Mouvement brownien et calcul stochastique
Partiel du 5 décembre 2025

2 heures 30, sans documents
Bareme approximatif. Ex.1 : 5 pts, Ex.2 : 4 pts, Ex.3 : 4 pts, Ex.4 : 8 pts

Exercice 1. On considére un mouvement brownien réel (By)¢>o issu de 0. Pour tout a > 0, on
pose
0, =inf{t > 0:|B| = a}.

(1) Montrer qu’il existe une constante p € ]0, 1] telle que, pour tout entier n > 1,
Ploy > n| < p™.

(On pourra observer que {o1 >n} C {|B1 — Bo| < 2,|Bs — B1| <2,...,|B, — B,_1] <2})
En déduire que E[(07)?] < oo pour tout entier p > 1.
2

)

(2) Montrer via une application du théoreme d’arrét & une martingale bien choisie que E[o,] = a
pour tout a > 0.

(3) On fixe a > 0 et on définit par récurrence une suite de temps d’arrét (o¥)zen en posant

oo =0, 04 =04, bt =inf{t > o} : B — Byx| = a}.

a

k

v sont des temps d’arrét.) Montrer que les variables

(On ne demande pas de vérifier que les o

aléatoires o¥*! — g* k € N sont indépendantes et de méme loi. En prenant a = 27", déduire que
2n
lim O'g_n =1 p-s.

n— 00

2n

(On pourra majorer la variance de 02_”)

Dans les exercices suivants, on se place sur un espace de probabilité muni d’une
filtration compléte (F;);c(0,00]-
Exercice 2. Soit M une martingale locale avec My = 0.
(1) Soient a,b € R avec a < 0 < b. On pose
Top = 1inf{t > 0: M; ¢]a, b}

avec la convention habituelle inf @ = oco. Justifier le fait que 77 est un temps d’arrét.
(2) On suppose que Tg < oo p.s. Calculer la quantité

P(Mz,, = b).
(3) On suppose dans cette question que

sup M; = 400, p.s.
>0
Montrer que

inf M; = —c0 .S.
20 y P



Exercice 3. Soit (Y;)¢>0 une (vraie) martingale a trajectoires continues uniformément intégrable,
telle que Yy = 0. On note Y., = lim; o, Y;. Soit aussi p > 1 un réel fixé. On dit que la martingale
Y vérifie la propriété (P) s'il existe une constante C' telle que, pour tout temps d’arrét 7', on ait

E[|Ys — Y7 [P | Fr] < C.

) Montrer que si Y., est bornée, la martingale Y vérifie la propriété (P).

(1
(2) Soit B un (F;)-mouvement brownien réel issu de 0. Montrer que la martingale Y; = Bya1 vérifie
la propriété (P). (On pourra vérifier que la variable aléatoire sup,<q |By| est dans LP.)

(3

) Montrer que Y vérifie la propriété (P) avec la constante C, si et seulement si pour tout temps
d’arrét T,
E[|Yr — Yo|?] < CP[T < 0.

(On pourra utiliser les temps d’arrét T4 définis en cours pour A € Fr.)
Exercice 4. Soit M une (vraie) martingale a trajectoires continues telle que My = 0. On suppose
que E[(M;)?] < oo pour tout t > 0. On introduit le processus croissant (M;);>o défini par
M} = sup{|M;| : s < t}.
(1) Justifier le fait que, pour tout temps d’arrét borné 7', on a
E[(Mr)’] =E[(M,M)7],  E[(Mf)’] <4AE[(M, M)r].
(2) Soit > 0, et soit T}, le temps d’arrét défini par T, = inf{s > 0 : (M)? > z} (avec la

convention habituelle inf @ = c0). Montrer que, pour tout temps d’arrét borné 7', on a

P((M)? > 2) <~ El(Mr,nr)?] < +E{(M, M)z,

(On observera que la propriété {(M;)? > z} équivaut ¢ {T, <T}.)
(3) Soit maintenant S, = inf{s > 0: (M, M), > x}, et soit ¢t > 0 fixé. Montrer que

P((M;)? > z) <

E[<M7 M>Sz/\t] + P(<M7 M>t > x)

SR

(4) Déduire de la question précédente que
. 1
P((M)? > x) < — E[(M, M)e Ly, <oyl +2P((M, M) 2 @)
(5) Soit ¢ €]0,1[. Montrer que
E[(M;)*] < (2+ fq)EKM, M){],

puis que cette inégalité reste vraie si on suppose seulement que M est une martingale locale telle
que My = 0.



Corrigé.

Exercice 1. (1) Si oy > n, on a |By| < 1 pour tout t € [0,n], d'ou |Bj — Bj_1| < 2 pour tout
jeA{l,...,n}. Donc

P(oy >n) <P(|By— Byl <2,...,|By — Bu1| <2) = [[P(1B; — Bj—1| <2) = (P(|B1| < 2))",
j=1

en utilisant le fait que les v.a. B; — B;_; sont indépendantes et de méme loi. Finalement, puisque
By suit une loi N(0,1) on a P(|By] <2) =p < 1.
Si p > 1, on peut majorer

E[(al)p]§1+iP[n<al §n+1](n—|—1)p§1+ip”(n+1)p<oo.

(2) On sait que B? — t est une martingale. D’aprés le théoréme d’arrét (pour des t.a. bornés), on
a E[B},, — (t Aog)] =0 et donc E[B7,,.] = E[t A 4] pour tout ¢ > 0. Quand ¢ — oo, E[t A 0]
converge vers E[o,] par convergence monotone. Puisque |Bipg, | < a (et qu'on sait que o, < 00

p.s.), on peut utiliser le théoreme de convergence dominée pour obtenir que E[Bf,\ga] converge

quand t — oo vers E[B2 ] = a®. On conclut que E[o,] = a?.

k
a

(3) Les propriétés du mouvement brownien montrent que les t.a. o sont finis p.s. Notons (F;)¢>0

k
la filtration canonique de B. Pour tout entier & > 1, si on pose Bga“) = B,k — By, la propriété
k
de Markov forte dit que le processus (Bt(g“))tzo est encore un mouvement brownien (issu de 0) et

k
est indépendant de la tribu F,x. Puisque ol — gk =inf{t >0: |B§U“)] = a}, il en découle que

a
a’;“ — o a méme loi que o, et est indépendante de F,«, donc des v.a. ol 02 — ol k k=1
a

i .0, — 0,

a a’”

(puisque, si j < k, ol est ]—"Ui—mesurable et fgg C For)-

Un argument de changement d’échelle montre que o, a méme loi que a?c;. En particulier,

2271,
Elo2" | =E|S (67, — ol H| =22 x 272E[oy] = 1
2—n| — 2—n 2—n - 1] — L.
j=1
. . ] —1 . , .
Mais puisque les v.a. aé,n — a;,n sont indépendantes, on a aussi
2271
2n y —1 — —
var(os_,) = E var(o)_, —o03_,) = 2°" x 27 var(oy) = C 27"
j=1

ot C' = var(oy) (on utilise la question (1) pour observer que o; est dans L?). Finalement,

E[i(ggz’; - 1)2] - inz[(ag”; ~ 1)2} - ivar(ag21,) <

\ - P 2n 2n
d’ott la série de terme général (o3, — 1)? converge p.s., et donc o2, — 1 converge p.s. vers 0.

Exercice 2. (1) T, est le temps d’entrée dans le fermé | — oo, a] U [b, oo[ du processus M; qui est
adapté et a trajectoires continues.

(2) Le processus arrété M7Tat est encore une martingale locale, qui est bornée par |a| V b. C’est
donc une vraie martingale uniformément intégrable. Le théoreme d’arrét montre que E[Mr, ] =
E[Mo] = 0, d’ott (puisque T, < 0o p.s.) aP(Mr, , = a) + bP(Mr, , = b) = 0. Mais toujours parce



que T, < 00 p.s., on a aussi P(Mr, , = a) +P(Mr, , = b) = 1. Il en découle que
—a
b—a’
(3) L’hypothese entraine que T3, < oo p.s. pour tout choix de a < 0 < b. Fixons a < 0 et notons

T, = inf{t > 0 : My = a}. Alors I'événement {7, < oo} est la réunion croissante de la suite
d’événements E,, = {Mr, , = a}. En conséquence,

P(Mr,, =b) =

"o

P(T, < 00) = lim P(Myp, , =a) = lim

n— oo ’ n—oo N — a

Donc T, < oo p.s., pour tout a < 0, ce qui suffit pour conclure.

Exercice 3.

(1) Pour une martingale u.i., si T" est un temps d’arrét on a Yr = E[Y,, | Fr|, donc la condition
|Yoo| < K entraine aussi |Yr| < K et |Yo — Y| < 2K, ce qui donne (P) avec C = (2K)P.

(2) Puisque sup{B;, 0 <t < 1} a méme loi que |Bj| et est donc dans LP pour tout 1 < p < oo,
la majoration sup{|B:|, 0 < t < 1} < sup{B;, 0 <t < 1} +sup{—B, 0 < ¢t < 1} montre que
sup{|B:|, 0 <t < 1} est dans LP.

Soit T un t.a. avec P(T" < oo) > 0 (sinon la propriété demandée est triviale). Si Y; = Biaq on a
Yoo = By et Y = Brai1. Notons B’ le processus défini par B = 1{p<oc} (Bryt — Br). Alors,

Yoo = Y7| = |B1 — Bra1| < 1yr<1y sup |Bry, — Br| = 1yr<1y sup |Bj.
0<t<1 0<t<1
Donc, si A € Fr,

E[LAE[Yoo Y7 |? | Frl) = E[14[Yoe—Y7[”] < E[Lanrary sup |BiP| =P(AN{T < 1HE[ sup [Bil?],
0<t<1 0<t<1

olt pour la derniere égalité on utilise la propriété de Markov forte, selon laquelle B’ est sous la
probabilité P(- | T < oo) un mouvement brownien indépendant de Fr donc de AN {T < 1}.
Finalement, pour tout A € Fr, E[14E[|Y — Y|P | Fr]] < CP(A), avec C = E[supg<,<; | B:|?],
et, puisque E[|Ys — Y7|P| Fr| est Fr-mesurable, cela suffit pour dire que E[|Y,, — Y7 |P | Fr] < C
(prendre A = {E[|Ys — Y|P | Fr] > C} pour trouver E[14(E[|Yoo — Y|P | Fr] — C)] < 0, d’ou
P(A) = 0).

(3) Supposons d’abord que Y vérifie la propriété (P) avec la constante C. Alors, si T' est un t.a.

El[Yr — Yaol”] = E[Lz-<o0} V1 — Yaol?] = E[Li7<on) E[[Vr — Yaol? | Frl] < CP(T < 00).

Inversement, si E[|Yr — Y|P] < CP(T < o0) pour tout t.a. T, alors, en remplagant 7" par le t.a.
T4 (ot A € Fr) on trouve

E[1AR[|Yr — Yoo |P | Fr]] = E[14|Y7r — Yoo [P] = E[|Yra — Yoo [P] < CP(T# < 00) < CP(A).
Comme cela est vrai pour tout A € Fr, cela suffit pour dire que E[|Yr — Y|P | Fr] < C.

Exercice 4. (1) D’apres le cours, si M une (vraie) martingale a trajectoires continues et de carré
intégrable, telle que My = 0, le processus (M;)? — (M, M); est une vraie martingale, et on a aussi
E[(M, M);] < oo pour tout t > 0. En appliquant le théoreme d’arrét (cas borné) a la martingale
(My)? — (M, M), on obtient immédiatement, pour tout t.a borné T,

E[(M7)* — (M, M)7] = 0.
L’inégalité de Doob dans L2, appliquée & la martingale arrétée M7, montre, pour tout ¢ > 0,

E[(M{rr)?] < AE[(Miar)?] = AE(M, M)int]



la derniere égalité d’apres la premiere partie de la question. Un argument de convergence monotone
montre ensuite que E[(M;, 7)?] converge vers E[(M7)?] et E[(M, M)ar| converge vers E[(M, M)r]
quand ¢ T oo, d’ou le résultat demandé.

(2) La propriété (M%)? > z a lieu si et seulement si T, < T', et alors on a (M, a1)? = (Mr,)? = .
Donc,

P(M; > 2) = B(T, < T) < P((Mr, r)’ = 2) < ~E[(Mr, 1))

en utilisant I'inégalité de Markov. Ensuite, en utilisant la question (1),

E[(Mr,a7)?] = E[(M, M)7, a7] < E[(M, M)7].

(3) L'événement {(M;)* > x} est contenu dans la réunion de {(M} ,,)* > z} et de {S, < t}
(simplement parce que si S, > t on a Mg ,, = M;). En appliquant la question (2) au t.a.
T=S,ANtona

P((ME, )2 2 2) < & E[(M, M)s, el

et par ailleurs les événements {S, <t} et {(M,M); > x} coincident, donc
P(S, <t)=P(M,M); > z).
En combinant ces deux observations, on a

P((MF)? > ) < P((M3 )" > ) + (S, < 1) <~ BIM, M)s, ] + P((M, M), > ).

(4) En utilisant & nouveau le fait que {S, <t} = {(M, M), > x}, on a
1 1 1
—B{M, M)s,ne] = —E(M, M)t 1(s,>0] + —E[(M, M)s, 1(s,<1)]

1
= ;E[(M, M) 1y, <ay) + P(M, M) > x)

puisque (M, M)g, = x sur {S; < oo}. Il suffit ensuite de reporter cette majoration dans celle de
la question (3).
(5) Le théoreme de Fubini montre que

E[(Mt*)2q] _ q/ooo P((Mt*)2 > ZE) l’q_l A
< q/0°° (% E[(M, M)¢ Larmy, <o) + 2P((M, M) > x))xqfl dr.

et d’une part

2q /OOO P((M, M), > z) 29~  dz = 2E[((M, M),)?),

d’autre part,
[e¢] o
q/ E[(M, M), 1{(M,M)t<x}]$q72d$ = qE[(M, M)t/ 297 2%dz| = %E[((M, M))1].
0 (M, M), —q
Si M est seulement une martingale locale issue de 0, il suffit d’appliquer le résultat obtenu a la
(vraie) martingale bornée Mar,, ou T;, = inf{t > 0 : |M;| > n}, puis de faire tendre n — oo en
utilisant le théoreme de convergence monotone.



