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Barème approximatif. Ex.1 : 5 pts, Ex.2 : 4 pts, Ex.3 : 4 pts, Ex.4 : 8 pts

Exercice 1. On considère un mouvement brownien réel (Bt)t≥0 issu de 0. Pour tout a > 0, on
pose

σa = inf{t ≥ 0 : |Bt| = a}.

(1) Montrer qu’il existe une constante ρ ∈ ]0, 1[ telle que, pour tout entier n ≥ 1,

P[σ1 > n] ≤ ρn.

(On pourra observer que {σ1 > n} ⊂ {|B1 −B0| ≤ 2, |B2 −B1| ≤ 2, . . . , |Bn −Bn−1| ≤ 2})
En déduire que E[(σ1)p] <∞ pour tout entier p ≥ 1.

(2) Montrer via une application du théorème d’arrêt à une martingale bien choisie que E[σa] = a2,
pour tout a > 0.

(3) On fixe a > 0 et on définit par récurrence une suite de temps d’arrêt (σka)k∈N en posant

σ0
a = 0 , σ1

a = σa , σ
k+1
a = inf{t > σka : |Bt −Bσk

a
| = a}.

(On ne demande pas de vérifier que les σka sont des temps d’arrêt.) Montrer que les variables
aléatoires σk+1

a − σka , k ∈ N sont indépendantes et de même loi. En prenant a = 2−n, déduire que

lim
n→∞

σ22n

2−n = 1 p.s.

(On pourra majorer la variance de σ22n

2−n)

Dans les exercices suivants, on se place sur un espace de probabilité muni d’une
filtration complète (Ft)t∈[0,∞].

Exercice 2. Soit M une martingale locale avec M0 = 0.

(1) Soient a, b ∈ R avec a < 0 < b. On pose

Ta,b = inf{t ≥ 0 : Mt /∈ ]a, b[}

avec la convention habituelle inf ∅ =∞. Justifier le fait que Ta,b est un temps d’arrêt.

(2) On suppose que Ta,b <∞ p.s. Calculer la quantité

P(MTa,b
= b).

(3) On suppose dans cette question que

sup
t≥0

Mt = +∞ , p.s.

Montrer que
inf
t≥0

Mt = −∞ , p.s.



Exercice 3. Soit (Yt)t≥0 une (vraie) martingale à trajectoires continues uniformément intégrable,
telle que Y0 = 0. On note Y∞ = limt→∞ Yt. Soit aussi p ≥ 1 un réel fixé. On dit que la martingale
Y vérifie la propriété (P) s’il existe une constante C telle que, pour tout temps d’arrêt T , on ait

E[|Y∞ − YT |p | FT ] ≤ C.

(1) Montrer que si Y∞ est bornée, la martingale Y vérifie la propriété (P).

(2) Soit B un (Ft)-mouvement brownien réel issu de 0. Montrer que la martingale Yt = Bt∧1 vérifie
la propriété (P). (On pourra vérifier que la variable aléatoire supt≤1 |Bt| est dans Lp.)

(3) Montrer que Y vérifie la propriété (P) avec la constante C, si et seulement si pour tout temps
d’arrêt T ,

E[|YT − Y∞|p] ≤ C P[T <∞].

(On pourra utiliser les temps d’arrêt TA définis en cours pour A ∈ FT .)

Exercice 4. Soit M une (vraie) martingale à trajectoires continues telle que M0 = 0. On suppose
que E[(Mt)

2] <∞ pour tout t ≥ 0. On introduit le processus croissant (M∗t )t≥0 défini par

M∗t = sup{|Ms| : s ≤ t}.

(1) Justifier le fait que, pour tout temps d’arrêt borné T , on a

E[(MT )2] = E[〈M,M〉T ] , E[(M∗T )2] ≤ 4E[〈M,M〉T ].

(2) Soit x > 0, et soit Tx le temps d’arrêt défini par Tx = inf{s ≥ 0 : (Ms)
2 ≥ x} (avec la

convention habituelle inf ∅ =∞). Montrer que, pour tout temps d’arrêt borné T , on a

P((M∗T )2 ≥ x) ≤ 1

x
E[(MTx∧T )2] ≤ 1

x
E[〈M,M〉T ].

(On observera que la propriété {(M∗T )2 ≥ x} équivaut à {Tx ≤ T}.)
(3) Soit maintenant Sx = inf{s ≥ 0 : 〈M,M〉s ≥ x}, et soit t ≥ 0 fixé. Montrer que

P((M∗t )2 ≥ x) ≤ 1

x
E[〈M,M〉Sx∧t] + P(〈M,M〉t ≥ x).

(4) Déduire de la question précédente que

P((M∗t )2 ≥ x) ≤ 1

x
E[〈M,M〉t 1{〈M,M〉t<x}] + 2P(〈M,M〉t ≥ x).

(5) Soit q ∈ ]0, 1[. Montrer que

E[(M∗t )2q] ≤ (2 +
q

1− q
)E[〈M,M〉qt ],

puis que cette inégalité reste vraie si on suppose seulement que M est une martingale locale telle
que M0 = 0.



Corrigé.

Exercice 1. (1) Si σ1 > n, on a |Bt| < 1 pour tout t ∈ [0, n], d’où |Bj − Bj−1| ≤ 2 pour tout
j ∈ {1, . . . , n}. Donc

P(σ1 > n) ≤ P(|B1 −B0| ≤ 2, . . . , |Bn −Bn−1| ≤ 2) =
n∏
j=1

P(|Bj −Bj−1| ≤ 2) = (P(|B1| ≤ 2))n ,

en utilisant le fait que les v.a. Bj −Bj−1 sont indépendantes et de même loi. Finalement, puisque
B1 suit une loi N (0, 1) on a P(|B1| ≤ 2) = ρ < 1.
Si p ≥ 1, on peut majorer

E[(σ1)p] ≤ 1 +
∞∑
n=1

P[n < σ1 ≤ n+ 1] (n+ 1)p ≤ 1 +
∞∑
n=1

ρn (n+ 1)p <∞.

(2) On sait que B2
t − t est une martingale. D’après le théorème d’arrêt (pour des t.a. bornés), on

a E[B2
t∧σa

− (t ∧ σa)] = 0 et donc E[B2
t∧σa

] = E[t ∧ σa] pour tout t ≥ 0. Quand t → ∞, E[t ∧ σa]
converge vers E[σa] par convergence monotone. Puisque |Bt∧σa

| ≤ a (et qu’on sait que σa < ∞
p.s.), on peut utiliser le théorème de convergence dominée pour obtenir que E[B2

t∧σa
] converge

quand t→∞ vers E[B2
σa

] = a2. On conclut que E[σa] = a2.

(3) Les propriétés du mouvement brownien montrent que les t.a. σka sont finis p.s. Notons (Ft)t≥0
la filtration canonique de B. Pour tout entier k ≥ 1, si on pose B

(σk
a)

t = Bσk
a+t
−Bσk

a
, la propriété

de Markov forte dit que le processus (B
(σk

a)
t )t≥0 est encore un mouvement brownien (issu de 0) et

est indépendant de la tribu Fσk
a
. Puisque σk+1

a − σka = inf{t ≥ 0 : |B(σk
a)

t | = a}, il en découle que

σk+1
a − σka a même loi que σa et est indépendante de Fσk

a
, donc des v.a. σ1

a, σ
2
a− σ1

a, . . . , σ
k
a − σk−1a

(puisque, si j ≤ k, σja est Fσj
a
-mesurable et Fσj

a
⊂ Fσk

a
).

Un argument de changement d’échelle montre que σa a même loi que a2σ1. En particulier,

E[σ22n

2−n ] = E
[ 22n∑
j=1

(σj2−n − σj−12−n)
]

= 22n × 2−2nE[σ1] = 1.

Mais puisque les v.a. σj2−n − σj−12−n sont indépendantes, on a aussi

var(σ22n

2−n) =
22n∑
j=1

var(σj2−n − σj−12−n) = 22n × 2−4nvar(σ1) = C 2−2n

où C = var(σ1) (on utilise la question (1) pour observer que σ1 est dans L2). Finalement,

E
[ ∞∑
n=1

(σ22n

2−n − 1)2
]

=

∞∑
n=1

E
[
(σ22n

2−n − 1)2
]

=

∞∑
n=1

var(σ22n

2−n) <∞

d’où la série de terme général (σ22n

2−n − 1)2 converge p.s., et donc σ22n

2−n − 1 converge p.s. vers 0.

Exercice 2. (1) Ta,b est le temps d’entrée dans le fermé ]−∞, a]∪ [b,∞[ du processus Mt qui est
adapté et à trajectoires continues.

(2) Le processus arrêté MTa,b est encore une martingale locale, qui est bornée par |a| ∨ b. C’est
donc une vraie martingale uniformément intégrable. Le théorème d’arrêt montre que E[MTa,b

] =
E[M0] = 0, d’où (puisque Ta,b <∞ p.s.) aP(MTa,b

= a) + bP(MTa,b
= b) = 0. Mais toujours parce



que Ta,b <∞ p.s., on a aussi P(MTa,b
= a) + P(MTa,b

= b) = 1. Il en découle que

P(MTa,b
= b) =

−a
b− a

.

(3) L’hypothèse entrâıne que Ta,b <∞ p.s. pour tout choix de a < 0 < b. Fixons a < 0 et notons
Ta = inf{t ≥ 0 : Mt = a}. Alors l’événement {Ta < ∞} est la réunion croissante de la suite
d’événements En = {MTa,n

= a}. En conséquence,

P(Ta <∞) = lim
n→∞

P(MTa,n
= a) = lim

n→∞

n

n− a
= 1.

Donc Ta <∞ p.s., pour tout a < 0, ce qui suffit pour conclure.

Exercice 3.

(1) Pour une martingale u.i., si T est un temps d’arrêt on a YT = E[Y∞ | FT ], donc la condition
|Y∞| ≤ K entrâıne aussi |YT | ≤ K et |Y∞ − YT | ≤ 2K, ce qui donne (P) avec C = (2K)p.

(2) Puisque sup{Bt, 0 ≤ t ≤ 1} a même loi que |B1| et est donc dans Lp pour tout 1 ≤ p < ∞,
la majoration sup{|Bt|, 0 ≤ t ≤ 1} ≤ sup{Bt, 0 ≤ t ≤ 1} + sup{−Bt, 0 ≤ t ≤ 1} montre que
sup{|Bt|, 0 ≤ t ≤ 1} est dans Lp.
Soit T un t.a. avec P(T < ∞) > 0 (sinon la propriété demandée est triviale). Si Yt = Bt∧1 on a
Y∞ = B1 et YT = BT∧1. Notons B′ le processus défini par B′t = 1{T<∞} (BT+t −BT ). Alors,

|Y∞ − YT | = |B1 −BT∧1| ≤ 1{T≤1} sup
0≤t≤1

|BT+t −BT | = 1{T≤1} sup
0≤t≤1

|B′t|.

Donc, si A ∈ FT ,

E[1AE[|Y∞−YT |p |FT ]]=E[1A|Y∞−YT |p] ≤ E
[
1A∩{T≤1} sup

0≤t≤1
|B′t|p

]
=P(A∩{T ≤ 1})E

[
sup

0≤t≤1
|Bt|p

]
,

où pour la dernière égalité on utilise la propriété de Markov forte, selon laquelle B′ est sous la
probabilité P(· | T < ∞) un mouvement brownien indépendant de FT donc de A ∩ {T ≤ 1}.
Finalement, pour tout A ∈ FT , E[1AE[|Y∞ − YT |p | FT ]] ≤ C P(A), avec C = E[sup0≤t≤1 |Bt|p],
et, puisque E[|Y∞ − YT |p |FT ] est FT -mesurable, cela suffit pour dire que E[|Y∞ − YT |p | FT ] ≤ C
(prendre A = {E[|Y∞ − YT |p | FT ] > C} pour trouver E[1A(E[|Y∞ − YT |p | FT ] − C)] ≤ 0, d’où
P(A) = 0).

(3) Supposons d’abord que Y vérifie la propriété (P) avec la constante C. Alors, si T est un t.a.

E[|YT − Y∞|p] = E[1{T<∞}|YT − Y∞|p] = E[1{T<∞}E[|YT − Y∞|p | FT ]] ≤ C P(T <∞).

Inversement, si E[|YT − Y∞|p] ≤ C P(T < ∞) pour tout t.a. T , alors, en remplaçant T par le t.a.
TA (où A ∈ FT ) on trouve

E[1AE[|YT − Y∞|p | FT ]] = E[1A|YT − Y∞|p] = E[|YTA − Y∞|p] ≤ C P(TA <∞) ≤ C P(A).

Comme cela est vrai pour tout A ∈ FT , cela suffit pour dire que E[|YT − Y∞|p | FT ] ≤ C.

Exercice 4. (1) D’après le cours, si M une (vraie) martingale à trajectoires continues et de carré
intégrable, telle que M0 = 0, le processus (Mt)

2 − 〈M,M〉t est une vraie martingale, et on a aussi
E[〈M,M〉t] < ∞ pour tout t ≥ 0. En appliquant le théorème d’arrêt (cas borné) à la martingale
(Mt)

2 − 〈M,M〉t, on obtient immédiatement, pour tout t.a borné T ,

E[(MT )2 − 〈M,M〉T ] = 0.

L’inégalité de Doob dans L2, appliquée à la martingale arrêtée MT , montre, pour tout t ≥ 0,

E[(M∗t∧T )2] ≤ 4E[(Mt∧T )2] = 4E[〈M,M〉t∧T ]



la dernière égalité d’après la première partie de la question. Un argument de convergence monotone
montre ensuite que E[(M∗t∧T )2] converge vers E[(M∗T )2] et E[〈M,M〉t∧T ] converge vers E[〈M,M〉T ]
quand t ↑ ∞, d’où le résultat demandé.

(2) La propriété (M∗T )2 ≥ x a lieu si et seulement si Tx ≤ T , et alors on a (MTx∧T )2 = (MTx)2 = x.
Donc,

P(M∗T ≥ x) = P(Tx ≤ T ) ≤ P((MTx∧T )2 = x) ≤ 1

x
E[(MTx∧T )2]

en utilisant l’inégalité de Markov. Ensuite, en utilisant la question (1),

E[(MTx∧T )2] = E[〈M,M〉Tx∧T ] ≤ E[〈M,M〉T ].

(3) L’événement {(M∗t )2 ≥ x} est contenu dans la réunion de {(M∗Sx∧t)
2 ≥ x} et de {Sx ≤ t}

(simplement parce que si Sx > t on a M∗Sx∧t = M∗t ). En appliquant la question (2) au t.a.
T = Sx ∧ t on a

P((M∗Sx∧t)
2 ≥ x) ≤ 1

x
E[〈M,M〉Sx∧t],

et par ailleurs les événements {Sx ≤ t} et {〈M,M〉t ≥ x} cöıncident, donc

P(Sx ≤ t) = P(〈M,M〉t ≥ x).

En combinant ces deux observations, on a

P((M∗t )2 ≥ x) ≤ P((M∗Sx∧t)
2 ≥ x) + P(Sx ≤ t) ≤

1

x
E[〈M,M〉Sx∧t] + P(〈M,M〉t ≥ x).

(4) En utilisant à nouveau le fait que {Sx ≤ t} = {〈M,M〉t ≥ x}, on a

1

x
E[〈M,M〉Sx∧t] =

1

x
E[〈M,M〉t 1{Sx>t}] +

1

x
E[〈M,M〉Sx 1{Sx≤t}]

=
1

x
E[〈M,M〉t 1{〈M,M〉t<x}] + P(〈M,M〉t ≥ x)

puisque 〈M,M〉Sx
= x sur {Sx < ∞}. Il suffit ensuite de reporter cette majoration dans celle de

la question (3).
(5) Le théorème de Fubini montre que

E[(M∗t )2q] = q

∫ ∞
0

P((M∗t )2 ≥ x)xq−1 dx

≤ q
∫ ∞
0

( 1

x
E[〈M,M〉t 1{〈M,M〉t<x}] + 2P(〈M,M〉t ≥ x)

)
xq−1 dx.

et d’une part

2q

∫ ∞
0

P(〈M,M〉t ≥ x)xq−1 dx = 2E[(〈M,M〉t)q],

d’autre part,

q

∫ ∞
0

E[〈M,M〉t 1{〈M,M〉t<x}]x
q−2dx = q E

[
〈M,M〉t

∫ ∞
〈M,M〉t

xq−2dx
]

=
q

1− q
E[(〈M,M〉t)q].

Si M est seulement une martingale locale issue de 0, il suffit d’appliquer le résultat obtenu à la
(vraie) martingale bornée Mt∧Tn

, où Tn = inf{t ≥ 0 : |Mt| ≥ n}, puis de faire tendre n → ∞ en
utilisant le théorème de convergence monotone.


