the left to the right, moving continuously along the edges at
unit speed, until it comes back to its starting point. Since it is clear that each edge
will be crossed twice in this evolution, the total time needed to explore the tree is
C(T) :=2(#(7T)—1). The value C; of the contour function at time ¢ is the distance (on
the tree) between the position of the particle at time ¢ and the root. By convention
Cy=01if t > ¢(7). Fig.1 explains the definition of the contour function better than
a formal definition.



0.2 Galton-Watson trees

Let p be a critical or subcritical offspring distribution. This means that u is a prob-
ability measure on Z, such that

i ku(k) < 1.
k=0

We exclude the trivial case where p(1) = 1.
There is a unique probability distribution Q, on T such that

() Quko = j) = u(d), J €Ly

(ii) For every j > 1 with p(j) > 0, the shifted trees 617 ,...,6,7 are independent un-
der the conditional probability Q,,(- | ky = j) and their conditional distribution

is Q-

A random tree with distribution Q,, is called a Galton-Watson tree with offspring
distribution pu, or in short a u-Galton-Watson tree.

Let 77,75, ... be a sequence of independent u-Galton-Watson trees. We can as-
sociate with this sequence a height process obtained by concatenating the height
functions of each of the trees 77,75, .... More precisely, for every k > 1, we set

Hy = Hy (g1t (7)) (Te) i #(T) 4 +#(Te1) <n < #(T0)+- -+ #(Th).

The process (H,,n > 0) codes the sequence of trees.

Similarly, we define a contour process (Ci,t > 0) coding the sequence of trees by
concatenating the contour functions (Cy(71),t € [0,¢(71)+2]), (Ci(T2),t € [0,{(T2)+
2]), etc. Note that C4(7,) = 0 for t € [((7,),{(7,) + 2], and that we are concate-
nating the functions (Cy(7,),t € [0,{(7,) + 2]) rather than the functions (C¢(7y,),t €
[0,{(7,)]). This is a technical trick that will be useful in Chapter 2 below. We may
also observe that the process obtained by concatenating the functions (C¢(7,),t €
[0,¢(7)]) would not determine the sequence of trees.

There is a simple relation between the height process and the contour process: See
Section 2.4 in Chapter 2 for more details.

Although the height process is not a Markov process, except in very particular
cases, it turns out to be a simple functional of a Markov chain, which is even a
random walk. The next lemma is taken from [32], but was obtained independently
by other authors: See [7] and [4].

Lemma Let 71,75, ... be a sequence of independent p-Galton-Watson trees, and let
(Hyp,n > 0) be the associated height process. There exists a random walk V' on Z with
ingtial value Vo = 0 and jump distribution v(k) = p(k + 1), for k = —1,0,1,2,...,
such that for every n > 0,

H, =Card{k € {0,1,...,n—1}: V= inf V;}. (1)
k<j<n

A detailed proof of this lemma would be cumbersome, and we only explain the
idea. By definition, H,, is the generation of the individual visited at time n, for a
particle that visits the different vertices of the sequence of trees one tree after another
and in lexicographical order for each tree. Write R,, for the quantity equal to the
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number of younger brothers (younger means greater in the lexicographical order) of
the individual visited at time n plus the number of younger brothers of his father,
plus the number of younger brothers of his grandfather etc. Then the random walk
that appears in the lemma may be defined by

Vi=Rn—(G—1) H#T)+ - +#(Tj-1) <n <#(T) +- +#(T)).

To verify that V is a random walk with jump distribution v, note that because of
the lexicographical order of visits, we have at time n no information on the fact that
the individual visited at that time has children or not. If he has say k > 1 children,
which occurs with probability w(k), then the individual visited at time n + 1 will
be the first of these children, and our definitions give R,+1 = R, + (k — 1) and
Vie1 = Voo + (K — 1). On the other hand if he has no child, which occurs with
probability 1(0), then the individual visited at time n + 1 is the first of the brothers
counted in the definition of R,, (or the ancestor of the next tree if R, = 0) and we
easily see that V,,11 = V,, — 1. We thus get exactly the transition mechanism of the
random walk with jump distribution v.

Let us finally explain formula (1). From our definition of R,, and V,,, it is easy to see
that the condition n < inf{j > k : V; < V;} holds iff the individual visited at time n is
a descendant of the individual visited at time k (more precisely, inf{j > k: V; < Vi } is
the time of the first visit after k£ of an individual that is not a descendant of individual
k). Put in a different way, the condition Vj = infy<;<, V; holds iff the individual
visited at time k is an ascendant of the individual visited at time n. It is now clear
that the right-hand side of (1) just counts the number of ascendants of the individual
visited at time n, that is the generation of this individual.

0.3 The continuous height process

To define the height process in a continuous setting, we use an analogue of the discrete
formula (1). The role of the random walk V' in this formula is played by a Lévy process
X = (X¢,t > 0) without negative jumps. We assume that X does not drift to +oo
(this corresponds to the subcriticality of 4 in the discrete setting), and that the paths
of X are of infinite variation a.s.: The latter assumption implies in particular that the
process X started at the origin will immediately hit both (0,00) and (—o0,0). The
law of X can be characterized by its Laplace functional v, which is the nonnegative
function on R, defined by

Elexp(—AX})] = exp(t(N)).

By the Lévy-Khintchine formula and our special assumptions on X, the function
has to be of the form

P(A) = a\ + A2+ /ﬂ'(d’l“) (e — 14 M),

where a, 8 > 0 and 7 is a o-finite measure on (0, 00) such that [ 7(dr)(r A r?) < oco.
We write
Sy = sup X , I; = inf X, .
s<t s<t
By analogy with the discrete case, we would like to define H; as the “measure” of
the set

{sgt:stsérTlfStXr}. (2)



However, under our assumptions on X, the Lebesgue measure of this set is always
zero, and so we need to use some sort of local time. The key idea is to introduce for
every fixed t > 0 the time-reversed process

)?gt):Xt_X(t—(e)— , 0<s<t,

and its associated supremum R R
S = sup X .
r<s

We observe that via time-reversal s — ¢t — s, the set (2) corresponds to {s < ¢ :
§§t) = )/fgt)}. This leads to the rigorous definition of H: H; is defined as the local time
at level 0, at time ¢ of the process S® — X This definition makes sense because
S® — X® has the same law over [0,¢] as the so-called reflected process S — X for
which 0 is a regular point under our assumptions. Note that the normalization of
local time has to be specified in some way: See Section 1.1. The process (Hy, t > 0)
is called the 1-height process, or simply the height process.

Why is the 1-height process H an interesting object of study ? In the same way as
the discrete height process codes the genealogy of a sequence of independent Galton-
Watson trees, we claim that the continuous height process represents the genealogical
structure of continuous-state branching processes, which are the continuous analogues
of Galton-Watson processes. This informal claim is at the heart of the developments
of the present work. Perhaps the best justification for it can be found in the limit
theorems of Chapter 2 that relate the discrete and continuous height processes (see
Section 0.4 below). Another justification is the Ray-Knight theorem for the height
process that will be discussed below.

The goal of Chapter 1 is to present a self-contained construction and to derive
several new properties of the -height process. Although there is some overlap with
[32], our approach is different and involves new approximations. It is important to
realize that H; is defined as the local time at time ¢ of a process which itself depends on
t. For this reason, it is not clear whether the paths of H have any regularity properties.
Also H is not Markov, except in the very special case where X has no jumps. To
circumvent these difficulties, we rely on the important tool of the exploration process:
For every t > 0, we define a random measure p; on Ry by setting

ound) = | dut; f) (3)
(]
where
I; = inf X,
s<r<t

and the notation dI} refers to integration with respect to the nondecreasing function
s — I}. The exploration process (p;,t > 0) is a Markov process with values in
the space Mf(R ) of finite measures on Ry. It was introduced and studied in [32],
where its definition was motivated by a model of a LIFO queue (see [35] for some
applications to queueing theory).

The exploration process has several interesting properties. In particular it is cadlag
(right-continuous with left limits) and it has an explicit invariant measure in terms
of the subordinator with Laplace exponent 1)(\)/A (see Proposition 1.2.5). Despite
its apparently complicated definition, the exploration process is the crucial tool that
makes it possible to answer most questions concerning the height process. A first
illustration of this is the choice of a “good” lower-semicontinuous modification of H;,
which is obtained by considering for every ¢ > 0 the supremum of the support of the
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measure p; (beforehand, to make sense of the definition of p;, one needs to use a first
version of H that can be defined by suitable approximations of local times).

An important feature of both the height process and the exploration process is
the fact that both H; and p; depend only on the values of X, or of X — I, on the
excursion interval of X — I away from 0 that straddles ¢. For this reason, it is possible
to define and to study both the height process and the exploration process under the
excursion measure of X — I away from 0. This excursion measure, which is denoted by
N, plays a major role throughout this work, and many results are more conveniently
stated under N. Informally, the height process under N codes exactly one continuous
tree, in the same way as each excursion away from 0 of the discrete height process
corresponds to one Galton-Watson tree in the sequence (cf Section 0.2).

As a typical application of the exploration process, we introduce and study the
local times of the height process, which had not been considered in earlier work. These
local times play an important role in the sequel, in particular in the applications to
spatial branching processes. The local time of H at level a > 0 and at time ¢ is
denoted by L¢ and these local times can be defined through the approximation

]:0

(Proposition 1.3.3). The proof of this approximation depends in a crucial way on
properties of the exploration process derived in Section 1.3: Since H is in general not
Markovian nor a semimartingale, one cannot use the standard methods of construction
of local time.

The Ray-Knight theorem for the height process states that if 7, = inf{t > 0 :
X; = —r}, for r > 0, the process (L%, a > 0) is a continuous-state branching process
with branching mechanism ¢ (in short a ¥-CSBP) started at r. Recall that the -
CSBP is the Markov process (Y,,a > 0) with values in Ry whose transition kernels
are characterized by their Laplace transform: For A > 0 and b > a,

lim E[sup et / a<H, <aveydr — L§

e—0 SSt 0

E[exp =AY, ‘ Ya] = exp(—Ya ubfa()‘))y
where u; (), t > 0 is the unique nonnegative solution of the differential equation

dur(N)
ot

= =Y (X)), uo(A) = A

By analogy with the discrete setting, we can think of L% as “counting” the number
of individuals at generation a in a Poisson collection of continuous trees (those trees
coded by the excursions of X — I away from 0 before time T;.). The Ray-Knight
theorem corresponds to the intuitive fact that the population at generation a is a
branching process.

The previous Ray-Knight theorem had already been derived in [32] although in
a less precise form (local times of the height process had not been constructed). An
important consequence of the Ray-Knight theorem, also derived in [32], is a criterion
for the path continuity of H: H has continuous sample paths iff

< d
/1 W<oo. (4)

This condition is in fact necessary and sufficient for the a.s. extinction of the ¥)-CSBP.
If it does not hold, the paths of H have a very wild behavior: The values of H over
any nontrivial interval [s, ¢] contain a half-line [a,00). On the other hand, (4) holds

10



if 8 > 0, and in the stable case ¥(\) = cA?, 1 < v < 2 (the values v € (0,1] are
excluded by our assumptions).

In view of applications in Chapter 4, we derive precise information about the
Holder continuity of H. We show that if

v=sup{r >0: Alim AT"P(N) = +oo},

then the height process H is a.s. Holder continuous with exponent r for any r €
(0,1 —~71), and a.s. not Hélder continuous with exponent r if > 1 — =1,

0.4 From discrete to continuous trees

Chapter 2 discusses limit theorems for rescaled Galton-Watson trees. These results
demonstrate that the 1-height process is the correct continuous analogue of the dis-
crete height process coding Galton-Watson trees.

It is well known [27] that continuous-state branching processes are the only possible
scaling limits of discrete-time Galton-Watson branching processes. One may then ask
for finer limit theorems involving the genealogy. Precisely, starting from a sequence of
rescaled Galton-Watson processes that converge in distribution towards a continuous-
state branching process, can one say that the corresponding discrete Galton-Watson
trees also converge, in some sense, towards a continuous genealogical structure ? The
results of Chapter 2 show that the answer is yes.

To be specific, consider a sequence (u,) of (sub)critical offspring distributions.
For every p > 1, let Y? be a (discrete-time) Galton-Watson process with offspring
distribution p, started at Y = p. Suppose that the processes Y? converge after
rescaling towards a 1-CSBP, where v satisfies the conditions introduced in Section
0.3. Precisely, we assume that there is a sequence 7, T 0o such that
“tyr 1> 0) D ve>0 5
(p Y['ypt]’t— )pjo)o( tyt = )7 ( )
where Y is a ¢-CSBP, and the symbol (d) indicates convergence in distribution in
the Skorokhod space. Let H? be the discrete height process associated with p,, in the
sense of Section 0.2. Then Theorem 2.2.1 shows that

- (fd)

(7, H[mpt],t >0) p:; (Hg,t > 0), (6)
where H is the 1-height process and (fd) indicates convergence of finite-dimensional
marginals. A key ingredient of the proof is the observation due to Grimvall [21] that
the convergence (5) implies the convergence in distribution (after suitable rescaling)
of the random walks VP with jump distribution v,(k) = p,(k +1), k = —1,0,1,...,
towards the Lévy process with Laplace exponent v. The idea is then to pass to the
limit in the formula for H? in terms of VP, recalling that the ¢-height process is given
by an analogous formula in terms of the Lévy process X. In the special case § = 0
and under more restrictive assumptions, the convergence (6) had already appeared in
[32].

In view of applications, the limiting result (6) is not satisfactory because the
convergence of finite-dimensional marginals is too weak. In order to reinforce (6) to
a functional convergence, it is necessary to assume some regularity of the paths of H.
We assume that condition (4) ensuring the path continuity of H holds (recall that if
this condition does not hold, the paths of H have a very wild behavior). Then, we can

11



prove (Theorem 2.3.1) that the convergence (6) holds in the sense of weak convergence
on the Skorokhod space, provided that the following condition is satisfied: For every
0 >0,

lim ian[Y[f;A/p] =0]>0. (7)

p—0oo

Roughly speaking this means that the rescaled Galton-Watson process (p‘lY[g ) t])tZO
may die out at a time of order 1, as its weak limit ¥ does (recall that we are assuming
(4)). The technical condition (7) is both necessary and sufficient for the reinforcement
of (6) to a functional convergence. Simple examples show that this condition cannot
be omitted in general.

However, in the important special case where p, = p for every p, we are able to
show (Theorem 2.3.2) that the technical condition (7) is always satisfied . In that
case, ¢ must be of the form ¥ (u) = cu” with 1 < v < 2, so that obviously (4) also
holds. Thus when p, = 1 for every p, no extra condition is needed to get a functional
convergence.

In Section 2.4, we show that the functional convergence derived for rescaled dis-
crete height processes can be stated as well in terms of the contour processes (cf
Section 0.1). Let C? = (CF,t > 0) be the contour process for a sequence of inde-
pendent p,-Galton-Watson trees. Under the assumptions that warrant the functional
convergence in (6), Theorem 2.4.1 shows that we have also

(prc? , t>0) D (Hyt>0).
pyptr ¥ = oo t/27 =

Thus scaling limits are the same for the discrete height process and for the contour
process.

In the remaining part of Chapter 2, we give applications of (6) assuming that the
functional convergence holds. In particular, rather than considering a sequence of
Hp-Galton-Watson trees, we discuss the height process associated with a single tree
conditioned to be large. Precisely, let H? be the height process for one tp-Galton-
Watson tree conditioned to non-extinction at generation [y,T7], for some fixed 7' > 0.
Then, Proposition 2.5.2 gives
(d)

(y;lﬁ[’;%t]’t >0) v (Hy,t > 0),

where the limiting process is an excursion of the -height process conditioned to hit
level T'. This is of course reminiscent of a result of Aldous [3] who proved that in
the case of a critical offspring distribution p with finite variance, the contour process
of a p-Galton-Watson tree conditioned to have exactly p vertices converges after a
suitable rescaling towards a normalized Brownian excursion (see also [19] and [36] for
related results including the convergence of the height process in Aldous’ setting).
Note that in Aldous’ result, the conditioning becomes degenerate in the limit, since
the “probability” that a Brownian excursion has length exactly one is zero. This
makes it more difficult to derive this result from our approach, although it seems very
related to our limit theorems. See however Duquesne [10] for an extension of Aldous’
theorem to the stable case using the tools of the present work (a related result in the
stable case was obtained by Kersting [26]).

The end of Chapter 2 is devoted to reduced trees. We consider again a single
Galton-Watson tree conditioned to non-extinction at generation [y,7T]. For every

k < [vpT], we denote by Z,ip 0T the number of vertices at generation k that have

12



descendants at generation [y,T]. Under the assumptions and as a consequence of
Proposition 2.5.2, we can prove that
fd
(z? T o<t <1) "z 0<t <)

[vpt] p—00

where the limit Z7 has a simple definition in terms of H: ZI' is the number of
excursions of H above level ¢ that hit level 7. Thanks to the properties of the
height process and the exploration process that have been derived in Chapter 1, it
is possible to calculate the distribution of the time-inhomogeneous branching process
(zZF',t > 0). This distribution is derived in Theorem 2.7.1. Of course in the stable
case, corresponding to p, = u for every p, the distribution of Z7 had been computed
previously. See in particular Zubkov [50] and Fleischmann and Siegmund-Schultze
[17].

0.5 Duality properties of the exploration process

In the applications developed in Chapters 3 and 4, a key role is played by the duality
properties of the exploration process p. We first observe that formula (3) defining the
exploration process can be rewritten in the following equivalent way

peldr) = Bl uy(r)dr+ > (I} = Xo-)om, (dr)

s<t, X, _<I}

where dp, is the Dirac measure at Hy, and we recall that I} = inf,<,<; X,,. We then
define another measure 7; by setting

ne(dr) = Bl (r)dr+ Y (Xo—I})du,(dr).
s<t, Xo_<If

To motivate this definition, we may come back to the discrete setting of Galton-
Watson trees. In that setting, the value at time m of the discrete height process
H,, is the generation of the n-th visited vertex by a “particle” that visits vertices in
lexicographical order one tree after another, and the analogue of p; gives for every
k < H,, the number of younger (i.e. coming later in the lexicographical order) brothers
of the ancestor at generation k of the n-th visited vertex. Then the analogue of n;
gives for every k < H,, the number of older brothers of the ancestor at generation k
of the n-th visited vertex.

It does not seem easy to study directly the Markovian properties or the regularity
of paths of the process (n;,t > 0). The right point of view is to consider the pair
(pt,mt), which is easily seen to be a Markov process in M (R )?. The process (pt, n:)
has an invariant measure M determined in Proposition 3.1.3. The key result (Theorem
3.1.4) then states that the Markov processes (p,n) and (7, p) are in duality under M.
A consequence of this is the fact that (n,¢ > 0) also has a cadlag modification. More
importantly, we obtain a crucial time-reversal property: Under the excursion measure
N of X — I, the processes (ps,75;0 < s < o) and (1(o—s)— P(o—s)—; 0 < 5 < o) have
the same distribution (here o stands for the duration of the excursion under N).
This time-reversal property plays a major role in many subsequent calculations. It
implies in particular that the law of H under N is invariant under time-reversal. This
property is natural in the discrete setting, if we think of the contour process of a
Galton-Watson tree, but not obvious in the continuous case.
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0.6 Marginals of trees coded by the height process

Let us explain more precisely how an excursion of the 1-height process codes a con-
tinuous branching structure. We consider first a deterministic continuous function
e: Ry — Ry such that e(t) > 0iff 0 < ¢ < o, for some 0 = o(e) > 0. For any
5,8 >0, set
/ .
= f t).

me(57 5 ) s/\s/%rtlgs\/s’ 6( )
Then e codes a continuous genealogical structure via the following simple prescrip-
tions:

(i) To each s € [0, 0] corresponds a vertex at generation e(s).

(ii) Vertex s is an ancestor of vertex s’ if e(s) = mc(s,s’). In general, m.(s,s’) is
the generation of the last common ancestor to s and s’.

(iii) We put d(s,s’) = e(s) + e(s') — 2me(s,s’) and identify s and ' (s ~ ') if
d(s,s") =0.

Formally, the tree coded by e can be defined as the quotient set [0, 0]/ ~, equipped
with the distance d and the genealogical relation specified in (ii).

With these definitions, the line of ancestors of a vertex s is isometric to the segment
[0,e(s)]. If we pick two vertices s and s, their lines of ancestors share a common
part isometric to [0, m.(s,s’)], and then become distinct. In general, if we consider
p instants ¢1,...,%, with 0 < ¢; < ... < t, < 0, we can associate with these p
instants a genealogical tree 6(e, t1,. .., t,), which consists of a discrete rooted ordered
tree with p leaves, denoted by 7 (e,t1,...,t,) and marks hy(e,t1,...,t,) > 0 for
veT(etr,...,tp), that correspond to the lifetimes of vertices in 7 (e, t1,...,t,). See
subsection 3.2.1 for a precise definition.

In the second part of Chapter 3, we use the duality results proved in the first part
to calculate the distribution of the tree 6(H, 7, ..., 7,) under certain excursion laws
of H and random choices of the instants 7,...,7,. We assume that the continuity
condition (4) holds. We first consider Poissonnian marks with intensity A, and the
height process H under the excursion measure N of X — I. Let 71,...,7a be the
marks that fall into the duration interval [0,0] of the excursion. Theorem 3.2.1
shows that under the probability measure N(- | M > 1), the tree 0(H,y,...,7pr) is
distributed as the family tree of a continuous-time Galton-Watson process starting
with one individual at time 0 and where

e lifetimes have an exponential distribution with parameter /() =1(\));

e the offspring distribution is the law of the variable £ with generating function

L )
Bl =r+ S e o)

In the quadratic case, we get a critical binary branching E[r¢] = %(1 +72). The
result in that case had been obtained by Hobson [22].

We finally specialize to the stable case ¢(\) = A7, v € (1, 2]. By scaling arguments,
we can then make sense of the law N(;) = N(- | o0 = 1) of the normalized excursion
of H. Using the case of Poissonnian marks, we compute explicitly the law of the tree
0(H,ty,...,t,) under N(y), when (t1,...,t,) are chosen independently and uniformly
over [0,1]P. In the quadratic case ¥(u) = u?, H is under N(1) a normalized Brownian
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excursion, and the corresponding tree is called the continuum random tree (see Aldous
[1],[2],[3])- By analogy, in our more general case ¢)(u) = u”, we may call the tree coded
by H under N(jy the stable continuum random tree. Our calculations give what
Aldous calls the finite-dimensional marginals of the tree. In the case v = 2, these
marginals were computed by Aldous (see also Le Gall [31] for a different approach
closer to the present work). In that case, the discrete skeleton 7(H,t1,...,t,) is
uniformly distributed over all binary rooted ordered trees with k leaves. When v < 2,
things become different as we can get nonbinary trees (the reason why we get only
binary trees in the Brownian case is the fact that local minima of Brownian motion
are distinct). Theorem 3.3.3 shows in particular that if 7 is a tree with p leaves
such that k,(7) # 1 for every v € T (this condition must be satisfied by our trees
7 (e,t1,...,tp)) then the probability that 7 (H,t1,...,t,) =7 is

p! 11 (Y =D(y=2)(y =k + 1)
(Y=D2y=1)-((p-y-1) k!

where N7 = {v € T : k, > 0} is the set of nodes of 7. It would be interesting to
know whether this distribution on discrete trees has occurred in other settings.

veENT

0.7 The Lévy snake

Chapters 1 — 3 explore the continuous genealogical structure coded by the 1-height
process H. In Chapter 4, we examine the probabilistic objects obtained by combining
this branching structure with a spatial motion given by a cadlag Markov process &
with state space E. Informally, “individuals” do not only reproduce themselves,
but they also move in space independently according to the law of £&. The (£,)-
superprocess is then a Markov process taking values in the space of finite measures
on E, whose value at time ¢ is a random measure putting mass on the set of positions
of “individuals” alive at time ¢. Note that the previous description is very informal
since in the continuous branching setting there are no individual particles but rather a
continuum of infinitesimal particles. Recent accounts of the theory of superprocesses
can be found in Dynkin [13], Etheridge [15] and Perkins [40].

Our coding of the genealogy by the height process leads to introducing a Markov
process whose values will give the historical paths followed by the “individuals” in the
population. This a generalization of the Brownian snake introduced in [28] and studied
in particular in [31]. To give a precise definition, fix a starting point « € E, consider
the 1)-height process (H,,s > 0) and recall the notation mpy(s,s’) = inf(, g7 H, for
s < s'. We assume that the continuity condition (4) holds. Then conditionally on
(Hs,s > 0) we consider a time-inhomogeneous Markov process (Ws,s > 0) whose
distribution is described as follows:

e For every s > 0, W, = (W(t),0 < t < Hy) is a path of £ started at  and with
finite lifetime H,.

e If we consider two instants s and s’, the corresponding paths W, and W, are the
same up to time mgy(s,s’) and then behave independently.

The latter property is consistent with the fact that in our coding of the genealogy,
vertices attached to s and s’ have the same ancestors up to generation mg (s, s’). See
Section 4.1 for a more precise definition.

The pair (ps, Ws) is then a Markov process with values in the product space
My (R4) x W, where W stands for the set of all finite cadlag paths in E. This process
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is called the Lévy snake (with initial point x). It was introduced and studied in
[33], where a form of its connection with superprocesses was established. Chapter 4
gives much more detailed information about its properties. In particular, we prove
the strong Markov property of the Lévy snake (Theorem 4.1.2), which plays a crucial
role in several applications.

We also use the local times of the height process to give a nicer form of the
connection with superprocesses. Write Wy for the left limit of W at its lifetime H
(which exists a.s. for each fixed s), and recall the notation 7, = inf{t > 0: X; = —r}.
For every t > 0, we can define a random measure Z; on E by setting

o~

T
<Zt7f> = /O dsLi f(Ws)

Then (Z;,t > 0) is a (£, v)-superprocess with initial value ré,. This statement is
in fact a special case of Theorem 4.2.1 which constructs a (£, )-superprocess with
an arbitrary initial value. For this more general statement, it is necessary to use
excursion measures of the Lévy snake: Under the excursion measure N, the process
(ps, s > 0) is distributed according to its excursion measure N, and (W, s > 0) is
constructed by the procedure explained above, taking x for initial point.

As a second application, we use local time techniques to construct exit measures
from an open set and to establish the integral equation satisfied by the Laplace func-
tional of exit measures (Theorem 4.3.3). Recall that exit measures of superprocesses
play a fundamental role in the connections with partial differential equations studied
recently by Dynkin and Kuznetsov (a detailed account of these connections can be
found in the book [13]).

We then study the continuity of the path-valued process W, with respect to the
uniform topology on paths. This question is closely related to the compact support
property for superprocesses. In the case when ¢ is Brownian motion in R?, Theorem
4.5.2 shows that the condition

/100 (/Ot¢(u) du)ilﬂdt < 0

is necessary and sufficient for W; to be continuous with respect to the uniform topology
on paths. The proof relies on connections of the exit measure with partial differential
equations and earlier work of Sheu [45], who was interested in the compact support
property for superprocesses. In the case of a general spatial motion, assuming only
that £ has Hoélder continuous paths, we use the continuity properties of H derived
in Chapter 1 to give simple sufficient conditions ensuring that the same conclusion
holds.

Although we do not develop such applications in the present work, we expect that
the Lévy snake will be a powerful tool to study connections with partial differential
equations, in the spirit of [30], as well as path properties of superprocesses (see [34]
for a typical application of the Brownian snake to super-Brownian motion).

In the last two sections of Chapter 4, we compute certain explicit distributions
related to the Lévy snake and the (€, v)-superprocess, under the excursion measures
N,. We assume that the path-valued process W, is continuous with respect to the
uniform topology on paths, and then the value W(H;) can be defined as a left limit
at the lifetime, simultaneously for all s > 0. If D is an open set in F such that « € D,
we consider the first exit time

Tp =inf{s > 0:7(Wy) < oo}
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where 7(W,) = inf{t € [0, Hy] : W,(t) ¢ D}. Write u(y) = Ny(Tp < o0) < oo for
every y € D. Then the distribution of Wy, under N, (-N{Tp < co}) is characterized
by the function u and the distribution IT, of £ started at = via the formula: For every
a >0,

No (L et Lt ) F (W, (0.0 < £ < )
L Loy u&) P60 < 7 < )exp (= [ dlu(ear)],

where 7 stands for the first exit time of & from D, and 4 (r) = ¢ (r)/r. Theorem 4.6.2
gives more generally the law of the pair (Wr,,, pr,) under N (- N {Tp < oo}). In the
special case when ¢ is Brownian motion in R, the function u can be identified as the
maximal nonnegative solution of $Au = ¢(u) in D, and the law of Wr,, is that of
a Brownian motion with drift Vu/u up to its exit time from D. This considerably
extends a result of [29] proved in the quadratic branching case by a very different
method.

The last section of Chapter 4 investigates reduced spatial trees, again under the
assumption that the path-valued process Wy is continuous with respect to the uniform
topology on paths. We consider a spatial open set D with € D, and the Lévy snake
under its excursion measure N, (in the superprocess setting this means that we are
looking at all historical paths corresponding to one given ancestor at time 0). We
condition on the event that {Th < oo}, that is one at least of the paths W exits
D, and we want to describe the spatial structure of all the paths that exit D, up to
their respective exit times. This is an analogue (and in fact a generalization) of the
reduced tree problem studied in Chapter 2. In the spatial situation, all paths W that
exit D will be the same up to a certain time mp at which there is a branching point
with finitely many branches, each corresponding to an excursion of the height process
H above level mp during which the Lévy snake exits D. In each such excursion the
paths W that exit D will be the same up to a level strictly greater than mp, at which
there is another branching point, and so on.

To get a full description of the reduced spatial tree, one only needs to compute
the joint distribution of the path WOD = Wr, (. Amp), that is the common part to all
paths that do exit D, and the number Np of branches at the first branching point.
Indeed, conditionally on the pair (WP, Np), the “subtrees of paths” that originate
from the first branching point will be independent and distributed according to the
full reduced tree with initial point WP = WL (mp) (see Theorem 4.7.2 for more
precise statements). Theorem 4.7.2 gives explicit formulas for the joint distribution
of (WP, Np), again in terms of the function u(y) = N,(Tp < 00) < oo. Precisely,
the law of the “first branch” WP is given by

N (Lirp <oo) F(WY))

= [ vt [1penuten st e (- [ Wl Pl 0 < 7 <),

0

where 0(r) = ¢/ (r) — 4 (r). Furthermore the conditional distribution of Np given W
depends only on the branching point W and is given by

P'(U) = (U, (1 =7)U)
1/)/(U) - 'Yw(U, 0)

where U = u(WOD) and vy (a,b) = w. In the stable case 1(u) = u?, the

N, [P | Tp < 00, W] =1 0<r<i,
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variable Np is independent of W and its generating function is (y—1)"1((1—7)Y —
L +4~r).

In the special case 1(u) = u?, the previous result was used by Mselati [38] to
investigate absolute continuity properties of the law of the exit measure of super-
Brownian motion, in view of applications to the semilinear partial differential equation
Au = u?. Again in the quadratic branching case, our description of the reduced spatial
tree is reminiscent of the recent work of Salisbury and Verzani [43],[44] who study exit
measures of super-Brownian motion conditioned to hit a number of specified points
on the boundary. This conditioning leads to a spatial tree described by a branching
particle backbone process with immigration of mass along the paths of the particles.

Acknowledgment. We would like to thank Yves Le Jan for allowing us to use several
ideas that originated in his work in collaboration with one of us. We also thank the
referee for several useful remarks.
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Chapter 1

The height process

1.1 Preliminaries on Lévy processes

1.1.1 Basic assumptions

In this section, we introduce the class of Lévy processes that will be relevant to our
study and we record some of their basic properties. For almost all facts about Lévy
processes that we need, we refer to the recent book of Bertoin [5] (especially Chapter
VII).

We consider a Lévy process X on the real line. It will be convenient to assume
that X is the canonical process on the Skorokhod space D(R;,R) of cadlag (right-
continuous with left limits) real-valued paths. Unless otherwise noted, the underlying
probability measure P is the law of the process started at 0. We denote by (G, t €
[0, 0]) the canonical filtration, completed as usual by the class of all P-negligible sets

of G
We assume that the following three properties hold a.s.:

(H1) X has no negative jumps.
(H2) X does not drift to +oo.
(H3) The paths of X are of infinite variation.

Thanks to (H1), the “Laplace transform” Elexp —AX;] is well defined for every
A>0andt >0, and can be written as

Elexp —AX;] = exp(typ(N)),

with a function v of the form

P(N) = agh + BA% + / m(dr) (e — 1+ 1gciyAr),
(0700)

where g € R, f > 0 and the Lévy measure 7 is a Radon measure on (0,00) such
that [i5 ) (1A r?) m(dr) < .

Assumption (H2) then holds iff X has first moments and E[X;] < 0. The first
moment assumption is equivalent to saying that m satisfies the stronger integrability
condition

/ (r Ar?) m(dr) < oo.
(0,00)
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Then 1 can be written in the form

P(N) = a\ 4+ BA% + / m(dr) (e — 1+ \r), (1.1)
(0,00)

Note that 1 is then convex and that we have E[X;] = —t¢'(0) = —ta. The condition
E[X;] <0 thus holds iff & > 0. The process X is recurrent or drifts to —oo according
as o= 0or a>0.

Finally, according to [5] (Corollary VIL5), assumption (H3) holds iff at least one
of the following two conditions is satisfied: § > 0, or

/ ra(dr) = oco.
(0,1)

Summarizing, we assume that X is a Lévy process with no negative jumps, whose
Laplace exponent v has the form (1.1), where o > 0, § > 0 and « is a o-finite measure
on (0,00) such that [(r Ar?)w(dr) < oo, and we exclude the case where both 3 =0

and [,y m(dr) < oo.

Remark. Only assumption (H1) is crucial to the connections with branching pro-
cesses that are presented in this work. Assumption (H2) means that we restrict our
attention to the critical or subcritical case. We impose assumption (H3) in order to
concentrate on the most interesting cases: A simpler parallel theory can be developed
in the finite variation case, see Section 3 of [32].

We will use the notation T, = inf{t > 0 : X; = —y} for y € R. By convention
inf ) = +oo0.

Under our assumptions, the point 0 is regular for (0, c0) and for (—oo,0), meaning
that inf{t > 0: X; > 0} = 0 and inf{t > 0: X; < 0} = 0 a.s. (see [5], Theorem
VII.1 and Corollary VIL5). We sometimes use this property in connection with the
so-called duality property: For every ¢ > 0, define a process X® = ()’ét), 0<s<t)
by setting

X=X~ Xy o, f0<s<t,

and )A(t(t) = X;. Then ()A(s(t), 0 < s <) has the same law as (X;,0 < s <1).

Let S and I be respectively the supremum and the infimum process of X, defined
by

Sy =sup X, , I, =inf X,.
s<t s<t

If we combine the duality property with the regularity of 0 for both (0,00) and
(—00,0), we easily get that the set

{s>0: X, =I,0or X, =85,_}

almost surely does not intersect {s > 0 : AX,; # 0}. This property will be used
implicitly in what follows.

1.1.2 Local times at the maximum and the minimum

Both processes X —.S and X — I are strong Markov processes, and the results recalled
at the end of the previous subsection imply that the point 0 is regular for itself with
respect to each of these two Markov processes. We can thus define the corresponding
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Markovian local times and excursion measures, which both play a fundamental role
in this work.

Consider first X —S. We denote by L = (L;,t > 0) a local time at 0 for X — S.
Observe that L is only defined up to a positive multiplicative constant, that will
be specified later. Let N* be the associated excursion measure, which is a o-finite
measure on D(R,R). It will be important for our purposes to keep track of the final
jump under N*. This can be achieved by the following construction. Let (a;,b;), j €
J be the excursion intervals of X —S away from 0. In the transient case (a > 0), there
is exactly one value j € J such that b; = +o00. For every j € J let w/ € D(R,R) be
defined by

Wwi(s) = Xa;+s)nb; — Xaj s> 0.
Then the point measure
D Ok, o)
jeJ

is distributed as 1{191}/\[ (dldw), where N denotes a Poisson point measure with
intensity dl N*(dw), and n = inf{l : N'([0,1] x {o = +o0}) > 1}, if

o(w) =1inf{t > 0: w(r) = w(t) for every r > t}

stands for the duration of the excursion w. This statement characterizes the excursion
measure N*, up to the multiplicative constant already mentioned. Note that Xy =0
and X; = X, >0fort> o, N* a.e.

Consider then X — I. It is easy to verify that the continuous increasing process
—1 is a local time at O for the Markov process X — I. We will denote by N the
associated excursion measure, which can be characterized in a way similar to N*
(with the difference that we have always —I,, = 400 a.s., in contrast to the property
Lo < 00 a.s. in the transient case). We already noticed that excursions of X — I
cannot start with a jump. Hence, Xg = 0, N a.e. It is also clear from our assumptions
on X that o < 0o, X; > 0 for every t € (0,0) and X,_ =0, N a.e.

We will now specify the normalization of N*, or equivalently of L. Let m denote
Lebesgue measure on R.

Lemma 1.1.1 We can fix the normalization of L, or equivalently of N*, so that, for
every Borel subset B of (—o0,0),

N* </OU ds 1B(XS)) = m(B). (1.2)

Proof. For every x € R, write P, for the law of the Lévy process started at x. Also
set 7 = inf{s > 0: X, > 0} and recall that (X;,¢ > 0) is Markovian under N* with
the transition kernels of the underlying Lévy process stopped when hitting [0, c0).
Thanks to this observation, it is enough to prove that, for every € > 0, there exists a
constant c¢(¢) such that for every Borel subset B of (—oo, —¢),

B /0 " ds 15(X,)] = e(e)m(B)

Consider first the transient case. By applying the strong Markov property at
hitting times of negative values, it is easy to verify that the measure on (—oo, —¢)
defined by

B—E_. [/OOO ds 1B(XS)}
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must be a multiple of Lebesgue measure. However, writing 7§ = 0,17, ...,T}, etc.
for the successive visits of —¢ via [0, 00), we have

TF

E-. {/Ooo ds lB(Xs)} = iE—E {1{Tis<oo} /T;H—l ds lB(XS)} =

The desired result follows.
In the recurrent case, the ergodic theorem gives

E_. { Jids 1B(Xs)}
P . r=00]

1 Ti T
f/ dslp(X,) 2% E_E{/ dslB(Xs)},
0 0

n n— oo
whereas the Chacon-Ornstein ergodic theorem implies

fOTfl ds 1B(Xs) a.s. m(B)
T= - :
T s o o(Xe) 7= €

The conclusion easily follows. O

In what follows we always assume that the normalization of L or of N* is fixed as
in Lemma 1.1.1.

Let L™!(t) = inf{s, Ly > t}. By convention, Xj-1¢ = +o00 if t > Lo. The
process (Xp-1(4),t > 0) is a subordinator (the so-called ladder height process) killed
at an independent exponential time in the transient case.

Lemma 1.1.2 For every A > 0,

Elexp —AX 1 -1(p] = exp(—tp(N)),

where \ -
(N = w =a+ B —|—/ (1 — e )a([r, 00)) dr.
0
Proof. By a classical result of fluctuation theory (see e.g. [6] Corollary p.724), we
have

Elexp —AXp-1()] = exp(—ct (X)),

where c is a positive constant. We have to verify that ¢ = 1 under our normalization.

Suppose first that 7 # 0. Then notice that the Lévy measure cm([r,c0))dr of
X1 is the “law” of X, under N*(-N{X, > 0}). However, for any nonnegative
measurable function f on [0, 00)?, we get by a predictable projection

N* (f(AXU,XU) 1{X0>0}) N*( Y (AKX X) 1{Xs>0}>

0<s<o

N*(/OU ds [ 7o) {0 X+ 2) Lix, o)

0
/ dy/w(dx)f(at,y—i—w) Lyta>0}s

using Lemma 1.1.1 in the last equality. It follows that
N (FAX0, X0) Loy ) = [ ) [ 0.2, (1.3)
0
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and we get ¢ = 1 by comparing with the Lévy measure of Xy -1(y).
In the case m = 0, X is a scaled linear Brownian motion with drift, and the same
conclusion follows from direct computations. O

Note that we have in particular P[L™1(¢) < oo] = e=*!, which shows that L., has
an exponential distribution with parameter « in the transient case.

When 5 > 0, we can get a simple expression for L;. From well-known results on
subordinators, we have a.s. for every u > 0,

m({ X105t <u, L7 (t) < o00}) = B(uA Lug).

Since the sets {X -1(4);t < u, L7 (t) < oo} and {S,;7 < L' (u)} coincide except
possibly for a countable set, we have also

m({S,;r <t})=0L; (1.4)

for every t > 0 a.s.
The next lemma provides a useful approximation of the local time L;.

Lemma 1.1.3 For every x > 0,
1 L™ (x)
lelflolg 1ys.—x,<e1ds =T A Lo
0

in the L?-norm. Consequently, for everyt >0,

1 t
lim — leg ds=1L
Elﬁ)l EA {5;—X.<e}@S t

in probability.
Proof. It is enough to prove the first assertion. Let A/ be as previously a Poisson point

measure on Ry X D(R4,R) with intensity dl N*(dw), and n = inf{l : N'([0,] x {o =
+00}) > 1}. For every x > 0 set

1 o(w)
JS(CL') = g /N(dldw) 1{l§m}/ 1(7570] (w(s)) ds.
0
Then,

pl) = I8 ([ 1 (is) =

€
by (1.2). Furthermore,

and

2
1(_570](X3)d5>> _ zN*(/ 1(_5,0](Xs)l(_&o](Xt)dsdt)
0 0<s<t<o
= o (st eg(E [ [ dian (o))
0 0
< 2e sup Ey{/ dtl(_gyo](Xt)},
02y>—e 0
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using the same notation 7 = inf{¢t > 0: X; > 0} as previously. We then claim that

sup Ey[/OT dt 1(,570](Xt)} = o(¢g) (1.5)

0>y>—¢

as € — 0. Indeed, by applying the strong Markov property at T}, we have for y > 0,

N*(T, < ) E_, [/OT dt1(_.q) (Xt)} < N*(/OU dt1(_c) (Xt)) —c,

and the claim follows since N*[T}, < 0o] T 400 as y | 0. From (1.5) and the preceding
calculations, we get

lim E[(J=(x) - 7)%] =0.

E—

By Doob’s inequality (or a monotonicity argument), we have also

lim B[ sup (J.(z) — 2)?] = 0.

e=0  p<z<a
The lemma now follows, since the pair

1 L@
(g/ 1{szXs<€}d57Loo)
0

has the same distribution as (J.(x A n),n). O

As a consequence of Lemma 1.1.3, we may choose a sequence (e, k = 1,2,...) of
positive real numbers decreasing to 0, such that

1t
L, = klin;o a/0 lis,—x.<ep}ds P as. (1.6)

Using monotonicity arguments and a diagonal subsequence, we may and will assume
that the previous convergence holds simultaneously for every ¢t > 0 outside a single
set of zero probability. In particular, if we set for w € D([0,¢],R),

N
(Pt(w) = hkl’ggfa/o 1{sup[015]w(r)—w(s)<sk}ds7

we have L; = ®,(X,,0 < s <t), for every t > 0, P a.s.
Recall the notation X ® for the process X time-reversed at time ¢.

Proposition 1.1.4 For any nonnegative measurable functional F on the Skorokhod
space D(R4,R),

o Lo
N(/ dtF(XY,, s> 0)) - E[/ Az F(Xopp-1(a), 5 > 0)]
0 0
Proof. We may assume that F' is bounded and continuous. Fix ¢ > 0 and if w €
D([0,],R), set Tiax(w) = inf{s € [0,] : supjy yw(r) = sup  w(r)} and let fw €

D(R4,R) be defined by w(t) = w(t A Tmax(w)). Let z > 0. Excursion theory for
X — I shows that, for every ¢ > 0,

7 i a0 _1!
N(/O dtl g, ()< F(Xopr s 2 0)) = EE{/O
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In deriving this equality, we also apply to the time-reversed process X® the fact that
the local time Ly does not increase after the (first) time of the maximum over [0, ¢].
Then,

1 T S
7E[/o @t 1 (g, (30 F 0 O(XY)
1 > -
- ’E[/o 11>y 1{¢t<X<t>>sZ}F°9(X(t))}

= */ th[]‘{Sf,—Xt<E} 1{Lt§Z} Fo Q(XS,S S t)]
0

1 L~ (Z)

:E[g/ dt 15, x,<e} F 0 0(Xs, 5 gt)]
0

We then take € = ¢, and pass to the limit & — oo, using the L? bounds provided by

Lemma 1.1.3. Note that the measures

1
— Lio,o-1(2))(t) 1{s, — x, <,y A1

€k
converge weakly to the finite measure 1jg ,-1(.)(t)dL;. Furthermore, 0(X,, s <
(Xsnt, 8 > 0), dL; ace., a.s., and it is easy to verify that the mapping t — Fof(X
t) is continuous on a set of full dL;-measure. We conclude that

t) =
y§ <

o =R L7 (z)

N(/ dtlig, (x0)<z) F(X{s> 0)) E[/ F(Xspt,8 2 0) st}
0 0
2AL oo

E

[/0 F(Xsnp-1(2),5 > 0) da:},

and the desired result follows by letting z — oo. O

1.2 The height process and the exploration process

We write §§t) = Sup[g, 4 )?ﬁt) (0 < s < t) for the supremum process of )A((t).

Definition 1.2.1 The height process is the real-valued process (Hy,t > 0) defined as
follows. First Hy = 0 and for every t > 0, Hy is the local time at level 0 at time t of
the process X — S

The normalization of local time is of course that prescribed by Lemma 1.1.1.

Note that the existence of a modification of the process (H;,t > 0) with good
continuity properties is not clear from the previous definition. When 3 > 0 however,
we can use (1.4) to see that

1
H, = B m({I};s <t}), (1.7)
where for 0 < s <,
I} = inf X,.
s<r<

Clearly the right-hand side of (1.7) gives a continuous modification of (Hy,t > 0).
When g = 0, this argument does not apply and we will see later that there may exist
no continuous (or even cadlag) modification of (Hy,t > 0).
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At the present stage, we will use the measurable modification of (H;, ¢t > 0) with
values in [0, o] obtained by taking

- 1 [t
Hto = <I>t(XS(t)7O <s< t) = llkmlnf ;/ 1{Xs<lts+5k} dS, (18)
— 00 k Jo

where the €;’s are as in (1.6). The liminf in (1.8) is a limit (and is finite) a.s. for
every fixed ¢ > 0. The following lemma shows that more is true.

Lemma 1.2.1 Almost surely for every t > 0, we have

1 S
H? = lim — 1 - dr < oo
s koo €1 Jo { X, <IT+er} )

for every s <t such that Xs— < I}, and for s =t if AX; > 0.

Proof. Let s and t be as in the statement. Then there must exist a rational u € (s, 00)
such that X, < I7. We can then apply to the time-reversed process X@ the
approximation result (1.6) at times u and u — s respectively. The desired result
follows. O

We denote by My(Ry) the space of all finite measures on R, which is equipped
with the topology of weak convergence.

Definition 1.2.2 The exploration process is the process (p,t > 0) with values in
M/;(Ry) defined as follows. For every nonnegative measurable function f,

(pr f) = /[ REFER (1.9)

where the notation dsI;] refers to integration with respect to the nondecreasing function
s — Ij.

Since we did not exclude the value +oo for HY (as defined by (1.8)), it may not be
obvious that the measure p; is supported on [0, c0). However, this readily follows from
the previous lemma since the measure dsI7 is supported on the set {s < t: X, < I7}
(to which we need to add the point ¢ if AX; > 0).

Notice that if © and v belong to the set {s <t: X, < IF}, and if u < v, then for
every r € [0,u) the condition X, < I}, + ¢, implies X,. < I’ + ¢, and by construction
it follows that H; < HJ. Using the previous remark on the support of the measure
dsIf, we see that the measure p; is supported on [0, H?], for every ¢t > 0, a.s.

The total mass of p; is
(pe, 1) =T = I? = X, — I,.
In particular p, = 0 iff X; = I.

It will be useful to rewrite the definition of p; in terms of the time-reversed process
X® . Denote by ® = (Egt), 0 < s < t) the local time at 0 of X — g (in particular
HY = Eff)). Note that for ¢ > 0 fixed, we have H? = E?) — I for every s € [0,¢]
such that X;_ < I, a.s. (compare (1.6) and (1.8)). Hence, for every ¢t > 0,

(pe, f) = / dSW (LW — LWy, as. (1.10)
[0,¢]
If 1 is a nonzero measure in M;(R. ), we write supp p for the topological support
of pu and set H(u) = sup(supp p). By convention H(0) = 0. By a preceding remark,
H(p:) < HY for every t > 0, a.s.
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Lemma 1.2.2 For everyt > 0, P[H(p;) = HY] = 1. Furthermore, almost surely for
every t > 0, we have

(i) pe({0}) =0 ;
(i) supp pr = [0, H(py)] if pr # 0 ;
(iii) H(ps) = H? for every s € [0,t) such that Xs— < I} and for s =t if AX; > 0.

Proof. It is well known, and easy to prove from the strong Markov property, that the
two random measures dSs and dLs have the same support a.s. Then (1.10) implies
that supp pr = [0, HY] a.s. for every fixed ¢t > 0. In particular, P[H? = H(p;)] = 1.
Similarly (1.10) implies that P[p;({0}) > 0] = 0 for every fixed ¢t > 0. However, if
we have p;({0}) > 0 for some t > 0, our definitions and the right-continuity of paths
show that the same property must hold for some rational r > t. Property (i) follows.

Let us now prove (ii), which is a little more delicate. We already noticed that (ii)
holds for every fixed ¢, a.s., hence for every rational outside a set of zero probability.
Let t > 0 with X; > I;, and set

v =sup{s <t:I] < X;}.

We consider two different cases.
(a) Suppose first that X,,_ < X;, which holds in particular if AX,; > 0. Then
note that

(oo, f) = /[ U+ (X=X, )1 ().
sVt

Thus we can find a rational r > ¢ sufficienty close to ¢, so that p, and p; have the
same restriction to [0, HY). The fact that property (ii) holds for r implies that it holds
for t, and we see also that H? = H(p;) in that case.

(b) Suppose that X, = X;. Then we set for every ¢ > 0,

(05, f) = /[0 }dsItS Lirs<x,—ey f(HY).
,t

From the remarks following the definition of py, it is clear that there exists some a > 0

such that p§ is bounded below by the restriction of p; to [0,a), and bounded above

by the restriction of p; to [0,a]. Also note that p; =1im 7 p§ as e | 0. Now, for every

e > 0, we can pick a rational r > ¢ so that I > X; — ¢, and we have by construction
Py =pr T

From the rational case, the support of p5tX~=X¢ must be an interval [0, a], and thus

the same is true for pf. By letting € | 0, we get (ii) for ¢.

We already obtained (iii) for s = ¢t when AX,; > 0 (see (a) above). If s € (0,¢)
is such that X,_ < I?, we will have also X,_ < I? for any rational r € (s,¢). Then
H? < H? = H(p,), and on the other hand, it is clear that the measures p, and p,
have the same restriction to [0, H?). Thus (ii) implies that the support of py contains
[0, H?), and so H(ps) > H?. This gives the desired result since the reverse inequality
always holds. O

Proposition 1.2.3 The process (pt,t > 0) is a cadlag strong Markov process in
My (Ry). Furthermore, (py,t > 0) is cadlag with respect to the variation distance on
finite measures.
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Proof. We first explain how to define the process p started at an arbitrary initial
value p € M¢(Ry). To this end, we introduce some notation. Let u € My(R,) and
a>0. Ifa < (1), we let k,u be the unique finite measure on R such that, for
every r > 0,

kap([0,7]) = p([0, 7)) A ({p, 1) — a).

In particular, (kou,1) = (p,1) —a. If a > {u, 1), we take kopu = 0.
If p € M;(R4) has compact support and v € My(Ry ), we define the concatenation
[, v] € My(Ry) by the formula

/ [ )(dr) f(r) = / u(dr) £(r) + / v(dr) F(H () + 7).

With this notation, the law of the process p started at p € My(Ry) is the distri-
bution of the process p* defined by

pt = lk—r,pmpe) . t>0. (1.11)

Note that this definition makes sense because k_p, ;v has compact support, for every
t>0 a.s.

We then verify that the process p has the stated properties. For simplicity, we
consider only the case when the initial value is 0, that is when p is defined as in
Definition 1.2.2. The right-continuity of paths is straightforward from the definition
since the measures 1p,(s)ds I} converge to 1p(s)dsIf in the variation norm as
t’ | t. Similarly, we get the existence of left-limits from the fact that the measures
Lo, (s)ds I converge to 1jg4)(s)d I} in the variation norm as t' T ¢, t' < t. We see
in particular that p and X have the same discontinuity times and that

pr = pi— + AX, 5H{’~ (1.12)

We now turn to the strong Markov property. Let T be a stopping time of the
canonical filtration. We will express pry: in terms of ppr and the shifted process

Xt(T) = Xp4: — Xp. We claim that a.s. for every ¢t > 0
pPT+t = [k_lgT)pT, s (1.13)

where p&T) and It(T) obviously denote the analogues of p; and I; when X is replaced
by X(™). When we have proved (1.13), the strong Markov property of the process p
follows by standard arguments, using also our definition of the process started at a
general initial value.

For the proof of (1.13), write

(o1t f) = / ATy o (HO) + / du I,y (D).
[0,7] (T

T+t

We consider separately each term in the right-hand side. Introduce u = sup{r €
(0,7) : X,— < If,,}, with the usual convention sup@ = 0. We have I§_, = I} for

s € [0,u) and I, = IT, for s € [u,T]. Since Xy — I, = —It(T), it then follows
from our definitions that

/[ el S ) = /[ TR T + Ly (e = Xu ) S(HD) = 6y ).
0, 0,u
(1.14)
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Also notice that the measures p,, and k_ [(MPT coincide, except possibly at the point
H?. In any case, H(p,) = H(k_IémpT), and we have also H? = H(p,) by Lemma
1.2.2 (iii).

Now observe that for d I, almost every s € (T, T+t], we have H] = H{j—&—H:;(p,
with an obvious notation. To see this, pick a rational r > T+t such that I7+t > X,
and argue on the time-reversed process X(™ as in the proof of Lemma 1.2.1. Hence,

/ AT, f(H?) = / Ao, f(HE + HOD) = / o (de) f(HS + ).
(T, T+t] (T, T+t

(1.15)
Formula (1.13) follows by combining (1.14) and (1.15). O

We now come back to the problem of finding a modification of the height process
with good continuity properties. By the first assertion of Lemma 1.2.2, (H(p;),t > 0)
is a modification of (H?,t > 0). From now on, we will systematically use
this modification and write H; = H(p;). From Lemma 1.2.2 (iii), we see that
formula (1.9) defining (p;,t > 0) remains true if H? is replaced by Hs. The same
applies to formula (1.12) giving the jumps of p. Furthermore, the continuity properties
of the process p; (and especially the form of its jumps) imply that the mapping
t — H(p;) = Hy is lower semicontinuous a.s.

Let us make an important remark at this point. Write
g =sup{s <t: X, =1I}

for the beginning of the excursion of X — I that straddles ¢. Then a simple time-
reversal argument shows that a.s. for every t such that X; — I; > 0, we have

. 1 gt
lim 7/ 1{X3<If+5k} ds =0
0

and thus we can replace (1.8) by

1 [t

HY = liminf - /gt Lix, <1 4e,) ds.
Recalling (1.9), we see that, a.s. for every ¢ > 0 such that X; — I, > 0, we can
write p; and H; as measurable functions of the excursion of X — I that straddles ¢
(and of course py = 0 and Hy = 0 if X; = I;). We can thus define both the height
process and the exploration process under the excursion measure N. Furthermore,
if (e, ;). j € J, denote the excursion intervals of X — I, and if w;, j € J, denote
the corresponding excursions, we have H; = H;_,(w;) and p; = p;—q, (wj) for every
t € (a;,0;)and j € J, as.

Since 0 is a regular point for X — I, we also see that the measure 0 is a regular
point for the exploration process p. It is immediate from the previous remark that
the excursion measure of p away from 0 is the “law” of p under N. Similarly, the
process —I, which is the local time at 0 for X — I, is also the local time at 0 for p.

We now state and prove a useful technical lemma about the process H.

Lemma 1.2.4 (Intermediate values property) Almost surely for every t < t', the
process H takes all values between H; and Hy on the time interval [t,t'].
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Proof. First consider the case when Hy; > Hy . By using the lower semi-continuity
of H, we may assume that ¢ is rational. From (1.13), we have p;s = [kfl(t)pt,pgt)]
for every s > 0, a.s. Hence, if

v =inf{s > 0: IV = -},

we have p4+, = kyp;, and so Hyy, = H(kyp;) for every r > 0, a.s. However, Lemma
1.2.2 (ii) implies that the mapping r — H(k,.p;) is continuous. Now note that for

r =0, Hyt, = H;, whereas for r = X, — I}, = —It(/tlt we have t + v, < t' and our

definitions easily imply p¢1, < py and Hyyry, < Hy.
Consider then the case when H; < Hy. By lower semi-continuity again, we may
assume that ¢’ is rational. In terms of the process time-reversed at time t’, we have

Ht/ = ESI) Set
o, =inf{s > 0: Sgt/) >ri,
which is well defined for 0 < r < X — I». Since the subordinator SL—I(t) is strictly

increasing, we see that the mapping r — Ef,ﬁ',) is continuous for r € [0, Xy — Iy/], a.s.
Now note that
~(¢ ~ 0
Hy o, = LE/ = Lg'tr)

for every r € [0, Xy — Iy/], a.s. Forr = Xp — I}, = §t(/t/_)t, we have ' — o, > t and
Hy_,,. < H; by construction. The desired result follows. O

The next proposition is a corollary of Proposition 1.1.4. We denote by U a sub-
ordinator defined on an auxiliary probability space (2°, P°), with Laplace exponent

E°[exp —\Uy] = exp ( - t(ﬁA + /000(1 — e Y ([, 00)) dr)) = exp(—t(B(\) — a)).

For every a > 0, we let J, be the random element of M;(Ry) defined by J,(dr) =
1[07(1] (T) dUT.

Proposition 1.2.5 For every nonnegative measurable function ® on My(Ry),
o e}
N( [ atat) = [ dae (),
0 0
Let b> 0. Then ps({b}) =0 for every s >0, N a.e. or P a.s.

Proof. We have p, = E()?S\)t, s > 0), with a functional ¥ that is made explicit in
(1.10). We then apply Proposition 1.1.4 to obtain

N(/OU dtfb(pt)) - E[/OLN da® o X(Xnp1(a) 5 > 0)]

However, for a < Lo,

L7 (a)
(S(Xonz-1(apss > 0), f) = /0 45, f(a— Ly).

The first assertion is now a consequence of Lemma 1.1.2, which shows that Pla <
Loo] = €72 and that, conditionally on {L~!(a) < oo}, Sp-1(my = X1, 0< 7 < a
has the same distribution as U (we also use the fact that (U, — Uy—,,0 < r < a) has
the same distribution as (U,,0 <r < a)).
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Consider now the second assertion. Note that the case b = 0 is a consequence of
Lemma 1.2.2 (i). So we may assume that b > 0 and it is enough to prove the result
under the excursion measure N. However, since b is a.s. not a jump time of U, the
right side of the formula of the proposition vanishes for ®(u) = p({b}). The desired
result follows, using also the fact that p is cadlag in the variation norm. O

We denote by M the measure on M;(Ry) defined by:
(M, ®) = / da e E°[®(J,)].
0

Proposition 1.2.5 implies that the measure M is invariant for p.

The last proposition of this section describes the potential kernel of the exploration
process killed when it hits 0. We fix 4 € M¢(R;) and let p* be as in (1.11) the
exploration process started at p. We use the notation introduced in the proof of
Proposition 1.2.3.

Proposition 1.2.6 Let 79 = inf{s > 0, p# = 0}. Then,

E[/OT ds(pt)] = /O@’b dr/M(dG)fI)([kTu,G}).

Proof. First note that 70 = T« 1> by an immediate application of the definition of
pt*. Then, denote by («;,5;), j € J the excursion intervals of X — I away from 0
before time T, 1>, and by w;, j € J the corresponding excursions. As we observed
before Proposition 1.2.5, we have p; = p;_q,(w;) for every t € (a;,5;), j € J, ass.
Since {s > 0: X; = I} has zero Lebesgue measure a.s., it follows that

E{ /O ds@(pﬁ)} = E[Z /Oﬁjaj dr &([k—r, 1, ”T(“’j)])]

By excursion theory, the point measure

Z 01.,, w; (dude)

jeJ

is a Poisson point measure with intensity 1j_, 1> oj(v)du N(dw). Hence,

EUOT dsfb(pg)} /0<u,1> duN(/OU drfb([kuu,pr])),

and the desired result follows from Proposition 1.2.5. d

1.3 Local times of the height process

1.3.1 The construction of local times

Our goal is to construct a local time process for H at each level a > 0. Since H is in
general not Markovian (and not a semimartingale) we cannot apply a general theory,
but still we will use certain ideas which are familiar in the Brownian motion setting.
In the case a = 0, we can already observe that H; = 0 iff p; = 0 or equivalently
X; — I; = 0. Therefore the process —I is the natural candidate for the local time of
H at level 0.
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Let us fix a > 0. Since t — p; is cadlag in the variation norm, it follows that
the mapping ¢t — pi((a,0)) is cadlag. Furthermore, it follows from (1.12) that the
discontinuity times of this mapping are exactly those times ¢ such that AX; > 0 and
H; > a, and the corresponding jump is AX;.

Set

S

Tta = 1nf{5 >0: / l{HT>a} dr > t} = inf{s >0: / 1{p,‘((a,oo))>0} dr > t}.
0 0

From Proposition 1.2.5, we get that fooo 1{#,>ay dr = oo a.s., so that the random
times 7{* are a.s. finite.
When a > 0, we also set

%filnf{SZO/ 1{HT§a}dr>t}
0

and we let H, be the o-field generated by the cadlag process (Xzg, pza;t > 0) and
the class of P-negligible sets of G.,. We also define Hy as the o-field generated by
the class of P-negligible sets of Go.

Proposition 1.3.1 For everyt > 0, let pf be the random measure on Ry defined by
wi5r= [ o) fr—a)

The process (p¢,t > 0) has the same distribution as (p:,t > 0) and is independent of
He.

Proof. First step. We first verify that the process ((pf,1),t > 0) has the same
distribution as ({p¢,1),t > 0).

Let ¢ > 0. We introduce two sequences of stopping times S¥, T k > 1, defined
inductively as follows:

S! =inf{s > 0: ps((a,00)) > ¢},
TF = inf{s > S* : p,((a,0)) = 0},
SH —inf{s > T : ps((a,00)) > ¢}
It is easy to see that these stopping times are a.s. finite, and S* T oo, TF 1 oo as

From (1.13) applied with 7' = S¥  we obtain that, for every k > 1,

TF =inf{s > S5 : X, = Xgr — psx((a,00))}. (1.16)
Formula (1.13) also implies that, for every s € [0, T — S¥],
k k k
(pst ((a,00)) + 1)) 4+ (x %) — 1{5)) (1.17)
Xstts = (Xgp = psr((a,00))).

psi+s((a;00))

We set
}/s]676 = p(S§+s)/\TE’“((aﬂ OO))
As a straightforward consequence of (1.16) and (1.17), conditionally on Ggx, the

process Y% is distributed as the underlying Lévy process started at pst((a,00)) and
stopped at its first hitting time of 0.
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We then claim that, for every ¢t > 0,

lim sup pgr((a,00)) =0, a.s. (1.18)
=0 k>, 86<t) °

Indeed, by previous observations about the continuity properties of the mapping s —
ps((a,00)), we have

sup  por((a,00)) < &+ supfAX ;s < ¢, Hy > a, py((a,00)) < e}
{k>1,8k<t}  ©

However, the sets {s < t; AX; > 0,H; > a, ps((a,0)) < e} decrease to 0 as € | 0,
and so

liH(l) (sup{AXs;s <t,Hs > a,ps((a,00)) < 8}) =0,

£—

a.s., which yields the desired claim.
Set
ke _ vk, ; k, k,
Zs E_YS E_OéITlfSSY;" ESYS €
Then, conditionally on Ggr, Z k¢ is distributed as an independent copy of the reflected
process X — I, stopped when its local time at 0 hits pgx ((a, 0)).

Denote by U® = (US,s > 0) the process obtained by pasting together the paths
(Zk=,0 < s <TF — S*). By the previous remarks, U* is distributed as the reflected
Lévy process X — I.

We then set

t oo
78 =inf{t >0: / Z Ligk,pry(r) dr > s}.
0 k=1

Observe that the time-changed process (p,a.<((a,00)),s > 0) is obtained by patching
together the paths (Y}¢,0 < s < TF — S¥). Moreover, we have for every k > 1,

k,
sup (Y = Z9%) = psr((a,00)) = V™",
0<s<Tk—-Sk

From (1.18), we conclude that for every ¢ > 0,

lim (sup |US — pre=((a,00)) ) =0. (1.19)

e—0 s<t
Notice that 72 | 7¢ as € | 0 and recall that for every ¢ > 0, U® is distributed as
the reflected Lévy process X — I. We then get from (1.19) that the process (p?,1) =
pra((a,00)) is distributed as the reflected proces X — I, which completes the first step.

Second step. We will now verify that p® can be obtained as a functional of the
total mass process (p®, 1) in the same way as p is obtained from (p,1). It will be
enough to argue on one excursion of (p® 1) away from 0. Thus, let (u,v) be the
interval corresponding to one such excursion. We can associate with (u,v) a unique
connected component (p,q) of the open set {s, Hy > a}, such that 7, = p+r for
every r € [0,v — u), and ¢ = 77_. By the intermediate values property, we must have
H,=H,;=a.

We also claim that X, > X, for every r € (p,q). If this were not the case, we
could find r € (p,q) such that X, = inf{X,,p < s < r}, which forces H, < H, = a
and gives a contradiction.

The previous observations and the definition of the process p imply that, for every
r € (p, q), the restriction of p, to [0, a] is exactly p, = pg. Define

w(r) = X(p+r)/\q - Xp = <p(p+r)/\qa 1> - <ppa 1> = <p((lu+r)/\v7 1>;
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so that w is the excursion of (p%, 1) corresponding to (u,v). The construction of the
process p implies that, for 0 <r < qg—p=v —u,

Pptr = [Pps Pr(W)],

and so, for the same values of r,

Putr = Pr(w).

This completes the second step of the proof.

Third step. It remains to prove that p® is independent of the o-field H,. For
€ > 0, denote by H; the o-field generated by the processes

(X(T§+S)As§+1vs >0)

for k = 0,1,... (by convention 7Y = 0), and the negligible sets of Go.. From our
construction (in particular the fact that X, > Xp» for s € [SE,TF)), it is easy to
verify that the processes (p(TEI€+S)/\S§+1,S > 0) are measurable with respect to H,
and since H; > a for t € (S¥,TF), it follows that H, C HE.

By the arguments of the first step, the processes Z*¢ are independent conditionally
on H:, and the conditional law of Z¥< is the law of an independent copy of the
reflected process X — I, stopped when its local time at 0 hits pgx((a,o0)). It follows
that the process U¢ of the first step is independent of H, hence also of H,. By passing
to the limit € — 0, we obtain that the total mass process (p%, 1) is independent of
H,. As we know that p® can be reconstructed as a measurable functional of its total
mass process, this completes the proof. O

We let [* = (I%(s), s > 0) be the local time at 0 of (p*, 1), or equivalently of p®.

Definition 1.3.1 The local time at level a and at time s of the height process H is

deﬁned by
Lg = la / 1 - d7 .
( o {H,>a} )

This definition will be justified below: See in particular Proposition 1.3.3.

1.3.2 Some properties of local times

The next lemma can be seen as dual to Lemma 1.1.3.

Lemma 1.3.2 For everyt > 0,
t

.1
ElLH(l]g o 1{H5§s}d8__lt7

in the L*-norm.

Proof. We use arguments similar to the proof of Lemma 1.1.3. Recall that T, =
inf{¢t > 0: X, = —z}. We first establish that for every z > 0,

T‘T

1 '
ghlr(l)g ; I{p,<cy ds = 2, (1.20)
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in probability. Note that Proposition 1.2.5 gives for any nonnegative measurable

function ¢
N(/ dsg(HS)) :/ dae " g(a).
0 0

Let w’, j € J denote the excursions of X — I away from 0 and let (o, B;) be the
corresponding time intervals. We already noticed that Hs = H,_, (w9) for s €
(e, B;). Hence, using also the previous displayed formula, we have

E{l /OTI Im, <) dS} = iN(/OU Lim, <oy ds) = E(ﬂ) <% (1.21)

€ € @
and in particular,
1 [T
I E[— 1 d } = 1. 1.22
i B[ [ o ds] =0 (1.22)
We then want to get a second moment estimate. To this end, it is necessary to

introduce a suitable truncation. Fix K > 0. A slight modification of the proof of
(1.22) gives

ol (T
lim E[g / g, <ey 1x,~1.<K} ds} =1z (1.23)
0

e—0

If H®) denotes the height process for the shifted process Xt(s) = X¢4+—Xs, the bound

Ht(f)s < H; (for 0 < s < t) is obvious from our construction. We can use this simple
observation to bound

N((/OU L, <ey Lix. <k dS)Q)

= 2N(/ d31{Hs§s}1{Xs§K}/ d“{Htge}>
0 s

§2N(/ d51{Hs§8} I{XSSK}/ dtl{H(s) <a})
0 s t—s—=
o To
=2N / dslim,<ey Lix.<xy Ex, [/ dtl{Htgs}D
0 0
< 25N(/ ds s, <y (x. <1 Xo ) (by (1.21))
0
€
= 28/ dy E[XL—l(y) 1{L_1(y)<OO,XL71(y)SK}] (PI‘OpOSitiOH 114)
0
<2*E[X 1) A K]
= o(e?),

by dominated convergence. As in the proof of Lemma 1.1.3, we can conclude from
(1.22) and the previous estimate that

T

gl—r{%)g 0 l{HSSE} 1{XS_ISSK} ds =z

in the L2-norm. Since this holds for every K > 0, (1.20) follows.

From (1.20) and a monotonicity argument we deduce that the convergence of
Lemma 1.3.2 holds in probability. To get L'-convergence, we need a few other esti-
mates. First observe that

E[/t 1{H535}ds} = /t dsP[H, < ] = /t dsP[L, < €] = E[L™ () A Y] < Ce,
0 0 0
(1.24)
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with a constant C' depending only on ¢ (in the last bound we applied to L™! an
estimate valid for any subordinator). Then,

t 2 -
E[(/ 1{Hsée}d8) } = 2F // d?”dsl{Hrsf}l{HsSE}}
0 - {0<r<s<t}
< QE_// deSl{H <5}1 (v ]
rS {H,” <e}
- {0<r<s<t} ST
- t t—r
= 2F / drl{Hrga}E[/ dSl{Hsgg}”
0 0

2(5[ [ artmza))”

As a consequence of the last estimate and (1.24), the variables e ~* fot lig,<eyds, e >0
are bounded in L2. This completes the proof of Lemma 1.3.2.

IN

We can now give a useful approximation result for local times of the height process.

Proposition 1.3.3 For everyt > 0,

lim sup F | sup 5*1/ 1{a<HT§a+E} dr — L ] =0.
0

e—=04>0 { s<t

Similarly, for every t > 0,

| =0

There exists a jointly measurable modification of the collection (L% a > 0,s > 0),
which is continuous and nondecreasing in the variable s, and such that, a.s. for any
nonnegative measurable function g on Ry and any s > 0,

lim sup [ sup
e=04>¢ s<t

571 / 1{0«*€<HTSG} dr — Lg
0

/OS g(H,)dr = /R+ g(a) L° da. (1.25)

Proof. First consider the case a = 0. Then, p° = p and LY = °(t) = —I;. Lemma
1.3.2 and a simple monotonicity argument, using the continuity of LY, give

lim E | sup } —0. (1.26)

e—0 |: s<t

et / L{o<m, <} dr — LY
0

For a > 0, set A} = fg l{H,>a} ds. Note that {a < Hy < a+¢c} = {ps((a,00)) >
0} N {ps((a +¢,00)) =0}, and so

s t
/01{a<H7~ga+a}d7’ = /01{p5<<a,oo>>>0}m{ps<<a+a,oo>>:0}ds
Ag
:/0 Lipa((e.00))=0}dr

Af
/ Lio<Ha<cydr,
0

where Hf = H(p{). The first convergence of the proposition then follows from (1.26),
the trivial bound A§ <t and the fact that p® has the same distribution as p.
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The second convergence is easily derived from the first one by elementary argu-
ments. Let us only sketch the method. For any fixed § > 0, we can choose g9 > 0
sufficiently small so that for every a > 0, ¢ € (0, &¢],

¢
EHE_I / l{a<H, <atey dr — L
0

} <. (1.27)

Then, if 0 <e <eg Aa,
t t
EH571 / 1{G—E<Hr§a} dr — Eal / 1{a—E<Hr§a—€+Eo} dT’H < 29.
0 0
However, if € is very small in comparison with gy, one also gets the bound

t

t
EH561 / 1{a—5<HT§a—a+50} dr — (50 - 5)71 / 1{(1<Hr§a+50—6} dr
0 0

}ga.

We get the desired result by combining the last two bounds and (1.27).

The existence of a jointly measurable modification of the process (L%, a > 0,s > 0)
that satisfies the density of occupation time formula (1.25) follows from the first
assertion of the proposition by standard arguments. O

From now on, we will only deal with the jointly measurable modification of the
local times (L%,a > 0,s > 0) given by Proposition 1.3.3. We observe that it is easy
to extend the definition of these local times under the excursion measure N. First
notice that, as an obvious consequence of the first assertion of Proposition 1.3.3, we
have also for every a > 0,t >0

S
lim E{ sup ‘5_1 / lia<H,<ate} du — (LG — L7)

e=0  Lo<r<s<t

} —0. (1.28)

Then, let V' be a measurable subset of D(R,R) such that N[V] < co. For instance
we may take V = {sup,~o Xs > 0} for § > 0. By considering the first excursion of
X — I that belongs to V, and then using (1.28), we immediately obtain the existence
under N of a continuous increasing process, still denoted by (L%, s > 0), such that

lim N(1V sup
e—0 s<t

571 / 1{a<Hr,~§a+6} dr — Lg ) =0. (129)

0

The next corollary will now be a consequence of Proposition 1.1.4. We use the notation
introduced before Proposition 1.2.5.

Corollary 1.3.4 For any nonnegative measurable function F' on D(R4,R), and every
a>0,

N(/ dLZ' F(‘)?T(j\)svr > O)) - E[I{Lfl(a)<oo} F(Xr/\Lfl(a)aT > 0)]
0

In particular, for any nonnegative measurable function F on My(R),
N( / de;F(ps)) = e BO[F(J,)].
0
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Proof. We may assume that F' is bounded and continuous. Then let A be a nonneg-
ative continuous function on R, which vanishes outside [, A], for some 0 < § < A <
oo. For the first identity, it is enough to prove that

N( / ALLh(3) F(X {37 2 0)) = Bl (11 (@ycoe) ML (@) F(Xprz-1(ay,7 = ).

Notice that the mapping s — ()Z't(s),t > 0) is continuous except possibly on a

countable set that is not charged by the measure dL%. From (1.29), applied with
V ={w,o(w) > d}, and then Proposition 1.1.4, we get

N( [ dzine) PRS2 0)
0

. 1 7 (s
= lim N(g / ds1jacn, <ate) h(s) F(X5,r > 0))
0

e—0
1 (a-‘y—&)/\LoQ
= lim —E[/ dx h(L™"(2)) F(Xinp-1(a)0t > 0)}
e=0¢ aAL

= E[l{1-1(a)<oo} (LT (0)) F(Xonr-1(a), 7 > 0)],

which completes the proof of the first assertion. The second assertion follows from
the first one in the same way as Proposition 1.2.5 was derived from Proposition 1.1.4.
O

We conclude this section with some remarks that will be useful in the applications
developed below. Let # > 0 and let («j, 3;), resp. wj, j € J, denote the excursion
intervals, resp. the excursions of X — I before time T,.. For every a > 0, we have P

a.s.
fo =2 L) (@))- (1.30)
jeJ
A first inequality is easily derived by writing
T,
L2 [ a2 oy = 325 - 18,) = X L, (@)
0 jed jeJ

where the last equality follows from the approximations of local time. The converse
inequality seems to require a different argument in our general setting. Observe that,
by excursion theory and then Proposition 1.2.5,

E[LT,]

IN

1 [Te
lim fE[— Liuetr <a }
pn i Ek/o ds 1{acH, <atey}

— 00

. L)
= hmme{ E —/ d51{a<Hs(wj)<a+Ek}:|
k—oo ey €k Jo

1 g
— liminfo(—/ dSl{a<HS<a+5k})
0

k—o0 Ek
a+tecg
. X _
= liminf — dbe b
k—oo €f a
= xe %

whereas Corollary 1.3.4 (with F' = 1) gives E[} . ; Lﬁ(wj)(wj)] =x N(L2) = ze .
This readily yields (1.30).
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Let us finally observe that we can extend the definition of the local times L¢ to
the process p started at a general initial value p € My(Ry). In view of forthcoming
applications consider the case when p is supported on [0,a), for a > 0. Then, the
previous method can be used to construct a continuous increasing process (L%(p*), s >
0) such that

1
L(p") = lim —

€*>06/0 dTl{a<H(pﬁ)<a+z—:}

in probability (or even in the L'-norm). Indeed the arguments of the proof of Propo-
sition 1.3.1 remain valid when p is replaced by p#, and the construction and approx-
imation of L%(p#) follow. Recall the notation 75 = inf{s > 0 : p# = 0} and observe
that 7o = 15 if # = (u, 1). Let (o, 3;), wj, j € J be as above and set rj = H(k_p, ).
Then we have

L2, (") = S LY (). (1.31)
jeJ
The proof is much similar to that of (1.30): The fact that the left side of (1.31) is
greater than the right side is easy from our approximations of local time. The equality
is then obtained from a first-moment argument, using Proposition 1.2.6 and Fatou’s
lemma to handle the left side.

1.4 Three applications

1.4.1 The Ray-Knight theorem

Recall that the t-continuous-state branching process (in short the ¥-CSBP) is the
Markov process (Y,,a > 0) with values in Ry whose transition kernels are character-
ized by their Laplace transform: For A > 0 and b > a,

Elexp =Y, | Y] = exp(—=Y, up—a(N)),

where u;(A), t > 0 is the unique nonnegative solution of the integral equation

ur(N) —I—/O P(us(N))ds = A (1.32)

Theorem 1.4.1 Let z > 0. The process (L} ,a > 0) is a ¢-CSBP started at x.

Proof. First observe that L% is H,-measurable. This is trivial for a = 0 since
LY, =x. For a > 0, note that, if

Ty =inf{s > 0: Xz« = —1},
we have
Ty e
/ ds 1{a—a<HS§a} = / ds 1{a—E<H7~—g <a}-
0 0

and the right-hand side is measurable with respect to the o-field H,. The measurabil-
ity of L7, with respect to H, then follows from the second convergence of Proposition
1.3.3.

We then verify that the function
ug(\) = N[1 —e 5] (a>0),  up(\) =X
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solves equation (1.32). From the strong Markov property of p under the excursion
measure N, we get for a > 0

Ua(N) = AN(/OU deje*’\(LZ*LZ)) - AN(/OU dejF(ps)),

where, for p € My(R), F(u) = Elexp(=AL% (p*))]. By Corollary 1.3.4, we can
concentrate on the case when p is supported on [0,a), and then (1.31) gives

Fp) = (— <#71>d N(1 — exp(—ALEHk=u)
p) = exp uN(1—exp(=ALg )
0

= exp ( - /u(dr) N(1- exp(—/\LZ*’“))).

Hence, using again Corollary 1.3.4,

)\N(/Oa dre eXp(—/ps(dr)Uafr()‘)))
rer B exp (= [ () uar V)]
Nexp ( - / bl (V).

It is a simple matter to verify that (1.32) follows from this last equality.

ua(N)

By (1.30) and excursion theory, we have
Elexp(=A L7, )] = exp(—2 N(1 — exp(—ALg))) = exp(—z uq(A)). (1.33)
To complete the proof, it is enough to show that for 0 < a < b,
Efexp(~ ALY, ) | Ha] = exp(—upa(N) L% ). (1.34)

Recall the notation p* from Proposition 1.3.1, and denote by Eg the local times of
H? = H(p%). From our approximations of local times, it is straightforward to verify
that
b 7o
LT;::‘LA%:7

where A¢ = f(f dr (g, ~aqy as previously. Write U = L%, to simplify notation. If T}! =
inf{t > 0:1%(t) > r}, we have A%, = T} (note that [“(Af, ) = U by construction,
and that the strong Markov property of X at time 7, implies 1%(t) > [*(Af, ) for
every t > A7 ). Hence,

Elexp(=ALf,) | Ha] = Elexp(=AL7") | Ha] = Elexp(=ALp")lu-v,

where in the second equality, we use the fact that the process (Iil}_aa,u > 0)is a
functional of p®, and is thus independent of H, (Proposition 1.3.1), whereas U = L%,
is H,-measurable. Since p® has the same distribution as p, ngaa and Ll}:a also have
the same law, and the desired result (1.34) follows from (133)u O

Corollary 1.4.2 For every a > 0, set

v(a) :N( sup Hj >a).

0<s<o

Then,
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() If |7 % = 00, we have v(a) = oo for every a > 0.

(ii) If [ 4 < oo, the function (v(a),a > 0) is determined by

1 ¢(u)
/°° du Y
v(a) w(u) ‘

Proof. By the lower semi-continuity of H, the condition supy<,<, Hs > a holds iff
A% > 0, and our construction shows that this is the case iff L& > 0. Thus,

v(a) = N(LE > 0) = lim N(1—e Mo) = lim u,(N),

—00 A—00

with the notation of the proof of Theorem 1.4.1. From (1.32), we have

/A du__
wa) Y(w)
and the desired result follows. O

1.4.2 The continuity of the height process

We now use Corollary 1.4.2 to give a necessary and sufficient condition for the path
continuity of the height process H.

X du

Theorem 1.4.3 The process H has continuous sample paths P a.s. iﬁfl Py < 00

Proof. By excursion theory, we have

P[ sup H; > a| =1—exp(—av(a)).
0<s<T,

By Corollary 1.4.2 (i), we see that H cannot have continuous paths if floo wCi(Z) = 0.

Assume that floo % < o0o. The previous formula and the property v(a) < oo
imply that

limH; =0 P as. (1.35)
£10

Since v(a) | 0 as a | oo, we also get that the process H is locally bounded, a.s.
The path continuity of H will then follow from Lemma 1.2.4 if we can show that for
every fixed interval [a,a+ h], h > 0, the number of upcrossings of H along [a,a+ h] is
a.s. finite on every finite time interval. Set 9 = 0 and define by induction for every
n>1,

Op = inf{t > ~v,—1 : H; > a+ h},

Yo = inf{t > 6, : H < a}.
Both §,, and 7, are (G;)-stopping times. Note that H., < a by the lower semi-
continuity of H. On the other hand, as a straightforward consequence of (1.13), we

have a.s. for every ¢t > 0,
Hy, g0 < Hyp + H.

where HOn) stands for the height process associated with Xt(%) =X, 4+t — X4,
Therefore 6,11 — Yn > kn, if K, = inf{t > 0 : Ht(’y") > h}. The strong Markov
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property implies that the variables k,, are i.i.d. . Furthermore, x,, > 0 a.s. by (1.35).

It follows that d,, T oo as n T oo, which completes the proof. O
It is easy to see that the condition floo % < o0 is also necessary and sufficient

for H to have continuous sample paths NV a.e. On the other hand, we may consider
the process p started at an arbitrary initial value p € M f(]Rd), as defined by formula
(1.11), and ask about the sample path continuity of H(ps). Clearly, the answer will be
no if the support of  is not connected. For this reason, we introduce the set M}) which
consists of all measures p € M;(R4) such that H(u) < oo and supp p = [0, H(u)].
By convention the zero measure also belongs to M¢.

From (1.11) and Lemma 1.2.2] it is easy to verify that the process p started at
an initial value u € MJ(? will remain forever in MJ?, and furthermore H(p,) will have
continuous sample paths a.s. Therefore, we may restrict the state space of p to MJQ.
This restriction will be needed in Chapter 4.

1.4.3 Holder continuity of the height process

In view of applications in Chapter 4, we now discuss the Holder continuity properties
of the height process. We assume that the condition [~ du/t(u) < oo holds so that
H has continuous sample paths by Theorem 1.4.3. We set

v=sup{r >0: )\lim AT"P(N) = +oo}.
The convexity of v implies that v > 1.

Theorem 1.4.4 The height process H is P-a.s. locally Hélder continuous with ex-
ponent « for any « € (0,1 —1/7), and is P-a.s. not locally Holder continuous with
exponent « if « > 1—1/~.

Proof. We rely on the following key lemma. Recall the notation L® for the local
time at 0 of X® — S® (cf Section 1.2).

Lemma 1.4.5 Lett >0 and s > 0. Then P a.s.,

Hy o — inf H,=H(pY),
reft,t+s]

. ~(t

H = re[ltr,ltf+s] Hy = LE/\)R ’
where R = inf{r > 0: x> —Igt)} (inf 0 = c0).
Proof. From (1.13), we get, a.s. for every r > 0,

Hypr = H(k_;p) + H(p\")). (1.36)

From this it follows that
inf H, = H(kil(t)pt)
reft,t+s] s

and the minimum is indeed attained at the (a.s.unique) time v € [t,t + s] such that
X, = Il . The first assertion of the lemma now follows by combining the last equality
with (1.36) written with r = s.

Let us turn to the second assertion. If I; > If+sz then on one hand X, = I, and
inf,.c(,14s) Hr = H, = 0, on the other hand, R = oo, and the second assertion reduces
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to Hy = EE” which is the definition of H;. Therefore we can assume that I, < If,.
Let

u=sup{r € [0,¢: X,_ <1}

As in the proof of Proposition 1.2.3, we have

H,=H(k ,u = inf H,.
( _Ié)pt) Te[ltl,lt-i-s]

On the other hand, the construction of the height process shows that the equality
H, = Lit) - LEZ)T holds simultaneously for all » € [0, ¢] such that X, < IT (cf Lemma
1.2.1). In particular for r = u we get

Hy— inf H,=H,—H,=L"— (" -1V )=1",.
reft,t+s]

To complete the proof, simply note that we have t —u = R on the event {I, < I}, }.00

To simplify notation we set @(\) = A/1p~1()\). The right-continuous inverse L~!
of L is a subordinator with Laplace exponent ¢: See Theorem VII.4 (ii) in [5], and
note that the constant ¢ in this statement is equal to 1 under our normalization of
local time (compare with Lemma 1.1.2).

Lemma 1.4.6 For everyt >0, s >0 and g > 0,

ElHpts — re[itntf—i-s] Hp | < Cqp(1/s)77,

and

EllH,— inf H|" < Cyp(1/s)7,
relt,t+s]

where Cq = el'(¢ + 1) is a finite constant depending only on q.

Proof. Recall that H(ps) = Hy @ L. From Lemma 1.4.5 we have

+oo
E[|Hiyys — inf H.|9=FE[LY= q/ r7'P[L, > x]dx .
reft,t+s] 0
However,
P[Ls > ] = P[s > L' (2)] < e Elexp(—L™'(2)/s)] = eexp(—zp(1/s)).

Thus
—+oo
E[|Hiys — : inf | H|Y < eq/ 27 exp(—zp(1/s)) dr = Cyp(1/s) 79 .
tytts 0

This completes the proof of the first assertion.

In order to prove the second one, first note that I. §“ is independent of G; and
therefore also of the time-reversed process X ). Writing 7, = inf{r >0:5,. > a},
we get from the second assertion of Lemma 1.4.5

E[H,— inf H,|% g/ P[-1, € da] E[LY. .
re(t,t+s] [0,+00) a
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Note that oo
E[L] = q/ " P[L,, > r]dz,
0
and that P[L,, > x| = P[Sp-1(;) < a]. It follows that
—+o0
E[|H;— inf H,.|< q/ P[-I, € da]/ de 2t 'P[Sp-1(,) < a] .
reft,t+s] [0,+00) 0
An integration by parts leads to
“+o0
E[|H;— inf H.|Y< q/ dqu—l/ P[SL—l(z) € db|P[-I, > V] .
re(t,t+s] 0 [0,+0c0)
However
PI-I, > 8] = P[T, < 8] < e Elexp(~Ty/s)] = e exp(~b~1(1/5))
since we know ([5] Theorem VIL.1) that (75,b > 0) is a subordinator with exponent
1~ 1. Recalling Lemma 1.1.2, we get

+oo
Bl it A < e [ et Blep(—07 (1/9)80)
reft,t+s] 0

+oo
=1 oxp(—z/(sv"1(1/s
o / dz 291 exp(—z /(591 (1/5)))

— Cyp(1/s)0.
This completes the proof of Lemma 1.4.6. O

Proof of Theorem 1.4.4. From Lemma 1.4.6 and an elementary inequality, we get
for every t >0, s >0and ¢ >0

El|Hyvs — Hil] < 29C, (1/5)".

Let o € (0,1 —1/7). Then (1 — a)~! < v and thus A== 4(\) tends to oo as
A — oo. It easily follows that A®>~1)~1()) tends to 0 and so A™%p(\) tends to co as
A — 00. The previous bound then yields the existence of a constant C' depending on
q and « such that for every t > 0 and s € (0, 1],

E[|Ht+s - Ht|q] S C s,

The classical Kolmogorov lemma gives the first assertion of the theorem.
To prove the second assertion, observe that for every o > 0 and A > 0,

P[H, < As®] = P[Ls < As®] = P[s < L™*(As®)] .

Then use the elementary inequality

e

Pls < L7 (As%)] £ —— B[l - exp(~ L (4s%)/5))

which leads to

PH, < As) € —— (1 - exp(~As"¢(1/5))).

If > 1— 1/, we can find a sequence (s,) decreasing to zero such s%¢(1/s,) tends
to 0. Thus, for any A >0

lim P[H,, < As%] =0,

n—oo

and it easily follows that limsup s~ “Hs = oo, P a.s., which completes the proof. O

s—0
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Chapter 2

Convergence of
Galton-Watson trees

2.1 Preliminaries

Our goal in this chapter is to study the convergence in distribution of Galton-Watson
trees, under the assumption that the associated Galton-Watson processes, suitably
rescaled, converge in distribution to a continuous-state branching process. To give a
precise meaning to the convergence of trees, we will code Galton-Watson trees by a
discrete height process, and we will establish the convergence of these (rescaled) dis-
crete processes to the continuous height process of the previous chapter. We will also
prove that similar convergences hold when the discrete height processes are replaced
by the contour processes of the trees.

Let us introduce the basic objects considered in this chapter. For every p > 1,
let ;1 be a subcritical or critical offspring distribution. That is, u, is a probability
distribution on Z, = {0,1, ...} such that

Z k pp(k) < 1.
k=0

We systematically exclude the trivial cases where p,(1) = 1 or p,(0) =
define another probability measure v, on {—1,0,1,...} by setting v, (k)
for every k > —1.

We denote by V? = (VP k =0,1,2,...) a discrete-time random walk on Z with
jump distribution v, and started at 0. We also denote by Y? = (Y, k=0,1,2,...) a
Galton-Watson branching process with offspring distribution 1, started at Y} = p.

Finally, we consider a Lévy process X = (X;,t > 0) started at the origin and
satisfying assumptions (H1) and (H2) of Chapter 1. As in Chapter 1, we write ¢
for the Laplace exponent of X. We denote by Y = (Y;,¢ > 0) a t)-continuous-state
branching process started at Yy = 1.

The following variant of a result due to Grimvall [21] plays an important role in
our approach. Unless otherwise specified the convergence in distribution of processes

is in the functional sense, that is in the sense of the weak convergence of the laws

of the processes on the Skorokhod space D(Ry,R). We will use the notation ) to

1. We also
= ﬂp(k +1)

indicate weak convergence of finite-dimensional marginals.
For a € R, [a] denotes the integer part of a.
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Theorem 2.1.1 Let (vp,,p = 1,2,...) be a nondecreasing sequence of positive inte-
gers converging to oo. The convergence in distribution

_ @,
( Ytz o) 2 (Yt 20) (2.1)
holds if and only if
(d)
( AN 0) 2 (Xt 20). (2.2)

Proof. By standard results on the convergence of triangular arrays (see e.g. Theorem
2.7 in Skorokhod [46]), the functional convergence (2.2) holds iff

(d)

Pl

‘/pp')/p pjo; Xl- (23)
Fix any sequence p; < py < - < pr < ---such that v, < vy, < ---. If j =,
for some k > 1, set ¢; = p, V = VP and let 6; be the probability measure on

R defined by 0;(2) = vp,(n) for every integer n > —1. Then (2.3) is equivalent to
saying that
‘/J(c]) < X,
Cj J j—o0

for any choice of the sequence p; < pa < ---. Equivalently the convolutions (6;)*/¢
converge weakly to the law of X;. By Theorems 3.4 and 3.1 of Grimvall [21], this
property holds iff the convergence (2.1) holds along the sequence (p;). (Note that
condition (b) in Theorem 3.4 of [21] is automatically satisfied here since we restrict
our attention to the (sub)critical case.) This completes the proof. O

2.2 The convergence of finite-dimensional marginals

From now on, we suppose that assumption (H3) holds in addition to (H1) and (H2).
Thus we can consider the height process H = (Hy,t > 0) of Chapter 1.

For every p > 1, let HP = (Hy,k > 0) be the discrete height process associated
with a sequence of independent Galton-Watson trees with offspring distribution p,
(cf Section 0.2). As was observed in Section 0.2, we may and will assume that the
processes HP and VP are related by the formula

P _ ; 1V -VP —
Hp = Card{j € {0,1,...,k — 1} : V] nglikV} (2.4)

The following theorem sharpens a result of [32].

Theorem 2.2.1 Under either of the convergences (2.1) or (2.2), we have also
1 (fd)
(’yp N O) v (Hg,t > 0). (2.5)

Proof. Let fy be a truncation function, that is a bounded continuous function from R
into R such that fo(x) = = for every x belonging to a neighborhood of 0. By standard
results on the convergence of rescaled random walks (see e.g. Theorem I1.3.2 in [23]),
the convergence (2.2) holds iff the following three conditions are satisfied:

(C1) hm 0 pyp Z fo (k) = —a + /Ooo(f()(r) — ) w(dr)

k=-1
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©) o, 3 Al =26+ [ folratan

k=-1
: — , k [
©9)  Jmy 3 A0 n00 = [ ),

for any bounded continuous function h on R that vanishes on a neighborhood of 0.

By (2.4) and time-reversal, H} has the same distribution as

AP = Card{j € {1,...,k} : V} = sup V}"}.

0<I<)

Without loss of generality, the Skorokhod representation theorem allows us to assume
that the convergence

(p V5 t20) — (Xit20) (2.6)

p—00

holds a.s. in the sense of Skorokhod’s topology. Suppose we can prove that for every
t>0,

lim ’y_l AP

p—oo P (Pypt]

Ly (2.7)

in probability. (Here L = (L;,t > 0) is the local time process of X — S at level 0

as in Chapter 1.) Then a simple time-reversal argument implies that Yo H [’; o] also
P

converges in probability to th) = H;, with the notation of Chapter 1. Therefore the
proof of Theorem 2.2.1 reduces to showing that (2.7) holds.
We first consider the case where f(o 1 rr(dr) = co. We introduce the stopping

times (74 )r>0 defined recursively as follows:

™ = 0,
Ty = inf{n >0 VP >VE 1

Conditionally on the event {7}, < oo}, the random variable 1¢,»  ooy(VL =V )

m41 R Tim
is independent of the past of V? up to time 72, and has the same law as 1 {T'f<oo}pr-
Also recall the classical equality (cf (5.4) in [32]):

P[r? < o0, fo =jl = vp([j,)) , j>0. (2.8)
For every u > § > 0, set:

K(Gu) = /000 (dr) /0 A1 (5. (x) = /OOO w(dr) ((r = 8)* A (u—0)).
> vp((d0)

kp(d,u) = p<jspu _ = Plpd < V% <pu|7f <od,
> wp([G, ) '
>0
LY = Card{s <t:AS, € (6,u]},
li’é’u = Card{j <k: V? +pd <V, < 75 + pu},
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where V = sup{V/”,0 < i < j}. Note that x(d,u) T co as § | 0, by our assumption

f(o T dr) 0o. From the a.s. convergence of the processes p~ Vp,yp we have

lim lf’éu =LY, as. (2.9)
p—o0 p’YP]

(Note that P[ASs; = a for some s > 0] = 0 for every fixed a > 0, by (1.3).) By
applying excursion theory to the process X — S and using formula (1.3), one easily
gets for every u > 0

lim k(6,u) LI =L, , as. (2.10)

5—0

We claim that we have also

lim , i, (6, 1) = /Ooo ((r O A (u— 5)) w(dr) = k(6 u). (2.11)

p—0oo

To get this convergence, first apply (C3) to the function h(z) = (z — )T A (u—196). It
follows that

Tim poy 32 1) (5 -0 A 5) =50,

k=-1 p

On the other hand, it is elementary to verify that

P 3w (G- Aw=0) =% 3wl <w Y nb

k=-—1 pd<j<pu k>dp

and the right-hand side tends to 0 by (C3). Thus we get

Jim vy D0 vp(lf00)) = k(8 u).

pd<j<pu

Furthermore, as a simple consequence of (C1) and the (sub)criticality of p,, we have
also

> v(ljio0)) =1+ Z kvp(k) — 1. (2.12)
=0

k=—1
(This can also be obtained from (2.8) and the weak convergence (2.2).) Our claim
(2.11) now follows.

Finally, we can also obtain a relation between [} O and A[i ')y 9

that conditional on {7} < oo}, lp D% s the sum of k independent Bernoulli variables

Simply observe

with parameter x,(d,u). Fix an 1nteger A >0 and set A, = v,A+ 1. From Doob’s
inequality, we easily get (see [32], p.249 for a similar estlmate)

1 2 8(A+1
E sup ’7(A§p) — k(6 u)flljp,é,u) < w ip (6, u)~!
0<j<7h ) Yp Yp
Hence, using (2.11), we have
2 8(A+1
limsupE[ sup (A(p) — Kp(0,u)” 1lp’6 ) } < w (2.13)
p—o0 ngf; Tp K(d’ u)
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To complete the proof, let ¢ > 0 and first choose A large enough so that P[L; >
A—3e] <e. Ifu>0is fixed, we can use (2.10) and (2.13) to pick 6 > 0 small enough
and then pg = po(d) so that

PHH((;, W)L L,

> s} <e (2.14)

and
1

- (AP — ki (8,0) 712"

P | sup >el <eg, if p > po. (2.15)

b
J—TAP

From (2.9) and (2.11), we can also find p;(d) so that for every p > py,

1
piou —17du
i |: ‘m l[p'th] - H((S’ ’LL) Lt

> 5} <e. (2.16)
By combining the previous estimates (2.14), (2.15) and (2.16), we get for p > pg V p1

1
PH— AP L,
fyp DPYp

> 34 < 3¢+ Pllpyyt] > 74 1. (2.17)

Furthermore, by using (2.15) and then (2.14) and (2.16), we have for p sufficiently
large,

1
P P,6,u

Plrh <lpwtl] < e+ P[W oy 2 A—c

3+ P[L: > A — 3]

<
< 4e

from our choice of A. Combining this estimate with (2.17) completes the proof of
(2.7) in the case fol ra(dr) = oo.

It remains to treat the case where fol rr(dr) < co. In that case, (H3) implies that
B >0, and we know from (1.4) that

L= %m({Ss; s<1)).

Furthermore, (1.3) and the assumption fol rm(dr) < oo imply that for any ¢ > 0 ,
Card{s € [0,t]; AS; >0} <oo, as.
For every 6 > 0 and ¢t > 0, we set

S =8— ) 1300)(AS)AS, .

s€[0,t]
By the previous remarks, we have a.s. for § small enough,

S;=Si— Y ASc=m({Sss<t})=BL. (2.18)

s€[0,t]

Let us use the same notation 72, V? as in the case fol rr(dr) = oo, and also set for
any m > 1,
dy, = 1{rﬂ,<oo}(VTIj§L - V.% )

-1
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and B
Sob = AL an<ps, rr<m) -

n>1

The convergence (2.6) implies that

1—
(pvfpvps],s > 0) 2 (80520), as, (2.19)

and, for every t > 0,

= Zdn {db >ps, T <[pvpt]} :o Z (8,00) AS )AS a.s.
n>1 P s€[0,t]

Thus we have

odp
m pS[ i) =

S as. (2.20)

The desired convergence (2.7) is then a consequence of (2.18), (2.20) and the following
result: For every € > 0,

ao,p B (p) _
hn}) hzr)risolip P“*Sm g A[p'y t]| >¢el=0. (2.21)
To prove (2.21), set
ai(p,d) = FE [dlfl{dzfg(;p} | 1 < oo} ;
wp,8) = B[ Lgesy | T <] .

Observe that
B (@ L <oy — 0a(p,0))? | 77 < ] < a2 (p,0).
Let A > 0 be an integer and let A, =~,A + 1 as above. By Doob’s inequality,

E{ sup |§j§i’—ma1(p7 5)|2} < 4A,05(p,0) .

1<m<A,
Th <oo
Since
sup \Sﬁ’pp —mas(p,d)| = sup |Sj§’p — a1 (p, 5)A§p)\ .
1<m<4, " 1<5<rh
Th <oo Y
we have
1 a0,p al(pa 5) (p)|2 4AP
E[ sup |-50% — LD () } < Z2ay(p,d) . (2.22)
osj<ry P p 4
We now claim that
1
lim ﬁal(p, ) =0+ 7/ (rA8)?m(dr) — B, (2.23)
p—oo P 2 (O o) 5—0
and
lim limsup l az(p,0) =0. (2.24)

0=0 pooo P
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To verify (2.23), note that, by (2.8),

5p] - . o0 E oA Bl \(k A O] | 1
e g0 d vl 00) _ pryp Zkeo Vp(k)(E A 7) (5 At 5)

vpal(pa(s) - B3 : E3 :
p p ijo vp([4, 00)) 2 Zj:o vp([J; 00))
(2.25)

We now apply (C1) and (C2) with the truncation function fo(z) = (z A ) V (—=9).
Multiplying by p~! the convergence in (C1) and adding the one in (C2), we get

plirﬂlop%;up(k)(]; A 5) (g NS+ %) =206+ /(0 (r A 6)*m(dr).

,00)

Comparing with (2.25) and using (2.12), we immediately get (2.23). The proof of
(2.24) is analogous.
By (2.22) and an elementary inequality, we have

1~ 8A A
B sw 57~ ZAPP] < 2asp.0) + 222 (5 - Lau(, ).

o<y, P Tp Tp

Thus, (2.23) and (2.24) imply that for any A > 0

1~
lim 1imsupE[ sup \ij’p — ﬁA(.p)ﬂ =0. (2.26)

0 J
p—0oo 0<5<7h p ’717
WS Ap

It follows that

. . 1 a0,p ﬁ (p) : p
(%1_1)1(1) h;risipPD];S[mpt] — 'yipA[i”"/Pt” > s] < h;risip Plry < I[pwt]] -

However,

Plry, <lpwtl] < P[

_ 1~
P 3,p P
V[p"/pt] Z EST,IZP s TAP < OO]

1
P
and by (2.26) the right side is bounded above for p large by P[%pr%t] > %Ap—l]—‘ré'g,
where e5 — 0 as 6 — 0. In view of (2.19), this is enough to conclude that

lim limsup Pl < [py,t]] =0,

—0C p— 00

and the desired result (2.21) follows. This completes the proof of (2.7) and of Theorem
2.2.1. 0

2.3 The functional convergence

Our goal is now to discuss conditions that ensure that the convergence of Theorem
2.2.1 holds in a functional sense. We assume that the function v satisfies the condition
oo
d
. (2.27)
1 Y(u)
By Theorem 1.4.3, this implies that the height process (H;,¢ > 0) has continuous
sample paths. On the other hand, if this condition does not hold, the paths of the
height process do not belong to any of the usual functional spaces.
For every p > 1, we denote by ¢ the generating function of ip, and by gﬁf’ ) =
g® o...0g® the n-th iterate of ¢(®.
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Theorem 2.3.1 Suppose that the convergences (2.1) and (2.2) hold and that the con-
tinuity condition (2.27) is satisfied. Suppose in addition that for every § > 0,

liminf g% | (0)7 > 0. (2.28)
p—00 P
Then,
_ (d)
(v HE, 0 > 0) S (Hit 2 0) (2.29)

in the sense of weak convergence on D(Ry, R, ).

Let us make some important remarks. Condition (2.28) can be restated in prob-
abilistic terms as follows: For every § > 0,
hpnig.}fP[Y[g%] =0]>0.
(As will follow from our results, this implies that the extinction time of Y?, scaled by
Yo L converges in distribution to the extinction time of Y, which is finite a.s. under
(2.27).) It is easy to see that the condition (2.28) is necessary for the conclusion
(2.29) to hold. Indeed, suppose that (2.28) fails, so that there exists § > 0 such that
P [Y[gvp] = 0] converges to 0 as p — 0o, at least along a suitable subsequence. Clearly,
this convergence also holds (along the same subsequence) if Y? starts at [ap] instead
of p, for any fixed a > 0. From the definition of the discrete height process, we get
that
P[ sup Hjp > [(5'yp]} — 1,
p—00

k<TP
=" [ap]

where T7 = inf{k > 0: V;” = —j}. From (2.2), we know that (pfyp)*lT[Zp] converges
in distribution to T,. Since T, | 0 as a | 0, a.s., we easily conclude that, for every
e >0,
- 3Yp]
P[Su Lgp > [—p} — 1,
tSIE) Pyp [PYpt] Yp
and thus (2.29) cannot hold.

On the other hand, one might think that the condition (2.28) is automatically
satisfied under (2.1) and (2.27). Let us explain why this is not the case. Suppose for
simplicity that 1 is of the type

PY(A) = ar + /(0 ) m(dr) (e =1+ \r),

and for every € > 0 set

Ve(N) = a) + / m(dr) (€™ — 1+ Ar).
(g,00)
Note that 1. (A) < CA and so [ 1-(A)"'dA = co. Thus, if V¢ is a 1h.-CSBP started
at 1, we have Y;® > 0 for every t > 0 a.s. (Grey [20], Theorem 1). It is easy to verify
that
E—>

at least in the sense of the weak convergence of finite-dimensional marginals. Let us fix
a sequence (gy) decreasing to 0. Recall from [27] that every continuous-state branch-
ing process can be obtained as a weak limit of rescaled Galton-Watson branching
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processes. Thus for every k, we can find a subcritical or critical offspring distribution
vy, and two positive integers p, > k and v, > k, in such a way that if Z% = (ZJ’?,j >0)
is a Galton-Watson process with offspring distribution v}, started at Z§ = py, the law
of the rescaled process

2 = ()™ 2l
is arbitrarily close to that of Y¢*. In particular, we may assume that P[Z,ik) >
0]>1-— 2=% and that the rescaled processes Z*) converge to Y in the sense of weak
convergence of finite-dimensional marginals. By Theorem 3.4 of [21], this convergence
also holds in the functional sense in the Skorokhod space. However, the extinction
time of Z() converges in probability to 400, and so the condition (2.28) cannot hold.

There is however a very important special case where (2.28) holds.

Theorem 2.3.2 Suppose that p, = p for every p and that the convergence (2.1) holds.
Then the condition (2.28) is automatically satisfied and the conclusion of Theorem

2.8.1 holds.

As we will see in the proof, under the assumption of Theorem 2.3.2, the process
X must be stable with index a € (1,2]. Clearly condition (2.27) holds in that case.

y
[Pypt

In view of Theorem 2.2.1, the proof of Theorem 2.3.1 reduces to

Proof of Theorem 2.3.1. To simplify notation, we set Ht(p) = 'yp_lH

(P) _ —1y/P
Vit =p V[mpt]'
checking that the laws of the processes (Ht(p ), t > 0) are tight in the set of probability
measures on D(Ry,R). By standard results (see e.g. Corollary 3.7.4 in [14]), it is
enough to verify the following two properties:

| and

(i) For every t > 0 and 7 > 0, there exists a constant K > 0 such that

liminf P[H® < K]>1-1.

p— 00

(ii) For every T' > 0 and ¢ > 0,

lim lim sup P[ sup sup |Ht(p) — H((le)Q,nH > 5} =0.
n—oo p—00 1§i§2n te[(i_l)Q—nT’iQ—nT]

Property (i) is immediate from the convergence of finite-dimensional marginals.
Thus the real problem is to prove (ii). We fix § > 0 and T' > 0 and first observe that

P[ sup sup |HP — H((fll)2_nT| > 5} (2.30)
1<i<2n te[(i—1)2—nT,i2—"T)

< Ai(n,p) + Az(n,p) + Asz(n,p)

where
1(n,p) = _1<s;1<p2n |Hjpong — (i—1)2—"T‘ 5
[ ) < ) 40 on
As(n,p) = P sup H > H(i—l)Q—"T + — for some 1 <¢ <2 }
Lte[(i-1)2-nT,i2— T o
As(n,p) = P| inf HP < HP 74—5f0rsomel<i<2”}
’ Lte(i—1)2-nT,i2—nT] 2 T 5 -
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The term A is easy to bound. By the convergence of finite-dimensional marginals,
we have

. ]
limsup A;(n,p) < P[ sup |Hijg—np — Hi—1y2-n7| > ¥
p—oo 1<i<an

and the path continuity of the process H ensures that the right-hand side tends to 0
as n — o0o.

To bound the terms A; and Asz, we introduce the stopping times T]gp), k>0
defined by induction as follows:

Tép)zo

)
T]E]j_)l = inf{t > T,ip) : Ht(p) > inf HP + g}

r,i”’grgt
Let i € {1,...,2"} be such that
46
sup H > HP g+ (2.31)
te[(i—1)2-"T,i2= T

Then it is clear that the interval [(¢ —1)27"T, 2~ "T] must contain at least one of the

)

random times T,gp ), k> 0. Let T;p be the first such time. By construction we have

1)
sup Ht(p) S H((f_)l)Q—nT + 57
te[(i—1)2=T,7(")

and since the positive jumps of H® are of size T L we get also

() ®) O, 1 _ 20
HTj()m = H(f—1)2*"T + 5 +% < H(f—nrnT + 5

provided that vy, > 5/d. From (2.31), we have then
5
sup Ht(p) > H(I()Z),) + 5

te[r™ i2—nT] T

which implies that T;i)l < 427"T. Summarizing, we get for p large enough so that

Yp >5/6
As(n,p) < P[T,Ep) < T and T,E’i)l - T,gp) < 27"T for some k > 0. (2.32)

A similar argument gives exactly the same bound for the quantity As(n,p).
The following lemma is directly inspired from [14] p.134-135.

Lemma 2.3.3 For every x >0 and p > 1, set
Gp(z) = P[T,gp) <T and T,gr)l - T]gp) <z for some k > 0}
and

Fp(z) = supP{Tép) <T and T,Ezjr)l - T,gp) < x]
k>0

Then, for every integer L > 1,

Gp(z) < LF,(x)+ LeT/ dye ™ Fy(y).
0
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Proof. For every integer L > 1, we have

L—-1
Gp(x) < Z P[T,gp) < T and Tk(r;i)l — 7-15 P) < x] + P[Tép) < T]
k=0

< LFy(z) + GTE[l{T£p><T} exp ( Z Tk+1 (1”) )}
k=0
al ®) _ o) 1k
TR |
k=0

Then observe that for every k € {0,1,...,L — 1},

o
(p) (p) _I
E |:1{7—£p)<T} eXp(_L(Tk+1 Tk ))i| S FE |:1{T,Ep)<T} /T(p) _T(p) dy Le y:|
k+1" Tk

/ dy Le ™ F,(y).
0

IN

The desired result follows. O

Thanks to Lemma 2.3.3, the limiting behavior of the right-hand side of (2.32) will
be reduced to that of the function F,(z). To handle F,(z), we use the next lemma.

Lemma 2.3.4 The random variables Té’jr)l —T]Sp) are independent and identically dis-

tributed. Under the assumptions of Theorem 2.3.1, we have

lim (lim sup P[Tl(p) < x]) =0.

x]0 p—00
We need a simple lemma.
Lemma 2.3.5 Let V be a random walk on Z. For every n > 0, set

=Card{k €{0,1,...,n—1}: Vi = inf V;}. (2.33)
k<j<n
Let 7 be a stopping time of the filtration (F?2) generated by V. Then the process

H®, — inf H°n>0>
( Tn T<k<t4+n kT =

is independent of F2 and has the same distribution as (H2,n > 0).

Proof. By considering the first time after 7 where the random walk V' attains its
minimum over [7, T + n], one easily gets

inf Hp =Card{ke{0,1,...,7—1}: Vi = inf V;}

T<k<T+n k<j<t4+n
Hence,
H?, — inf H = Cad{ke{r,....7+n—-1}:Vp, = inf V;
T T<k<T4+n k { { ’ ’ } k k<j<t4+n J}

= Card{k e {0,...,n—1}:VkT—k1nf Vi

<n
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where V7 denotes the shifted random walk V.7 = V,,,, — V,.. Since V7 is independent
of F, and has the same distribution as V, the desired result follows from the previous
formula and (2.33). O

Proof of Lemma 2.3.4. Fix k£ > 1 and set for every t > 0,
AP =g~ inf  H®,
T, +t T;EP)STSTIEP)*H

As a consequence of Lemma 2.3.5, the process (ﬁt(p), t > 0) is independent of the past

of V() up to the stopping time T]gp) and has the same distribution as (Ht(p),t > 0).
Since by definition

. 0
T,gﬁ_)l - T,ip) =inf{t >0: Ht(p) > 5}
the first assertion of the lemma follows.

Let us turn to the second assertion. To simplify notation, we write 8’ = /5. For
every n > 0, set

TP =inf{t > 0: V% = —[T]}.
Then,

Plr? < a] = P[supHS(p) > (5’} < P| sup HP > ¢ + PIT{) < a).
s<z S§T7(7p)

On one hand,
limsupP[T,gp) <z| < P[T, < i,

p—0o0

and for any choice of n > 0, the right-hand side goes to zero as = | 0. On the other
hand, the construction of the discrete height process shows that the quantity

sup HP)
sSTéP)

is distributed as ~, ' (M, — 1), where M, is the extinction time of a Galton-Watson
process with offspring distribution p,, started at [pn]. Hence,

P[ sup HP > (5’} =1 _9[(5') , ]+1(0)[pn]a
SST’(IP) Tp

and our assumption (2.28) implies that

lim (hmsupP{ sup H® > 5'}) =0
n—0 pP—00 SSTTSI))

The second assertion of the lemma now follows. O

We can now complete the proof of Theorem 2.3.1. Set:

F(z) =limsup F,(z) , G(x)=limsup Gp(x).

p—0o p—o0
Lemma 2.3.4 immediately shows that F(x) | 0 as | 0. On the other hand, we get
from Lemma 2.3.3 that for every integer L > 1,

G(z) <LF(z)+Le" /0OC dye ™ F(y).
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It follows that we have also G(z) | 0 as = | 0. By (2.32), this gives

lim (hmsup Ag(ﬂ,p)) =0,

n—oo p—o0

and the same property holds for As(n,p). This completes the proof of (ii) and of
Theorem 2.3.1. d
Proof of Theorem 2.3.2. We now assume that v, = v for every p and so gr(Lp) = gn.
We first observe that the process X must be stable. This is not immediate, since
the convergence (2.2) a priori implies only that v belongs to the domain of partial
attraction of the law of X7, which is not enough to conclude that v is stable. However,
the conditions (C1) — (C3), which are equivalent to (2.2), immediately show that the
sequence 7, /vp+1 converges to 1 as p — oco. Then Theorem 2.3 in [37] implies that
v belongs to the domain of attraction of the law of X7, and by classical results the
law of X; must be stable with index o € (0,2]. We can exclude o € (0, 1] thanks to
our assumptions (H2) and (H3) (the latter is only needed to exclude the trivial case
¥(A) = ¢A). Thus a € (1,2] and ¥(A) = cA* for some ¢ > 0. As a consequence of
(1.32), we have E[e=*Y3] = exp —(A~% 4 cad)~ 1/, where @ = o — 1. In particular,
P[Y; = 0] = exp —(cad) /% > 0.

Let g = g1 be the generating function of p. We have ¢'(1) = > k u(k) = 1, because
otherwise this would contradict (2.2). From Theorem 2 in [16], p.577, the function

> (k)

k>x

must be regularly varying as x — oo, with exponent —«a. Then note that

gle™) =14+ A= iu(k) (e — 14+ k) = )\/Oo d(1—e )Y (k).
k=0

0 k>x

An elementary argument shows that g(e=*) — 1+ \ is also regularly varying as A — 0
with exponent a. Put differently,

g(r)=r+1—-r)*L(1-r), 0<r<1,

where the function L(z) is slowly varying as 2 — 0. This is exactly what we need to
apply a result of Slack [47].

Let Z{p ) be a random variable distributed as (1 = g(s+,](0)) times the value at
time [0, of a Galton-Watson process with offspring distribution p started with one
individual at time 0 and conditioned to be non-extinct at time [0,]. Theorem 1 of
[47] implies that
@,

p—00

zZ® U

where U > 0 a.s. In particular, we can choose positive constants ¢y and c¢; so that
P[pr) > cg] > ¢1 for all p sufficiently large. On the other hand, we have

1 @ 1 (») (»)
i 7 S — /A SRR/ A
p 10 lemaﬂmﬁ(l MJ

where Z%p), Zép), ... are i.id., and M, is independent of the sequence (Z](p)) and has
a binomial B(p,1 — g5+,1(0)) distribution.
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It is now easy to obtain the condition (2.28). Fix § > 0. Clearly it suffices to verify
that the sequence p(1—gjs,,1(0)) is bounded. If not the case, we can choose a sequence
(pr) such that pi(1 — gis,,,1(0)) converges to co. From the previous representation

for the law of %Y[g’%], it then follows that

1 Pk
P ;Tk.y[‘s%k] > cpcq k?og 1.
From (2.1), we get that P[Ys > coc1] = 1, which gives a contradiction since P[Y; =
0] > 0. This completes the proof of (2.28).
Finally, since (2.27) holds, we can apply Theorem 2.3.1. O

2.4 Convergence of contour processes

In this section, we show that the limit theorems obtained in the previous section for
rescaled discrete height processes can be formulated as well in terms of the contour
processes of the Galton-Watson trees. The proof relies on simple connections between
the height process and the contour process of a sequence of Galton-Watson trees.

To begin with, we consider a (subcritical or critical) offspring distribution u, and
a sequence of independent p-Galton-Watson trees. Let (H,,n > 0) and (Ct,t > 0) be
respectively the height process and the contour process associated with this sequence
of trees (see Section 0.2). We also set

K, =2n— H,.

Note that the sequence K, is strictly increasing and K,, > n.

Recall that the value at time n of the height process corresponds to the generation
of the individual visited at time m, assuming that individuals are visited in lexico-
graphical order one tree after another. It is easily checked by induction on n that
[K,, K1) is exactly the time interval during which the contour process goes from
the individual n to the individual n + 1. From this observation, we get

sup |Cy — Hp| < |Hpy1 — Hy| + 1.
te[Kn, Kny1]

A more precise argument for this bound follows from the explicit formula for C; in
terms of the height process: For ¢ € [K,,, K1),

Ct = (Hn — (t — Kn))+ ifte [K’ru Kn+1 — 1],
Ct = (HnJrl — (Kn+1 — t))Jr ifte [KnJrl — 1,Kn+1].

These formulas are easily checked by induction on n.
Define a random function f : Ry — Z, by setting f(t) = n iff t € [K,, Kpy1).
From the previous bound, we get for every integer m > 1,

sup [Cy — Hypy| < sup |Cy — Hypy| < 1+ sup [Hyyp1 — Hyl. (2.34)
te[0,m] te[0,Km] n<m

Similarly, it follows from the definition of K, that
t t 1
sup |f(t)— <] < sup |f(t)— z| < < sup H, + 1. (2.35)
te[0,m] 27 e0,Km) 27 2 5<m

We now come back to the setting of the previous sections, considering for every
p > 1 a sequence of independent Galton-Watson trees with offspring distribution .
For every p > 1, we denote by (C?,t > 0) the corresponding contour process.
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Theorem 2.4.1 Suppose that the convergences (2.2) and (2.29) hold. Then,

-1 (d)
(yp otz o) 5 (Hy,t 2 0) (2.36)
In particular, (2.36) holds under the assumptions of Theorem 2.3.1 or those of The-
orem 2.3.2.

Proof. For every p > 1, write f, for the analogue of the function f introduced above.
Also set p,(t) = (pyp) " fo(pypt). By (2.34), we have for every m > 1,

1 1 1 1
sup |—C¥ ,— —H? <—+— sup |HY ,—HE — 0 2.37
t<m 'Vp Pt Tp P ep(t) T p ngmp“/p| i |p_’°° ( )
in probability, by (2.29).
On the other hand, we get from (2.35)
oy (t) — L < — mP 4L 0 (2.38)
sup |¢p(t) — =] < sup — .
t<m 2 20%p k<mpy, b poe
in probability, by (2.29).
The statement of the theorem now follows from (2.29), (2.37) and (2.38). O

2.5 A joint convergence
and an application to conditioned trees

The convergences in distribution (2.29) and (2.36) hold jointly with (2.1) and (2.2).
This fact is useful in applications and we state it here as a corollary.

As previously, we consider for every p a sequence of independent f,,-Galton-Watson
trees and we denote by (HE,n > 0) the associated height process and by (C?,t > 0)
the associated contour process. The random walk V? with jump distribution v, (k) =
tp(k+1) is related to H? via formula (2.4). Finally, for every integer k > 0, we denote
by Y} the number of individuals at generation k in the first p trees of the sequence,
so that, in agreement with the previous notation, (Y?,n > 0) is a Galton-Watson
process with offspring distribution p, started at Y = p.

Recall that (LY,a > 0,t > 0) denote the local times of the (continuous-time)
height process associated with the Lévy process X. From Theorem 1.4.1, we know
that (L%, ,a > 0) is a ¢-CSBP and thus has a cadlag modification.

Corollary 2.5.1 Suppose that the assumptions of Theorem 2.3.1 are satisfied. Then,

_ _ _ (d)
(p lv[ivpt]’vp VHE % 1C§mpt; t= 0) — (X, Hy, Hist > 0)

[P"/pt] ’ p—00

in distribution in D(R4,R3). We have also

(P¥2, 0 20) (15,02 0)

p—00

in distribution in D(R4,R). Furthermore, these two convergences hold jointly, in the
sense that, for any bounded continuous function F' on D(R,,R3) x D(R ., R),

: -1 ~1 -1 -1
pll>ngoE|:F((p ‘/[Z,th],")/p H[Z;'thPPYP Cgp’yiﬂt)tz()’ (p }/[?Ypa])azo)]
= E[F((X¢, Hy, Hi)i>0, (LT, )a>0)]-
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Proof. To simplify notation, write V;(p) = p*IV[p ) Ht(p) =, 'H! cP =

Pypt [pypt]” 7t
vp_ngmpt and Y,P) = p‘lY[f;pa]. By (2.2), (2.29) and (2.36), we know that each
of the three sequences of the laws of the processes V), H® C®) is tight, and
furthermore H®) and C'®) converge in distribution towards a continuous process. By
a standard result (see e.g. Corollary I1.3.33 in [24]), we get that the laws of the triples
(V@) H®P) C®) are tight in D(R,,R?). Let (X, H*, H**) be a weak limit point of
this sequence of triples (with a slight abuse of notation, we may assume that the first
component of the limiting triple is the underlying Lévy process X). By the Skorokhod
representation theorem, we may assume that along a subsequence,

(V(p),H(p),C(p)) — (X, H*, H*)

a.s. in D(Ry,R3). However, the convergence (2.6) and a time-reversal argument
imply that

s 7= 0=
in probability. This is enough to conclude that H = H;. Similarly, the proof of
Theorem 2.4.1 shows that

Jim (G — H") = 0
in probability. This yields H;* = H} = H; and we see that the limiting triple is
equal to (X, H, H) and does not depend on the choice of the subsequence. The first
convergence of the corollary now follows.

By (2.1), we know that

¥®.a>0) ‘L (v,,a>0)

pP—00
where Y is a 1)-CSBP started at 1. Since we also know that (L, ,a > 0) is a -CSBP
started at 1, the second convergence in distribution is immediate, and the point is to
verify that this convergence holds jointly with the first one. To this end, note that
the laws of the pairs ((V®), H®) C®) Y®)) are tight in the space of probability
measures on D(R,,R3) x D(R,,R). By extracting a subsequence and using the
Skorokhod representation theorem, we may assume that
((V(p),H(p),C(p)),Y(p)) N ((X, H H), 2)7
p—00

a.s. in D(R4,R3)xD(Ry, R). The proof will be finished if we can verify that Z, = L.,
the local time of H at level a and time T7. To this end, let g be a Lipschitz continuous
function from R into R} with compact support. The preceding convergence implies

o0

lim g(a)Y,P) da = / g(a)Z, da , a.s. (2.39)
On the other hand, let T be the hitting time of —p by V?. The convergence of 17482
towards X easily implies
1
lim —T7P =inf{t >0: X, =—-1} =Ty, a.s. 2.40
Jim T —imf{t 2 0: X = 1) =Ti s (240)
Then, from the definition of the height process of a sequence of trees, we have

() 1
p _ Ly
/0 g()Y, P da = /0 g(a) thpa} da
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S (Y
= = g(a)( 1{Hp:k})da
P07k §=0 !
12 ety
= - Z / ) g(a)da
P 520 JwtHY
TP -1
= LS gty + o)
p J p,yg p

p’yp §=0

(pp) ™' T} - 1
— - P
_ /0 0 H] ) s+ 015 T)

and in view of (2.40) this converges to

Tl o0
/ g(H,) ds = / 9(a) L, da.
0 0

Comparing with (2.39), we conclude that

/ g(a)Z, da = / g(a) L7, da.
0 0

This implies that Z, = L7, and completes the proof. O

As an application, we now discuss conditioned trees. Fix T' > 0 and on some
probability space, consider a j1,-Galton-Watson tree conditioned on non-extinction at
generation [y,T7], which is denoted by TP. Let HP? = (H?,n > 0) be the associated
height process, with the convention that H? = 0 for n > Card (T?).

Proposition 2.5.2 Under the assumptions of Theorem 2.5.1, we have

(3 7, gt 2 0) 2 (Mt > 0),

[Pypt]’ p—oo
where the limiting process H is distributed as H under N(- | sup Hy, > T).

Remark. We could have stated a similar result for the contour process instead of
the discrete height process.

o FT®) _ 1 FP P
Proof. Write Hs™ =, H, [prps) PC

as above the rescaled height process for a sequence of independent f,-Galton-Watson
trees. Set

to simplify notation. Also let H?) = v, L H

7]
=1
Tp

Gg,?) = sup{s < Rg,?) cH®P) =0},

DY =inf{s > R¥ : HP = 0}.

Rg,?) =inf{s > 0: HS(P) =

Then without loss of generality we may assume that

AP = HY) §>0
s (GP +5)ADP =

This is simply saying that the first tree with height at least [y,T] in a sequence
of independent ji,-Galton-Watson trees is a p,-Galton-Watson tree conditioned on
non-extinction at generation [v,T.
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Set

Ry =inf{s >0: H; =T},
Gr =sup{s < Ry : Hy = 0},
Dr =inf{s > Ry : H; = 0},

and note that we may take H, = H(G,4s)ADy» by excursion theory for X — 1.

We now claim that the convergence in distribution of H® towards H follows from
the previous corollary, and more precisely from the joint convergence

(V(p) H(”)) ), (X, H).
b )
p—00

It is again convenient to use the Skorokhod representation theorem and to assume
that the latter convergence holds a.s. We can then prove that H® converges a.s.
towards H.

To this end we need a technical lemma about the height process. We state it in
greater generality than needed here in view of other applications.

Lemma 2.5.3 Let b > 0. Then P a.s. or N a.e. b is not a local mazimum nor a
local minimum of the height process.

Proof. Let

D={b>0:P[sup Hs;=>5] >0 for some rationals ¢ > p > 0}.
p<s<q

Clearly D is at most countable. However, from Proposition 1.3.1 and the relation
between the height process and the exploration process, it immediately follows that
if b€ D then b—a € D for every a € [0,b). This is only possible if D = (). The case
of local minima is treated in the same way. O

It follows from the lemma that we have also Ry = inf{s > 0: Hy > T'}. Then the
a.s. convergence of H®) towards H easily implies that Rg? ) converges to Ry a.s., and
that

limsup G¥ < Gy, liminf DY) > Dy .
p—00 P00

To get reverse inequalities, we may argue as follows. Recall that the support of the
random measure dI is exactly the set {s : H; = 0}, so that for every fixed s > 0,

we have I; > Ir, as. on the set {s < Gp}. If P = inf{VT(p) , 7 < s}, the as.
convergence of V() to X implies that T S(p ) converges to I uniformly on compact sets,

a.s. It readily follows that a.s. on the set {s < Gr} we have P > I(p&) for all p
RT

sufficiently large. Hence a.s. for p large, we have s < Gg?) on the set {s < Gpr}. We

conclude that Gg? ) G a.s., and a similar argument gives Dgf) ) Dp. From the

preceding formulas for H® and H, it follows that H® — H a.s. This completes the
proof of the proposition. O

Remark. The methodology of proof of Proposition 2.5.2 could be applied to other
conditioned limit theorems. For instance, we could consider the rescaled height (or
contour) process of the ,-Galton-Watson tree conditioned to have at least pry, vertices
and derive a convergence towards the excursion of the height process H conditioned
to have length greater than 1. We will leave such extensions to the reader. We
point out here that it is much harder to handle degenerate conditionings. To give
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an important example, consider the case where u, = p for every p. It is natural to
ask for a limit theorem for the (rescaled) height or contour process of a p-Galton-
Watson tree conditioned to have a large fixed number of vertices. The previous results
strongly suggest that the limiting process should be a normalized (i.e. conditioned
to have length equal to 1) excursion of the height process H. This is indeed true
under suitable assumptions: When g is critical with finite variance, this was proved
by Aldous [3] in the case of the contour process and the limit is a normalized Brownian
excursion as expected. Aldous’ result has been extended by Duquesne [10] to the case
when 4 is in the domain of attraction of a stable law of index - € (1,2]. In this more
general setting, the limit is the normalized excursion of the stable height process,
which is discussed in Section 3.5 below.

2.6 The convergence of reduced trees

Consider a u-Galton-Watson tree, which describes the genealogy of a Galton-Watson
process with offspring distribution p starting with one individual at time 0. For every
integer n > 1, denote by P("™ the conditional probability knowing that the process
is not extinct at time m, or equivalently the height of the tree is at least n. Under
P(") we can consider the reduced tree that consists only of those individuals in the
generations up to time n that have descendants at generation n. The results of the
previous sections can be used to investigate the limiting behavior of these reduced trees
when n tends to oo, even in the more general setting where the offspring distribution
depends on n.

Here, we will concentrate on the population of the reduced tree at every generation.
For every k € {0,1,...,n}, we denote by Z}' the number of individuals in the tree
at generation k which have descendants at generation n. Obviously, k& — Z}} is
nondecreasing, Z)' = 1 and Z}} is equal to the number of individuals in the original
tree at generation n. If g denotes the generating function of p and g,, n > 0 are the
iterates of g, it is easy to verify that (Z;',0 < k < n) is a time-inhomogeneous Markov
chain whose transition kernels are characterized by:

g(T(l — gn—k‘—l(o)) + gn—k—l(o)) - gn—k(o)
1= gn—«(0)

The process (Z},0 < k < n) (under the probability measure P(™)) will be called the
reduced process of the u-Galton-Watson tree at generation n. It is easy to see that
for every k € {0,1,...,n—1}, Z}’ can be written as a simple functional of the height
process of the tree: Z}} counts the number of excursions of the height process above
level k that hit level n.

Consider as in the previous sections a sequence (up,p = 1,2,...) of (sub)critical
offspring distributions, and for every integer n > 1 let Z(®)" = (Z,gp)’", 0<k<n)be
the reduced process of the p,-Galton-Watson tree at generation n. For every T' > 0,
we denote by Ny the conditional probability N(- | sup{Hs,s > 0} > T') (this makes
sense provided that the condition (2.27) holds, cf Corollary 1.4.2).

n Zn
E(")[rzkﬂ |Z,?]:< ) k . 0<k<n.

Theorem 2.6.1 Suppose that the assumptions of Theorem 2.3.1 hold and let T > 0.
Then,

(Z“’)’WT],ong) Y4 7T o<t <T),

[vpt] p—00

where the limiting process (Z1',0 <t < T) is defined under Nty as follows: For every
t€1[0,T), ZL' is the number of excursions of H above level t that hit level T
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A more explicit description of the limiting process and of the associated tree will
be given in the next section.

Proof. We use the notation of the proof of Proposition 2.5.2. In particular, the height
process of the p,-Galton-Watson tree conditioned on non-extinction at generation

[T is (H?,k > 0) and the associated rescaled process is AP = ’yp_lﬁ[’;%s]. We

may and will assume that H. ép ) is given by the formula

~5(~p) = H(p)< ) (»)
(G +s)ADF

and that (ﬁ S(p ), s > 0) converges a.s. in the sense of the Skorokhod topology, towards

the process Hs = H(G, 1 s)np, Whose law is the distribution of H under N(r.

Now we observe that the reduced process Z[(f )é]hpT] can be expressed in terms of
- p
H®)_ More precisely, it is clear by construction that for every k € {0,1,..., [T —

1}, Z,(f ):02T] s the number of excursions of H” above level k that hit level T
Equivalently, for every ¢ such that [y,t] < [v,T],

7). (), [vT]
Z" = Z[ipt]v

is the number of excursions of H®) above level [y,t]/v, that hit level [v,T]/7,.

Let t > 0. Using the fact that ¢, resp. T, is a.s. not a local minimum, resp.
maximum, of H (Lemma 2.5.3), it is easy to deduce from the convergence H® — H
that the number of excursions of H®) above level [y,t]/7, that hit level [v,7]/7,
converges a.s. to the number of excursions of H above level ¢ that hit level T. In

other words, Zt(p ) converges a.s. to Z; . This completes the proof. o

2.7 The law of the limiting reduced tree

In this section, we will describe the law of the process (Z1,0 <t < T) of the previous
section, and more precisely the law of the underlying branching tree. We suppose that
the Lévy process X satisfies (2.27) in addition to (H1) — (H3). The random variable
ZI' (considered under the probability measure N(r)) counts the number of excursions
of H above level ¢ that hit level T'.

Before stating our result, we recall the notation of Section 1.4. For every A > 0
and t > 0,

ui(A) = N(1 — exp(~AL.))

solves the integral equation

w()) + / V(ug(N) ds = A

. v(t) = us(o0) = N(LE > 0) = N(supHS > t)

s>0
/°° dx
— =1.
o) Y(T)

Note the composition property u; o us = uz4s, and in particular u;(v(r)) = v(t +r).

is determined by
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Theorem 2.7.1 Under N(ty, the process (ZF,0 <t < T) is a time-inhomogeneous
Markov process whose law is characterized by the following identities: For every A > 0,

u((1— e (T —t)) .

N Az =1- 2.41
(T) [exp t ] ’U(T) ( )
and if 0 <t <t <T,
_ T
Nerylexp ~AZE | ZT] = (Nir—ylexp ~AZL =) % (2.42)

Alternatively, we can describe the law of the process (ZF,0 <t < T) under Nery by
the following properties.

e ZI' =1 if and only if v € [0,7), where the law of yr is given by

Nyl >t = iz}((l}T(T_)i))

. 0<t<T, (2.43)
where )(z) =z~ (z).
e The conditional distribution of Z%FT knowing vy is characterized by
Y'(U) = (U, (1 -r)U)
Y'(U) = (U, 0)
where U = v(T —t) and for every a,b > 0,

(¥(a) = (b)) /(a=b)  if a#D,
W’(a’b):{ ¥’ (a) if a=b.

e Conditionally on yr = t and Z,?T = k, the process (ZtT_H,O <r<T-—t)is
distributed as the sum of k independent copies of the process (ZI 4,0 < r <
T —t) under Nip_y).

Nyl | yr =1 =r 0<r<1 (244)

Proof. One can give several approaches to Theorem 2.7.1. In particular, the time-
inhomogeneous Markov property could be deduced from the analogous result for dis-
crete reduced trees by using Theorem 2.6.1. We will prefer to give a direct approach
relying on the properties of the height process.

Before stating a key lemma, we introduce some notation. We fix ¢ € (0,7T"). Note
that the definition of Z} also makes sense under the conditional probability Ny We
denote by (ef,i = 1,...,Zl') the successive excursions of H above level ¢t that hit
level T' — ¢, shifted in space and time so that each starts from 0 at time 0. Recall the
notation L% for the local times of the height process. We also write L'Ei) for the local

time of H at level ¢ at the beginning of excursion €.
Lemma 2.7.2 Under N, conditionally on the local time Lt | the point measure

z!

> 0wt e

i=1

is Poisson with intensity 1jo pt)(¢)d¢ N(de N {sup Hs > T —t}). In particular, un-
der Ny or under Nry, conditionally on ZL, the excursions (el,i = 1,...,ZF) are
independent with distribution N(p_y).
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Proof. We rely on Proposition 1.3.1 and use the notation of Chapter 1. Under the
probability measure P, denote by ff,i =1,2,... the successive excursions of H above
level ¢ that hit 7', and let ¢! be the local time of H at level ¢ at the beginning (or the
end) of excursion ff. Then the f!’s are also the successive excursions of the process
H! = H(p') that hit level T —¢, and the numbers £} are the corresponding local times
(of HY) at level 0. By Proposition 1.3.1 and excursion theory, the point measure

> S
1=1

is Poisson with intensity d¢ N (df N{sup Hs > T'—t}) and is independent of the o-field
H;.

On the other hand, let A\; be the local time of H at level ¢ at the end of the first
excursion of H away from 0 that hits level ¢. From the approximation of local time
provided by Proposition 1.3.3, it is easy to see that \; is H;-measurable. By excursion
theory for X — I, the law under N of the pair

z]
t
(La» 2 oLt 765))
is the same as the law under P of

(e D dusn)-

{i:0t <A1}

The first assertion of the lemma now follows from the preceding considerations.
The second assertion stated under N is an immediate consequence of the first
one. The statement under Np follows since Ny = Ny (- | Z{ > 1). O

We return to the proof of Theorem 2.7.1. Note that (2.42) is an immediate con-
sequence of the second assertion of the lemma. Let us prove (2.41). By the first
assertion of the lemma, Z] is Poisson with intensity v(T —t)L!, conditionally on L!
under N(;). Hence,

T . N
N(t) [e_)\Zt ] = N(t) |:6—LUU(T—t)(1_e )]
= 1- i]\T(l — e_sz(T—t)(l—e*)‘))
v(t)

= —Lu — e M(T —t)).

Then observe that

_ 1 g7 v(T) T
N[l —e ] = —N(1 —e ) = 2Ny [1 — e 0.
(t)[ € } ’U(t) ( € ) ’U(t) (T)[ € ]
Formula (2.41) follows immediately.
It is clear that there exists a random variable v such that Z1 = 1iff 0 <t < 7,

N(ry a.s. (yr is the minimum of the height process between the first and the last
hitting time of T'). Let us prove (2.43). By (2.41), we have,

)\ZtT] — lim & (1 (- e M(T — t)))

_ . A —
Nyl >t = A15206 Nryle o)

A—o0
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Recalling that u;(v(T —t)) = v(T), we have as ¢ — 0,

(1 =T — 1)) = ofT) — 2o(T — ) P (u(T ~ 1)) + o(c),

and it follows that

N > = 520 S u(r o).

Formula (2.43) follows from that identity and the fact that, for A > 0,
dug ()

—t = 24
To verify (2.45), differentiate the integral equation for wu;(\):
Ouy ¢ Qus ,
M =1= O (A) ¥ (us(N)) ds
which implies
8ut

Then note that 6 7 log Y (ug(A)) = =" (ug (A )) and thus

A¢mmmw=mwwo»4%w»

This completes the proof of (2.45) and (2.43).
We now prove the last assertion of the theorem. Recall the notation introduced
before Lemma 2.7.2. Clearly it suffices to prove that the following property holds:
(P) Under N(r), conditionally on vy = ¢ and Z?;T = n, the excursions €], ... elT
are i.i.d. according to the distribution N(7_y).

We can deduce property (P) from Lemma 2.7.2 via an approximation procedure.
Let us sketch the argument. For any p > 2 and any bounded continuous functional
F on RJ’_ X C(R.;’_,R_;’_)p,

Neryllizz —pyF(yr,el”, ... e)7)]
n—1

]T iT/ T /n
*HILH;OZN@)[ 128y =ml= DT n<an<irmpF (e 7 e]T/™) (2.46)

Note that the event {yr < jT/n} contains {Z7, i7/n = P}- As a consequence of the

second part of Lemma 2.7.2 (applied with ¢ = jT/n) we have

.]T iT/n iT/n
Nir) [1{ZJTT/”:P§’YT§J'T/"}F(?’ e et )}

= N) [ {27, =pr <iT/n}

/N(T—jT/n) (df1) ... Ner—jr/m)(dfp) F(%, fioo o fo)|-

We want to get a similar identity where the event {vr < j7/n} is replaced by
{vr <(G-1)T/n} = {Z(] 1yr/n = 2} Aslightly more complicated argument (relying
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on two applications of Lemma 2.7.2, the first one with ¢ = (j — 1)T//n and then with
t = T'/n) shows similarly that

.]T iT/n iT/n
N(T)[l{zT —pevr<G-nr/mF (T ,---,e;/)}

iT/n

= N [I{ZT =p;yr<(j—1)T/n}

iT/n

/'
X /N(Tij/n)(dfl) . ~'N(T7jT/n)(dfp)F(%af1; . -afp)}'

By making the difference between the last two displays, we see that the sum in
the right side of (2.46) exactly equals

n—1

Z N [1{Z]-TT/n,:p;(j—1)T/n<’vTSjT/n}
j=1

X/N(Tij/n)(dfl)N(T*]T/n)(dfp)F(%aflaafp) .

Using an easy continuity property of the mapping r — N, we get from this and
(2.46) that

Ny lLzz, P, €7, €37)]

= N1 {1{Z$T:p}/N<T—VT)(df1)~--N<TwT>(dfp)F(vT,f1,-~.7fp)}7

which completes the proof of property (P) and of the last assertion of the theorem.

We finally verify (2.44). First observe from (2.43) that the density of the law of
yr under N(r) is given by

>
)ﬂ
*
SN—
Il
<
[~
N
N~—
N—
=
N
|
o~
SN~—

where

On the other hand, fix § € (0,T), and note that {yr > ¢} = {Z] = 1}. By the last
assertion of Lemma 2.7.2 we have for any nonnegative function f,

Ny [f(vrs ZE ) 1npsey | vr > 6] = Nir—s) [f (vr—s + 6, Z2°)].

Hence, if (07 (k),k =2,3,...), 0 < t < T denotes a regular version of the conditional
law of ZVTT knowing that vr = t, we have

T o0 T—6 %)
/ dth(T —1) > 0] (k) f(t, k) / dth(T =5 —1)> 07 (k) f(t+06,k)
5 0

k=2 k=2

- /T dt h(T —t) i 015 (k) f (¢, k).
g k=2

This shows that we must have 67 = 0?__65 for a.a. t € (0,T). By simple arguments, we

can choose the regular versions 67 (k) in such a way that 67 (k) = 67_(k) for every
k>2,T>0andte (0,7).
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7AL§}

We can then compute N7)[e in two different ways. First,

T
Ty, NA-—eMe) o ur(d)
N(T)[e ]—1 ’U(T) =1 UT) .
Then, using property (P) once again,
LT T—t Z.,
Nple ] = Neoy [ (Ner—nle ™5 i) ]
T oo
- ’U,T,t()\> k
= / dt hr(t) ZeTft(k) (1 T (T t))

By comparing with the previous display and using the formula for hr(t), we get

/odt(wfft‘l)ze’f (-5 = e

We can now differentiate with respect to T' (for a proper justification we should argue
that the mapping ¢t — 6; is continuous, but we omit details). It follows that

P'TM)o(T) N\ o _up(A)\F
( D(o(T)) 1) kZ:fT(k) (1 o(T) )
V' (v(1))v(T) n Y(ur(A) —ur (N’ (v(T)

Hence,

> Cur(A)NF Y(ur(N) — ur(\Y' (v(T))
> or(k) (1 vm) =10 — oY)

“f((T’\)) in this last identity we get

& e (= (@) = (= (T (T))
2 br(k)rt = S(T)) — (D)o (D) '

If we substitute r = 1 —

Formula (2.44) follows after straightforward transformations of the last expression.
The proof of Theorem 2.7.1 is now complete. Observe that the (time-inhomoge-
neous) Markov property of the process (ZI,0 < t < T) is a consequence of the
description provided in the second part of the theorem, and in particular of the
special form of the law of v and the fact that the law of Z,?T under N(py[- [ vz > 6]

coincides with the law of ZZ % under N(7_s). O

Let us discuss special cases of the theorem. When ¢(u) = cu®, with ¢ > 0 and
1 < a <2, we have v(t) = (c(a — 1)t)"Y(@=1 and formula (2.43) shows that the
law of 7 is uniform over [0,7]. This is the only case where this property holds: If
we assume that yp is uniform over [0, 7], (2.43) implies that ¢ (v(t)) = C/t for some
C > 0. By differentiating log v(t), we then get that v(t) = C’t~¢ and it follows that
1 is of the desired form.

Also in the stable case ¢(u) = cu®, formula (2.44) implies that Z:{T is independent
of v, and that its distribution is characterized by

1-r)*—=1+ar
a—1 '

Ny %] =
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Of course when o = 2, we recover the well known fact that Z};T =2. When « € (1,2),

we get
a2-—a)83—a)---(k—1—-«
JV(T)[Z£ =k] = ( N ]3' ( ) , k>2.

To conclude let us mention that limiting reduced trees have been studied exten-
sively in the literature. In the finite variance case, the uniform distribution for ~p
appears in Zubkov [50], and the full structure of the reduced tree is derived by Fleis-
chmann and Siegmund-Schultze [17]. Analogous results in the stable case (and in the
more general setting of multitype branching processes) can be found in Vatutin [48]
and Yakymiv [49].
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Chapter 3

Marginals of continuous trees

3.1 Duality properties of the exploration process

In this section, we study certain duality properties of the process p. In view of forth-
coming applications, the main result is the time-reversal property stated in Corollary
3.1.6 below. However the intermediate results needed to derive this property are of
independent interest.

We work in the general setting of Chapter 1. In particular, the Lévy process
X satisfies assumptions (H1) — (H3), and starts at 0 under the probability measure
P. Since the subordinator Sy, -1(;) has drift § (Lemma 1.1.2), it readily follows from
formula (1.10) that the continuous part of p; is Bl g,)(r)dr. We can thus rewrite
Definition 1.2.2 in an equivalent way as follows:

pe(dr) = Bl gy (r)ydr+ > (I} = Xo) 6, (dr). (3.1)
0<s<t
Xo_<Ip

We then introduce another measure-valued process (1, t > 0) by setting

ne(dr) = Bl (r)dr+ > (Xo—I}) 6y, (dr). (3.2)
0<s<t
Xo_<Iy

In the same way as p;, the measure 7 is supported on [0, H;]. We will see below that
7 is a.s. a finite measure, a fact that is not obvious from the previous formula. In
the queueing system interpretation of [32], the measure p; accounts for the remaining
service times for all customers present in the queue at time ¢. In this interpretation,
7, describes the services already accomplished for these customers.

We will see that in some sense, the process (n;,t > 0) is the dual of (p;,t > 0).
It turns out that the study of (n,t > 0) is significantly more difficult than that of
(pt,t > 0). We start with a basic lemma.

Lemma 3.1.1 For each fized value of t > 0, we have {(n;,1) < oo, P a.s. or N
a.e. The process (m,t > 0), which takes values in My(Ry), is right-continuous in
probability under P. Similarly, (n,t > 0) is right-continuous in measure under N.

Proof. Let us first prove that (n:, 1) < oo, P a.s. It is enough to verify that

Z AXslx, <15y <0

0<s<t
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P a.s. By time-reversal, this is equivalent to

> AX I{x,ss,) <0 (3.3)

0<s<t

P a.s. However, for every a > 0,

E[ 3 (AXSA1)1{XS>537}} = aN*((AX,) A)lix,50})

0<s<L—1(a)
= a/w(dm)/ dz(z A1)
0

< a/w(dm) (z A x?)

< o0

using (1.3) in the second equality. This gives our claim (3.3) and the first assertion of
the lemma under P. The property (n:, 1) < co, N a.e., then follows from arguments
of excursion theory, using in particular the Markov property of X under N.

The preceding considerations also imply that

li AX,1 =
im Z (x.,>5..1 =0

0<s<t

in P-probability. Via time-reversal, it follows that the process 7, is right-continuous at
t = 0 in probability under P. Then let ¢y > 0. We first observe that n;, ({Hi,}) =0 P
a.s. This follows from the fact that there is a.s. no value of s € (0, tg] with X > Ss_
and Lg = 0. Then, for ¢t > g, write u = u(t) for the (first) time of the minimum of X
over [tg,t]. Formula (3.2) implies that 7; is bounded below by the restriction of 7, to

[0, H,), and bounded above by 7, + ﬁit_)to, where <?]§t_)t0, 1) has the same distribution

as (Mt—ty, 1) (more precisely, ﬁt(t_)tu is distributed as 7;_¢,, up to a translation by H,,).
The right-continuity in P-probability of the mapping ¢t — n, at ¢ = ¢y follows from
this observation, the property n:, ({Hz,}) = 0, the a.s. lower semi-continuity of Hy,
and the case t; = 0.

The right-continuity in measure under N follows from the same arguments. [

Rather than investigating the Markovian properties of (1, ¢ > 0) we will consider
the pair (pg,n:). We first introduce some notation. Let (u,v) € M;(R4)?, and let
a > 0. Recall the notation of Proposition 1.2.3. In a way analogous to Chapter 1, we
define ko(p,v) € My(R4)? by setting

kd(lu? V) = (ﬁ7 v)
where 7t = ko and the measure 7 is the unique element of My(Ry) such that
(1 + V)10, H (ko)) = kapt + 7.

Note that the difference w0, (k. ) — Kapt is a nonnegative multiple of the Dirac
measure at H (kqp), so that 7 and v g (x,,)) may only differ at the point H (kqpu).

Then, if 61 = (u1,11) € Mp(R4)? and 0y = (2, v2) € Mp(Ry)?, and if H(u1) <
00, we define the concatenation [01, 65] by

[01,02] = ([p1, p2l, v)
where (v, f) = [v1(ds) 1o,z uy)) (8)f(5) + [va(ds)f(H(u1) + 5).
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Proposition 3.1.2 (i) Let s > 0 and t > 0. Then, for every nonnegative measurable
function f on My(R;)?,

E[f(pstt:Ms+t) | Gs] = H?f(ﬁsvﬁs)

where 119 ((u, v), dp'dv’) is the distribution of the pair

[kflt (:u'v I/)7 (pt, 77t>}

under P. The collection (I19,t > 0) is a Markovian semigroup on M (R4 )2.
(ii) Let s > 0 and t > 0. Then, for every nonnegative measurable function f on
Mf(R+)27
N(f(psttsNstt) Listt<o} | Gs) = Lis<o} i f(ps,ms)

where Ty ((p, v),dp'dv') is the distribution of the pair

[kflt (/1'7 V)» (pta nt)}

under P(- N {T<, 1> > t}). The collection (Il;,t > 0) is a submarkovian semigroup
on Ms(R4)2.

Proof. (i) Recall the notation of the proof of Proposition 1.2.3, and in particular
formula (1.13). According to this formula, we have

pstt = [k_jps, ] (3.4)

where the pair (I(s),pg )) is defined in terms of the shifted process X (), which is

independent of G;. We then want to get an analogous expression for 7;. Precisely, we
claim that

(Pst:Ns4t) = [K_ o (ps575), (o 1)) (3.5)

with an obvious notation. Note that (3.4) is the equality of the first components in
(3.5).
To deal with the second components, recall the definition of 74,

Nsri(du) = Bl g, () dut Y (Xp = I7y,) 6u, (du).

0<r<s+t
Xp_<IT,,

First consider the absolutely continuous part. By (3.4), we have
Hoye = H(k_yps) + H(p}") = H(k_y0p) + H
and thus
/du Lo, .0 (w) f(u)
— [ty (0) 5@+ [ duti oy ) FOHGE op2) +0).

This shows that the absolutely continuous part of 744; is the same as that of the
second component of the right side of (3.5).
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Then the singular part of 7,44 is equal to

Z (X — Isr+t) OH,+ Z (X — I;—i—t) OH, - (3.6)
0<r<s s<r<s+t
X,«7<I;'_H XT7<I;'+t

Note that, if r € (s, s +1] is such that X, < I7,, we have H, = H(k_ ) ps) —i—Hﬁ‘?S
(see the proof of Proposition 1.2.3). Thanks to this remark, we see thgut the second
term of the sum in (3.6) is the image of the singular part of ngs) under the mapping
U — H(kil(s)ps) + u.

To handtle the first term of (3.6), we consider two cases. Suppose first that I, <
I, ;. Then set

v=sup{re (0,s]: X,_ <IJ,}.

In the first term of (3.6), we need only consider values r € (0,v]. Note that H, =
H(kJ(S)pS) and that the measures p, and k_ ) ps are equal except possibly at the
point lftIv (see again the proof of Proposition 1.f2.3). Then,

>, (Xe—IL)0m. = Y, (X, —1I))bn,
0<r<v 0<r<wv
Xoo<I7,, Xy <IT
coincides with the restriction of the singular part of 75 to [0, H,) = [0, H(k_ ;) ps))-
On the other hand, ns4+({H,}) is equal to l

Xo = Iy = ns({Ho}) + ps([0, H(k_ ;0 p5)]) = (F_ s, 1)
since by construction

ns({Ho}) = Xy — 17,
ps([O’H(k/’,]gS)ps)]) = ps([ovHvD = I: - IS’

<k71§S>PSv 1) =X, — L+ 1" = Lope = Is = Iy = I

By comparing with the definition of k, (u, ), we see that the proof of (3.5) is complete
in the case I, < I7,.

The case I, > I3, is easier. In that case k,IésWs =0, and even k71t<5>(ps,ns) =
(0,0) (note that ns gives no mass to 0, a.s.). Furthermore, the first sum in (3.6
vanishes, and it immediately follows that (3.5) holds.

The first assertion in (i) is a consequence of (3.5) and the fact that X () is inde-
pendent of Gs.

As for the second assertion, it is enough to verify that, for every s, > 0 we have

(k_porlhr, (. 0), (o)) (08 ™)) = [hery (0, 0), (s o). (37)

Note that the case p = v = 0 is just (3.5). To prove (3.7), we consider the same two
cases as previously.

If I7,, > I, or equivalently 7It(s) < {ps, 1), then Iy = I, and so k_y (u,v) =
k_r..,(p,v). Furthermore, it is easy to verify that a.s.

k_lt(S) [k,[s (,U/, V)a (Pm 775)} = [k,[S (/1*7 V)7 k_It(S) (psv ns)]
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Hence

ko [er, (1 0), oo m))s (8 )] = ([t (1 0) Ky (oo )]s (1™ ™)

= kon (), [k_ o (pssms)s (017 )],

and (3.7) follows from (3.5).

Finally, if I3,, < I,, or equivalently —It(s) > (ps, 1), it easily follows from our
definitions (and from the fact that ns({0}) = 0 a.s.) that

k,[t(s) [k_Is (M7 V)’ (/057 778)] = k_ls+t (M’ V) ) a.s.

Furthermore, the property I7, , < I, also implies that (pgs)’m(s)) = (pstt, Ns+t), and

this completes the proof of (3.7).

(ii) First note that, for s,t > 0, the identity (3.5) also holds N a.e. on {s+t < o}
with the same proof (the argument is even simpler as we do not need to consider the
case I, ; < I;). Also observe that N a.e. on {s < ¢}, the condition s +¢ < ¢ holds

iff —It(s) < X, = (ps, 1), or equivalently t < TS,;)S,D =inf{r >0: X = —(ps, 1) }.

The first assertion in (ii) follows from these observations and the Markov property
under N.
The second assertion in (ii) follows from (3.7) and the fact that

{T<u,1> > s +t} = {Is+t > _<M, 1>}
= {L>—(wD}n{LY > ~(u1) - X,}

= {L>—(w)n{T8 ., >t

O

The previous proposition shows that the process (ps,ns) is Markovian under P.
We now proceed to investigate its invariant measure.
Let N (dsdldz) be a Poisson point measure on (R )3 with intensity

ds m(dl) 1jg,¢ () d.

For every a > 0, we denote by M, the law on M (R )? of the pair (u,,v,) defined
by

Gras ) = [ N(dsatde) Lo, (s) o (5)+ 5 [ ds £(5)
0
s f) = [ N dsdtdn) 1) (€= 2)5(5) + 3 [ ds f).
0
Note that M, is invariant under the symmetry (u,v) — (v, u). We also set
M= [ dae®M,.
/0 ae

The marginals of M coincide with the measure M of Chapter 1.

Proposition 3.1.3 Let ® be a nonnegative measurable function on Ms(Ry)?. Then,
N( [ dtwionn) = [ dnan) 2.
0
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Proof. This is an extension of Proposition 1.2.5 and the proof is much analogous.
Consider (under P) the countable collection of instants s;, ¢ € I such that X,, > Ss,_.
It follows from (1.3) that

(Loo,Z5(LSiAXSiVXSi,SSi_)(dsdde)) @ (g, 1.0 (5)A (dsdfdx)) (3.8)
el

where ( is an exponential variable with parameter « independent of N ({ = oo if
o = 0). Recall from Chapter 1 the definition of the time-reversed process X®*). As
in (1.10), we can rewrite the definition of p; and 7; in terms of the reversed process
X,
AR
) =0 [ drg+ 3 (RO =30 S(ED - 1),
0 0<s<t
x>50

£ o
(e ) = B / g+ S (B - RO T - I).
0 0<s<t
20550

Hence we can write (pg,n:) = F()A(S\)t, s > 0) with a measurable functional I' that is
made explicit in the previous formulas. Proposition 1.1.4 now gives

N(/OU dt@(pt,nt)) - E{/OLOO da® o T(Xynp 10y 5 > 0)]

However, I'( X nz-1(a), 5 > 0) = (fi,, Va), with

@) =5 [ ar £+ X (B (Xe, = Suc) fla = L)

iel

<paa f> = ﬁ/oa d’l“f(?”) + Z 1[O,a] (LSL) (AXSL - (Xsi - SSri—)) f(a’ - Lsi)'

iel
Now use (3.8) to complete the proof. O

For every t > 0, we denote by ﬁt the image of the kernel IT; under the symmetry
(u,v) = (v, p), that is

L(n,v) = [ (0 ). ' d') 06,

Theorem 3.1.4 The kernels II; and ﬁt are in duality under M.
This means that for any nonnegative measurable functions ® and ¥ on My (R4)?,
M (PIL, W) = M(VII,®).

Proof. We first consider the potential kernels

o R oo R
U = / dt]._.[t 5 U = / dth
0 0
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and we prove that R
M(®UT) = M(TUD). (3.9)

This is equivalent to saying that the measure
M(dpdv) U((p, v), dp'dv’)

is invariant under the transformation (u,v, ', v') — (V', 1/, v, p).
To this end, we first derive an explicit expression for the kernel U. By the definition
of the kernels II;, we have

T</1.,1>
UB(nv) = B / dt & ((k_r, (), (o))

This is computed in a way similar to the proof of Proposition 1.2.6, using Proposition
3.1.3 in place of Proposition 1.2.5. It follows that

Ud(u,v) 2/0 " dr/M(du’dl/)@([kr(u,uL(//,1/)]). (3.10)

We then need to get more information about the joint distribution of ((w,v), k. (i, v))
under M(dpdv)1, <,15)(r)dr. Recall the notation N, pg, v, introduced before the
statement of Proposition 3.1.3. Write

N = Z 6(51‘,&‘,%1‘)

el

for definiteness, in such a way that

(Maal/a) = (ﬁma + Z Zi 5sivﬁma + Z (&, - xl) 551)7

si<a si<a

where m, denotes Lebesgue measure on [0, a]. Since M, is the law of (uq, V), we get

[ Matav) / U e P ), k(1)) (3.11)

2y " P ). s )|
— E[ﬁ /Oa ds F'((tta; Va)s (Hal[o,s)» Va\[O,s])):|

+E|: Z /0 dy F((,uaa Va), (,LLLL\[O,si) + yésm Va[0,s:) + (gl - y)§s7))]

s;i<a

using the definition of k.
At this point, we recall the following well-known lemma about Poisson measures.

Lemma 3.1.5 Let E be a measurable space and let A be a o-finite measure on E.

Let M be a Poisson point measure on [0,a] X E with intensity ds A(de). Then, for
any nonnegative measurable function P,

E[/M(dsde)@((s,e),/\/l)] E[/Oads/EA(de)@((s,e),M+5<s,e)) .
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Thanks to this lemma, the second term in the right side of (3.11) can be written

E[/Oads/w(df)/oédx/owdy

F((pa + 205, v0 + (£ — 2)d5), (Ha)[0,5) + Ydss Vajjo,s) + (£ — y)&s))]

as

We now integrate (3.11) with respect to e~ *%da. After some easy transformations,
we get

[ty [ () )
=5 [ WA(dpr i Ve daadve) B, 1), () 1, 1n)

+/M(du1d1/1)M(d,u2du2) / m(de) /4 dx /z dy
F([(p1, 1), (20 + pa, (€ — ;)50 + 22)], [(11, 1), (yo, (€ = y)do)))-
Recalling formula (3.10) for the potential kernel U, we see that the measure
M(dudv) U((u,v), dp'dv")
is the sum of two terms. The first one is the distribution under
BM(dp dvr )M (dpadva)M(dpsdys)
of the pair
(v) = [(p1, 1), (2, v2)] , (W V) = [(1, 1), (s, v3))-
The second one is the distribution under
M(dp1dvi )M (dpz, dv2)M(dpsdvs)m(d)1j0<y<z<eydr dy
of the pair
(1 v) = [(p1, 1), (€do+p2, (E=x)d0+12)], (1) = [(p1,11), (Ydo+ps, ((—y)do+vs)].

In this form, it is clear that M(dudv)U((u,v),dp’dv’) has the desired invariance
property. This completes the proof of (3.9).
Consider now the resolvent kernels

Upllpsvhsdulae’) = [ dt e P M), do's ).
0

By a standard argument (see e.g. [9], p.54), (3.9) also implies that, for every p > 0,
M(@U,¥) = M(¥U,®), or equivalently

/ dte’ptM(fbﬂt\If):/ dt e P M(UIL,®). (3.12)
0 0

Recall that our goal is to prove the identity M(®II,¥) = M(PII,®) for every ¢ > 0.
We may assume that the functions & and ¥ are continuous and both dominated
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by e~¢<#1> for some a > 0. The latter condition guarantees that M(®) < co and
M(¥) < co. From the definition of II; and the right-continuity in probability of the
mapping t — (p¢,n:) (Lemma 3.1.1), it is easy to verify that t — II; ¥ (u,v) is right-
continuous over (0,00). The same holds for the mapping ¢t — M(PII; ), and the
statement of the theorem follows from (3.12). O

For notational reasons, we make the convention that ps =ns, =0 if s < 0.

Corollary 3.1.6 The process (ns,s > 0) has a cadlag modification under N or under
P. Furthermore, the processes (ps,ns;s > 0) and (N(g—s)—» P(o—s)—; 5 > 0) have the
same distribution under N.

A consequence of the corollary is the fact that the processes (Hy,t > 0) and
(H(s—tyvo,t > 0) have the same distribution (say in the sense of finite-dimensional
marginals when H is not continuous) under N. In view of the results of Chapter
2, this is not surprising, as the same time-reversal property obviously holds for the
discrete contour process. The more precise statement of the corollary will be useful
in the next sections.

Proof. The second part of the corollary is essentially a consequence of the duality
property stated in the previous theorem. Since we have still little information about
regularity properties of the process 7, we will proceed with some care. We first
introduce the Kuznetsov measure K, which is the o-finite measure on R x D(R,R)
defined by

K(drdw) = dr N(dw).

We then define v(r,w) =r, 6(r,w) = r + o(w) and, for every t € R,

ﬁt(r,w) = pt—r(w) ) ﬁt(rvw) = nt—T(w)

with the convention explained before the statement of the corollary. Note that
(ptvﬁt) 7& (an) iff 7 < t<d.

It readily follows from Proposition 3.1.3 that, for every ¢ € R, the distribution of
Py, 7,) under K(-N{(p,,7,) # (0,0)}) is M. Let £1,...,t, € Rwitht; <ty <--- <tp.
Using Proposition 3.1.2 and induction on p, we easily get that the restriction to
(M (R+)*\{(0,0)})? of the distribution of the p-tuple ((B;,,7s,),-- -, (P, 7t,)) 18

M(dpadvy) ey -, (1, v1), dpadvz) - ALy, o, ((Bp—1, Vp—1), dptpdryp).

By Theorem 3.1.4, this measure is equal to
M(dppdvy) My, 1,y ((pps vp), dpip—1dvp—1) . My, i, ((pi2, v2), dpadin).

Hence the two p-tuples (9,7, )s-- -+ Py, 7e,)) and ((M_¢ P, )5+ (M=t P—s,))
have the same distribution, in restriction to (My(R4)?\{(0,0)})?, under K. Since
(P, 1) # (0,0) iff v < t < §, a simple argument shows that we can remove the
restriction and conclude that these two p-tuples have the same distribution under K.
(This distribution is o-finite except for an infinite mass at the point (0,0).)

In particular, (p,,...,p,,) and (_,,...,7_,, ) have the same distribution under
K. Let F' be a bounded continuous function on M;(R4)?, such that F/(0,...,0) = 0.
Suppose that 0 < t; <ty <...<t, and let u < v. Then we have

K(l[u,v] (’)’)F(ﬁ’ﬁtlv s 7pfy+tp))

= hm Z K(1{ﬁk5:0,ﬁ(k+1)5#O}F(pké:«Hl PR aﬁke«kt,))

e—0

k€EZ, ke€lu,v]

79



and the similar formula
K(l[u,v](_d)F(ﬁ5—t17 <o 7ﬁ6—tp))

= lim Z K(l{ﬁ_kE:O,ﬁ_(k+l>s¢o}F(ﬁ_ke—tl7--~aﬁ—ks—t,,))a

e—0
k€EZ, ke€lu,v]
using the right-continuity in N-measure of 7;. Hence the vectors (7,045 Pyie, )
and (—6,7s_¢,,---,7s—,) have the same distribution under K. It follows that the
processes (p,t > 0) and (9,—¢,t > 0) have the same finite-dimensional marginals
under N. Since we already know that (p;,t > 0) is cadlag, we obtain that (n:,¢ > 0)
has a cadlag modification under N. The time-reversal property of the corollary follows
immediately from the previous identification of finite-dimensional marginals. This
property implies in particular that ng+ =n,— =0 N a.e.

It remains to verify that (n, ¢ > 0) has a cadlag modification under P. On each
excursion interval of X — I away from 0, we can apply the result derived above under
the excursion measure N. It remains to deal with instants ¢ such that X; = I, for
which 7, = 0. To this end, we note that, for every € > 0,

N( sup (s, 1) >5) :N( sup (ps, 1) >s) < 00.
s€[0,0] s€[0,0]
Hence, for any fixed x > 0, we will have (n,,1) < ¢ for all s € [0,T,] except possibly
for s belonging to finitely many excursion intervals of X — I. Together with the
continuity of 7 at times 0 and ¢ under N, this implies that P a.s. for every ¢ such
that X; = Iy, the right and left limits of ns both exist at time ¢ and vanish. O

3.2 The tree associated with Poissonnian marks

3.2.1 Trees embedded in an excursion

We first give the definition of the tree associated with a continuous function e : [a, b] —
Ry and p instants ¢1,...,t, witha <t; <ty <--- < ¢, <b.

Recall from Section 0.1 the definition of a (finite) rooted ordered tree, and the
notation T for the collection of these trees. If v is an individual (a vertex) in the
tree T € T, the notation k,(7) stands for the number of children of v. Individuals
v without children, i.e. such that k,(7) = 0, are called leaves. For every p > 1, we
denote by T, the set of all (rooted ordered) trees with p leaves.

If 7Y, 72,...,T" are k trees, the concatenation of 7, ..., 7%, which is denoted
by [T1,72,...,T"], is defined in the obvious way: For n > 1, (i1,...,i,) belongs to
[T, 72,..., 7" if and only if 1 <4; <k and (ia,...,i,) belongs to 7.

A marked tree is a pair 8 = (7, {hy,v € T}), where h,, > 0 for every v € 7. The
number h,, is interpreted as the lifetime of individual v, and 7 is called the skeleton
of . We denote by T}, the set of all marked trees with p leaves.

Let 0 = (7',{hl,v € T}) € Tp,,...,0F = (TF {hk v € T*}) € T,,, and
h > 0. The concatenation [01,62, ..., Gk]h is the element of Tj, 4. 4+p, Wwhose skeleton
is [71,72,...,7T"] and such that the lifetimes of vertices in 7°, 1 < i < k become the
lifetimes of the corresponding vertices in [7!,72,...,T%], and finally the lifetime of
0 in [01,02,...,6%]), is h.

Let a,b € Ry with a < b and let e : [a,b] — R, be a continuous function. For
every a < u < v < b, we set

m(u,v) = ugtliv e(t).
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Let t1,...,%, € Ry be such that a <t; <t <--- <t, <b. We will now construct a
marked tree

O(e,t1,...,tp) = (T(e,t1,....tp), {ho(ests,... . tp),v € T}) €T,

associated with the function e and the times ¢;,...,t,. We proceed by induction on
p. p=1,T(et;) ={0} and hy(e,t;) = e(t1).

Let p > 2 and suppose that the tree has been constructed up to order p — 1. Then
there exists an integer k € {1,...,p—1} and k integers 1 < i3 <is < - - <ip <p-—1
such that m(t;,t;41) = m(t1,t,) iff i € {iq,..., 4} Forevery £ € {0,1,...,k}, define
e’ by the formulas

eV(t) = e(t) — m(ty,tp), t € [t1,ti,],
et (t) = e(t) — m(t1,t,), t € [tipt1,tip,,)s 1<¢<k-1.
ek (t) = e(t) — m(t1,tp), t € [tip+1,tp)-

We then set:

G(E,tl, .. .,tp) = [9(607t1, e 7ti1)50(€17ti1+17 e 7t1‘2), .. .,G(ek,tik_H, e atp)}m(tl,tp)'

This completes the construction of the tree by induction. Note that k + 1 is the
number of children of () in the tree (e, t1,...,t,), and m(t1,t,) is the lifetime of 0.

3.2.2 Poissonnian marks

We consider a standard Poisson process with parameter A defined under the probabil-
ity measure Q). We denote by 71 < 75 < --- the jump times of this Poisson process.
Throughout this section, we argue under the measure Q5 ® N, which means that
we consider the excursion measure of X — I together with independent Poissonnian
marks with intensity A on Ry. To simplify notation however, we will systematically
write NV instead of @) ® N.

Set M = sup{i > 1: 7; < o}, which represents the number of marks that fall in
the excursion interval (by convention, sup ) = 0). Then,

N(M >1) = N(1—e ) = ¢~ (),

where the second equality follows from the fact that the Laplace exponent of the
subordinator T, is ¥ ~1(A) (see [5], Theorem VIL1).

From now on, we assume that the condition floo % < oo holds, so that H
has continuous sample paths (Theorem 1.4.3). We can then use subsection 3.2.1 to
define the embedded tree 0(H,7y,...,7ar) under N(- | M > 1). Our main goal is to

determine the law of this tree.

Theorem 3.2.1 Under the probability measure N(- | M > 1), the tree 0(H, 11, ..., Tar)
1s distributed as the family tree of a continuous-time Galton-Watson process starting
with one individual at time 0 and such that:
e Lifetimes of individuals have exponential distributions with parameter ' (v =1(N\));
e The offspring distribution is the law of the variable & with generating function

P(A =)t (V)

rél=r )
Bl =rt e o)

81



Remark. As the proof will show, the theorem remains valid without the assump-
tion that H has continuous paths. We will leave this extension to the reader. Apart
from some technical details, it simply requires the straightforward extension of the
construction of subsection 3.2.1 to the case when the function e is only lower semi-
continuous.

The proof of Theorem 3.2.1 requires a few intermediate results. To simplify no-
tation, we will write 7 = 7. We start with an important application of Corollary
3.1.6.

Lemma 3.2.2 For any nonnegative measurable function f on My(Ry),

N(f(pr)liarz1y) = /M (dudv) f(p) e PN (1)
Proof. We have

N(f(pr)lipm>1y) = )\N(/Oa dte—’\tf(pt)) _ )\N(/a dt e~ No—1) f(m))>

0

using the time-reversal property of Corollary 3.1.6. At this point, we use the Markov
property of X under N:

N( [ dre o0 pta0) =N ( [ dt ) Ex, e 7).

We have already noticed that for x > 0,

E,le™T) = Byle =] = e=#0 7' O,
Since X; = (p¢, 1) under N, it follows that
N o) = AN ( [ e a0 O < [ o) e 0070,
using Proposition 3.1.3. Since M is invariant under the mapping (u,v) — (v, 1), this

completes the proof. O

We now set

K— inf{Hs;: 1 <s<7m} if M >2
T ] o if M <1
Then K represents the lifetime of the ancestor in the tree 8(H, 71, ..., 7)) (assuming

that the event {M > 2} holds). To give a formula for the number of children £ of the
ancestor, set

T(ky = inf{t >7: H <K}, T(’K) =inf{t >7: H < K}.

Then, again on the event {M > 2}, £ —1 is the number of excursions of H above level
K, on the time interval [r K),T(/ K)], which contain at least one of the Poissonnian
marks. This identification follows readily from the construction of subsection 3.2.1.

The next proposition gives the joint distribution of the pair (K,£) under N(- N
{M = 2}).
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Proposition 3.2.3 Let r € [0,1] and let h be a nonnegative measurable function on
[0, 0], with h(co) = 0. Then,

N(r*h(K) | M > 1)
1-— “TA) = A ° N
_ (T?/Jl(’(bil(A)) + ’l/}(( 7")_@/}1 ( )) )/ dbh(b) efbrtp (¥ 1()\)).
YA 0
The basic idea of the proof is to apply the Markov property to the process p at
time 7. To this end, we need some notation. We write P}, for the probability measure

under which p starts at an arbitrary measure p € My (RY) and is stopped when it hits
0. As usual, H; = H(p;). Under P}, the process X; = (py, 1) is the underlying Lévy
process started at (u, 1), stopped at Ty = inf{t > 0 : X; = 0}. We keep the notation
I; for the minimum process of X. We let (a;,b;), j € J be the collection of excursion
intervals of X — I away from 0 and before time Tj. For every j € J we define the

corresponding excursion by
wj(t) = X(aj—O—t)/\bj - Iaj ) t Z 0.

From excursion theory, we know that the point measure

D 0t w)

jeJ
is Poisson under P}, with intensity 1jo <15 (u)du N(dw) (cf the proof of Proposition
1.2.6). On the other hand, by properties of the exploration process derived in Chapter
1, we know that P}, a.s. for every s € [0, To] such that X;—I5 = 0 (and in particular for
s=uaj, j € J) we have p; = ke 15—, and thus Hy = H(k<,1>—1,1t). Observe also
that the image of the measure 1jg <, 15](u)du under the mapping v — H (k<p,1>—upt)
is exactly u(dh). By combining these observations, we get:
(P) The point measure » . ; 5(Haj «w;) 18 Poisson under P}, with intensity p(dh) N (dw).

Finally, assume that we are also given a collection P, of Poisson marks with

intensity A, independently of p under P}, and set

L=inf{H,, : j € J,(aj,b;) NPy # 0}, (inf @ = o00),
¢ =Card{j € J: Hy; = L and (a;,b;) NP # 0}.
Then the Markov property of the exploration process at time 7 shows that, for
any nonnegative measurable function h on [0, o] such that h(oc) =0,
N(Ls1yrs Th(K)) = N> Ej [r h(L)]). (3.13)
To verify this equality, simply observe that those excursions of H above level K on

the time interval [T( K)s 7'(’ K)] that contain one Poissonnian mark, exactly correspond

to those excursions of the shifted process (p,+, 1) above its minimum that start from
the height K and contain one mark.
The next lemma is the key step towards the proof of Proposition 3.2.3.

Lemma 3.2.4 Let a > 0 and let p € M;(Ry) be such that supppu = [0,a] and
p(dt) = Blygq)(t)dt 4 ps(dt), where pg is a countable sum of multiples of Dirac point
masses at elements of [0,a]. Then, if r € [0,1] and h is a nonnegative measurable
function on [0,00] such that h(co) =0,

B [rSh(L)] = Brot (V) / db eV 0 )

+ 3 (6414);»({3})1&*1(»_ew({s})w*lm)ew([o,s))w*lmh(s).(3,14)
u({s})>0
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Proof. First note that it is easy to derive the law of L under Pj. Let b € [0,a]. We
have by property (P)

PL[L>0 = Pj(aj,b;) NPy =0 for every j € J s.t. Hy; <D
E; [exp(—([0,b]) N (1 — e7))]
exp(—p([0,B) (V).

In particular, atoms of the distribution of L in [0, 00) exactly correspond to atoms of
u, and the continuous part of the distribution of L is the measure

B~ (A) exp(—p([0,0])¥~" (X)) Lj0,) () db-

We then need to distinguish two cases:

et s € |0,a| be an atom of . By the preceding formula,
1)L 0,a]l b f . By th ding f 1
PiL = s] = (1 — e #{DY ONyemm@)v ™',

Note that the excursions w; that start at height s are the atoms of a Poisson measure
with intensity p({s})/N. Using also the independence properties of Poisson measures,
we get that, conditionally on {L = s}, £ is distributed as a Poisson random variable
with intensity p({s})y~*(\), conditioned to be greater than or equal to 1:

e~ (1=r)u({sHy ™ (V) _ g=n{sHv ™ (N)
1 — e~ +#{shHe=t(N)

EZ[T5|L:5] =

(2) If L is not an atom of u, then automatically £ = 1. This is so because the values
H,; corresponding to indices j such that u({Hq,}) = 0 must be distinct, by (P) and
standard properties of Poisson measures.

The lemma follows by combining these two cases with the distribution of L. [
Proof of Proposition 3.2.3. By combining (3.13), Lemma 3.2.2 and (3.14), we

obtain that
N(l{MZl}T'gilh(K)) =A; + Ay

where
Ay :ﬁr)\w_l(/\)/ dae—fw/Ma(dudy)e*"»w’l“)/ b In0b) b,
0 0
and

Ag = )\/ dae_a“/Ma(dﬂdy)e_<”’1>w71(’\)
0
Y (efufr)u({s})w—lw _ e*u({S})w_l(/\))e*u([O,S))w‘l(/\) h(s).
p({s})>0
To compute A;, we observe that for u > 0 and 0 < b < a,
M, (e~ (08D +v((0.aDy = pp, (e~ B F 0D YN, (e~ ur((Bal)y

= e Pulath) oxp ( - b/w(dﬁ)ﬁ(l - e_“€)>

<o (@) [0 [ w0 )
0

= v exp(-bi(u) — (a - )2

84



using the easy formulas
/W(dé)ﬁ(l —e ) =9/ (u) —a—28u,

¢
/W(d@/o dz(l—e ™) = %(w(u) —au — fu?).
It follows that

Ay

Brw_lm/o da/o db h(b)e ™" @ ) =(a=b) (/4 (A)

5mp—1(x)2/ db h(b)e b @ )
0

To evaluate A,, first observe that, with the notation preceding Proposition 3.1.3,
we have

Ay = )\/ dae™*® E{ N (dsdldzx) h(s) (e*(lfr)g“b_lo‘) - e*w_l(/\))
0 {s<a}

X exp ( — N ( /{ e N(ds'dl da’) (¢ — ') + ./\/(ds’dé’dx’)x’))} .

{s'<s}
From Lemma 3.1.5, it follows that

A, — A/C’Odaefaa/adbh(b)Ma(efw([o,b])w([o,a]))w—1<A>)
0 0

4
X/W(dg)/ dp(e= (=™ () _ et ()= (e=a)u 1 ()
0

= @/fl()\)/ db h(b) e*bw’(d)_l(k))
0

14
X/W(dg)/ da(e~(1=r)T0 7 Q) L et () )= (t-)u T )
0

where the last equality is obtained from the same calculations as those made in
evaluating A;. Furthermore, straightforward calculations give

4
/W(d@/ dap(e= (=T () _ a6 () )= (=2t ()

0
1
| -1 -1
= A)) — A)+ ——— 1— A)—N).
W) = B ) e (T () )
By substituting this in the previous display and combining with the formula for A,
we arrive at the result of the proposition. O

Proof of Theorem 3.2.1. It is convenient to introduce the random variable A
defined by

A K if M > 2
1\ H. if M =1

On the event {M = 1} we also set £ = 0. We can easily compute the law of the pair
(A, §). Indeed, by applying the Markov property at T as previously, we easily get

N(h(M1p—1y) = N((H,)l{a-1y)
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- N(h(Hr)e*<Pwl>w‘1(,\))
00

= >\/ da e %% h(a)/M(d,udy) e—(<u,1>+<y71>)¢,1(/\))
0

_ A/Oo da h(a) e—¥' @ (a
0

By combining with Proposition 3.2.3, we get

= (r @) + (=T ) [ b
0
This formula entails that we have the following properties under N(- | M > 1):
The variables A and £ are independent, A is exponentially distributed with param-
eter 1’'(1»"1()\)), and the generating function of ¢ is as stated in Theorem 3.2.1.
To complete the proof, it remains to verify the “recursivity property” of the tree
O(H,Ty,...,7a), that is to verify that under N(- | M > 2), the shifted trees corre-
sponding to each individual in the first generation are independent and distributed
as the whole tree under N(- | M > 1). This is a consequence of the following claim.

Claim. Let (o, 0;), 3 =1,...,& be the excursion intervals of H above level A that
contain at least one mark, ranked in chronological order, and for every j = 1,...,&
let hj(s) = Ha,+s)n3; — A be the corresponding excursion. Then, conditionally on
the pair (A, €), the excursions hi, ..., he are independent and distributed according to
the law of (Hs,s > 0) under N(- | M > 1).

To verify this property, we first argue under P}, as previously. Precisely, we
consider the excursions w; for all j € J such that H,, = L and (a;,b;) NPy # 0. We
denote by @y, ...,&¢ these excursions, ranked in chronological order. Then property
(P) and familiar properties of Poisson measures give the following fact. For every
k > 1, under the measure Pj (- | ¢ = k), the excursions @, ..., are independent,
distributed according to N(- | M > 1), and these excursions are also independent of

the measure
: : 6(111]' ij) :
Hy,>L

Let oy, := inf{s > 0 : H, = L}. Excursion theory for X — I allows us to reconstruct
the process (Xsnop,,$ > 0) as a measurable function of the point measure in the last
display. Hence we can also assert that, under Pj,(- | ( = k), @1, ..., 0 are independent
of (Xsno»8 > 0). In particular, they are independent of L = H (k< 1>—1,, 11)-

We now apply these properties to the shifted process X, . under N(- | M > 1). We
slightly abuse notation and keep denoting by &1, ...,&¢ the excursions of X 4. —1I,,.
that contain a mark (so that ( = £ — 1 on the event M > 2). By construction, for
every j € {2,...,&}, the function h; is the height process of @;_1. Hence it follows
from the previous properties under P}, that under N(- | £ = k) (for a fixed k > 2), the
processes ho, ..., h; are independent, have the distribution given in the claim, and
are also independent of the pair (hy,A). Hence, for any test functions Fi, ..., Fy, G,
we get

N(Fi(h1) ... Fo(hi)G(A) | € = k)
=N(Fy(H) [ M =21)---N(Fp(H) | M = 1) N(F1(h1)G(A) | € = k).

Now from Corollary 3.1.6, we know that the time-reversed process (H(,_s),,s > 0)
has the same distribution under N as the process (Hs,s > 0). Furthermore, this
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time-reversal operation will leave A and ¢ invariant and transform the excursion h;
into the time-reversal of h¢, denoted by he (provided we do simultaneously the similar
transformation on the underlying Poissonnian marks). It follows that

N(Fi(h)G(A) | € =k) = N(Fi(hi)G(A) | €= k)
= N(Fi(h)|€=k)N(GA)|€=k)
N(Fy(H)| M > 1)N(G(A) | M > 1).

By substituting this equality in the previous displayed formula, we obtain the claim.
This completes the proof of Theorem 3.2.1. O

3.3 Marginals of stable trees

We first reformulate Theorem 3.2.1 in a way more suitable for our applications. Recall
that T, is the set of all (rooted ordered) trees with p leaves. If 7 € T, we denote by
L7 the set of all leaves of 7, and set N7 = T\L7r. Recall the notation k, = k,(7)
for the number of children of an element v of 7. We write T}, for the subset of T},
composed of all trees 7 such that k,(7) > 2 for every v € N7. By construction, the
skeleton of the marked trees (e, t1,...,t,) always belongs to T5.

Theorem 3.3.1 Letp > 1. Then, for any nonnegative measurable function ® on Ty,
and every A > 0,

N(e**"/ dtl...dtpé(e(H,tl,...,tp)))
{t1<--<tp<o}

-y (10 |w<’w><li!-1<m|)

TeT; veNT

X / H dh, exp ( - W(Wl(/\)) Z hq,)fb(T, (hv)vET)-

veT veT

Proof. By elementary properties of the standard Poisson process, the left side is
equal to
APN(®O(H, 71, ., e ) L {pr=p})

with the notation of the previous section. This quantity can be evaluated thanks to
Theorem 3.2.1: From the generating function of the offspring distribution, we get

A
Pl =0= =mye o)
Ple=1]=0
1 \\k—1,(k) (,—1
Pl¢=k]= % g ()\)w/@';fl(;;b) ()\))" for every k > 2.

Hence the probability under N (- | M > 1) that the skeleton of the tree (H, 71,...,Tar)
is equal to a given tree 7 € T} is

1 R ) (g (V)] A »
(II 7 I ) o)
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Recalling that N(M > 1) = 1»~1()\), and using the fact that the lifetimes h,,, v € 7 are
independently distributed according to the exponential distribution with parameter
' (p~1())), we easily arrive at the formula of the theorem. O

By letting A — 0 in the preceding theorem, we get the following corollary, which
is closely related to Proposition 3.2 of [33].

Corollary 3.3.2 Suppose that [ w(dr)r? < co. Then, for any nonnegative measur-
able function ® on 7,

N(/ dtl...tp@(e(H,tl,...,tp)))
{ti<--<tp<o}

= > (T o) [ TLnw exp(=a X h)#(T. (e,

TeT; veNT veT veT
where, for every k =2,...,p,

(0 1
ﬂk = % = ﬂl{k=2} + y Tk 7T(d7‘).
Remark. The formula of the corollary still holds without the assumption [ 7(dr)r? <
oo but it has to be interpreted properly since some of the numbers g may be infinite.

From now on, we concentrate on the stable case ©(u) = u” for 1 < v < 2. Then
the Lévy process X satisfies the scaling property

(Xe,t > 0) @ (AYY X, t > 0)

under P. Thanks to this property, it is possible to choose a regular version of the
conditional probabilities N,y := N(- | ¢ = u) in such a way that for every v > 0 and
A > 0, the law of (A™'/7X,;,¢t > 0) under Ny 18 Niyy. Standard arguments then
show that the height process (Hs, s > 0) is well defined as a continuous process under
the probability measures N(,). Furthermore, it follows from the approximations of
H; (see Lemma 1.1.3) that the law of (Hys,s > 0) under N, is equal to the law of
(Al_%Hs, s > 0) under N(y.

The probability measure N(y) is called the law of the normalized excursion. The
tree coded by the process (H;,0 < ¢t < 1) under N(;) (in the sense of Section 0.6)
is called the stable continuum random tree. The next theorem identifies its finite-
dimensional marginals, in the sense of Aldous [3].

Theorem 3.3.3 Suppose that ¥(u) = u? for some v € (1,2). Then the law of the
tree O(H,t1,...,t,) under the probability measure

p! 1{0<t1<t2<...<tp<1}dt1 e dtp N(l)(dw)

is characterized by the following properties:
(i) The probability of a given skeleton T € T}, is

I 16-D6r=2) .. (v =k +1)]

p' ’UGNT
II %! O-DE-1..(p-1)v-1)
veENT
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(ii) If p > 2, then conditionally on the skeleton T, the lifetimes (hy)yer have a density
with respect to Lebesque measure on RI given by

L(p—2) !
Ny T or—1 _
T /Oduu q(v > oy 1—u)

veT

where 07 =p— (1 — l)|’T| — 1 >0, and q(s w) is the continuous density at time s of
the stable subordinator with efcponent 1-— ;, which is characterized by

/ due " g(s,u) = exp(—s )\1_%).
0
Ifp=1, then T = {0} and the law of hy has density

1
YT = =)q(yh,1)
Y
with respect to Lebesgue measure on R.

Proof. For every u > 0, let O,y be the law of the tree 6(H, s1,...,s,) under the
probability measure
p!u_p 1{51<52<‘..<Sp<u} d81 e dSp N(u) (dw)
By the scaling properties of the height process (see the remarks before Theorem 3.3.3),
we have, for every u > 0 and every 7 € T},
O ({T} x RT) = 0 ({T} x RT).

Hence, by conditioning with respect to ¢ in Theorem 3.3.1, we get

[ = ()]

o (3.15)

%N(U”e‘“) 0T xR =¢'(p = ()7 [

vENT

From this, we can compute O (;)({7} x ]RI) by observing that, for every k > 1,

B A) =y — 1)+ (y — k+ 1) A5,
and
ar 1,1 1

VIS =D DT

— Ao ar

N(oPe™7) = |d)\P

N —e?)| =]

If we substitute these expressions in (3.15), the terms in A cancel and we get part (i)
of the theorem.

To prove (ii), fix 7 € T}, and let D be a bounded Borel subset of R7. Write
Po(du) for the law of o under N. Then by applying Theorem 3.3.1 with ® = 17y p
and ¢ = 1{T}xRIv we get

/pa(du) e M uP Oy ({ho}ver € D | T) (3.16)

= (f pattw ) [T v/t o) exp (= w07 00) 3 ).

veT
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By scaling (or inverting N (1—e~*?) = A7), we have p, (du) = cu” 7% du. Tt follows
that

/0 du e P15 Ow)({ho}ver €D | T)

AT - 3)

X /DHdh exp(—yA 7 Y k),

veT veT

where d7r =p— (1 — %)|’T| - % as in the theorem. Suppose first that p > 2. To invert
the Laplace transform, observe that the right side can be written as

|T|I‘( _ l) )
v p Y / —Au , 6r—1 / 1=’ /
IV que™ Tt x| dule [T dhoaty S oot
NGO 0 )

0 veT veT

TIpgp—
S Fp / due /Hdh/drr‘” ! Zhu,u ).

The first formula of (i) now follows. In the case p = 1, we get

° 1
/o due My~ O (hyp € D) =~T(1 - ;) /Ddh eXp(f’y)\l_%h)7

and the stated result follows by inverting the Laplace transform. O

Remarks. (a) The previous proof also readily gives the analogue of Theorem 3.3.3 in
the case 9(u) = u?, which corresponds to the finite-dimensional marginals of Aldous’
continuum random tree (see Aldous [3], or Chapter 3 of [31]). In that case, the discrete
skeleton of 8(H,t1,...,t,) is with probability one a binary tree, meaning that k, = 2
for every v € 7. The law of T(H,t1,...,t,) is the uniform probability measure on
the set of all binary trees in T}, so that the probability of each possible skeleton is

p!
2p~1 (1 x3x---x(2p—13))
This formula can be deduced informally by letting v tend to 2 in Theorem 3.3.3 (i).

To obtain the analogue of (ii), note that there is an explicit formula for g(s,u)
when 9 (u) = u?:

— 5 —s%/(4u)
q(s,u) = NG e .

Observe that when the skeleton is binary, we have always |7| = 2p — 1. It follows
that the powers of A cancel in the right side of (3.16), and after straightforward
calculations, we obtain that the density of (h,),e7 on Rip s

22P= 1F(p—1 2 hy, 1) =27 (1 x3x - x (2p—3)) (O hy) exp(—=(D_ ha)?)

Compare with Aldous [3] or Chapter 3 of [31], but note that constants are different
because 1)(u) = u? corresponds to a Brownian motion with variance 2t (also the CRT
is coded by twice the normalized Brownian excursion in [3]).

(b) We could get rid of the factor
p!

II *!

veENT

in Theorem 3.3.3 by considering rooted (unordered) trees with p labelled leaves rather
than rooted ordered trees : See the discussion at the end of Chapter 3 of [31].
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Chapter 4

The Lévy snake

4.1 The construction of the Lévy snake

Our goal is now to combine the branching structure studied in the previous chapters
with a spatial displacement prescribed by a Markov process £. Throughout this
chapter, we assume that H has continuous paths (the condition [* du/(u) < oo
holds) although many of the results can presumably be extended to the general case.

4.1.1 Construction of the snake with a fixed lifetime process

We consider a Markov process £ with cadlag paths and values in a Polish space F,
whose topology is defined by a metric §. For simplicity, we will assume that ¢ is defined
on the canonical space D(R, E) of cadlag functions from Ry into E. For every x € E,
we denote by II, the distribution of & started at x. It is implicitly assumed in our
definition of a Markov process that the mapping x — II, is measurable. We also
assume that ¢ is continuous in probability under II, (equivalently, ¢ has no fixed
discontinuities, II,[¢s # &s—] = 0 for every s > 0). On the other hand, we do not
assume that £ is strong Markov.

For x € E, we denote by W, the space of all E-valued killed paths started at x.
An element of W, is a cadlag mapping w : [0,{) — F such that w(0) = z. Here
¢ € (0,00) is called the lifetime of the path. When there is a risk of confusion we
write ( = (. Note that we do not require the existence of the left limit w(¢—). By
convention, the point x is also considered as a killed path with lifetime 0. We set
W = UzegW, and equip W with the distance

Cne’
d(w,w") = 6(w(0),w'(0)) + |¢ — (| —|—/O dt (dt(WSt,W%t) A1),

where d; is the Skorokhod metric on the space D([0,¢], E), and w<; denotes the
restriction of w to the interval [0,¢]. It is then elementary to check that the space
(W, d) is a Polish space. The space (FE, ) is embedded isometrically in W thanks to
the previous convention.

Let € Eand w € W,. If a € [0,({y) and b € [a, 00), we can define a probability
measure R, ,(w,dw’) on W, by requiring that:

(1) Rop(w,dw’) as., w'(t) = w(t), Vt € [0, a);
(11) Ra,b(wa dW/) a.s., CW’ = b,
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(iii) the law of (w'(a+1),0 <t < b—a) under R, ;(w,dw’) is the law of (§,0 <t <
b — a) under ITy(q).

In (iii), w(0—) = x by convention. In particular, Rg(w,dw’) is the law of (&,0 <
t < b) under II,, and Rg o(w,dw’) = 0, (dw’).

When w((y—) exists, we may and will extend the previous definition to the case
a = (y-.

We denote by (Ws,s > 0) the canonical process on the product space (W)
We will abuse notation and also write (Ws,s > 0) for the canonical process on the
set C(R4, W) of all continuous mappings from Ry into W. Let us fix £ € F and
wo € W, and let h € C(Ry, Ry ) be such that h(0) = (y,. For 0 < s < s, we set

Ry

mp(s,s’) = inf h(r).

s<r<s’

We assume that either wq((w,—) exists or my(0,7) < h(0) for every r > 0. Then,
the Kolmogorov extension theorem can be used to construct the (unique) probability
measure Q% on (W,)®+ such that, for 0 = sp < s1 <+ < sy,

f)LvO [VVSO € A07 R Wsn € An]

=14, (Wo)/ Ry (s0,51)h(s0) (W0, dW1) oo Ry (601 ) m(sn) (Wn— 1, AWy, ).
Ai X XAy

Notice that our assumption on the pair (wq, k) is needed already for n = 1 to make
sense of the measure R, (sy,s,),h(s;)(Wo, dW1).

From the previous definition, it is clear that, for every s < s’, Q"}VO a.s.,
Wy (t) = W(t), Vt < mp(s,s),
and furthermore Cw, = h(s), ¢w,, = h(s’). Hence,
d(We, Wa) < |h(s) = h(s')| + [(h(s) A D(s")) = mn(s, s")| = (h(s) V 1(s")) = mn (s, s").

From this bound, it follows that the mapping s — Wj is QQ‘,O a.s. uniformly con-
tinuous on the bounded subsets of [0,00) N Q. Hence this mapping has Q"}VO a.s. a
continuous extension to the positive real line. We abuse notation and still denote
by Q&O the induced probability measure on C(Ry,W,). By an obvious continuity
argument, we have Cy, = h(s), for every s >0, Q% a.s., and

Wy (t) = Wi(t), Vt <my(s,s’), Vs<s, Q" as.

Wo

We will refer to this last property as the snake property. The process (Ws,s > 0) is
under Q" , & time-inhomogeneous continuous Markov process.

4.1.2 The definition of the Lévy snake

Following the remarks of the end of Chapter 1, we now consider the exploration
process p as a Markov process with values in the set

MY = {p € Myp(Rs) : H(i) < oo and supp p = [0, H()]} U {0}.

We denote by P, the law of (ps, s > 0) started at . We will write indifferently H(ps)
or Hy.

We then define © as the set of all pairs (u, w) € MJ? x W such that (, = H(u),
and at least one of the following two properties hold:
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(i) p({H(p)}) = 0;

(ii) w(Cw—) exists.
We equip © with the product distance on MJ? x W. For every y € E, we also set
Oy ={(p,w) € ©: w(0) =y}.

From now on until the end of this section, we fix a point = € E.

Notice that when H(p) > 0 and p({H(un)}) = 0, we have infg o) H(p,) < H(p)
for every s > 0, P, a.s. To see this, note that I, < 0 for every s > 0, P-a.s., by the
regularity of 0 for (—oo,0), for the underlying Lévy process. Then, P-a.s. for every
s > 0 we can pick r € (0,s) such that X, = I, < 0. Formula (1.11) then shows that
pt = k_j_ p and our assumption p({H(x)}) = 0 implies that H(p#) < H(u), which
gives the claim.

Using the last observation and the previous subsection, we can for every (u,w) €
©, define a probability measure P,y on D(Ry, M¢(Ry) x W) by the formula

P;L,W(dp dW) = Pu(dp) Qvlj(p)(dw)a

where in the right side H(p) obviously stands for the function (H(ps),s > 0), which
is continuous P, a.s.
We will write P, instead of Py, when p = 0.

Proposition 4.1.1 The process (ps, Ws) is under P, ,, a cadlag Markov process in
O,.

Proof. We first verify that P, v a.s. the process (ps, W) does not visit ©F. We must
check that W(H;—) exists whenever ps({H;}) > 0. Suppose thus that ps({Hs}) > 0.
Then, we have also py({Hs}) > 0, and so Hy > Hj, for all s > s sufficiently
close to s. In particular, we can find a rational s; > s such that Hy,, > Hg and
inf(, s,) H, = H,, which by the snake property implies that Wy, (t) = W(t) for every
t € [0, Hy). However, from the construction of the measures Q" , it is clear that a.s.
for every rational r > 0, the killed path W, must have a left limit at every ¢ € (0, H,].
We conclude that W(Hs—) = W, (Hs—) exists.

The cadlag property of paths is obvious by construction. To obtain the Markov
property, we consider nonnegative functions fi,..., f, on M? and ¢g1,...,9, on W,.
Then, if 0 < 51 < -+ < sy,

Epwlfi(psi)91(Ws,) - - fu(ps, ) gn(Ws,)]
= By [f1pn) - Fulpe JQU D1 (Wey) g (W, )|

=B [£1(pe) o F02) [ o 000100 (5:0)

v RmH(p)(sn,l,sn),H(psn)(Wn—h dwn) g1 (Wl) cee gn(wn):|

= By [ F1(p)91 (War) o ft (P ) gnr (W, )

Eps7171 [fn(psnfsn,l)/RmH(p)(O,sn—sn_l),H(psn,_Snil)(Wsn,ydw)gn(w)}}7

where in the last equality we used the Markov property for (ps, s > 0) at time s,_1.
We get the desired result with a transition kernel given by

QT‘G(M?W) = /P#(dp)/RmH(p)(O,T),H(pT)(Wvdwl) G(pmwl)

/ P, (dp) / QU (W) G (p,, W,).
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O
In what follows we will often use the convenient notation Wy = (ps, W,). By
our construction, the conditional distribution under P, ., of (W,,s > 0) knowing

(ps,s > 0) is Q@I(”). In particular, if we write ¢, = (w, for the lifetime of W, we
have
(s = H(ps) = H, for every s >0, P, ,, a.s.

4.1.3 The strong Markov property
We denote by (Fs)s>o the canonical filtration on D(R4, My(R4) x W).

Theorem 4.1.2 The process (Ws,s > 0;P, w, (1, W) € ©y) is strong Markov with
respect to the filtration (Fsy).

Proof. Let (u,w) € ©,. It is enough to prove that, if T is a bounded stopping time
of the filtration (Fs4 ), then, for any bounded Fr,-measurable functional F, for any
bounded Lipschitz continuous function f on ©,, and for every ¢t > 0,

Epw[F fWrie)] = EpwlF Eg [f(W)]].

First observe that
EpwlF fWrie)] = nlLH;OZEuw[F 1{%§T<%}f(W%+t)]
k=1
= lim > By w[F Ll cpony Quf (We)].
k=1

In the first equality, we used the right continuity of paths, and in the second one
the ordinary Markov property. We see that the desired result follows from the next
lemma.

Lemma 4.1.3 Let t > 0, let T be a bounded stopping time of the filtration (Fsy)
and let f be a bounded Lipschitz continuous function on ©,. Then the mapping
s — Quf(Ws) is P, w a.s. right-continuous at s =1T.

Proof of Lemma 4.1.3. We use the notation Y, = <p5,1>. Recall that Y is
distributed under P, ., as the reflected Lévy process X — I started at <,u7 1>. Let
€ > 0. By the right-continuity of the paths of Y, if s > T is sufficiently close to T,
we have

e1(s)=Yr— inf Y, <e, ea(s) =Y — inf Y, <e.
w€[T,s] w€e[T,s]

On the other hand, we know from (1.13) that prys = [kglpT,pgT)], and it follows
that k., pr = ke,ps. Furthermore, infip g H(pu) = H(ke, pr) = H(ke,ps), and by the
snake property,

Wi(u) = Wr(u), Vu € [0, H(ke,pr))-

Let us fix W = (u, w) € O, and set

Ve(W) = {W = w) €O, Jer,e2 €[0,6), keypr = keypt/,
and w'(u) = w(u), Vu € [0, H(ke, p)) }.
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In view of the preceding observations, the proof of Lemma 4.1.3 reduces to checking
that

lim ( sup )\Qtf@’)—Qtf(w)!):o- (4.1)

=0 \wev, (w

We will use a coupling argument to obtain (4.1). More precisely, if W' € V.(W),
we will introduce two (random) variables W(;) and W3y such that Wy, resp. W(y),
is distributed according to Q;(W, ), resp. Q(W',-), and W1y and Wy are close to
each other. Let us fix W € V.(W) and let 1,22 € [0,¢) be associated with W' as in
the definition of V.(W). For definiteness we assume that €1 < €5 (the other case is
treated in a symmetric way). Let X(!) be a copy of the Lévy process X started at
0 and let 7™ and p be the analogues of I and p for X(). We can then define

W) = (1), w(a)) by

1
= [k_jom, o]

w(r) it r < H(k_,yp),
v () =93 e — m@k it H(k <1< H
EW(r (k_yop)  if H(k_jop) <v < H(p),

where, conditionally on X, ¢M) = (¢()(¢),t > 0) is a copy of the spatial motion &
started at w(H (k_,ap)—). Clearly, W(;) is distributed according to Qu(Ww, ).
The definition of W,y is analogous but we use another copy of the underlying Lévy

process. Precisely, we let Z be a copy of X independent of the pair (X(l), 5(1)), and
if T.(Z) :=1inf{r >0: Z, = &1 — 2}, we set

(2) _
Xs 81—€2+X(1) 1f8>T*(Z)

Z, it 0<s<T.(2),
s—T.(Z)

We then take, with an obvious notation,
2
I(2) = [’mgw”pi ]

The definition of w(y) is somewhat more intricate. Let 71 be the (a.s. unique) time
of the minimum of X over [0,t]. Consider the event

Ale,e1,80) = {T(Z) + 7D < t, IV < —¢}).

Notice that T, (Z) is small in probability when ¢ is small, and It(l) < 0 a.s. It follows
that P[A(e,e1,€2)] > 1 — a(e), where the function «a(e) satisfies a(e) — 0 as e — 0.

However, on the event A(e,e1,€2), we have It(2) =¢g1 — &g+ It(l)7 and so

[
k_It('z)p, = k—It(l)—el

]CEQ ,LL/ = k_It(l)_El ksl,u = k_It(l)H“

Also recall that from the definition of V.(W), we have w'(r) = w(r) for every r <
H (ke p1), hence for every r < H(k_,)p) when A(e, e1,€2) holds.

We construct w2y by imposing that, on the set A(e,e1,¢€2),

(r) = w'(r) = w(r) if r< H(kflt@)'ul) = H(k7121)u),
YO O - Hk_yjwp) it Hk_jop) 7 < Hug),

whereas on A(g,e1,e9)¢, we take

w'(r) if r <H(k_ o),
O = O~ Hk_ o)) i Bk p) < 7 < Hing).
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where, conditionally on X, €2 is independent of £ and distributed according
to the law of ¢ started at w'(H(k_,p')—). Note that, in the first case, we use the

same process £ as in the definition of w(1). It is again easy to verify that Wy is
distributed according to Q:(W, -).
To complete the proof, note that the distance in variation dyar (g (1), f1(2)) is equal

to dvar(pgl), p,EQ)) on the set A(e,e1,e2). Furthermore, from the construction of X (),

on the set A(e,e1,e3), we have also

(2 _ @
Pt =P T (2)

and thus dyar (@1, t2)) = dvar(pgl), pgi)T*(Z)) is small in probability when ¢ is small,
because t is a.s. not a discontinuity time of p(*). In addition, again on the set
A(e,e1,€2), the paths w(;) and w() coincide on the interval [0, H (1)) A H(p(2y)),
and so

AWy W) < [H o) = Huen)| = [H(p(2r, () = Hpt)|

is small in probability when € goes to 0. The limiting result (4.1) now follows from
these observations and the fact that P[A(e,e1,€2)] tends to 0 as € goes to 0. O

4.1.4 Excursion measures

We know that p = 0 is a regular recurrent point for the Markov process ps, and the
associated local time is the process LY of Section 1.3. It immediately follows that
(0,z) is also a regular recurrent point for the Lévy snake (ps, W), with associated
local time L%. We will denote by N, the corresponding excursion measure. It is
straightforward to verify that

(i) the law of (ps,s > 0) under N, is the excursion measure N (dp);
(ii) the conditional distribution of (Wj, s > 0) under N, knowing (ps, s > 0) is Q).

From these properties and Proposition 1.2.5, we easily get for any nonnegative
measurable function F' on M(Ry) x W,

Nx(/oa ds F(ps, Ws)) = /OOO dae B @ I, [F(Jga, (6,0 <1 < a))] (4.2)

Here, as in Chapter 1, J,(dr) stands for the measure 1jg 4)(7)dU,., where U is under
the probability measure P° a subordinator with Laplace exponent 1[)()\) — «, where
¥(\) = 1(A\)/A. Note that the right side of (4.2) gives an invariant measure for the
Lévy snake (ps, Ws).

The strong Markov property of the Lévy snake can be extended to the excur-
sion measures in the following form. Let T be a stopping time of the filtration
(Fs+) such that T > 0, N, a.e., let F' be a nonnegative Fp-measurable functional
on DRy, M¢(R;) x W), and let G be any nonnegative measurable functional on
DRy, Mf(Ry) x W). Then,

No[F G(Wrys,s 2 0)] = N[FEiy G,

where P% . denotes the law under P, ,, of the process (W, s > 0) stopped at inf{s >
0, ps = 0}. This statement follows from Theorem 4.1.2 by standard arguments.
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4.2 The connection with superprocesses

4.2.1 Statement of the result

In this section, we state and prove the basic theorem relating the Lévy snake with
the superprocess with spatial motion £ and branching mechanism . This connection
was already obtained in a less precise form in [33].

We start with a few simple observations. Let x(ds) be a random measure on R,
measurable with respect to the o-field generated by (ps, s > 0). Then, from the form
of the conditional distribution of (Ws,s > 0) knowing (ps,s > 0), it is easy to see
that, for any nonnegative measurable functional F' on W,,

Em[/m(ds) F(WS)} - EI[/n(ds) I, [F(&,0 <r < Hs)]}»

and a similar formula holds under N,. This identity implies in particular that the
left limit W, (Hs—) exists k(ds) a.e., P, a.s. (or N, a.e.). We will apply this simple
observation to the random measure d,L¢ associated with the local time of H at level
a (cf Chapter 1). To simplify notation, we will write /WS = Ws(Hs—) when the limit
exists, and when the limit does not exist, we take /WS = A, where A is a cemetery
point added to F.

In order to state the main theorem of this section, we denote by Z, = Z,(p, W)
the random measure on E defined by

<Za7 f> = / dsL: f(Wé)
0
This definition makes sense under the excursion measures N,.

Theorem 4.2.1 Let 1 € My(E) and let

D St

iel
be a Poisson point measure with intensity p(dz)Ny(dpdW). Set Zy = p and for every
a>0 4 .

Zo = Za(p",W").
il

The process (Zy,a > 0) is a superprocess with spatial motion & and branching mech-
anism 1, started at p.

This means that (Z,,a > 0) is a Markov process with values in M;(E), whose
semigroup is characterized by the following Laplace functional. For every 0 < a < b
and every function f € By, (E),

Elexp —(Zy, f) | Za] = exp —(Za, up—a)

where the function (u(y),t > 0,y € E) is the unique nonnegative solution of the
integral equation

)+ 11, [ vluer€) ) = 1 160) (13)

The proof of Theorem 4.2.1 is easily reduced to that of the following proposition.
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Proposition 4.2.2 Let 0 < a < b and let f € By (E). Then,
Na(exp —(Z, f) | (21,0 <7 < a)) = exp —(Za, up—a) (4.4)
where for everyt >0 andy € F,

ur(y) = Ny(1 —exp —(Zy, f)).

Furthermore, if we set ug(y) = f(y), the function (u:(y),t > 0,y € E) is the unique
nonnegative solution of the integral equation (4.3).

Remark. Although N, is an infinite measure, the conditioning in (4.4) makes sense
because we can restrict our attention to the set {Z, # 0} = {L2% > 0} which has finite
N, -measure (cf Corollary 1.4.2). A similar remark applies in several places below, e.g.
in the statement of Proposition 4.2.3.

Given Proposition 4.2.2, it is a straightforward exercise to verify that the process
(Za,a > 0) of Theorem 4.2.1 has the finite-dimensional marginals of the superpro-
cess with spatial motion £ and branching mechanism 1, started at p. In fact the
statement of Propostion 4.2.2 means that the laws of (Z,,a > 0) under N, y € E
are the canonical measures of the superprocess with spatial motion £ and branching
mechanism v, and given this fact, Theorem 4.2.1 is just the canonical representation
of superprocesses.

The remaining part of this section is devoted to the proof of Proposition 4.2.2.
We will proceed in two steps. In the first one, we introduce a o-field £, that contains
0(Z4,0 < u < a), and we compute Ny (exp —(Z;, f) | £,) in the form given by (4.4).
In the second step, we establish the integral equation (4.3).

4.2.2 First step

Recall the notation of Section 1.3
T
7¢ =1inf{r: / dul{g,<a} > s}
0

Note that 7¢ < oo for every s > 0, N, a.e. For a > 0, we let &, be the o-field
generated by the right-continuous process (pza, Wra;s > 0) and augmented with the
class of all sets that are N -negligible for every x € E. From the second approximation
of Proposition 1.3.3, it is easy to verify that L% is measurable with respect to the o-
field generated by (pze,s > 0), and in particular with respect to &, (cf the beginning
of the proof of Theorem 1.4.1).

We then claim that Z, is £,-measurable. It is enough to check that, if g is bounded
and continuous on W,,

| arzaovy
0

is &,-measurable. However, by Proposition 1.3.3, this integral is the limit in N,-
measure as € — 0 of

1 g
=z / ds1{g—ccH,<a) g(Ws).
€Jo

For € < a, this quantity coincides with

1 o0
g/ ds1{a—e < Hza < a} g(Ws),
0
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and the claim follows from the definition of &,.

We then decompose the measure 2}, according to the contributions of the different
excursions of the process H above level a. Precisely, we let («y,5;), ¢ € I be the
excursion intervals of H above a over the time interval [0, o]. We will use the following
simple facts that hold N a.e.: For every i € I and every t > 0, we have

Bi+t Bi
/ 1{H5§a}d5 > / 1{H5§a}ds
0 0

and
L%i“l‘t > L%m'

The first assertion is an easy consequence of the strong Markov property of p, recalling
that ps({a}) = 0 for every s > 0, N a.e. To get the second one, we can use Proposition
1.3.1 and the definition of the local time L* to see that it is enough to prove that

Bi+t Bi
/ 1{H5>a}d8 > / 1{H5>a}d8
0 0

for every t > 0 and ¢ € I. Via a time-reversal argument (Corollary 3.1.6), it suffices
to verify that, if 0 = inf{s > ¢ : H; > a}, we have

q

ol+t ol
/ 1{Hs§a}ds > / ].{Hsga}ds
0 0

for every t > 0 and every rational ¢ > 0, N a.e. on the set {¢ < 0 < co}. The latter
fact is again a consequence of the strong Markov property of the process p.

As was observed in the proof of Proposition 1.3.1, for every i € I, for every
s € (ay, i), the restriction of ps to [0, a] coincides with p,, = pg,. Furthermore, the
snake property implies that, for every i € I, the paths W, a; < s < (3; take the
same value x; at time a, and this value must be the same as the left limit W,, = Wjg,
(recall our assumption that ¢ has no fixed discontinuities). We can then define the
pair (p', W%) € D(R4, Mf(Ry) x W) by setting

(0%,9) = Jia.00) Pai+s(dr) g(r — a) if 0<s<f;—a
pl=0 if s=0or s> g —a,
and
Wi(r) =Wa,gs(a+r), Cwi=Haps —a f0<s<fBi—a
Wsi:xi if s=0o0rs>g —q;.

Proposition 4.2.3 Under N, conditionally on &,, the point measure

Zé(pi,wi)

icl

s a Poisson point measure with intensity
[ Zatany .
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Proof. Let the process p¢ be defined as in Proposition 1.3.1. Note that under N
the definition of p§ only makes sense for ¢ < foo ds1{p,>q)- For convenience, we take
pd=0ift > fog ds1ip, >q}. We also set

pr=pra, Wy=Wsa

With these definitions, the processes p’, i € I are exactly the excursions of the
process p® away from 0. For every i € I, introduce the local time at the beginning
(or the end) of excursion p*: 4

=L
By Proposition 1.3.1 and standard excursion theory, we know that conditionally on
the process p;, the point measure

>0 )

el

is Poisson with intensity 1o ra1(¢)d¢ N(dp) (recall that Lg is measurable with re-
spect to the o-field generated by p). Note that Proposition 1.3.1 is formulated under
P,: However, by considering the first excursion of p away from 0 that hits the set
{sup Hs > a}, we can easily derive the previous assertion from Proposition 1.3.1.
Define L% = L%. (note that this is a continuous process), and let y*(r) be the

right-continuous inverse of Le:
y(r) = inf{s > 0: L% > r}.
Then, if f is any nonnegative measurable function on F, we have N, a.e.

—~

%) o oo ~ L‘; —
(Za, f) = /0 dLe f(W.) = /0 dLe f(W,) = /0 40 (Won).  (45)

Notice that both processes L® and +* are measurable with respect to the o-field
generated by p (for L, this follows again from Proposition 1.3.3).

Consider now the processes W and Wi, i € I. The following two properties are
straightforward consequences of our construction:

i) The law of W under Qf(”) is Qf(ﬁ).
(i)

(ii) Under Qx Hp ), conditionally on W, the “excursions” W', i € I are 1ndependent
and the conditional distribution of W is sz (v") , where z; = Wﬁi = an (£1)-

To verify the second expression for x;, note that if Ag = fos drlig,<ay, we have
Wg, = WAa (because fl% it > flg for every t > 0) and flg = 7%(¢") (because
Lg ., > Lg, =4 for every t > 0). i

As a consequence of (i), the conditional distribution (under N,) of W knowing p
depends only on . Hence, W and the point measure > ) are conditionally
independent given p under N, .

Let F' be a nonnegative measurable function on D(R, M (R4 ) x W). We use the
previous observations in the following calculation:

1€I

NI(G( ) exp(— ZFp W) )

icl
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— [ N QIO (65, ) expl~ 3 F (o' W)

el
:/ ¥ @ (a i TLQ) (o)
iel v (eh)
H(p) —F(p',)
ST G

:NI(G( W) exp / dé/N (dp) Q1" (1—e—F<pv>))).

Y ()

The second equality follows from (ii) above. In the last one, we used the condi-
tional independence of W and of the point measure > ic1 00 i), given p, and the
fact that the conditional distribution of this point measure 1s Poisson with intensity
Lio,za1(€)dé N(dp). Using (4.5), we finally get

N, (G(p. W) exp(~ Y F(o', W)

el
=N, (G(p. W) exp (—/O " Ny (- e Fe)
= N, (G, W) exp(— [ Zu(dy) (1 = 7).

This completes the proof. O

Let f be a nonnegative measurable function on FE, and let 0 < a < b. With the
preceding notation, it is easy to verify that N, a.s.

(Zo.f) = / dLbf(W)

el Y%

- ALt~ (') £(7)
;/

- Z<Zb—u(pl7wz)vf>
i€l

As a consequence of Proposition 4.2.3, we have then
N, [exp 7<Zb7 f> | &a] = eXp*<Za; Ub—a>a

where
Ur(y) = Ny[l — €xXp _<Z7"a f>]

4.2.3 Second step

It remains to prove that the function (u,(y),

r > 0,y € E) introduced at the end of
the first step solves the integral equation (4.3). By

definition, we have for a > 0,
o —~
w) = N(1-eo- [ v
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8y ([ ans s e (- [ ars s7)))

([ s T [ [zt s@]) o)

where we recall that P}, stands for the law of the Lévy snake started at (u, w) and

stopped when p; first hits 0. In the last equality, we replaced exp — fsoo dL¢ f (ﬁ/\r)
by its optional projection, using the strong Markov property of the Lévy snake to
identify this projection.

We now need to compute for a fixed (u, w) € 0,,

E: [exp - /OOO dL? f(Wr)] .

We will derive this calculation from a more general fact, that is also useful for forth-
coming applications. First recall that Y; = <pt, 1> is distributed under P, ,, as the
underlying Lévy process started at <,u7 1> and stopped when it first hits 0. We write
K; = inf, <, Y,, and we denote by (o, 3;), i € I the excursion intervals of ¥; — K}
away from 0. For every ¢ € I, we set h; = H,, = Hg,. From the snake property, it is
easy to verify that W(h;) = w(h;—) for every s € (a;, 3;), i € I, P}, a.s. We then
define the pair (p*, W) by the formulas

(P4:9) = fin, 00y Pasts(dr) g(r = hi) if 0<s<B—a
pizo ifs>ﬂ’i_ai7
and
Wi(t) = Wars(hi +1), (= Haps — hi if 0<s<pf—a
Wi = w(h;—) if s=0o0rs>f —q.

Lemma 4.2.4 Let (u,w) € ©,. The point measure
Z 6(hi’piﬁwi)
el

a Poisson point measure with intensity

. *
is under P,

p(dh) Ny n—) (dp dW).
Proof. Consider first the point measure
> S
il
If I, = K, — (p, 1), we have h; = H(p,,) = H(k_1,, pt). Excursion theory for Y; — K
ensures that
Z 6(_1ai p?)
iel

is under P | a Poisson point measure with intensity 1o <, 15](u)du N(dp). Since

the image measure of 1jg <, 1>](u) du under the mapping v — H (k) is precisely
the measure p, it follows that
> Ohi)

i€l
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is a Poisson point measure with intensity wp(dh) N(dp). To complete the proof, it
remains to obtain the conditional distribution of (Wi € I) knowing (ps,s > 0).
However, the form of the conditional law QI easily implies that under QX the
processes W', i € I are independent, and furthermore the conditional distribution of
Wi is Qvfj(lhi_), where H! = H(p®). It follows that

Z(S(hhpi,wi)

iel
is a Poisson measure with intensity
H
p(dh) N(dp) QL (dW) = pu(dh) Nyn— (dpdW).

This completes the proof. O
We apply Lemma 4.2.4 to a pair (u, w) such that H(u) < a and p({H(u)}) = 0.
Then, it is easy to verify that IP’;,W a.s

/0 dLe f => dL“ Z/ dLo~hi (p?) F(W),

iel Y% el

and thus, by Lemma 4.2.4,

Bl [0 | " 1)) = e (= [ plan) Moo - e —(Zans ). 01

We now come back to formula (4.6). As a consequence of Proposition 1.2.5, we
know that ps({a}) = 0 for every s > 0, N, a.e. We can thus use (4.7) to get

wl) = N[ AL FT) exp (= [ pulah) Ny 1 = xp (2o 1))
= ([ aze 1T exo (= [ oty uan 9. 00)). (43)
Let J,, P° be as in (4.2).
Lemma 4.2.5 For any nonnegative measurable function F' on ©,,
Ny</ dL% F(ps, Wg)> =e B @I, [F(Ja, (&,0 <7 < a))l.
0
Proof. If F(ps, W) depends only on pg, the result follows from Corollary 1.3.4. In
the general case, we may take F' such that F(ps, Ws) = Fi(ps)Fa(Ws), and we use

the simple observation of the beginning of this section. O
From (4.8) and Lemma 4.2.5, we get

W) = ¢ e[ exp (- [ Juldh) uan(6n))]

i, (e e (- [ it ar)].

The proof of (4.3) is now completed by routine calculations. We have

waly) = TLIF(E)] ~ T, [£() /Oadw(uab(sm exp (- /bazzxuar(m)dr)]
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= 07N -1, [ dvduas(e)

Mg, {f(ga—b) exp ( - /O“b Y(ua-r(&r)) dr)”

M) 10| [ b a-a(60) vas(6)]

which gives (4.3) and completes the proof of Proposition 4.2.2. d

Remark. By combining the previous arguments, especially Lemma 4.2.4, with the
duality properties of p (see the derivation of (4.33) below), we could have obtained the
following result. Let f and g be nonnegative measurable functions defined respectively
on E and on My (FE). Let V be a subordinator with Laplace exponent ¢’ (\) —a defined
under the probability measure P°. Then, for every a > 0,

N ([ Zuldy) 1) 9(2.)
— e B 1L [(6) B o [ Ndsdpd) 20 W))]] - 09)

where N (dsdpdW) is under Py ¢ a Poisson point measure on Ry xD(Ry, Mp(R;)xW)
with intensity
1(0,4)(8) AV Ne, (dpdW).

Formula (4.9) identifies the Palm distributions associated with the random mea-
sure Z, under N,. It should be compared with the results of Chapter 4 of [8], in
particular Proposition 4.1.5. In the stable case considered in [8], V is a stable sub-
ordinator, which arises analytically in the derivation of the Palm measure formula.
Here V can be interpreted probabilistically in terms of the measure-valued processes
p and 7. As (4.9) will not be needed in the applications below, we will leave details
of the proof to the reader.

4.3 Exit measures

Throughout this section, we consider an open set D C E, and we denote by 7 the
first exit time of & from D:

T=1inf{t > 0: & ¢ D},

where inf ) = oo as usual. By abuse of notation, we will also denote by 7(w) the exit
time from D of a killed path w € W,

7(w) =1inf{t € [0, () : w(t) ¢ D}.
Let x € D. The next result is much analogous to Proposition 1.3.1.

Proposition 4.3.1 Assume that I1,(T < oo0) > 0. Then,

/ dslirwy<m,y =00, Py oas
0

Furthermore, let

t
JSD = inf{t >0: / dr 1{T(W7‘)<H7‘} > S},
0
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and let pP € M;(R4) be defined by

(00 ) = [ 9o ) Fr = TWap)) Lpsria

Then the process (pP,s > 0) has the same distribution under P, as (ps,s > 0).

Remark. We could have considered the more general situation of a space-time open
set D (as a matter of fact, this is not really more general as we could replace & by
(t,&)). Taking D = [0,a) x E, we would recover part of the statement of Proposi-
tion 1.3.1. This proposition contains an independence statement that could also be
extended to the present setting.

Proof. To simplify notation, we set

A?Z/O d’l“ 1{7’(W,.)<H,.}-

By using (4.2), excursion theory and our assumption II,(7 < o0) > 0, it is a simple
exercise to verify that AD = oo, P, a.s., and thus the definition of o” makes sense
for every s > 0, a.s. The arguments then are much similar to the proof of Proposition
1.3.1. For every € > 0, we introduce the stopping times S*, TF k > 1, defined
inductively by:

S! =inf{s > 0:7(W,) < 0o and p,((1(Wy), 00)) > €},

TF = inf{s > S¥: 7(W,) = oo},

SFHL —inf{s > TF : 7(W,) < 0o and p,((7(W,),00)) > €}.
It is easy to see that these stopping times are a.s. finite, and S* 1 oo, T* 1 oo as
kT oc.

From the key formula (1.13), we see that for

SE < s <inf{r > S (o, 1) < pei ([0, 7(Wep))}

we have H; > 7(Wgr), and the paths W and Wy coincide over [0, 7(Wsk)] (by the
snake property), so that in particular 7(Ws) = 7(Wgk) < 0o. On the other hand, for

s=1inf{r > S¥: (p,,1) < pse([0,7(Wsr)])}

the path W is the restriction of Wgx to [0,7(Wgx)) and thus 7(Ws) = oco. From
these observations, we see that

TF = inf{r > SF: (p,,1) < psr ([0, 7(Wap)])}
and that conditionally on the past up to time S¥, the process
VI = pisysyars (T(Wsk), 00))

is distributed as the underlying Lévy process started at pgx ((7(Wgk ), 00)) and stopped
at its first hitting time of 0.
The same argument as in the proof of (1.18) shows that, for every ¢ > 0,

lim sup  pgr((1(Wgr),00)) =0, a.s. (4.10)
=0 p>1,9k<t)y © ©
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The remaining part of the proof is very similar to the end of the proof of Proposi-
tion 1.3.1. Using (4.10) and the observations preceding (4.10), we get by a passage to
the limit ¢ — 0 that the total mass process (p?,1) = p,o ((T(W,p ), 50)) has the same
distribution as the process (ps,1). Then the statement of the proposition follows by
an argument similar to the second step of the proof of Proposition 1.3.1. O

Let (P = (¢P(s),s > 0) be the local time at 0 of the process (p”,1). Recall the
notation AP from the previous proof. We define the ezit local time from D by the
formula

LP = P(42) = (| driyeny)
0
Recall from (4.2) the notation J,, P°.

Proposition 4.3.2 For any nonnegative measurable function ® on My(R4) x W,
Nw(/ ALY ®(pe, W) ) = B @ L[ coye ™ (7, (6,0 < 7 < 7).
0

Proof. By applying Lemma 1.3.2 to the reflected Lévy process (p”,1), we get for
every s > 0,

1
ED(S) :ili%g ) dr 1{0<H(p?)§€}

in L'(P,). From a simple monotonicity argument, we have then for every ¢ > 0

| -0

Using the formulas LY = ¢P(AP) and H(p,p) = 7(W,p)+ H(pP) (the latter holding
on the set {H(pyp) > 7(W,p)}, by the definition of p?), we obtain

| -0

Arguing as in the derivation of (1.29), we get, for any measurable subset V of
D(R4, My(R4) x W) such that N, (V') < oo,

lim E,. {sup
e—0 Sgt

1 S
P (s) - g/o drLo<r(pp)<e)

. 1/
lim I, [Sup LY - g/ dr 1ir(w,)<H,<r(W,)+e}
E— 0

s<t

lim N, (1\/ sup
e—0 Sgt

1 S
L? - g/o dr L (w,)<H.<r(W,)+e} ) =0. (4.11)

We then observe that for any bounded measurable function F' on Ry x My(R4) x
W, we have

N’”(/OU ds F(s,ps, W) = E@ 1L, [/OLW da F(L7(a), Sa, (6,0 <7< 0))] (4.12)

where the random measure ¥, is defined under P by

L™ (a)
<Eavg> :/ dSsg(a_Ls)'
0

Indeed, we observe that the special case where F'(s, u, w) does not depend on w,

N(/OU ds F(s,ps)) = E[/OLOO da F(L™Y(a), )
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is a consequence of Proposition 1.1.4 (see the proof of Proposition 1.2.5), and it then
suffices to use the conditional distribution of W knowing (ps,s > 0).

After these preliminaries, we turn to the proof of the proposition. We let F be
a bounded continuous function on Ry x My(Ry) x W, and assume in addition that
there exist § > 0 and A > 0 such that F(s,u,w) = 0if s < dor s > A As a
consequence of (4.11) and (4.12), we have then

N, ( /OJ dLP F (s, ps, Ws))

. 1 [
= lim Nx(g/o dTF(T, praWr) 1{T(W7~)<HTST(WT)+E})

e—0

1 Loo
= lim ~E®I, {/ da F(L™Y(a), %, (&,0 <7 < a)) 1{T<ag7+e}]
0

e—0 ¢

=E® Hac[l{-r<Loo} F(Lil(T)vz‘rv (& 0 <7 < 7))

From this identity, we easily get
N[ LD B W) = B @ MalLre ) B(Er, (6,0 < < 7))L
0

Recall that P[L. > a] = e~ *®* and, that conditionally on {L. > a}, £, has the
same distribution as J,. The last formula is thus equivalent to the statement of the
proposition.
O
We now introduce an additional assumption. Namely we assume that for every
x € D, the process £ is I, a.s. continuous at t = 7, on the event {T < co}. Obviously
this assumption holds if £ has continuous sample paths, but there are other cases of
interest. .
Under this assumption, Proposition 4.3.2 ensures that N, a.e. the left limit Wy
exists dLP a.e. over [0, 0] and belongs to D. We define under N, the ezit measure
ZP from D by the formula

D _ 7 D _(T17
(ZP.g) = / dLP ¢(WV.).

The previous considerations show that Z” is a (finite) measure supported on dD.
As a consequence of Proposition 4.3.2, we have for every nonnegative measurable
function g on 9D,

Nw(<ZDvg>) = HI(l{T<OO}e_aTg(€T))'

Theorem 4.3.3 Let g be a bounded nonnegative measurable function on 0D. For
every x € D set
u(z) = Ny(1 —exp —(ZP, g)).

Then u solves the integral equation

u(e) + 1 ([ at((E)) = (L cayalEn))

0

Proof. Several arguments are analogous to the second step of the proof of Proposition
4.2.2 in Section 4, and so we will skip some details. By the definition of Z”, we have

wa) = a(1-ew- [ a?y(iW)

107



Nx( 0 " ALP g(W,) exp / dLP g( )

/dLD EX. . eXp / dLD g(W )])

Note that the definition of the random measure dL” makes sense under P, w provided
that 7(w) = oo, thanks to Lemma 4.2.4 and the approximations used in the proof of
Proposition 4.3.2. Using Lemma 4.2.4 as in subsection 4.2.3, we get if (u, w) € O, is
such that 7(w) = oo,

B, | exp - /O " aLP o]
= exp ( — /u(dh) Ny (ho) (1 — eXP—/OU dL? Q(Wr)))
= o (- /u(dh) Ny (11— 7))

—exp(- [ n(dh)u(w(h-)).
Hence, using also Proposition 4.3.2,
wa) = N[ dLE gV exol- [ puanyu(wn-))
= " @I [Lircoye (&) exp(- / T (dh) ()]
— W[t a6 e (- [ anitucen)].

The integral equation of the theorem now follows by the same routine arguments used
in the end of the proof of Proposition 4.2.2. O

4.4 Continuity properties of the Lévy snake

From now on until the end of this chapter we assume that the underlying spatial
motion £ has continuous sample paths. The construction of Section 4.1 applies with
the following minor simplification. Rather than considering cadlag paths, we can
define W, as the set of all E-valued killed continuous paths started at z. An element
of W is thus a continuous mapping w : [0,() — E, and the distance between w and
w’ is defined by

A
d(w,w') = 6(w(0),w'(0)) + |¢ = ¢'| + /0 dt (sup§(w(r),w'(r)) A1).  (4.13)

r<t

Without risk of confusion, we will keep the same notation as in Section 4.1. The
construction developed there goes through without change with these new definitions.

Our goal is to provide conditions on ¥ and £ that will ensure that the process
Wy is continuous with respect to a distance finer than d, which we now introduce.
We need to consider stopped paths rather than killed paths. A stopped (continuous)
path is a continuous mapping w : [0,{] — E, where ¢ > 0. When ¢ = 0, we identify
w with w(0) € E. We denote by W* the set of all stopped paths in E. The set W*
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is equipped with the distance

d*(w,w') = [ = ('] + sup S(w(t A Q) w(t A()).

Note that (W*,d*) is a Polish space.

If w € W is a killed path such that ¢ > 0 and the left limit w = w({—) exists, we
write w* for the corresponding stopped path w*(t) = w(t) if t < ¢, and w*({) = w.
When ¢ = 0 we make the convention that * = x. Note that W/ is well defined P,
a.s., for every fixed s > 0.

As in Chapter 1, we set

v =sup{a>0: )\lim ATP(N) = 00} > 1.

Proposition 4.4.1 Suppose that there exist three constants p > 0, ¢ > 0 and C < oo
such that for everyt >0 and x € F,

IL, | sup (5(:3,{})1’} < Cte. (4.14)
r<t
Suppose in addition that
1
q(l——)>1.
( 7)

Then the left limit ﬁ/\s = W,(Hs—) exists for every s > 0, P, a.s. or N, a.e. Further-
more the process (WF, s > 0) has continuous sample paths with respect to the distance
d*, P, a.s. or N, a.e.

Remark. Only the small values of ¢ are relevant in our assumption (4.14) since we
can always replace the distance § by d A 1. Uniformity in = could also be relaxed, but
we do not strive for the best conditions.

Proof. It is enough to argue under P,. Let us fix ¢ > 0 and s € (0,1). Then,

Eold (W, Wi )] < 2 (Bal| oo~ HolP |+ | sup 8(W; (hAHL), Wi (hAH 1))

r>0

To simplify notation, set m = mpg(t,t + s) = infy 444 H,. From the conditional
distribution of the process W knowing H, we easily get

E, [Sup (Wi (u A HL), Wiy y(u A Ht+s))”‘ H,.r> 0}

u>0

< 2P (Hz {Hgm { sup (&, {u)p” + 11, {Hgm [ sup (o, fu)pH)

u<H;—m u<Hiis—m
< C27(|Hy —m|? + [Higs —m|?),

using our assumption (4.14) in the last bound. By combining the previous estimates
with Lemma 1.4.6, we arrive at

E,[d" (W}, W )P < 22771 (Cpp(1/5) ™7 + C Cyp(1/)77)
where ¢(A) = A/¢~'(A). Now choose o € (0,1 — ) such that ga > 1. Notice that

we may also assume pa > 1 since by replacing the distance d by § A 1, we can take
p as large as we wish. The condition o < 1 — % and the definition of v imply that
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©(A) > cA® for every A > 1, for some constant ¢ > 0. Hence, there exists a constant
C’ independent of t and s such that

Eod™ (W, Wi )P] < CF(s7 + 57%) .

The Kolmogorov lemma then gives the existence of a continuous modification of the
process (W, s > 0) with respect to the distance d*. The various assertions of the
proposition follow easily, recalling that we already know that the process (Ws, s > 0)
has continuous paths for the distance d. O

4.5 The Brownian motion case

In this section, we concentrate on the case when the underlying spatial motion ¢ is

Brownian motion in R?. We will give a necessary and sufficient condition for the

process W* to have a modification that is continuous with respect to the distance d*.
To this end, we introduce the following condition on %:

/100 (/Otw(u) du)il/th < co. (4.15)

Note that this condition is stronger than the condition [, du/t(u) < oo for the path
continuity of H. In fact, since v is convex, there exists a positive constant ¢ such
P(t) > ct for every t > 1. Then, for t > 1,

Aw@MSW®SfW@2

1“%9_1/2/1”(/0t¢(u)du)I/Zdt.

Also note that (4.15) holds if y > 1. On the other hand, it is easy to produce examples
where (4.15) does not hold although H has continuous sample paths.

and thus

Condition (4.15) was introduced in connection with solutions of Au = t(u) in
domains of R%. We briefly review the results that will be relevant to our needs (see
[25],[41] and also Lemma 2.3 in [45]). We denote by B, the open ball of radius r
centered at the origin in RY.

A. If (4.15) holds, then, for every r > 0, there exists a positive solution of the
problem
1A, — :
{ 5Au = Y(u) in B, (4.16)
U\BBT = 0.
Here the condition ujgp, = oo means that u(x) tends to +o00 as  — y,z € B,,
for every y € 0B,.

B. If (4.15) does not hold, then for every ¢ > 0, there exists a positive solution of

the problem
LAu = 1(u) in R?
2
{ 20y =c. (4.17)

Connections between the Lévy snake and the partial differential equation Au =
¥(u) follow from Theorem 4.3.3. Note that this is just a reformulation of the well-
known connections involving superprocesses. We use the notation of Section 4.3. A
domain D in R? is regular if every point y of D is regular for D¢, meaning that:
inf{t >0:& ¢ D} =0, I, as.
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Proposition 4.5.1 Assume that € is Brownian motion in R¢. Let D be a bounded
reqular domain in R, and let g be a nonnegative continuous function on OD. Then
the function

u(z) = Ny (1 —exp—(ZP, 9))

18 twice continuously differentiable in D and is the unique nonnegative solution of the

problem

1Ay — ;

{ sAu = (u) in D (4.18)
Upp = 9 -

Proof. This follows from Theorem 4.3.3 by standard arguments. In the context of

superprocesses, the result is due to Dynkin [12]. See e.g. Chapter 5 in [31] for a proof
in the case ¥ (u) = u?, which is readily extended. O

We can now state our main result.

Theorem 4.5.2 Assume that & is Brownian motion in R%. The following conditions
are equivalent.

(i) No(ZPr #£0) < oo for some r > 0.
(ii) No(ZBr # 0) < oo for every r > 0.

(iii) The left limit /VIZ = Ws((s—) exists for every s > 0, Py a.s., and the mapping
s — Wy is continuous, Py a.s.

(iv) The left limit W, = Ws((s—) exists for every s > 0, Py a.s., and the mapping
s — W is continuous for the metric d*, Py a.s.

(v) Condition (4.15) holds.

Remark. The conditions of Theorem 4.5.2 are also equivalent to the a.s. compactness
of the range of the superprocess with spatial motion £ and branching mechanism ),
started at a nonzero initial measure y with compact support. This fact, that follows
from Theorem 5.1 in [45], can be deduced from the representation of Theorem 4.2.1.

Proof. The equivalence between (i),(ii) and (v) is easy given facts A. and B. recalled
above. We essentially reproduce arguments of [45]. By fact B., if (v) does not hold,
then we can for every ¢ > 0 find a nonnegative function v, such that v.(0) = ¢ and
%Avc = (v.) in RZ. Let » > 0 and A > 0. By Proposition 4.5.1, the nonnegative
function
uy(r) = Ny (1 —exp —\(Z57 1)), x € B,

solves %Auk,« = ¢(ux,) in B, with boundary condition A on 0B,. By choosing A
sufficiently large so that sup{v.(y),y € 0B} < A, and using the comparison principle
for nonnegative solutions of $Au = v(u) (see Lemma V.7 in [31]), we see that v, <
Uy, in B,. In particular,

¢ =0:(0) < ux,(0) <Ng(2P £0).

Since ¢ was arbitrary, we get No(ZB" # 0) = oo and we have proved that (i) = (v).
Trivially (i) = (i).

Suppose now that (v) holds. Let » > 0. By fact A., we can find a function u,) such
that %Au(r) = ¥(u(y) in B, with boundary condition +o0o on dB,. The maximum
principle then implies that, for every A > 0, uy , < u(). Hence

No(2B £0) = )1\1%10 T uxr(0) < ugy(0) < oo
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and (ii) holds. We have thus proved the equivalence of (i),(ii) and (v).
Let us prove that (iii) = (ii). We assume that (iii) holds. Let r > 0. Then on the

event {ZBr #£ 0}, there exists s € (0,0) such that W, € 0B,. It follows that

No( sup [Wy = 7) = No(Z% #0).
s€(0,0)

Let Ty = inf{s > 0 : LY > 1} (in agreement with the notation of Chapter 1). The

path continuity of W ensures that Py a.s. there are only finitely many excursions
intervals (o, 0;) of Hy away from 0, before time T3, such that

sup |WS\ >
s€(ai,Bi)

On the other hand, excursion theory implies that the number of such intervals is
Poisson with parameter

No(ses;é?a) W, > T).

We conclude that the latter quantity is finite, and so No(Z5 # 0) < oo.

Note that (iv) = (iii). Thus, to complete the proof of Theorem 4.5.2, it remains
to verify that (i) = (iv). From now on until the end of the proof, we assume that
(ii) holds.

We use the following simple lemma.

Lemma 4.5.3 Let D be a domain in R? containing 0, and let
S =inf{s > 0: W4(t) &€ D for somet € [0, H)}.
Then No(ZP # 0) > No(S < o0).
Proof. By excursion theory, we have
Po[S > T1] = exp(—Np(S < 00)).

Then, let 7 be as previously the exit time from D. If there exists s < 77 such that
7(Ws) < Hs, then the same property holds for every s’ > s such that s’ — s is
sufficiently small, by the continuity of H and the snake property. Hence,

T1
{S < Tl} C { ds 1{T(Ws)<HS} > O}, Py a.e.
0

It follows that
T
PolS 2 Th] 2 PO[/ ds Lz(w)<m.} = 0] = Po[L7, = 0],
0

where the second equality is a consequence of the formula

T
L7 = fD(/O ds 1z (w,)<H.})s

together with the fact that /P (s) > 0 for every s > 0, a.s.
Using again excursion theory and the construction of the exit measure under Ny,
we get
Po[S > T1] > Po[LE, = 0] = exp(—No(ZP # 0)).
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By comparing with the first formula of the proof, we get the desired inequality. O

Let € > 0. We specialize the previous lemma to the case D = B, and write S = S7.
Then, for every r > 0,

Po[S5 > T,] = exp(—rNo(55 < o0)) > exp(~rNo(Z5¢ £ 0)).

From (ii), it follows that S§ > 0, Py a.e. Also note that S5 is a stopping time of the
filtration (F,1) and that {Ws:(¢) : 0 < ¢ < Hg:} C Be (if this inclusion were not
true, the snake property would contradict the definition of S%).
Recall the notation mpy(s,s’) = infj, o) H, for s < s'. We define inductively a
sequence (S5 ),>1 of stopping times (for the filtration (Fs4)) by setting
SE

n

41 =1inf{s > S5 : [W(t) — Ws(t Amg(S;,,s))| > € for some ¢ € [0, H,)}.
At this point we need another lemma.

Lemma 4.5.4 Let T be a stopping time of the filtration (Fsy.), such that T < oo, Py

a.s. For every s > 0, define a killed path W, with lifetime Hg by setting
W, (t) = Wy(mp (T, T+s)+t)—W,(mg(T, T+s)), 0 < t < Hy := Hryo—mp (T, T+s)

with the convention that Wy = 0 if H, = 0. Then the process (Ws, s> 0) is indepen-
dent of Fr4 and has the same distribution as (Ws,s > 0) under Py.

This lemma follows from the strong Markov property of the Lévy snake, together
with Lemma 4.2.4. The translation invariance of the spatial motion is of course crucial
here.

As a consequence of the preceding lemma, we obtain that the random variables
St,85 — S%,...,8,,1 — S;,... are independent and identically distributed. Recall

that these variables are positive a.s. Also observe that
{WS;+1(t) — Ws;H(t ANmg(S;,Sh1)) it e [O’HSZH)} C B.,

by the same argument as used previously for {Ws:(t) : t € [0, Hs:)}.
Let a > 0. We claim that Ny a.s. we can choose §; > 0 small enough so that, for
every s,s’ € [0,T,] such that s < s’ < s+ 4y,

W (t) — We (mu(s,s') At)| < 3e, for every t € [0, Hy). (4.19)
Let us verify that the claim holds if we take
0y =inf{S; ;= S;;n>1,5, <T,}>0.

Consider s,s" € [0,T,] with s < s’ < s+ §;. Then two cases may occur.
Either s,s" belong to the same interval [S5,S; ;). Then, from the definition of
Sy 11 we know that
Wy (t) — We(t Ampy (S5, s"))| < e for every t € [0, Hy). (4.20)
Since my (s, s") > mpu (S5, s") we can replace t by t Am(s, s’) to get

W (t Amig(s, ) = W (E Amgg (S5, ') < € for every ¢ € [0, Hy),

and our claim (4.19) follows by combining this bound with the previous one.
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Then we need to consider the case where s € [S;_;,S5;] and s' € (S}, 5] 1]
for some n > 1 (by convention S§ = 0). If my(s,s’) = mg(SE,s’), then the same
argument as in the first case goes through. Therefore we can assume that mg (s, s’) <
mp (S, s"), which implies mg (S5_1,52) < mu(S5,s’). Note that the bound (4.20)
still holds. We also know that

[Wss (t) = Wse (t Amp(S;,_1,5;,))| < € for every t € [0, Hse ). (4.21)

n—1»

We replace t by t Ampy(S;,,s’) in this bound, and note that W (t A mg(S;,,s")) =
W (t Ampy(S;,,s')) for every t € [0, Hs: A Hy), by the snake property. It follows
that

Wy (t Amp (S5, s')) — Wse (t Amp(S;,_1,5;))| < € for every t € [0, Hy).  (4.22)

Similarly, we can replace t by t Amg (s, s’) in (4.21), using again the snake property to
write Wse (tAmg(s,s')) = We(tAmpu(s,s')) (note that mg(S;,_1,S;,) <mpu(s,s’) <
mpg (5SS, s')). It follows that

(Wi (t A (5, ) — Wss (A mig(S5_y, 82))| < e for every ¢ € [0, Hy).  (4.23)
Our claim (4.19) is now a consequence of (4.20), (4.22) and (4.23).

—

We can already derive from (4.19) the fact that the left limit W exists for every
s € [0,T,], Py a.s. We know that this left limit exists for every rational s € [0,T,],
Py a.s. Let s € (0,7,], and let s, be a sequence of rationals increasing to s. Then
the sequence mp(sp, s) also increases to Hy. If my (s, s) = Hy for some n, then the
snake property shows that W(t) = Wy (t) for every t € [0, Hs) and the existence of
WS is an immediate consequence. Otherwise, (4.19) shows that for n large enough,

sup |Ws(t) — Ws(t Amp (s, s))| < 3e
te[0,Hy)

and by applying this to a sequence of values of € tending to 0 we also get the existence
of W.

We finally use a time-reversal argument. From Corollary 3.1.6, we know that the
processes (Hiar,,t > 0) and (H(z,_¢)+,t > 0) have the same distribution. By consid-
ering the conditional law of W knowing H, we immediately obtain that the processes
(Winr,,t > 0) and (W(p, _yy+,t > 0) also have the same distribution. Thanks to this
observation and the preceding claim, we get that Py a.s. there exists do > 0 such that
for every s,s’ € [0,T,] with s < s’ < s+ o,

[Ws(t) — Ws(mp(s,s') At)| < 3e, for every ¢ € [0, Hy). (4.24)
To complete the proof, note that the snake property implies that
W (mi(s,s') = Wi(mu(s, o),

using a continuity argument in the case mg(s,s’) = Hg A Hy. Thus, if s < s < T,
and s’ — s < 1 A da,

sup |W3(t A Hs) — W2 (t AN Hy)|

>0

< sup |[WZ(E)—WI(tAmu(s,s))|+ sup |[Wi(t)—WitAmu(s,s))|
te[0,H ] te(0,H /]

= sup |Ws(t) —Ws(tAmpg(s,s))|+ sup |Wy(t)—Wy(t Ampy(s,s"))]
te[0,H,) tel0,H,r)

< 6e.

This gives the continuity of the mapping s — W with respect to the distance d*,

S

and completes the proof of (iv). O
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4.6 The law of the Lévy snake at a first exit time

Our goal in this section is to give explicit formulas for the law of the Lévy snake at its
first exit time from a domain. We keep assuming that H has continuous sample paths
and in addition we suppose that the process W* has continuous sample paths with
respect to the metric d*. Note that the previous two sections give sufficient conditions
for this property to hold.

Let D be an open set in F and « € D. We slightly abuse notation by writing
7(w) = inf{t € [0, (] : w(t) ¢ D} for any stopped path w € W*. We also set

Tp =inf{s > 0: (W) < oco}.

The continuity of W* with respect to the metric d* immediately implies that Tp > 0,
N, a.e. or P, a.e. Furthermore, on the event {Tp < oo} the path Wy  hits the
boundary of D exactly at its lifetime. The main result of this section determines the
law of the pair (pr,, Wr,) under N, (- N {Tp < oo}).

Before stating this result, we need some notation and a preliminary lemma. For
every y € D, we set
u(y) = Ny (Tp < 00) < o0.

Recall that, for every a,b > 0, we have defined

(¥(a) = () /(a=Db)  if a#b,
Yo(a:b) = { V' (a) if a=b.

Note that v, (a,0) = ¢(a) (by convention ¢/(0) = 9'(0) = ). The following formulas
will be useful: For every a,b > 0,

/ w(dr) / " (1 — e @%=9) = 5, (a,b) — a — Bla +b) (4.25)
0
/ w(dr) /0 ' dle (1 — e t=9) = v, (a,b) — ¢(a) — Bb. (4.26)

The first formula is easily obtained by observing that, if a # b,

/r dl(1 = et = L(7“(61 —b)+ (e —e7™)).
0 a—b

The second one is a consequence of the first one and the identity

D(a) = a+ Ba+ /w(dr) / (1 — e=ot),

0

Recall from Section 3.1 the definition of the probability measures M, on My (R ).

Lemma 4.6.1 (i) Let a > 0 and let F' be a nonnegative measurable function on
M¢(Ry) x Mg(Ry) x W. Then,

Nx</oa dL3 F(ps;ns, Ws)) = e*aa/Ma(dudl/) IL[F (v, (6,0 <7 < a))].

(ii) Let f,g be two nonnegative measurable functions on Ry. Then,

V([ dz expl=(ou) ~ ) =exo (= [ ur0.900) a1)

0
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Proof. (i) Asin the proof of Lemma 4.2.5, we may restrict our attention to a function
F(ps,ms, Ws) = F(ps,ns). Then the desired result follows from Corollary 1.3.4 in the
same way as Proposition 3.1.3 was deduced from Proposition 1.1.4.

(ii) By part (i) we have

N( [z exp(—(puc ) = ) = [ Madud) expl{u. ) ()

From the definition of M, this is equal to

exp ( —aa— ﬂ/oa(f(t) +g(t)dt — /0 dt/w(dr) /0 de(1 — e—ff“)—“—f)g(t))).

The stated result now follows from (4.25). O

Theorem 4.6.2 Assume that u(z) > 0. Let a > 0, let F' be a nonnegative measurable
function on W and let g be a nonnegative measurable function on Ry with support
contained in [0,a]. Then

Mo (1 <oo Lac iy ) F (Wro (8),0 < ¢ < a) exp(—(pry, 9)))

L (Lo u(€) P60 < 7 < e (= [ u(u(er)gr))ar) ] 427

0

Alternatively, the law of W, under N, (- N {Tp < oo}) is characterized by:
Nm<1{TD<OO}1{a<HTD}F(WTD (t),0<t< a))
L [lerul€)F (6.0 < r < aes (- [ dtutear)] @2s)
and the conditional law of pr, knowing Wr, is the law of

Blio,my,(r) dr + Z(%‘ — ;) 0y,

iel
where Y 8(r, v,0,) 15 a Poisson point measure on Rﬁ_ with intensity
1[0,HTD] ()10, (é)efgu(WTD ) dr 7(dv)dl. (4.29)

Proof. We will rely on results obtained in Section 4.2 above. As in subsection 4.2.2,
we denote by (p’, W), i € I the “excursions” of the Lévy snake above height a. We
let (a, ;) be the time interval corresponding to the excursion (p*, W*) and ¢ = L% .
We also use the obvious notation

Tp(W") =inf{s > 0: 7(W) < oc}.

For every s > 0, set
Gs = L serpy F(WS) exp(—(ps, 9))-
Then it is easy to verify that
D Ga, Ly (wiy<oo) = Uty <ooy la<ting y F (Wi, (£),0 < t < a) exp(—(pry, 9))-

iel
(4.30)
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In fact, the sum in the left side contains at most one nonzero term, and exactly one
iff Tp < 0o and a < Hy,. On this event, Tp belongs to one excursion interval above
height a, say (o, 3;), and then the restriction of pr, to [0, a] coincides with p,; (see
the second step of the proof of Proposition 1.3.1), whereas the snake property ensures
that the paths Wr, and W,,, are the same over [0,a). Our claim (4.30) follows.
Recall the notation W, p,7*(¢) introduced in the proof of Proposition 4.2.3. The
proof of this proposition shows that conditionally on the o-field &, the point measure

Z(;(ei,pi’wi)

il
is Poisson with intensity

1[0,Lg](£) dl NV:V (dde)

Y (0)

Note that the statement of Proposition 4.2.3 is slightly weaker than this, but the
preceding assertion follows readily from the proof.

We now claim that we can find a deterministic function A and an £,-measurable
random variable Z such that, for every j € I, we have

Go, = A(Z, 00, (0", W")ier). (4.31)

Precisely, this relation holds if we take for every ¢ > 0,

A(Z 6, (6, W)ier) = ( II 1{TD(W7"):oo}) L, (tyep v refoqe (o) te(0,a]}
100 <l

XF(W::(L([)) eXp(*@»ya(E)a g>)

Note that the right side of the last formula depends on ¢, on (66, W#);cr and on the
triple (W, p,v*) which is £,-measurable, and thus can be written in the form of the
left side. Then, to justify (4.31), note that

Na;<1p} :( H 1{TD(Wi)=OO})1{Wr(t)€D,VTE[O,W“(ZJ)],tG[O,a}}7
100 <7

since v (¢7) = [V dr 1{y, <q} as observed in the proof of Proposition 4.2.3. The latter
proof also yields the identities

Wo; =Wp, = Waaei)y ,  Pa; = Ps; = Pya(ed)

from which (4.31) follows.
Then, by an application of Lemma 3.1.5 to the point measure ), ; 6 pi wiy,
which is Poisson conditional on &,, we have

Nw(ZGaj Lirp (wi)y<oo} ‘Ea)
JeI
= Nm(ZA(Za gja (gi’ Wi)ie[) 1{TD(WJ)<oo} ga)
JjeI

L , ‘
=N /0 de / Np (@ dW') Ly <oy AZL (0, W ier) £

L o
Nm</0 dUA(Z (W ien) Ny, | (Tp < ) ‘5)
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Now use the definition of A(Z,¢, (¢!, W%),cr) to get

Nz(ZGaj 1{TD<WJ'><oo}>

jel
Ly —
:Nz(/o de“(W'v“(f))( H ]‘{TD(Wi):OO}) Lirn () >qe 00}
100 <l

XF(Wia ) exp(—(fyee),9))

=N, ( /O " 4Lz u(W,) FOW?) exp(~{ps, ) Loy )- (4.32)

The last equality is justified by the change of variables £ = L% and the fact that dL¢
a.e.,

Woewe) = Wiz =Ws o DPya(re) = Piz = Ps;

(where A% = fos dr 1{H,<qy as previously) and similarly, dL§ a.e.,

( 11 1{TD<Wi>:oo}) Loy iysaewey = Liwpwen,vrss, tefa, )y L 09> Ay
<L

= 1{s<TD}-

To evaluate the right side of (4.32), we use a duality argument. It follows from
Corollary 3.1.6 and the construction of the Lévy snake that the triples

(Ps,L‘;,Ws;O <s< (7)

and
(n(a—s)—7 Lg - Lgfy WG’*S;O <s< J)

have the same distribution under N,. From this we get
N[ L2 ) FOV2) expl~(p9)) 1aeri)
=1 ([ AL uT) FOV2) esp(—0000) Lz ) (433)
0

Now we can use the strong Markov property of the Lévy snake (as in the second step
of the proof of Proposition 4.2.2), and then Lemma 4.2.4, to get

N ([ AL () FOV) exp(= (10, 9) s .1 )

0
=N (AL FOVE) exp(=(00) L) B, (T = o))

([ azs i) POV
X xp(~(10,9) Lz o o0 (= [ puldt)ulWa(@)). (430

Finally, we use Lemma 4.6.1 to write

([ AL ) FOV) Loy 0= (as)) ex0 (= [ ) a7, (1) )

0
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— e [ M) I [Laery (&) P60 < 7 < ) exp(— [ () u(s,)]
— &ML [Lacr € P60 < 7 2 0) [ Ma(dpdv) e "0 expl(— [ lar)ulg,)]

=T, [1(aeryu(€) F(,0 < 7 < a)exp - / ) (&), g(r))dr )]

Formula (4.27) follows by combining this equality with (4.30), (4.32), (4.33) and
(4.34).

Formula (4.28) is the special case g = 0 in (4.27). To prove the last assertion, let
C(Wr,,du) be the law of the random measure

ﬂl[O,HTD](T> dr + z:(’l)z - El) Or,
iel
where » 0y, v,¢,) is a Poisson point measure on Ri with intensity given by formula
(4.29). Then, for every a > 0, we can use (4.28) to compute

Nz (F(WTD (’I"),O <r< a) 1{TD<°°}1{‘1<HTD} /C(WTD,d‘LL) 67<“’g>>

L[l F(6.0 < 7 < aJula) exp (~ [ dlute)ar)

X exp ( - ﬁ/oa drg(r) — /Oa dr/ﬂ'(dv) /Ov dbe=(E) (1 — e_(”_z)g(r))ﬂ
0, [1acr) F(60 < 7 < @pu(ee) exp (= [ w(ule). g0 dr)],

using (4.26) in the last equality.
Set NP = N, (- | Tp < o0) to simplify notation. By comparing with (4.27), we see
that for any nonnegative measurable function g with support in [0, a], we have

NP[e~(Pr09) | W] = / (Wi dya) e 9,

a.s. on the set {Hr, > a}. This is enough to conclude that {(Wr,,du) is the
conditional distribution of pr, knowing Wr,, provided that we already know that
o1, ({Hrp}) = 0 a.s. The latter fact however is a simple consequence of (4.2). This
completes the proof of the theorem. O

The case of Brownian motion. Suppose that the spatial motion £ is d-
dimensional Brownian motion and that D is a domain in R?. Then, it is easy to see
that the function u(z) = N, (Tp < o0), « € D is of class C? and solves 1 Au = ¢(u).
In the context of superprocesses, this was observed by Dynkin [12]. We may argue
as follows. First note that the set of nonnegative solutions of 1Au = ¢(u) in a do-
main is closed under pointwise convergence (for a probabilistic proof, reproduce the
arguments of the proof of Proposition 9 (iii) in [31]). Then let (D,,) be a sequence
of bounded regular subdomains of D, such that D, C D, ;1 and D = lim T D,,. For
every n > 0, set

vp(2) = N (2P #0), wun(z) =N, (Tp, <o0), x€D,.

From the properties of the exit measure, it is immediate to see that v, < u,. On the
other hand, by writing

on(@) = lim T No(1 = exp—A(Z7", 1)),
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we deduce from Proposition 4.5.1 and the stability of the set of nonnegative solutions
under pointwise convergence that v, is of class C? and solves %Avn = ¢(vy,) in D.
Since the function z — N, (1 — exp —A(ZP~ 1)) has boundary value A\ on 9D,
(Proposition 4.5.1), we also see that v,, has boundary value +o00 on dD,,.

Then, it follows from Lemma 4.5.3 and our assumption D,, C D,y that v, (z) >
Un41(x) for x € D,,. Since it is easy to see that u,(x) decreases to u(z) as n — oo,
for every x € D, we conclude from the inequalities up4+1(z) < vy(z) < up(z) that
vp () also converges to u(x) pointwise as n — oo. Hence u is a nonnegative solution
of %Au =4 (u) in D. The preceding argument gives more. Let v be any nonnegative
solution of Av = %w(v) in D. Since v,|pp, = 400, the comparison principle (Lemma
V.7 in [31]) implies that v < v, in D,,. By passing to the limit n — oo, we conclude
that v < wu. Hence u is the maximal nonnegative solution of %Au =(u) in D.

Suppose that u(x) > 0 for some = € D. It is easy to see that this implies u(y) > 0
for every y € D (use a suitable Harnack principle or a probabilistic argument relying
on the fact that u(&;) exp(— fo u(&,))dr) is a martingale). By applying It6’s formula
to logu(&:), we see that I, a.s. on {t < 7},

log u(x /V (&) - dé, + / Alogu) (&, )dr

ogu(e) + [ 26 -dee+ [ (tuie) - 3|2 )

We can then rewrite (4.28) in the form

log u(&;)

N2 (11 <oe) Lt ny ) F (W (1),0 < 7 < 1

)
—Hz[l{m}exp(/otvf(fr) e, - /] (&) dr)F(g.0 <7 <1)].

An application of Girsanov’s theorem then shows that Wy, is distributed as the
solution of the stochastic differential equation

dﬂft = dBt + %(l‘t)dt

o =X

(where B is a standard d-dimensional Brownian motion) which can be defined up to
its first hitting time of dD. See [29] for a discussion and another interpretation of

this distribution on paths in the case 1 (u) = u?.

4.7 The reduced tree in an open set

We keep the notation and assumptions of the previous section. In particular, we
assume that W* has continuous sample paths with respect to the distance d*, D is an
open set in F, z € D, Tp = inf{s > 0: 7(W}) < oo} and u(z) = N, (Tp < 0) < 0.
To avoid trivialities, we assume that u(z) > 0, and we recall the notation N2 = N, (- |
Tp < 00). We will assume in addition that

sup u(y) < oo (4.35)
yeK

for every compact subset K of D. This assumption holds in particular when & is
Brownian motion in R?, under the condition (4.15) (use translation invariance and
the fact that u(0) < co when D is an open ball centered at the origin).
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We also set:
Lp =sup{s > 0: 7(W)) < oo},

and
mp = inf H,.
Tp<s<Lp
As a consequence of the first lemma below, we will see that mp < Hr,, N2 as.

Our goal is to describe the genealogical structure of the paths Wy that exit D,
up to their first exit time from D, under the probability measure N2. To be more
precise, all paths Wy such that 7(W7) < oo must coincide up to level mp. At level
mp there is a branching point with finitely many branches, each corresponding to an
excursion of H above level mp during which W hits D¢. In each such excursion, the
paths Wy that hit D¢ will be the same up to a level (strictly greater than mp) at
which there is another branching point, and so on.

We will describe this genealogical structure in a recursive way. We will first derive
the law of the common part to the paths Wy that do exit D. This common part
is represented by a stopped path WP in W, with lifetime CWOD = mp. Then we
will obtain the distribution of the “number of branches” at level mp, that is the
number of excursions of W above height mp that hit D¢. Finally, we will see that
conditionally on WP, these excursions are independent and distributed according to
NWOD(- | Tp < o0). This completes our recursive description since we can apply to

each of these excursions the results obtained under N2.
Before coming to the main result of this section, we state an important lemma.

Lemma 4.7.1 The point Tp is not isolated in {s > 0 : 7(W}) < oo}, N, a.e. on
{TD < OO}

Proof. We start with some preliminary observations. Let (u,w) € ©, be such that

p({H(pw)}) = 0 and w(t) € D for every ¢t € [0, H(1)). As an application of Lemma
4.2.4, we have

P’ w[Tp <oo] = 1—exp —/ Ny @) (Tp < o0) p(dt)
(0,H(n))

1~ exp— / w(w(t)) p(dt).
(0,H(p))
By the previous formula, the equality P},  [Tp = 0] = 1 can only hold if
/ u(w(t)) p(dt) = oo. (4.36)
[0,H (1))

Conversely, condition (4.36) also implies that P},  [Tp = 0] = 1. To see this, first
note that our assumption (4.35) guarantees that for every € > 0,

[ utw) ) < .
[0,H (p)—e]
and thus we have also under (4.36)

/ u(w(t)) pdt) = .
(H(p)—e,H(pn))
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Then write p. for the restriction of y to [0, H(u) — €], and set
Se =inf{s > 0: (ps,1) = (ue, 1)}

Lemma 4.2.4 again implies that

P [Tp < 8. = 1— exp - / w(w(t)) pu(dt) = 1.
(H(u)—e,H(p))
Since S | 0 as e | 0, Py, , a.s., we get that P},  [Tp = 0] = 1, which was the desired
result.

Let us prove the statement of the lemma. Thanks to the strong Markov property,
it is enough to prove that P} =y, [Tp =0] =1, N, a.e. on {Tp < oco}. Note that
we have pr, ({Hr,}) = 0 and Wy, (t) € D for every t < Hr,, N, a.e. on {Tp < oo}.
By the preceding observations, it is enough to prove that

/ w(Wry, () pry (dt) = 00, ave. on {Tp < oo} (4.37)
[0,Hr,,)

To this end, set for every s > 0,
Ms; =N, (Tp < oo | Fy).
The Markov property at time s shows that we have for every s > 0, N, a.e.,
My = Yrp<sy + Ls<rp)y Py w, [Tp < 0]

Lo + Lsery) (1= exp— [ uW.(0) pular)

Since the process (ps) is right-continuous for the variation distance on measures,
it is easy to verify that the process l,cr,3(1 — exp — [u(Wi(t)) ps(dt)) is right-
continuous. Because (Ms,s > 0) is a martingale with respect to the filtration (Fy),
a standard result implies that this process also has left limits at every s > 0, N, a.e.
In particular the left limit at Tp

plim a= i (1= exp— [ u(Wa(0) pulan)

exists N, a.e. on {Tp < oo}. It is not hard to verify that this limit is equal to 1: If

D, = {y € D : dist(y, D) > n~'} and T,, = Tp,,, we have T,, < Tp and T,, T Tp

on {Tp < oo}, and My, = N, (Tp < oo | Fr,) converges to 1 as n — oo on the set

{Tp < oo} because T is measurable with respect to the o-field \/ Fr,.
Summarizing, we have proved that

lim / w(W, (1)) ps(dt) = +oc (4.38)

s1Tp,s<Tp

N, a.e. on {Tp < oo}. Then, for every rational a > 0, consider on the event
{Tp < oo} N {Hr, > a}, the number a,) defined as the left end of the excursion
interval of H above a that straddles Th. As a consequence of the considerations in
subsection 4.2.2, the following two facts hold on {Tp < oo} N {Hp, > a}:

Poy,, 18 the restriction of pr,, to [0,a)
Wa,, (t) =Wr,(t), forevery t €[0,a).
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Thus, we have also on the same event

[ Wy 0) @) = [ W, 0) (a0

[0,a)

Now on the event {Tp < co} we can pick a sequence (a,,) of rationals strictly increas-
ing to Hr,. We observe that o (,,) also converges to Tp (if S is the increasing limit

of a(,,), the snake property implies that WS = WTD € D¢ and so we have S > Tp,
whereas the other inequality is trivial). Therefore, using (4.38),

oo = lim [ u(Wy, () pa,,(dt) = lim u(Wrp, (t)) pry (dt),

n— o0 n— 00 [0,an)

which yields (4.37). O

Lemma 4.7.1 implies that Tp < Lp, N2 a.s. Since we know that pr, ({Hr,}) = 0,
N2 a.s., an application of the strong Markov property at time T shows that mp <
Hr,, ND as. We define WP as the stopped path which is the restriction of Wr, to
[0, mp]. Then we define the excursions of W above level mp in a way analogous to
subsection 4.2.2. If

Rp=sup{s<Tp:Hs=mp}, Sp=inf{s>Lp:H;=mp},

we let (a;,b;), j € J be the connected components of the open set (Rp,Sp) N{s >
0: Hy >mp}. For each j € J, we can then define the process WU) € C(R,, W) by
setting

Ws(j)(r) = Wa,4s(mp +7), CWS(") =Ha; s —mp if 0 <s<bj—a;
W‘S(J):Wdj if s=0ors>b;—a;.

By a simple continuity argument, the set {j € J : Tp(W) < oo} is finite a.s., and
we set

Np =Card{j € J: Tp(WW) < oo}

We write WP-1 WP2  WDP:NDp for the excursions W) such that TD(W(j)) < 00
listed in chronological order.
We are now ready to state our main result.

Theorem 4.7.2 For every r > 0, set 0(r) = ¢/(r) — (r). Then the law of WP
characterized by the following formula, valid for any nonnegative measurable function

F on W*:
Nr(l{TD<oo}F(WOD))

= [T [ o0@) e (- [ v utenar) F6.0 < <)1)

0

The conditional distribution of Np knowing WP is given by:

L WU) = 3(U, (1= 1))

D1, .Np Dy
Nl T Wo) = r =50 — 70 .0)

0<r<1, (4.40)

where U = u(/VVOD) Finally, conditionally on the pair (W, Np), the processes

WDt Wwb2  WDPNb gre independent and distributed according to N%D
0
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Proof. Our first objective is to compute the conditional distribution of mp knowing
Wr,. To this end, we will apply the strong Markov property of the Lévy snake at
time Tp. We have for every b > 0

NP[mp > b| pry, Wrp] =P inf H, > b).

£ 3
prp Wrp [OSSSLD

By Lemma 4.2.4, the latter expression is equal to the probability that in a Poisson
point measure with intensity

prp (dh) Ny oy (dpdW)

there is no atom (h;, p*, W*) such that h; < b and Tp(W?) < co. We conclude that

NCfmp > b | proy W] = exp— /[ 01 0 Ny, 0 (T < )
0,b

exp — / prp (dh) u(Wr, (h)). (4.41)
[0,0]

Recall that the conditional law of pr,, knowing W, is given in Theorem 4.6.2. Using
this conditional distribution we see that

NZ[mp > b | Wr,] = exp (—ﬂ/ob daw(Wr, () B[ exp = 3 (v = £:)u(Wr (1) .

r;<b

where )0y, 4, ) is a Poisson point measure with intensity (depending on Wr,,)
given by (4.29). By exponential formulas for Poisson measures, we have

E[exp - Z (vi = Li)u(Wry, (Tz))}

T1Sb

b
:exp—/ dr/ﬂ'(dv)/dﬁefzu(WTD(T))(l — e~ (W= OuWrp (M),

0

By substituting this in the previous displayed formula, and using (4.26), we get

b
N2lmp > b Wry) = exp (= [ dr 0/ (uWr (1)) = SaWr, (1)) (142)
0

Hence, if 6(r) = /(r) — ¥(r) as in the statement of the theorem, the conditional law
of mp knowing Wr, has density

Yoty O Wr, (17) exp (— [ 0V (1)),
It follows that
N (L7 <oc) FOVY))
—N, (1{TD<OO} F(Wrp, (£),0 < t < mD))
N (Ui [ 00V, ) exp ([ oV, () ar)
x F(Wry (£),0 <t < b))
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-/ "N (L ooy L1y 0V, ) e / 0(u(Wiry (1)) )
% F(Wry (1),0 <t < b))

oo b
| [tpcnu@tuenest- [ v dn Fe.0<r <b).
0 0

using (4.28) in the last equality. This gives the first assertion of the theorem.

We now turn to the distribution of Np. We use again the strong Markov prop-
erty at time Tp and Lemma 4.2.4 to analyse the conditional distribution of the pair
(mp, Np) knowing (pr,, Wr,,). Conditional on (pry,, Wr,,), let >, powiy be a
Poisson point measure with intensity

prp (dh) Nwy ny (dpdW).
Set
m = inf{h; : Tp(W?) < oo},
M = Card {i : hy = m and Tp(W?") < cc}.

Then Lemma 4.2.4 and the strong Markov property show that the pairs (m,1 + M)
and (mp, Np) have the same distribution conditional on (pr,, W, ). Recall that the
conditional distribution of mp (or of m) is given by (4.41).

Now note that:

o If pr, ({m}) = 0, then M = 1 because the Poisson measure ) d(;, piw+) cannot
have two atoms at a level h such that pr, ({h}) = 0.

e Let b > 0 be such that pr, ({b}) > 0. The event {m = b} occurs with probability
exp (= [ pry (@) u(Wr, (1)) (1= e oo D0V, 00).
[0,0)

Conditionally on this event, M is distributed as a Poisson variable with param-
eter ¢ = pr, ({b})u(Wr, (b)) and conditioned to be (strictly) positive, whose

generating function is
e—c(l—r) —e ¢

1—e¢

Since the continuous part of the law of m has density

BulWay (8) exp (= [ pr (dh) u(Wa, (1)

(0,0)

we get by combining the previous two cases that
NrD [f(mD)TND | PTp WTD]

— Br? /OHTD b f(8) u(Wr, (b)) exp ( - /[O ; o1, (dR) u(Wr,, (1))
Y S0 (= [, protam u¥a, )

% (e—pTD<{b}>u<WTD(b))<1—r> _ e—prp({Bu(Wry, (b))). (4.43)
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We now need to integrate the right side of (4.43) with respect to the conditional law
of pr, knowing Wr,. We get

N2[f (mp)rNP | Wr,] = A1 + A,

where
A = ﬁr2Nf[/OHTD db f(b) u(Wr,, (b)) exp ( - /0 ) pTD(dh)u(WTD(h))) ’WTD]
i [0.)
= pr? /0 db f(b) w(Wry, (b)) exp(— /[0 ) e(u(WTD(h)))dh), (4.44)

by the calculation used in the proof of (4.42). We then compute Ay. To this end, let
N (dbdvdl) be (conditionally on Wr,,) a Poisson point measure in R3 with intensity

10,12, 1 () 110,01 ()0 ) dbr (dv)de.
From Theorem 4.6.2, we get
4 = N2 / N (dbdude) £(b) e 8 4 (0Wrp @)= 1oy N (dad/dt) 0/~ u(Wrp )

x (e~ (0 =0uWrp (B))(1=r) _ e—(v—f)u(WTDw))) ‘ WTD}

From Lemma 3.1.5 and (once again) the calculation used in proving (4.42), we arrive
at

Hry,
Ay = 7n/ db f(b) exp(—/ e(u(WTD(a)))da)
0 [07b)
X /W(dv) /” déefeu(WTD(b))(6*(0*4)(1*’“)“(“’%(1’)) —ef(viz)u(WTD(b)))
0
From (4.26), we have

/ (dv) / " p e—tuWirp () (e =00y () _ =00, )
0

= (w(Wrp, (0) = v (u(Wry, (b)), (1 = r)u(W, (b)) — Bru(Wry, (b)))-

By substituting this identity in the previous formula for As, and then adding the
formula for A, we arrive at:

NP [f(mp)r™® | Wr,]
Hrp, b
_, / @b £(8) exp ( - / da 0(u(Wr, (0))))

x (8 (W (1)) = 730 (W (0), (1 = r)u(Wor, () )
Y (u(Wry, (mp))) — v (w(Wr, (mp)), (1 — r)u(Wr, (mp))) ‘ W }
V' (w(Wrp, (mp))) — vy (u(Wr, (mp)), 0) o1

In the last equality we used the conditional distribution of mp knowing Wr,, and
the fact that 0(u) = ¢'(u) — ¥(u) = w/'ﬁu) — vy (u,0).

Finally, if U = uw(Wr, (mp)) = u(W{), we have obtained
Y'(U) —v(U, (1 —r)U)

1/}’([]) - ’Vll)(U? 0) 7
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which is formula (4.40) of the theorem.

It remains to obtain the last assertion of the theorem. Here again, we will rely
on Lemma 4.2.4 and the strong Markov property at time Tp. We need to restate the
result of Lemma 4.2.4 in a slightly different form. Let (u, w) € O, with p({H(p)} =0
and w(t) € D for every t < H(p). Under P}, ., we write Y; = (py, 1), Ky = inf, <, Y
and Iy = Ky — (u,1). If (o, 8;), @ € I are the excursion intervals of Y — K away from
0, we introduce the “excursions” (p;, W?), i € I as defined before the statement of
Lemma 4.2.4. The starting height of excursion (p;, W*) is h; = Ha, = H(k_1, p).
The proof of Lemma 4.2.4 shows that the point measure

Z (5(_1% Lt W)

iel
is Poisson with intensity 1jo, <,,15)(v)du Ny (g (k, 1)) (dp dW) (this is slightly more pre-
cise than the statement of Lemma 4.2.4).

We then write iq,is,... for the indices i € I such that Tp(W?) < oo, ranked
in such a way that I, < I, < - - Our assumption (4.35) guarantees that this
ordering is possible, and we have clearly h;; < h;, < ---. By well-known properties
of Poisson measures, the processes W, Wi, ... are independent conditionally on the
sequence h;,, hi,, ..., and the conditional distribution of W is N"e(hw)'

If we apply the previous considerations to the shifted process (prp+s, Wrp+s; 8 >
0), taking p = pr, and w = Wy, and relying on the strong Markov property at Tp,
we can easily identify

TrLD:h,i1
Np=1+sup{k>1:h; =h;}
WD,ND — Wil, WD,ND—l — Wi27.”, WD,Q — WiND_l.

By a preceding observation, we know that conditionally on (mp, Np), the processes
Wi, ..., Wi~p-1 are independent and distributed according to NVLV)(mD).

Combining this with the strong Markov property at time T, we see that, con-
ditionally on (Np, WP), the processes WP-2 ... WPNp are independent and dis-
tributed according to N?VD (recall that WP = Wr,(mp)). An argument sim-

ilar to the end of the prgof of Theorem 3.2.1 (relying on independence proper-
ties of Poisson measures) also shows that, conditionally on (Np, W), the vector
(WP2 .. WPNp) is independent of WP-!. Furthermore, denote by WP the time-
reversed processes

irDt _ 1yDL

W =Wowoo g+
The time-reversal property already used in the proof of Theorem 4.6.2 implies that
the vectors (W21 ... WPNo) and (WP-No .. WD) have the same conditional

distribution given (Np, W{). Hence, the conditional distribution of WP:!, or equiv-
alently that of W1, is also equal to N?VD. This completes the proof of Theorem
0

4.7.2. U

Remarks. (i) By considering the special case where the spatial motion &; is deter-

ministic, § = ¢, and E =Ry, z =0and D = [0,T) for some fixed T' > 0, we obtain an

alternative proof of formulas derived in Theorem 2.7.1. In particular, formula (2.44)

is a special case of (4.40). Similarly, (2.43) can be seen as a special case of (4.42).
(ii) In the stable case 1 (u) = cu®, the variable Np is independent of WP, and its

law is given by

1-r)*=14ar

ND[rP) = 1
=
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Of course when a = 2, we have Np = 2.
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Notation Index

X Lévy process (Sect. 1.1.1)
P probability measure under which X starts from 0
1 Laplace functional of X (Sect. 1.1.1)

Y(u) = au + Bu? + 0,00y T(dr) (€77 — 1+ 1u)

7 A
b0 =4
o) = 5=
Sy = sup X,
s<t
I, = inf X,
s<t
It = L, X

T, =inf{t >0: X; = —x}
excursion measure of X — I (Sect. 1.1.2)
N* excursion measure of X — S (Sect. 1.1.2)
o duration of the excursion under N or under N*
L; local time of X — S at level 0
L7(t) =inf{s >0: L, >t}
X" = Xpys — X
Xﬁt) process time-reversed at t: Xﬁ” =X; - X(t_s)_
H, height process (Sect. 1.2)
H(p) = sup(supp(y))
pr exploration process (Sect. 1.2)
My (R;) set of all finite measures on Ry
kqu “killing operator” on measures (Sect. 1.2, Sect. 3.1)

[u,v] concatenation of the measures v and v (Sect. 1.2)
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Yo (av b) =

exploration process started at p € My(Ry)
law of p*

invariant measure of p (Sect. 1.2)

local times of the height process

= N(1 - exp(=ALg))

:N(supHS > t)

s>0
_ b(a) — %)
a—>

dual of the exploration process (Sect. 3.1)
invariant measure of (p,n) (Sect. 3.1)

set of all finite rooted ordered trees (Sect. 0.1)
number of children of the vertex v in the tree 7

mark (lifetime) of v

tree associated with the function e and the times ¢4, ...

Markov process in E (Sect. 4.1)
law of & started at x

set of all E-valued killed paths
lifetime of the killed path w

= w(Cw—)

= inf h(r)

s<r<s’
Lévy snake (Sect. 4.1)
law of the Lévy snake started at (u, w)
transition kernels of the Lévy snake

excursion measure for the Lévy snake

law of the Lévy snake started at (i, w) and stopped at inf{s > 0: p; = 0}

= [Cazzsavy
0
=inf{t >0:w(t) ¢ D}
exit local time from D (Sect. 4.3)
exit measure from D (Sect. 4.3)

set of all E-valued stopped paths
=inf{s >0:7(W}) < o0}
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Index

approximation of local time
for the height process, 36
for the Lévy process, 23

conditioned Galton-Watson tree, 61
continuous-state branching process, 39
contour function, 6
contour process, 7
convergence of rescaled contour processes,
59
convergence of rescaled Galton-Watson pro-
cesses, 46
convergence of rescaled height processes
finite dimensional marginals, 46
functional convergence, 52
stable case, 53

duality property of exploration process,
13, 76

excursion measure
of Lévy process, 10, 21
of Lévy snake, 16, 96
exit local time, 106
exit measure, 107
exploration process, 9, 26

first-exit distribution, 116
Brownian case, 119

generalized Ray-Knight theorem, 39

height function, 6

height process
continuous, 9, 25
discrete, 7
Holder continuity, 42
path continuity, 41

invariant measure
for exploration process, 31
for exploration process and its dual,
75

for Lévy snake, 96

local time
at the maximum, 21
at the minimum, 21
of the height process, 34
Lévy measure, 19
Lévy process, 19
Lévy snake, 16, 92
uniform continuity, 109
uniform continuity in Brownian case,

111
partial differential equation, 111

reduced tree
convergence, 63
for a Galton-Watson tree, 63
spatial, 17, 120

snake property, 92

stable continuum tree, 15, 88

strong Markov property of Lévy snake, 94
superprocess, 97

time-reversal property, 79

tree
associated with Poissonnian marks,

81

coding by a function, 14
embedded in a function, 80
finite-dimensional marginals, 15, 88
Galton-Watson, 7
rooted ordered, 6
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