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GEODESIC STARS IN RANDOM GEOMETRY
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1Université Paris-Saclay

A point of a metric space is called a geodesic star with m arms if it is
the endpoint of m disjoint geodesics. For every m ∈ {1,2,3,4}, we prove
that the set of all geodesic stars with m arms in the Brownian sphere has
dimension 5−m. This complements recent results of Miller and Qian, who
proved that this dimension is smaller than or equal to 5−m.

1. Introduction. This work is concerned with the continuous models of random ge-
ometry that have been studied extensively in the recent years. In particular, we consider the
Brownian sphere or Brownian map, which is the scaling limit in the Gromov-Hausdorff sense
of triangulations or quadrangulations of the sphere with n faces chosen uniformly at random,
and of much more general random planar maps (see in particular [1, 4, 7, 18, 24, 26]). We
are primarily interested in the study of geodesics in the Brownian sphere, but our main result
remains valid in the related models called the Brownian plane [8, 9] and the Brownian disk
[6, 21].

Recall that a geodesic in a metric space (E,d) is a continuous path (γ(t))t∈[0,δ], where
δ > 0, such that d(γ(s), γ(t)) = |s − t| for every s, t ∈ [0, δ]. For every t ∈ (0, δ), we say
that γ(t) is an interior point of the geodesic (whereas γ(0) and γ(δ) are its endpoints). If
m ≥ 1 is an integer, we then say that a point x is a geodesic star with m arms (in short, an
m-geodesic star) if there exist δ > 0 and m geodesics (γ1(t))t∈[0,δ], . . . , (γm(t))t∈[0,δ] such
that γ1(0) = γ2(0) = · · · = γm(0) = x and the sets {γj(t) : t ∈ (0, δ]}, for j ∈ {1, . . . ,m},
are disjoint. If (E,d) is a geodesic space (having more than one point), any pair of distinct
points is connected by a (possibly not unique) geodesic, and it is then immediate that every
point is a 1-geodesic star. Our main result is the following theorem.

THEOREM 1. Let (m∞,D) denote the Brownian sphere. For every integer m ∈
{1,2,3,4}, let Sm be the set of all m-geodesic stars in (m∞,D). Then the Hausdorff di-
mension of Sm is a.s. equal to 5−m.

The upper bound dim(Sm)≤ 5−m has been obtained by Miller and Qian in [27, Theo-
rem 1.4]. So the contribution of the present work is to prove the corresponding lower bound.
We note that m-geodesic stars in the Brownian sphere were first discussed by Miermont [26,
Definition 7], who conjectured that they exist for m≤ 4 but not for m≥ 6 (see the conclud-
ing remarks of [26]). In fact the non-existence of m-geodesic stars when m ≥ 6 has been
proved by Miller and Qian [27, Theorem 1.4].

Let us briefly comment on Theorem 1. The Brownian sphere is a geodesic space, and
thus S1 = m∞, so that in the case m = 1 the result follows from the known fact [16] that
dim(m∞) = 4. Next we may observe that any interior point of a geodesic is a 2-geodesic
star, and therefore S2 contains the set of all interior points of all geodesics. However, Miller
and Qian [27, Corollary 1.3] proved that the Hausdorff dimension of the latter set is 1 (it is
obviously greater than or equal to 1), thus confirming a conjecture of Angel, Kolesnik and
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Miermont [5]. Since dim(S2) = 3, this implies, at least informally, that typical 2-geodesic
stars are not interior points of geodesics. Let us then consider m = 3. It is relatively easy
to construct 3-geodesic stars in the Brownian sphere. Indeed, write x∗ for the (first) distin-
guished point of m∞ (see Section 2.5 below), and suppose that x and y are two points chosen
independently according to the volume measure on m∞. From the results of [17], the (a.s.
unique) geodesics from x to x∗ and from y to x∗ coalesce before hitting x∗, and the point at
which they coalesce is a 3-geodesic star. Again one expects that such points are not typical
3-geodesic stars. Finally, to the best of our knowledge, the existence of 4-geodesic stars had
not been established before. We state an open question in the case m= 5.

Open problem. Prove or disprove the existence of 5-geodesic stars in the Brownian map.

If 5-geodesic stars do exist, [27, Theorem 1.4] implies that dim(S5) = 0.

Let us discuss the earlier work about geodesics in the Brownian sphere. The paper [17]
provides a complete description of geodesics ending at the distinguished point x∗ , by show-
ing that all such geodesics must be “simple geodesics” (see Section 3.2 for the definition of
a simple geodesic in a slightly different model). It follows from this description that any two
geodesics ending at x∗ must coalesce before hitting x∗. This is the so-called confluence of
geodesics phenomenon, which implies that x∗ is (a.s.) not a 2-geodesic star. These results
still hold if x∗ is replaced by a point chosen according to the volume measure of m∞, by
the symmetry properties of the Brownian sphere (see Section 2.6 below), and they imply the
uniqueness of the geodesic between two points chosen independently according to the vol-
ume measure. A different approach to the latter property was given by Miermont [25], in the
more general setting of scaling limits of random planar maps in arbitrary genus.

Miermont’s approach [26] to the uniqueness of the Brownian sphere as the scaling limit of
random quadrangulations makes heavy use of the notion of geodesic stars. We also note that
both [26] and the alternative approach to the uniqueness of the Brownian sphere developed
in [18] strongly rely on the characterization of geodesics to x∗.

The paper [5] by Angel, Kolesnik and Miermont goes further in the study of geodesics
in the Brownian sphere. In particular, it is proved in [5] that 2-geodesic stars form a set of
first Baire category. Moreover, [5] contains a thorough discussion of the so-called geodesic
networks: for each pair (x, y) of distinct points in the Brownian map, the geodesic network
between x and y is the union of all geodesics from x to y. If y = x∗ (more generally, if
y is a “typical” point) the results of [17] show that the geodesic network consists of the
union of at most 3 geodesics, but things may be much more complicated if x and y are both
exceptional points. The paper [5] studies the possible “normal” geodesic networks (normality
implies that there is a common point other than x and y to all geodesics between x and y),
and obtains in particular that there is a dense set of pairs (x, y) ∈m∞ ×m∞ such that the
geodesic network between x and y consists of 9 distinct geodesics — in that case, both x
and y must be 3-geodesic stars. Even deeper results (without the normality assumption) are
derived in the recent paper [27] of Miller and Qian, which shows that 9 is indeed the maximal
number of geodesics between two points of m∞, and moreover computes the Hausdorff
dimension of the set of pairs (x, y) such that there are exactly j geodesics between x and y
(see [27, Theorem 1.6]). As already mentioned, [27] also gives the upper bound dim(Sm)≤
5 −m. Both [5] and [27] make heavy use of strong forms of the confluence of geodesics
phenomenon, see in particular [5, Proposition 12] and [27, Theorem 1.1]. It is worth pointing
that certain analogs of the results of [5] and [27] have been derived in the related setting of
Liouville quantum gravity surfaces in the very recent papers [10] and [14] (the confluence of
geodesics phenomenon in that setting [12] played a major role in the proof of the uniqueness
of the Liouville quantum gravity metric, see [13]).
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Let us outline the main steps of the proof of the lower bound dim(Sm) ≥ 5 −m when
m≥ 2. The key ideas are very similar to those that have been used in the study of exceptional
points of Brownian motion. It is convenient to deal with the so-called free Brownian sphere,
which means that m∞ is defined under the infinite Brownian snake excursion measure N0

(see Section 2.5 below). For every ε ∈ (0,1) we introduce a set Sε
m of “ε-approximate” m-

geodesic stars. A point x of m∞ belongs to Sε
m if 1 < D(x∗, x) < 2 and if there exist m

geodesics to x that start at distance 1 from x and are disjoint up to the time when they arrive
at distance ε from x. More precisely, we require for technical reasons that these geodesics
start from the boundary of the hull of radius 1 centered at x relative to x∗ (roughly speaking,
this hull is obtained by filling in the holes of the ball of radius 1 centered at x, except for the
one containing x∗, see Section 2.5). Write Vol(·) for the volume measure on m∞. Using the
symmetry properties of the Brownian sphere, it is not hard to verify that

(1) N0

(
Vol(Sε

m)
)
≥ cm εm−1,

with a positive constant cm independent of ε. Then, if δ ∈ (0,1), we rely on a two-point
estimate to get the bound

(2) N0

(∫ ∫
1Sε

m×Sε
m

(x, y)D(x, y)−(5−m−δ) Vol(dx)Vol(dy)

)
≤ cδ,m ε2(m−1),

with a constant cδ,m independent of ε. From (1) and (2), standard arguments show that, at
least on a set of positive N0-measure, the volume measure restricted to Sε

m and scaled by
the factor ε−(m−1) converges when ε tends to 0, along a suitable subsequence, to a limiting
random measure µ satisfying∫ ∫

D(x, y)−(5−m−δ) µ(dx)µ(dy)<∞.

If we know that µ is supported on Sm, the classical Frostman lemma gives dim(Sm) ≥
5−m− δ. However, it is not obvious that µ is supported on Sm, because, even if a sequence
(xn)n∈N of εn-approximatem-geodesic stars (with εn→ 0) converges, it does not necessarily
follow that the limit belongs to Sm. To overcome this difficulty, we need to modify the
definition of Sε

m by imposing that the geodesics to x in this definition are not only disjoint
but sufficiently far apart from each other. Another delicate point is to prove that the desired
property holds N0-a.e. and not only on a set of positive N0-measure. As usual, we rely on a
kind of zero-one law, which requires considering first the (scale invariant) Brownian plane
and then using a strong coupling between the Brownian plane and the Brownian sphere.

The paper is organized as follows. Section 2 is devoted to a number of preliminaries, in-
cluding the Brownian snake construction of the Brownian sphere as a measure metric space
with two distinguished points denoted by x∗ and x0, and a discussion of the symmetry prop-
erties of the Brownian sphere, which roughly speaking say that x∗ and x0 play the same role
as two points chosen independently according to the (normalized) volume measure. Section
3 starts with the construction of the random metric space corresponding to the hull of radius
r > 0 centered at x∗ relative to x0, under N0(· |D(x∗, x0)> r). This construction yields an
explicit calculation of the probability that there are m geodesics from the boundary of the
hull to x∗ that stay disjoint until they hit the ball of radius ε centered at x∗. Then Theorem
8, which is a result of independent interest, shows that the hull of radius r > 0 centered at
x∗ and relative to x0 is independent of its complement conditionally on its boundary size,
and the complement itself is a Brownian disk — this is in fact an analog of a result proved
in [22] for the Brownian plane. One then derives a two point-version saying that, under the
conditional probability measure N0(· |D(x∗, x0) > 2r), the hull of radius r centered at x∗
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(relative to x0) and the hull of radius r centered at x0 (relative to x∗) are independent condi-
tionally on their boundary sizes (Corollary 9). Section 4 is devoted to the proof of the version
of (1) where the definition of Sε

m is modified as explained above to ensure that geodesics
stay “sufficiently far apart” from each other. An important ingredient here is the notion of
a slice, which roughly speaking separates two successive disjoint geodesics from the hull
boundary to the ball of radius ε (slices also played a key role in the characterization of the
distribution of Brownian disks in [6]). Section 5, which is the most technical part of the paper,
uses the results of Section 3 to derive the key estimate (Lemma 15) that eventually leads to
the bound (2). Section 6 then gives the proof of Theorem 1 along the lines of the preceding
discussion. The Appendix contains the proofs of a couple of technical lemmas, including the
strong coupling between the Brownian plane and the Brownian sphere that is used to justify
the zero-one law argument.

We finally mention that Jason Miller and Wei Qian [28] have independently developed a
different approach to Theorem 1. We believe that our general strategy and the intermediate
steps of our proof are of independent interest and should prove useful to investigate other sets
of exceptional points in the Brownian sphere. We hope to pursue this matter in the future.

2. Preliminaries.

2.1. Measure metric spaces. A (compact) measure metric space is a compact metric
space (X,d) equipped with a finite Borel measure µ which is often called the volume mea-
sure. We write M for the set of all measure metric spaces, where two such spaces (X,d,µ)
and (X ′, d′, µ′) are identified if there exists an isometry φ fromX ontoX ′ such that φ∗µ= µ′.

For our purposes, it will be important to consider measure metric spaces given together
with two distinguished closed subsets that we call the boundaries for reasons that will become
clear later. We say that (X,d,µ,F1, F2) is a two-boundary measure metric space if (X,d,µ)
is a measure metric space and if F1 and F2 are two closed subsets of X (the order between
F1 and F2 is important). We write Mbb for the set of all two-boundary measure metric spaces
modulo isometries (of course we now consider only isometries that preserve both the volume
measures and the “boundaries”).

The Gromov-Hausdorff-Prokhorov distance on Mbb is then defined by

dGHP((X,d,µ,F1, F2), (X ′, d′, µ′, F ′1, F
′
2))

= inf
{
dEH(φ(X), φ′(X))∨ dEH(φ(F1), φ′(F ′1))∨ dEH(φ(F2), φ′(F ′2))∨ dEP (φ∗µ,φ

′
∗µ
′)
}
,

where the infimum is over all isometric embeddings φ and φ′ of X and X ′ into a compact
metric space (E,dE), dEH stands for the Hausdorff distance between compact subsets of E
and dEP is the Prokhorov distance on the space of finite measures on E. Then, by an easy gen-
eralization of [2, Theorem 2.5], one verifies that dGHP is a distance on Mbb, and (Mbb, dGHP)
is a Polish space.

We also let M•b, resp. M••, denote the closed subset of Mbb that consists of all (isometry
classes of) two-boundary measure metric spaces (X,d,µ,F1, F2) such that F1 is a singleton,
resp. both F1 and F2 are singletons. Note that M•• is just the space of two-pointed measure
metric spaces as considered in [21, Section 2.1].

Remark. Gwynne and Miller [11] consider the closely related notion of a curve-decorated
measure metric space.
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2.2. Snake trajectories. We will use the formalism of snake trajectories as developed
in [3]. First recall that a finite path w is a continuous mapping w : [0, ζ] −→ R, where the
number ζ = ζ(w) ≥ 0 is called the lifetime of w. We letW denote the space of all finite paths,
which is a Polish space when equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)|+ sup
t≥0
|w(t∧ ζ(w))−w′(t∧ ζ(w′))|.

The endpoint or tip of the path w is denoted by ŵ = w(ζ(w)). For x ∈R, we setWx = {w ∈
W : w(0) = x}. The trivial element ofWx with zero lifetime is identified with the point x of
R.

DEFINITION 2. Let x ∈ R. A snake trajectory with initial point x is a continuous map-
ping s 7→ ωs from R+ intoWx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s≥ 0 : ωs 6= x}, called the duration of the
snake trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s≥ 0).

(ii) (Snake property) For every 0≤ s≤ s′, ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)].

We will write Sx for the set of all snake trajectories with initial point x and S =
⋃
x∈R Sx

for the set of all snake trajectories. If ω ∈ S , we often write Ws(ω) = ωs and ζs(ω) = ζ(ωs)

for every s ≥ 0. The set S is a Polish space for the distance dS(ω,ω′) = |σ(ω)− σ(ω′)|+
sups≥0 dW(Ws(ω),Ws(ω

′)). A snake trajectory ω is completely determined by the knowl-
edge of the lifetime function s 7→ ζs(ω) and of the tip function s 7→ Ŵs(ω): See [3, Proposi-
tion 8].

Let ω ∈ S be a snake trajectory and σ = σ(ω). The lifetime function s 7→ ζs(ω) codes a
compact R-tree, which will be denoted by T(ω) and called the genealogical tree of the snake
trajectory. This R-tree is the quotient space T(ω) := [0, σ]/∼ of the interval [0, σ] for the
equivalence relation

s∼ s′ if and only if ζs(ω) = ζs′(ω) = min
s∧s′≤r≤s∨s′

ζr(ω),

and T(ω) is equipped with the distance induced by

d(ω)(s, s
′) = ζs(ω) + ζs′(ω)− 2 min

s∧s′≤r≤s∨s′
ζr(ω).

(notice that d(ω)(s, s
′) = 0 if and only if s∼ s′). We write p(ω) : [0, σ]−→T(ω) for the canon-

ical projection. By convention, T(ω) is rooted at the point ρ(ω) := p(ω)(0), and the volume
measure on T(ω) is defined as the pushforward of Lebesgue measure on [0, σ] under p(ω). The
mapping s 7→ p(ω)(s) may be interpreted as a (clockwise) cyclic exploration of T(ω).

It will be useful to define also intervals on the tree T(ω). For s, s′ ∈ [0, σ], we use the
convention [s, s′] = [s,σ]∪ [0, s′] if s > s′ (and of course, [s, s′] is the usual interval if s≤ s′).
If a, b ∈ T(ω) are distinct, we can find s, s′ ∈ [0, σ] in a unique way so that p(ω)(s) = a and
p(ω)(s

′) = b and the interval [s, s′] is as small as possible, and we define [a, b] := p(ω)([s, s
′]).

Informally, [a, b] is the set of all points that are visited when going from a to b in “clockwise
order” around the tree. We also take [a,a] = {a}.

By property (ii) in the definition of a snake trajectory, the condition p(ω)(s) = p(ω)(s
′)

implies that Ws(ω) = Ws′(ω). So the mapping s 7→Ws(ω) could be viewed as defined on
the quotient space T(ω). For a ∈ T(ω), we set `a(ω) := Ŵs(ω) for any s ∈ [0, σ] such that
a= p(ω)(s) (by the previous observation, this does not depend on the choice of s). We then
interpret `a(ω) as a label assigned to the point a of T(ω), and we observe that, if p(ω)(s) = a,
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the path [0, ζs] 3 t 7→Ws(t) records the labels along the line segment from ρ(ω) to a in T(ω).
We also note that the mapping a 7→ `a(ω) is continuous on T(ω). We will use the notation

W∗(ω) := min{`a(ω) : a ∈ T(ω)}= min{Ŵs(ω) : 0≤ s≤ σ}.

Let us introduce a truncation operation on snake trajectories. Let x, y ∈ R with y < x. If
w ∈Wx, we set τy(w) := inf{t≥ 0 : w(t) = y}, with the usual convention inf ∅ =∞. Then,
if ω ∈ Sx, we set, for every s≥ 0,

ηs(ω) = inf
{
t≥ 0 :

∫ t

0
du1{ζ(ωu)≤τy(ωu)} > s

}
.

Note that the condition ζ(ωu) ≤ τy(ωu) holds if and only if τy(ωu) =∞ or τy(ωu) = ζ(ωu).
Then, setting ω′s = ωηs(ω) for every s≥ 0 defines an element ω′ of Sx, which will be denoted
by try(ω) and called the truncation of ω at y (see [3, Proposition 10]). The effect of the
time change ηs(ω) is to “eliminate” those paths ωs that hit y and then survive for a positive
amount of time. We can then also define the excursions of ω “below” level y. To this end, we
let (αj , βj), j ∈ J , be the connected components of the open set

{s ∈ [0, σ] : τy(ωs)< ζ(ωs)},

and notice that ωαj = ωβj for every j ∈ J . For every j ∈ J we define a snake trajectory
ωj ∈ S0 by setting

ωjs(t) := ω(αj+s)∧βj (ζ(ωαj ) + t)− y , for 0≤ t≤ ζ(ωjs)
:= ζ(ω(αj+s)∧βj ) − ζ(ωαj ) and s≥ 0.

We say that ωj , j ∈ J are the excursions of ω below level y.
We finally introduce the re-rooting operation on snake trajectories (see [3, Section 2.2]).

Let ω ∈ S0 and r ∈ [0, σ(ω)]. Then ω[r] is the snake trajectory in S0 such that σ(ω[r]) = σ(ω)
and for every s ∈ [0, σ(ω)],

ζs(ω
[r]) = d(ω)(r, r⊕ s),

Ŵs(ω
[r]) = Ŵr⊕s(ω)− Ŵr(ω),

where we use the notation r ⊕ s = r + s if r + s ≤ σ(ω), and r ⊕ s = r + s − σ(ω) oth-
erwise. These prescriptions completely determine ω[r]. The genealogical tree T(ω[r]) may be
interpreted as the tree T(ω) re-rooted at the vertex p(ω)(r), and vertices of T(ω[r]) receive the
same labels as in T(ω), shifted so that the label of the (new) root is still 0.

2.3. The Brownian snake excursion measure on snake trajectories. Let x ∈ R. The
Brownian snake excursion measure Nx is the σ-finite measure on Sx that satisfies the fol-
lowing two properties: Under Nx,

(i) the distribution of the lifetime function (ζs)s≥0 is the Itô measure of positive excursions
of linear Brownian motion, normalized so that, for every ε > 0,

Nx
(

sup
s≥0

ζs > ε
)

=
1

2ε
;

(ii) conditionally on (ζs)s≥0, the tip function (Ŵs)s≥0 is a Gaussian process with mean x
and covariance function

K(s, s′) := min
s∧s′≤r≤s∨s′

ζr.
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Informally, the lifetime process (ζs)s≥0 evolves under Nx like a Brownian excursion, and
conditionally on (ζs)s≥0, each path Ws is a linear Brownian path started from x with lifetime
ζs, which is “erased” from its tip when ζs decreases and is “extended” when ζs increases. We
note that the density of σ under N0 is (2

√
2πs3)−1.

For every y < x, we have

(3) Nx(W∗ ≤ y) =
3

2(x− y)2
.

See e.g. [15, Section VI.1] for a proof. Additionally, one can prove that Nx(dω) a.e. there is
a unique s∗ ∈ (0, σ) such that Ŵs∗ =W∗ (see [23, Proposition 2.5]) and we set a∗ = p(ω)(s∗)
so that `a∗ =W∗.

The following scaling property is often useful. For λ > 0, for every ω ∈ Sx, we define
θλ(ω) ∈ Sx√λ by θλ(ω) = ω′, with

ω′s(t) :=
√
λωs/λ2(t/λ) , for s≥ 0 and 0≤ t≤ ζ ′s := λζs/λ2 .

Then it is a simple exercise to verify that the pushforward of Nx under θλ is λNx√λ.

For every t > 0, we define the conditional probability measure N(t)
0 := N0(· |σ = t). If

s ∈ [0, t], N(t)
0 is invariant under the re-rooting operation ω 7→ ω[s] (see e.g. [23, Theorem

2.3]).

Exit measures. Let x, y ∈R, with y < x. Under the measure Nx, one can make sense of the
“quantity” of paths Ws that hit level y. One shows [21, Proposition 34] that the limit

(4) Lyt := lim
ε↓0

1

ε2

∫ t

0
ds1{τy(Ws)=∞, Ŵs<y+ε}

exists uniformly for t≥ 0, Nx a.e., and defines a continuous nondecreasing function, which
is obviously constant on [σ,∞). The process (Lyt )t≥0 is called the exit local time at level y,
and the exit measure Zy is defined by Zy = Ly∞ = Lyσ . Then, Nx a.e., the topological support
of the measure dLyt is exactly the set {s ∈ [0, σ] : τy(Ws) = ζs}, and, in particular, Zy > 0 if
and only if one of the paths Ws hits y. The definition of Zy is a special case of the theory of
exit measures (see [15, Chapter V] for this general theory). Notice that the quantities in the
right-hand side of (4) are functions of try(ω).

The special Markov property of the Brownian snake states that, under Nx(dω) and condi-
tionally on the truncation try(ω), the excursions of ω below y form a Poisson measure with
intensity ZyN0 (see the appendix of [20] for a more precise statement).

2.4. Decomposing the Brownian snake at its minimum. Let u > 0. We will use the de-
scription of the conditional measure N0(· |W∗ = −u), which can be found in [19]. Let
(αi, βi), i ∈ I , be the connected components of {s ∈ [0, s∗] : ζs > min[s,s∗] ζr}, and simi-
larly let (αi, βi), i ∈ J , be the connected components of {s ∈ [s∗, σ] : ζs >min[s∗,s] ζr} (the
indexing sets I and J are disjoint). Notice that ζαi = ζβi and Ŵαi = Ŵβi =Ws∗(ζαi) by the
snake property. For every i ∈ I ∪ J , we write ω(i) for the unique snake trajectory such that

ζs(ω
(i)) = ζ(αi+s)∧βi − ζαi , Ŵs(ω

(i)) = Ŵ(αi+s)∧βi .

Then, under N0(· |W∗ = −u), the finite path (u + Ws∗(ζs∗ − t))0≤t≤ζs∗ is distributed as a
nine-dimensional Bessel process started at 0 and stopped at its last passage time at u, and,
conditionally on Ws∗ , the point measures∑

i∈I
δ(ζαi ,ω

(i))(dtdω
′) and

∑
i∈J

δ(ζαi ,ω
(i))(dtdω

′)
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are independent Poisson measures with intensity

21[0,ζs∗ ](t)1{W∗(ω′)>−u} dtNWs∗ (t)(dω
′).

Informally, this corresponds to a spine decomposition of the labeled tree T(ω) under
N0(· |W∗ = −u): Ws∗ records the labels along a spine isometric to [0, ζs∗ ], and each (la-
beled) tree T(ω(i)) for i ∈ I , resp. for i ∈ J , is grafted to the left side of the spine, resp. to the
right side of the spine, at level ζαi .

Let r > 0. The preceding decomposition can be used to make sense of the exit measure
ZW∗+r under N0(· |W∗ <−r). Notice that the exit measure Zy was defined in the previous
section for a deterministic level y, whereas here W∗ + r is random. Nonetheless, we may
argue under N0(· |W∗ =−u) for every fixed u > r, and then define

(5) ZW∗+r :=
∑

{i∈I∪J : ζαi>τ−u+r(Ws∗ )}

Z−u+r(ω
(i))

with the notation above. Moreover, the special Markov property implies that the distribution
of tr−u+r(ω) under N0(· |W∗ =−u) is absolutely continuous with respect to its distribution
under N0(· |W∗ < −u + r), so that we can apply (4) (with y = −u + r and x = 0) under
N0(· |W∗ =−u), and get that

(6) ZW∗+r = lim
ε→0

ε−2

∫ σ

0
ds1{τW∗+r(Ws)=∞,Ŵs<W∗+r+ε} ,

N0(· |W∗ =−u) a.e. and thus also N0(· |W∗ <−r) a.e.

2.5. The Brownian sphere. Let us argue under the excursion measure N0(dω), and recall
the notation `a = `a(ω) for the label assigned to a ∈ T(ω), and the definition of intervals on
T(ω). We define, for every a, b ∈ T(ω),

(7) D◦(a, b) := `a + `b − 2 max
(

min
c∈[a,b]

`c, min
c∈[b,a]

`c

)
.

We record two easy but important properties of D◦. First, for every a, b ∈ Tζ ,

(8) D◦(a, b)≥ |`a − `b|.

Then, recalling that a∗ is the unique point such that `a∗ =W∗, we have for every a ∈ Tζ ,

(9) D◦(a∗, a) = `a − `a∗ .

We let D(a, b) be the largest symmetric function of the pair (a, b) that is bounded above
by D◦(a, b) and satisfies the triangle inequality: For every a, b ∈ Tζ ,

(10) D(a, b) = inf
{ k∑
i=1

D◦(ai−1, ai)
}
,

where the infimum is over all choices of the integer k ≥ 1 and of the elements a0, a1, . . . , ak
of T(ω) such that a0 = a and ak = b. We note that D is a pseudo-metric on T(ω), and we
let m∞(ω) := T(ω)/{D = 0} be the associated quotient space (that is, the quotient space of
T(ω) for the equivalence relation a ≈ b if and only if D(a, b) = 0), which is equipped with
the distance induced by D, for which we keep the same notation D. Then (m∞,D) is a
compact metric space and also a geodesic space. The canonical projection from Tζ onto m∞
is denoted by Π, and the volume measure Vol on m∞ is defined as the pushforward of the
volume measure on T(ω) under Π. Note that the total mass of Vol is σ.

We view (m∞,D,Vol) as a random two-pointed measure metric space, or equivalently as
a random variable with values in the space M•• of Section 2.1: the first distinguished point of
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m∞ is x∗ = Π(a∗) and the second distinguished point is x0 := Π(ρ(ω)). As a consequence
of (9), we have

D(x∗, x0) =−W∗.

The free Brownian sphere is the (two-pointed measure) metric space m∞ under the mea-
sure N0. We note that m∞ is a geodesic space. It makes sense, and is also of interest, to
consider m∞ under conditional measures. The space m∞ under the probability measure
N(1)

0 := N0(· |σ = 1) is the standard Brownian sphere (or Brownian map). For every r > 0,
we will also consider m∞ under the conditional measure N[r]

0 := N0(· |W∗ <−r). This cor-
responds to conditioning the free Brownian sphere on the event that the distance between the
two distinguished points is greater than r.

The metric space m∞ is homeomorphic to the usual two-dimensional sphere, N0 a.e. (or
a.s. for any of the conditional measures introduced above).

For x ∈m∞ and r > 0, let Br(x) denote the closed ball of radius r centered at x in m∞.
If x and y are distinct points of m∞ and r ∈ (0,D(x, y)), the hull B•(y)

r (x) is the closed
subset of m∞ such that m∞\B•(y)

r (x) is the connected component of the complement of
Br(x) that contains y. We say that B•(y)

r (x) is the hull of radius r centered at x relative to
y. Obviously Br(x)⊂B•(y)

r (x), and every point of the topological boundary ∂B•(y)
r (x) is at

distance r from x.
The following fact known as the cactus bound [17, Proposition 3.1] is useful to study hulls

centered at x∗. Let x = Π(a) and y = Π(b) be two points of m∞, and let (γ(t))0≤t≤1 be a
continuous path in m∞ such that γ(0) = x and γ(1) = y. Then,

(11) min
0≤t≤1

D(x∗, γ(t))≤ min
c∈[[a,b]]

`c −W∗,

where [[a, b]] denotes the line segment between a and b in T(ω).

2.6. Symmetry properties. As mentioned above, m∞ is viewed as a two-pointed measure
metric space, and in this section we will write (m∞, x∗, x0) to make it explicit that x∗ and
x0 are the distinguished points. Our goal here is to observe that x∗ and x0 can be replaced by
points chosen uniformly according to the volume measure without changing the distribution
of (m∞, x∗, x0). This will be very important for our applications.

PROPOSITION 3. Let F be a nonnegative measurable function on the space M••. Then,

N0(F (m∞, x∗, x0)) = N0

(∫ ∫ Vol(dx)

σ

Vol(dy)

σ
F (m∞, x, y)

)
.

The same identity holds if N0 is replaced by N(s)
0 = N0(· |σ = s), for any s > 0.

PROOF. It is enough to treat the case of N(s)
0 . We fix s > 0 and recall that, for every

t ∈ [0, s], the measure N(s)
0 is invariant under the re-rooting operation ω 7→ ω[t]. On the other

hand, it is easy to verify that the measure metric space m∞ is left unchanged if ω is replaced
by ω[t], and that the first distinguished point also remains the same (the minimal label is
attained at the “same” point of T(ω) and T(ω[t])). However, the second distinguished point
x0 is replaced by Π(p(ω)(t)). It follows from these considerations and the definition of the
volume measure that

N(s)
0 (F (m∞, x∗, x0)) = N(s)

0

(1

s

∫
Vol(dy)F (m∞, x∗, y

)
.
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Then an application of [17, Theorem 8.1] shows that the right-hand side is also equal to

N(s)
0

(∫ ∫ Vol(dx)

s

Vol(dy)

s
F (m∞, x, y)

)
.

To be precise, [17, Theorem 8.1] considers m∞ as a metric space, and so we need a slight
extension of this result, when m∞ is viewed as a measure metric space. This extension is
obtained by the very same arguments as in [17], using the convergence of rescaled quadran-
gulations to the Brownian sphere in the Gromov-Hausdorff-Prokhorov sense, as stated in [21,
Theorem 7]. This completes the proof.

Let us mention some immediate consequences of Proposition 3. First, we have

(12) N0(F (m∞, x∗, x0)) = N0(F (m∞, x0, x∗)).

Since the conditioning defining N[r]
0 = N0(· |D(x0, x∗)> r) depends on x∗ and x0 in a sym-

metric manner, we get for every r > 0,

N[r]
0 (F (m∞, x∗, x0)) = N[r]

0 (F (m∞, x0, x∗)).

The following consequence of Proposition 3 will also be useful. If F is now defined on
the space of three-pointed compact metric spaces (see e.g. [21, Section 2.1]), we have
(13)

N0

(∫ Vol(dx)

σ
F (m∞, x∗, x0, x))

)
= N0

(∫∫∫ Vol(dx)

σ

Vol(dy)

σ

Vol(dz)

σ
F (m∞, x, y, z)

)
.

2.7. Moments of exit measures and volumes of balls. We start with a lemma providing
bounds on moments of the volume of balls centered at x∗.

LEMMA 4. Let p≥ 1 be an integer. There exists a constant Cp such that, for every r > 0,

N0

(
Vol(Br(x∗))

p
)

=Cp r
4p−2.

Consequently, for every integer p≥ 1, and every η ∈ (0,1), there exists a constant Cp,η such
that, for every r ∈ (0,1),

N[1]
0

(
Vol(Br(x∗))

p
)
≤Cp,η r4p−η.

PROOF. Using (9) and the scaling property of the measures Nx, we get

N0

(
Vol(Br(x∗))

p
)

= N0

((∫ σ

0
ds1{Ŵs−W∗≤r}

)p)
= r4p−2 N0

((∫ σ

0
ds1{Ŵs−W∗≤1}

)p)
.

So we only need to verify that

(14) N0

((∫ σ

0
ds1{Ŵs−W∗≤1}

)p)
<∞.

To this end, we note that, for every δ ∈ (0,1), [17, Lemma 6.1] gives

N(1)
0

((∫ 1

0
ds1{Ŵs−W∗≤r}

)p)
≤ cp,δ r4p−δ,

with a constant cp,δ independent of r > 0. By scaling, we get for t≥ 1,

N(t)
0

((∫ t

0
ds1{Ŵs−W∗≤1}

)p)
= tpN(1)

0

((∫ 1

0
ds1{Ŵs−W∗≤t−1/4}

)p)
≤ cp,δ tδ/4,
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and (14) follows by writing

N0

((∫ σ

0
ds1{Ŵs−W∗≤1}

)p)
=

∫ ∞
0

dt

2
√

2πt3
N(t)

0

((∫ t

0
ds1{Ŵs−W∗≤1}

)p)
≤
∫ 1

0

dt

2
√

2πt3
tp +

∫ ∞
1

dt

2
√

2πt3
cp,δ t

δ/4.

For the second assertion, let q ≥ 2 be an integer. Since N0(W∗ <−1) = 3
2 , we have

N[1]
0

(
Vol(Br(x∗))

p
)
≤
(
N[1]

0

(
Vol(Br(x∗))

qp
))1/q

≤
(2

3
N0

(
Vol(Br(x∗))

qp
))1/q

≤ (Cqp)
1/q r4p−2/q,

which gives the desired result by taking q such that 2/q < η.

We will need bounds on the moments of ZW∗+r under N[r]
0 = N0(· |W∗ <−r), and to this

end we will use a coupling with the Brownian plane. Let P stand for the Brownian plane
as defined in [8, 9]. According to [9, Proposition 1.1], we can make sense of a quantity Zr
which corresponds to the boundary size of the hull of radius r in P (see the introduction of
[9] for more details).

LEMMA 5. Let r > 0 and u ≥ r. The random variable ZW∗+r under N[u]
0 is stochasti-

cally dominated by Zr .

This lemma is a straightforward consequence of a coupling between the Brownian plane
P and the Brownian sphere m∞ under N0(· |W∗ =−u), which relies on the spine decom-
position of Section 2.4 and is described in the proof of another technical lemma in Appendix
B. For this reason, we also postpone the proof of Lemma 5 to Appendix C.

According to [9, Proposition 1.2], the variable Zr follows the Gamma distribution with
parameter 3/2 and mean r2. In particular, for every p≥ 1, there exists a constant cp such that
E[(Zr)

p] = cp r
2p, and then Lemma 5 implies that, for every 0< r ≤ u,

(15) N[u]
0

(
(ZW∗+r)p

)
≤ cp r2p.

3. Hulls.

3.1. The construction of hulls. Let us start by defining the random compact metric space
which will correspond to the conditional distribution of a hull of radius r in the free Brownian
sphere, given its boundary size. Throughout this section, r > 0 and z > 0 are fixed. We let

N =
∑
i∈I

δ(ti,ωi)

be a Poisson point measure on [0, z]×S0 with intensity

dt⊗N0(dω ∩ {W∗ >−r}).

Futhermore, let ω∗ be a random snake trajectory distributed according to N0(· |W∗ = −r),
and let U∗ be uniformly distributed over [0, z]. We assume that ω∗,U∗ andN are independent.
We also set

Σ := σ(ω∗) +
∑
i∈I

σ(ωi).
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We let H be derived from the disjoint union

[0, z]∪
(⋃
i∈I
T(ωi)

)
∪ T(ω∗)

by identifying 0 with z, the root of T(ω∗) with the point U∗ of [0, z] and, for every i ∈ I , the
root of T(ωi) with the point ti of [0, z]. The volume measure on H is defined by saying that
it puts no mass on [0, z] and that its restriction to each of the trees T(ωi), resp. to T(ω∗), is the
volume measure on this tree.

We then assign labels (Λa)a∈H to the points of H. We take Λa = 0 if a ∈ [0, z], and, for
every a ∈ T(ωi), resp. a ∈ T(ω∗), we take Λa = `a(ωi), resp. Λa = `a(ω∗). We let b∗ ∈ T(ω∗)

be the unique point of H with label −r.
We finally define a cyclic exploration (Es)s∈[0,Σ] of H. Informally, this cyclic exploration

is obtained by concatenating the cyclic explorations of the T(ωi)’s, and of T(ω∗), in the order
prescribed by the reals ti, and U∗. To get a more precise description, set

Au =
∑

i∈I,ti≤u
σ(ωi) + 1{u≥U∗}σ(ω∗)

for every u ∈ [0, z], and use the notation Au− for the left limit at u. Then:

• If 0≤ s≤AU∗− or AU∗ ≤ s≤Σ, either there is a (unique) i ∈ I such that Ati− ≤ s≤Ati ,
and we set Es = p(ωi)(s−Ati−), or there is no such i and we set Es = sup{ti :Ati ≤ s} ∈
[0, z].

• If AU∗− < s<AU∗ , we set Es = p(ω∗)(s−AU∗−).

There is a unique s∗ ∈ [0,Σ] such that Es∗ = b∗.
If s, s′ ∈ [0,Σ] and s < s′, we make the convention that [s′, s] = [s′,Σ] ∪ [0, s] (and of

course [s, s′] is the usual interval). Then, for every a, b ∈H, we can find s, s′ ∈ [0,Σ] such
that Es = a, Es′ = b and [s, s′] is as small as possible (note that we may have s′ < s). We
let the interval [a, b] of H be defined by [a, b] := {Er : r ∈ [s, s′]}. We then define, for every
a, b ∈H,

D◦H(a, b) := Λa + Λb − 2 max
(

inf
c∈[a,b]

Λc, inf
c∈[b,a]

Λc

)
,

and

(16) DH(a, b) = inf
a0=a,a1,...,ak−1,ak=b

k∑
i=1

D◦H(ai−1, ai).

Then, almost surely for every a, b ∈ H, the property DH(a, b) = 0 holds if and only if
D◦H(a, b) = 0. This is derived from the analogous property for the Brownian map, which
is proved in [16]. The bound D◦H(a, b)≥ |Λa − Λb| is immediate from the definition, and it
follows that we have also DH(a, b)≥ |Λa −Λb|.

The mapping (a, b) 7→DH(a, b) is a pseudo-metric on H. We writte H := H/{DH = 0}
for the associated quotient space, which is equipped with the metric (induced by) DH. We
write ΠH for the canonical projection from H onto H. The restriction of ΠH to [0, z) is
continuous and one-to-one, and its range is a simple loop denoted by ∂H = ΠH([0, z)) (one
proves that H is homeomorphic to the closed unit disk, and via such a homeomorphism ∂H
indeed corresponds to the unit circle). The volume measure on H is the pushforward of the
volume measure on H under ΠH. We view H as a random variable with values in the space
M•b of Section 2.1: the distinguished point is ΠH(b∗), and the distinguished “boundary” is
∂H. Without risk of confusion, we identify b∗ and ΠH(b∗) in what follows.
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We call the random two-boundary measure metric space H the standard hull of radius
r and perimeter z. This terminology will be justified below by relations with the Brownian
sphere. If x ∈ H, we can set Λx = Λa, for a such that ΠH(a) = x (this does not depend on
the choice of a) and it easily follows from the definitions that

(17) DH(x, b∗) = Λx + r

for every x ∈H. In particular, all points of ∂H are at distance r from b∗.
Let us turn to geodesics in H. More precisely, we are interested in geodesics between an

arbitrary point of H and b∗. Let x ∈H, and let a ∈H such that ΠH(a) = x, and s ∈ [0,Σ] such
that Es = a. Consider first the case where s ∈ [0, s∗]. We then set, for every t ∈ [0,Λa + r],

γs(t) := ΠH

(
Einf{u≥s:ΛEu=Λa−t}

)
.

If s ∈ [s∗,Σ], we define similarly, for every t ∈ [0,Λa + r],

γs(t) := ΠH

(
Esup{u≤s:ΛEu=Λa−t}

)
.

Then, using (17) and the bound DH(a, b) ≥ |Λa − Λb|, it is straightforward to verify that
(γs(t))0≤t≤Λa+r is a geodesic from x to b∗ in H. Such a geodesic is called a simple geodesic.

PROPOSITION 6. All geodesics in H that end at b∗ are simple geodesics.

The analog of this result for the Brownian sphere is proved in [17]. The proposition can be
derived from this analog by using the relations with the Brownian sphere that are discussed
below.

PROPOSITION 7. Let ε ∈ (0, r). Define an integer-valued random variable Nε by saying
that Nε ≥ k if and only if there exist k geodesics φ1, φ2, . . . , φk from ∂H to b∗ such that the
sets {φ1(t) : 0≤ t≤ r− ε}, {φ2(t) : 0≤ t≤ r− ε}, . . . ,{φk(t) : 0≤ t≤ r− ε} are disjoint.
Then Nε − 1 follow a Poisson distribution with parameter

3z

2

(
(r− ε)−2 − r−2)

)
.

PROOF. Let u, v ∈ [0, z], and s, s′ ∈ [0,Σ] such that Es = u and Es′ = v. Consider the
simple geodesics γs and γs′ as defined above. Then it follows from this definition (using also
the fact that DH(a, b) = 0 if and only if D◦H(a, b) = 0) that the sets {γs(t) : 0≤ t≤ r − ε}
and {γs′(t) : 0≤ t≤ r− ε} are disjoint if and only if we have both

min
t∈[s,s′]

ΛEt <−r+ ε and min
t∈[s′,s]

ΛEt <−r+ ε.

Using also Proposition 6, we get that

(18) Nε − 1 = #{i ∈ I :W∗(ωi)<−r+ ε}.

which follows a Poisson distribution with parameter

zN0(−r <W∗ <−r+ ε) =
3z

2

(
(r− ε)−2 − r−2)

)
.

This completes the proof.
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3.2. Hulls in the Brownian sphere. We now consider the free Brownian sphere (m∞,D),
which is defined under the measure N0. Recall that the two distinguished points of m∞ are
x∗ and x0.

We will be interested in hulls centered at x∗ relative to x0. We write B•r (x∗) =B
•(x0)
r (x∗)

to simplify notation: this hull is defined on the event where D(x0, x∗) =−W∗ > r. We no-
tice the following useful fact, which is obtained from the cactus bound (11) in a way similar
to the proof of formulas (16) and (17) in [9]. A point x = Π(p(ω)(s)), for s ∈ [0, σ], be-
longs to B•r (x∗) if and only if τW∗+r(Ws)≤ ζs, and to the interior of B•r (x∗) if and only if
τW∗+r(Ws)< ζs.

The exit measure ZW∗+r , which was introduced in Section 2.4 and is also defined on the
event {W∗ <−r}, can be interpreted as the boundary size of B•r (x∗). This interpretation is
justified by the following approximation, which is a reformulation of (6) using the preceding
observations,

(19) ZW∗+r = lim
ε→0

ε−2Vol((B•r (x∗))
c ∩Br+ε(x∗)) , a.e. on {D(x∗, x0)> r}.

If O is a connected open subset of m∞, the intrinsic distance DO
int on O is defined as

follows. For x, y ∈ O, DO
int(x, y) is the infimum of the lengths of paths connecting x and y

and staying inside O.
Recall that N[r]

0 = N0(· |D(x∗, x0) > r). We write m∞\B•r (x∗) for the closure of
m∞\B•r (x∗).

THEOREM 8. With N[r]
0 -probability one, the intrinsic distance on the interior of B•r (x∗)

has a continuous extension to B•r (x∗), which is a metric on B•r (x∗), and similarly the intrin-
sic distance on m∞\B•r (x∗) has a continuous extension to m∞\B•r (x∗), which is a metric
on this space. Consider both B•r (x∗) and m∞\B•r (x∗) as metric spaces for these (extended)
intrinsic metrics. The metric space B•r (x∗) equipped with the restriction of the volume mea-
sure on m∞, with the distinguished point x∗ and with the distinguished boundary ∂B•r (x∗)

is a random element of M•b and the same holds for the metric space m∞\B•r (x∗) equipped
with the restriction of the volume measure, with the distinguished point x0 and with the dis-
tinguished boundary ∂B•r (x∗). Then, for any nonnegative measurable functions F and G
defined on M•b, for every z > 0, we have

N[r]
0

(
F (B•r (x∗))G

(
m∞\B•r (x∗)

) ∣∣∣ZW∗+r = z
)

= E[F (Hr,z)]E[G(D•z)],

where Hr,z stands for the standard hull of radius r and perimeter z, and D•z denotes a free
pointed Brownian disk of perimeter z.

Remarks. (i) The theorem implies in particular that B•r (x∗) and m∞\B•r (x∗) are indepen-
dent under N[r]

0 conditionally on ZW∗+r . If now we take r′ > r, it remains true that B•r (x∗)

and m∞\B•r (x∗) are independent under N[r′]
0 conditionally on ZW∗+r . The point is that, if

one already knows that D(x∗, x0) > r, the event D(x∗, x0) > r′ occurs if and only if the
distance from the distinguished point of m∞\B•r (x∗) to the boundary is greater than r′ − r,
which only depends on m∞\B•r (x∗).

(ii) The free pointed Brownian disk D•z in the theorem is also viewed as a random variable
with values in M•b (the “boundary” is of course the usual boundary ∂D•z , see e.g. [6]).

PROOF. This is very similar to the proof of Theorems 29 and 31 of [22], which give the
analogous statements for the Brownian plane (then D•z is replaced by an infinite Brownian
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disk with perimeter z). For this reason, we only outline certain arguments, especially in the
final part of the proof, and we refer to [22] for more details. Throughout the proof, we ar-
gue under the measure N[r]

0 (dω). We consider the truncation trW∗+r(ω) and the excursions
(ωj)j∈J below level W∗ + r as defined in Section 2.2. According to Proposition 12 of [21],
we know that, conditionally on ZW∗+r = z,

∑
j∈J δωj is independent of trW∗+r(ω) and dis-

tributed as a Poisson point measure with intensity zN0 conditioned to have a minimum equal
to −r. We need in fact a slightly more precise result involving also the exit local time at level
W∗+ r, which is denoted by (LW∗+rs )s≥0. Notice that this exit local time is easily defined by
using the spine decomposition in Section 2.4, and that LW∗+rσ =ZW∗+r .

For every j ∈ J , let (αj , βj) be the time interval corresponding to the excursion ωj , and
let lj = LW∗+rαj = LW∗+rβj

. Then an application of the special Markov property in the form
given in the appendix of [20] (using again the spine decomposition in Section 2.4) shows
that, conditionally on ZW∗+r = z, the point measure

(20)
∑
j∈J

δ(lj ,ωj)

is independent of trW∗+r(ω) and has the same distribution as N + δ(U∗,ω∗) with the notation
of Section 3.1. According to Section 3.1, the hull Hr,z is constructed as a measurable function
of N + δ(U∗,ω∗). We will then verify that, if we perform the construction of Section 3.1 from
the point measure (20), we get a pointed compact metric space isometric toB•r (x∗) (equipped
with its intrinsic metric). We let (H?,D?) stand for the metric space obtained from the point
measure in (20) by the construction of Section 3.1 — notice that this construction makes
sense even with a random perimeter z. We also use the notation H? for the space constructed
from the point measure (20) in a way similar to H in Section 3.1, and Π? for the canonical
projection from H? onto H?. Note that D? = DH? in the notation of Section 3.1. We also
define D◦H? as in Section 3.1 replacing H by H?.

We first explain that the set H? can be identified to B•r (x∗). To this end, set

Fr := {p(ω)(s) : 0≤ s≤ σ, τW∗+r(Ws)≤ ζs},

∂Fr := {p(ω)(s) : 0≤ s≤ σ, τW∗+r(Ws) = ζs}.

As we already noticed, we have B•r (x∗) = Π(Fr) and ∂B•r (x∗) = Π(∂Fr). We define a map-
ping I from Fr onto H? by the following prescriptions. If p(ω)(s) ∈ Fr\∂Fr , then s be-
longs to (αj , βj) for some j ∈ J , and we take I(p(ω)(s)) = p(ωj)(s − αj) ∈ T(ωj) ⊂ H?.
On the other hand, if p(ω)(s) ∈ ∂Fr , we take I(p(ω)(s)) = LW∗+rs ∈ [0,ZW∗+r] = ∂H?.
The reader will easily check that I(a) is well-defined for every a ∈ Fr independently of
the choice of s such that p(ω)(s) = a. Moreover, we have D◦H?(I(a),I(b)) = D◦(a, b) for
every a, b ∈ Fr (we omit the details). The mapping a 7→ I(a) is not one-to-one (though its
restriction to Fr\∂Fr is one-to-one) but the latter property shows that Π(a) = Π(b) implies
Π?(I(a)) = Π?(I(b)). So one can define a mapping J from Π(Fr) = B•r (x∗) onto H? by
declaring that J (Π(a)) = Π?(I(a)) for every a ∈ Fr . This mapping J is one-to-one since
Π?(I(a)) = Π?(I(b)) is only possible if D◦H?(I(a),I(b)) = 0, which implies D◦(a, b) = 0
and Π(a) = Π(b). The mapping J provides the desired identification of B•r (x∗) with H?,
and we also observe that ∂B•r (x∗) is identified with ∂H?. From now one we make these
identifications, and we notice that we have D(x, y) ≤D?(x, y) for x, y ∈ B•r (x∗), by com-
paring formulas (10) and (16), using the equality D◦H?(I(a),I(b)) =D◦(a, b) for a, b ∈ Fr
(the point is that there are more choices for the intermediate points a1, . . . , ak−1 in (10) than
in (16)).

Then, we need to verify that the restriction of D? to the interior of B•r (x∗) coincides
with the intrinsic distance, which we denote by Dintr. The bound D? ≤ Dintr is easy. If
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(γ(t))0≤t≤1 is a path connecting two points x and y of the interior of B•r (x∗) that stays in
this interior, the length of γ is bounded below by

∑n
k=1D(γ(tk−1), γ(tk)), where 0 = t0 <

t1 < · · · < tn = 1 is a subdivision of [0,1]. For every k ∈ {0, . . . , n}, let ak ∈ T(ω) be such
that Π(ak) = γ(tk). Then,

(21) D(γ(tk−1), γ(tk)) = inf
c0=ak−1,c1,...,cp=ak
c1,...,cp−1∈T(ω)

p∑
j=1

D◦(cj−1, cj)

but if the mesh of the subdivision is sufficiently small (so that all D(γ(tk−1), γ(tk)) are
small) we can assume that the infimum of the previous display is attained by considering
only points cj such that Π(cj) ∈B•r (x∗) (otherwise the sum in the right-hand side of (21) is
bounded below by the D-distance between the range of γ and ∂B•r (∗)). For such a choice of
the cj’s, we have D◦(cj−1, cj) =D◦H?(I(cj−1),I(cj)). It follows that D(γ(tk−1), γ(tk))≥
D?(γ(tk−1), γ(tk)), and finally that the length of γ is bounded below by D?(x, y) as desired.

The reverse bound Dintr ≤D? is slightly more delicate, and we only sketch the argument.
The difficulty comes from the following observation. In formula (16) giving D? in terms of
D◦H? , even if a and b do not belong to the boundary ∂H?, we need a priori to consider points
a1, . . . , ak−1 ∈H? that may belong to this boundary. However, we leave it as an exercise
for the reader to check that the infimum remains the same even if we impose that all points
a1, . . . , ak−1 do not lie on ∂H?. In that case, D◦H?(ai−1, ai) can be interpreted as the length
of a path from Π?(ai−1) to Π?(ai) made of the concatenation of two simple geodesics started
respectively from Π?(ai−1) and from Π?(ai), see e.g. the end of [22, Section 4.1] for a very
similar argument. In the identification of H? with B•r (x∗), these simple geodesics remain
geodesics for the distance D and stay in the interior of B•r (x∗). Summarizing, we obtain that
D?(x, y) is obtained as an infimum of quantities that are lengths of paths connecting x to y
and staying in the interior of B•r (x∗). This gives the desired bound Dintr ≤D?.

Once we know that Dintr = D? in the interior of B•r (x∗), the fact that Dintr has a con-
tinuous extension to the boundary is easy. Suppose that (xn)n∈N and (yn)n∈N are two se-
quences in the interior of B•r (x∗) that converge to x and y respectively (for the metric D).
We have to verify that Dintr(xn, yn) has a limit as n→∞. We observe that the convergence
of the sequence (xn)n∈N for the metric D also implies that D?(xn, x) −→ 0 as n→∞.
Indeed, by compactness, we can find a subsequence (xnk)k∈N and x′ ∈ B•r (x∗) such that
D?(xnk , x

′) −→ 0. But since D ≤ D? on B•r (x∗), this readily implies that x′ = x and we
get that D?(xn, x)−→ 0 as n→∞. We have similarly D?(yn, y)−→ 0 as n→∞, and we
conclude that Dintr(xn, yn) =D?(xn, yn) converges to D?(x, y).

At this stage we have proved that the intrinsic distance on the interior of B•r (x∗) has
a continuous extension to B•r (x∗), and that, conditionally on ZW∗+r = z, the resulting
random (pointed) metric space B•r (x∗) has the same distribution as Hr,z and is indepen-
dent of trW∗+r(ω). To complete the proof, we need to verify that that the intrinsic metric
on m∞\B•r (x∗) has a continuous extension to m∞\B•r (x∗) and that the (two-boundary
measure) metric space m∞\B•r (x∗) is a function of trW∗+r(ω), which, conditionally on
ZW∗+r = z, is distributed as Dz . The proof of the first assertion proceeds by minor modifi-
cations of the proofs of [21, Theorem 28] or of [22, Theorem 29], and we omit the details.
As for the second assertion, we rely on [21, Proposition 12], which gives the conditional dis-
tribution of trW∗+r(W ) given ZW∗+r = z: For every nonnegative measurable function F on
S0,

(22) N[r]
0

(
F (trW∗+r(ω))

∣∣∣ZW∗+r = z
)

= z−2 N∗,z0

(∫ σ

0
dsF (ω[s])

)
,
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where we recall that ω[s] stands for ω re-rooted at s, and N∗,z0 is the law of a positive Brownian
snake excursion with boundary size z, as defined in [3]. Write Ñ∗,z0 for the probability mea-
sure on S0 such that Ñ∗,z0 (F ) is the right-hand side of (22). From the beginning of Section 4.3
in [22], the free pointed Brownian disk Dz can be constructed as a measurable function of a
random snake trajectory distributed according to Ñ∗,z0 . We leave it to the reader to check that
the same measurable function applied to trW∗+r(ω) yields the space m∞\B•r (x∗) equipped
with its extended intrinsic metric — here again arguments are very similar to the proof of
[22, Theorem 29]. It thus follows from (22) that m∞\B•r (x∗) under N[r]

0 (· |ZW∗+r = z) has
the distribution of Dz . This completes the proof.

We will need a “two-point version” of Theorem 8, which we now state as a corollary. It is
convenient to write

Zx∗(x0)
r =ZW∗+r

for the boundary size of the hull B•r (x∗), which makes sense when D(x∗, x0)> r or equiv-
alently W∗ < −r. By interchanging the roles of x∗ and x0 and relying on the symmetry
properties of the Brownian sphere (cf. (12)), we can also define on the same event the quan-
tity Zx0(x∗)

r now corresponding to the boundary size of the hull B•(x∗)r (x0) — one may use
the analog of the approximation formula (19).

On the event where D(x∗, x0)> 2r, the hulls B•(x0)
r (x∗) and B•(x∗)r (x0) are disjoint, and

we set

Cx∗,x0
r := m∞\

(
B•(x0)
r (x∗)∪B•(x∗)r (x0)

)
.

In the next corollary, we view both B•(x0)
r (x∗) and B•(x∗)r (x0) equipped with their (ex-

tended) intrinsic metrics as random variables with values in M•b as stated in Theorem 8 (the
fact that this is also legitimate for B•(x∗)r (x0) is a consequence of (12)). We use the notation
Θr,z for the distribution of the standard hull Hr,z of Section 3.1, so that Θr,z is a probability
measure on the space M•b.

COROLLARY 9. A.e. under N0(· ∩ {D(x∗, x0)> 2r}), the intrinsic metric on Cx∗,x0
r has

a continuous extension to its closure Cx∗,x0
r , which is a metric on this space. We equip this

metric space with the restriction of the volume measure of m∞ and with the boundaries
∂B
•(x0)
r (x∗) and ∂B•(x∗)r (x0), so that we view Cx∗,x0

r as a random variable with values in
Mbb. Then, if F1 and F2 are two nonnegative measurable functions on M•b, and G is a
nonnegative measurable function on Mbb, we have

N[2r]
0

(
F1(B•(x0)

r (x∗))F2(B•(x∗)r (x0))G
(
Cx∗,x0
r

))
= N[2r]

0

(
Θ
r,Zx∗(x0)

r
(F1) Θ

r,Zx0(x∗)
r

(F2)G
(
Cx∗,x0
r

))
.

PROOF. Write Dintr,C for the intrinsic distance on Cx∗,x0
r . We need to verify that, if

(xn)n∈N and (yn)n∈N are two sequences in Cx∗,x0
r that converge respectively to x and y

belonging to Cx∗,x0
r , then the sequence Dintr,C(xn, yn) converges. To this end, it suffices to

prove that Dintr,C(xn, xp) converges to 0 as n,p→∞ (and similarly for Dintr,C(yn, yp)).
If x ∈ Cx∗,x0

r this is trivial, so we can suppose that x ∈ ∂B•(x0)
r (x∗) — the case x ∈

∂B
•(x∗)
r (x0) is treated in a symmetric manner. However, writing Dintr,x∗ for the intrin-

sic distance on m∞\B•(x0)
r (x∗), and recalling that this distance is extended continuously
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to the closure of m∞\B•(x0)
r (x∗), we already know from Theorem 8 that Dintr,x∗(xn, xp)

converges to 0 as n,p→∞. Then the desired result follows from the fact that we have
Dintr,C(xn, xp) =Dintr,x∗(xn, xp) as soon as n,p are large enough. Indeed, for any ε > 0, if
both Dintr,x∗(xn, x) and Dintr,x∗(xp, x) are smaller than ε, we have

D(xn,B
∗(x∗)(x0)) +D(xp,B

∗(x∗)(x0))> 2 min
u∈B•(x0)

r (x∗),v∈B•(x∗)r (x0)
D(u, v)− 2ε,

and therefore, taking ε small enough, we see that, when n and p are sufficiently large, the
length of a path from xn to xp that hits B•(x∗)r (x0) is bounded below by a positive quantity.
Since Dintr,x∗(xn, xp)≤Dintr,x∗(xn, x) +Dintr,x∗(xp, x), which tends to 0 as n,p→∞, it
follows that the infimum that gives Dintr,x∗(xn, xp) must be attained for paths that do not
hit B•(x∗)r (x0), and thus Dintr,C(xn, xp) =Dintr,x∗(xn, xp) when n and p are large enough.
So Dintr,C can be extended by continuity to Cx∗,x0

r , and a similar argument shows that
Dintr,C(x, y)> 0 if x and y are distinct points of ∂B•(x0)

r (x∗) (resp., of ∂B•(x∗)r (x0)) since
otherwise this would imply Dintr,x∗(x, y) = 0.

Let us turn to the second assertion of the corollary. It follows from Theorem 8, that, for
functions F and G as in this statement,

N[r]
0

(
F (B•r (x∗))G

(
m∞\B•r (x∗)

))
= N[r]

0

(
Θ
r,Zx∗(x0)

r
(F )G

(
m∞\B•r (x∗)

))
Up to replacing G

(
m∞\B•r (x∗)

)
by 1{D(x0,∂B•r (x∗))>r}G

(
m∞\B•r (x∗)

)
, we see that the

preceding display remains valid if N[r]
0 is replaced by N[2r]

0 . Next, under the assumptions of
the corollary, the quantity

F2(B•(x∗)r (x0))G
(
Cx∗,x0
r

)
is equal N[2r]

0 a.e. to a measurable function of m∞\B•r (x∗), and so we get from the preceding
considerations that

N[2r]
0

(
F1(B•(x0)

r (x∗))F2(B•(x∗)r (x0))G
(
Cx∗,x0
r

)
)
)

= N[2r]
0

(
Θ
r,Zx∗(x0)

r
(F1)F2(B•(x∗)r (x0))G

(
Cx∗,x0
r

))
.

At this stage, we use (12) to interchange the roles of x∗ and x0. It follows that the preceding
quantity is equal to

N[2r]
0

(
Θ
r,Zx0(x∗)

r
(F1)F2(B•(x0)

r (x∗))G
(
Cx0,x∗
r

))
,

which, by the same application of Theorem 8, is also equal to

N[2r]
0

(
Θ
r,Zx0(x∗)

r
(F1) Θ

r,Zx∗(x0)
r

(F2)G
(
Cx0,x∗
r

)
)
)
.

Finally, by interchanging once again the roles of x0 and x∗ in the last display, we obtain the
desired result.

4. The first-moment estimate.

4.1. Slices. In this section, we provide a brief description of the random compact metric
spaces called slices, which appear as scaling limits of the planar maps with geodesic bound-
aries considered in [6, 18] (notice that [27] uses a slightly different definition of slices). We
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fix h > 0 and argue under N0(dω |W∗ = −h). Under this probability measure, the Brow-
nian sphere m∞(ω) is conditioned on the event that the distance between the two distin-
guished points is equal to h. According to [17], the unique geodesic from x0 to x∗ is the path
(γ(r))0≤r≤h defined by

(23) γ(r) = Π ◦ p(ω)(inf{s ∈ [0, σ] : Ŵs =−r}) = Π ◦ p(ω)(sup{s ∈ [0, σ] : Ŵs =−r}),

for every r ∈ [0, h].
We will now define another quotient space of T(ω) (later called a slice), which roughly

speaking corresponds to cutting the Brownian sphere m∞(ω) along the geodesic from x0 to
x∗ (see the end of Section 3.2 in [18] for more details about this interpretation). We start by
setting, for every s, t ∈ [0, σ],

D̃◦(s, t) := Ŵs + Ŵt − 2 min
s∧t≤r≤s∨t

Ŵr,

and then, for every a, b ∈ T(ω),

(24) D̃◦(a, b) := min{D̃◦(s, t) : s, t ∈ [0, σ], p(ω)(s) = a, p(ω)(t) = b}.

We finally let D̃(a, b) be the maximal pseudo-metric on T(ω) that is bounded above by
D̃◦(a, b). We define the slice S(ω) as the quotient space T(ω)/{D̃ = 0}, which is equipped
with the metric induced by D̃. We write Π̃ for the canonical projection from T(ω) onto S(ω).
We may view S(ω) as a 2-pointed measure metric space, with the two distinguished points
x̃∗ := Π̃(a∗) and x̃0 := Π̃(ρ(ω)) and the volume measure which is the pushforward of the
volume measure on T(ω).

It is immediate to verify that D̃(a, b) ≥ D(a, b), and therefore D̃(a, b) = 0 implies that
D(a, b) = 0. Conversely, suppose that D(a, b) = 0 and a 6= b. We know that D◦(a, b) = 0,
and thus (up to interchanging a and b) we can assume that

Λa = Λb = min
c∈[a,b]

Λc.

Pick s, t ∈ [0, σ] such that p(ω)(s) = a, p(ω)(t) = b, and [s, t] is as small as possible, where
we use the convention [s, t] = [s,σ]∪ [0, t] if s > t. Then the equalities of the last display are
equivalent to

Ŵs = Ŵt = min
r∈[s,t]

Ŵr.

If s ≤ t, this implies D̃◦(s, t) = 0, and thus D̃(a, b) = 0. On the other hand, if s > t, we
obtain that necessarily

Ŵs = Ŵt, Ŵs = min
s≤r≤σ

Ŵr, Ŵt = min
0≤r≤t

Ŵr.

These equalities imply that Π(a) = Π(b) = γ(−Λa) belongs to the range of the geodesic
γ. On the other hand, if, for every r ∈ (0, h), we take a = p(ω)(sup{s ∈ [0, σ] : Ŵs = −r})
and b= p(ω)(inf{s ∈ [0, σ] : Ŵs =−r}) we have Π(a) = Π(b) = γ(r), but D̃(a, b)> 0 (see
Lemma 12 (ii) in [6]) and therefore Π̃(a) 6= Π̃(b).

The preceding considerations show that every point of m∞(ω) that does not belong to the
geodesic γ corresponds to a single point of S(ω), but every point of the geodesic γ (other than
x0 and x∗) corresponds to two points of S(ω). More precisely, if we set for every r ∈ [0, h],

γ′(r) := Π̃◦p(ω)(inf{s ∈ [0, σ] : Ŵs =−r}), γ′′(r) := Π̃◦p(ω)(sup{s ∈ [0, σ] : Ŵs =−r}),
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then γ′ and γ′′ are two geodesics in S(ω) from x̃0 to x̃∗ that are disjoint except at their initial
and terminal times. We call γ′ and γ′′ the left and right boundary geodesics of S(ω).

We will use the fact that, for every κ ∈ (0, h/2), one has a.s.

(25) inf
s,t∈[κ,h−κ]

D̃(γ′(s), γ′′(t))> 0.

This is immediate since the function (s, t) 7→ D̃(γ′(s), γ′′(t)) is continuous and does not
vanish on [κ,1− κ]× [κ,1− κ].

Taking h = 1, (25) allows us to find a sequence (δk)k≥1 of positive reals such that the
probability (under N0(· |W∗ =−1)) of the event where

inf
s,t∈[1−2−k,1−2−k−4]

D̃(γ′(s), γ′′(t))> 2δk , for every k ≥ 1,

is at least 9/10. Without loss of generality, we may and will assume that δk < 2−k−5 for
every k ≥ 1. By scaling, we also obtain that, for every h ∈ [3/4,1], the probability under
N0(· |W∗ =−h) of the event where

inf
s,t∈[h(1−2−k),h(1−2−k−4)]

D̃(γ′(s), γ′′(t))> δk , for every k ≥ 1,

is at least 9/10. Finally, fix ε ∈ (0,1/4), and observe that, if h ∈ [1− ε,1] and if the integer
k ≥ 1 is such that 2−k−4 > ε, we have [1− 2−k,1− 2−k−3]⊂ [h(1− 2−k), h(1− 2−k−4)].
We arrive at the following lemma.

LEMMA 10. Let ε ∈ (0,1/4). Then, for every h ∈ [1 − ε,1], the probability under
N0(· |W∗ =−h) of the event where

(26) inf
s,t∈[1−2−k,1−2−k−3]

D̃(γ′(s), γ′′(t))> δk , for every k ≥ 1 such that 2−k−4 > ε,

is at least 9/10.

4.2. Slices in hulls. We consider the standard hull H of radius r = 1 and perimeter z as
constructed in Section 3.1 from (U∗, ω∗) and the point measure

∑
i∈I δ(ti,ωi), and we keep

the notation of this section. To avoid confusion, we write [a, b]H for the intervals of H as
defined in Section 3.1. We fix m ∈ {1,2,3} and ε ∈ (0,1/4), and we will now condition on
the event

(27) Emε := {#{i ∈ I :W∗(ωi)<−1 + ε} ≥m}.

Under this conditioning, there are (at least) m indices i ∈ I such that W∗(ωi)≤−1 + ε, and
we write i1, . . . , im for these indices ranked in such a way that ti1 < · · · < tim (if there are
more than m indices with the desired property, we keep those corresponding to the smaller
values of ti). We then set

Rj := ΠH(T(ωij )) , for 1≤ j ≤m, R∗ = ΠH(T(ω∗)).

Let r1 ∈ [1−ε,1]. We note that, conditionally onW∗(ωi1) =−r1, ωi1 is distributed according
according to N0(· |W∗ = −r1), and so we can consider the slice S(ωi1) constructed in the
previous section (with h= r1).

We observe that R1 and S(ωi1) are canonically identified as sets. Indeed both R1 and
S(ωi1) are quotient spaces of T(ωi1 ), and the point is to verify that, for a, b ∈ T(ωi1 ), we have
D◦H(a, b) = 0 if and only if D̃◦(a, b) = 0 (we abuse notation by still writing D̃◦(a, b) for
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the function defined in (24) when ω = ωi1 ). Suppose first that D̃◦(a, b) = 0. Then there exist
s, t ∈ [0, σ(ωi1)] such that p(ωi1 )(s) = a, p(ωi1 )(t) = b, and

Ŵs(ωi1) = Ŵt(ωi1) = min
s∧t≤u≤s∨t

Ŵu(ωi1).

Suppose that s ≤ t for definiteness. Then, writing [u1, u1 + σ(ωi1)] for the time interval
corresponding to T(ωi1 ) in the time scale of the cyclic exploration E of H, we have [a, b]H ⊂
{Eu1+u : s≤ u≤ t}, so that we get

(28) Λa = Λb = min
c∈[a,b]H

Λc

and therefore D◦H(a, b) = 0. Conversely, if D◦H(a, b) = 0, we can assume without loss of
generality that (28) holds, and this is only possible if [a, b]H ⊂ T(ωi1 ) (otherwise we would
have b∗ ∈ [a, b]H). But then, using the definition of intervals in H, we have

min
c∈[a,b]H

Λc = max
{

min
u∈[s,t]

Ŵu : s≤ t≤ σ(ωi1), p(ωi1 )(s) = a, p(ωi1 )(t) = b
}
,

and (28) implies that D̃◦(a, b) = 0. Similarly, Rj and S(ωij ) are canonically identified as
sets, for every 1 ≤ j ≤ m (note however that S(ω∗), which also makes sense since ω∗ is
distributed according to N0(· |W∗ =−1), is not identified to R∗).

We also observe that we have, for every a, b ∈ T(ωi1 ),

(29) D̃(a, b)≥DH(a, b).

Indeed, it is immediately seen that D̃(a, b) is obtained by considering the same infimum as
in (16), with the additional restriction that we require a1, . . . , ak−1 ∈ T(ωi1 ).

Since both metric spaces (R1,DH) and (S(ωi1), D̃) are compact, the bound (29) implies
that the identity mapping from S(ωi1) (equipped with D̃) onto R1 (equipped with DH) is a
homeomorphism. See Fig. 1 below for a schematic representation of R1,R2,R∗ in the case
where E2

ε holds.
Consider then the two geodesics γ′ and γ′′ from x̃0 to x̃∗ in S(ωi1), as defined in the

previous section. Let Γ′ := {γ′(t) : 0≤ t≤−W∗(ωi1)} denote the range of γ′, and similarly
let Γ′′ denote the range of γ′′. Via the identification of R1 and S(ωi1), we may and will view
Γ′ and Γ′′ as subsets of R1. Then, it is easily checked that Γ′∪Γ′′ is the topological boundary
of R1 in H (note that a point a of T(ωi1 ) different from the root is identified to a point of
H\T(ωi1 ) if and only if ΠH(a) belongs to Γ′ ∪ Γ′′). Furthermore, the restriction of DH to Γ′

(resp. to Γ′′) clearly coincides with the restriction of D̃. We write Int(R1) = R1\(Γ′ ∪ Γ′′)
for the interior of R1. We call Γ′ and Γ′′ the left and right boundaries of the slice R1 and
write Γ′ = ∂`R1 and Γ′′ = ∂rR1. We use a similar terminology for the slices Rj , 2≤ j ≤m.

LEMMA 11. Let (φ(t))0≤t≤1 be a continuous path in R1 satisfying the condition:

(H) There exist two reals u and v such that 0 ≤ u ≤ v ≤ 1 such that φ(t) ∈ Γ′ for every
t ∈ [0, u], φ(t) ∈ Γ′′ for every t ∈ [v,1], and φ(t) ∈ Int(R1) for every t ∈ (u, v).

Then, the length of φ with respect to the distance DH coincides with its length with respect
to the distance D̃.

PROOF. Since the restriction of DH to Γ′ or to Γ′′ coincides with the restriction of D̃, we
may assume that condition (H) holds with u = 0 and v = 1. By a continuity argument, we
may even replace (H) by
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(H’) φ(t) ∈ Int(R1) for every t ∈ [0,1].

Then, we can find δ > 0 such that DH(φ(t), (Int(R1))c) ≥ δ for every t ∈ [0,1]. The con-
clusion of the lemma follows from the fact that we have D̃(φ(t), φ(t′)) = DH(φ(t), φ(t′))
as soon as t, t′ ∈ [0,1] are such that DH(φ(t), φ(t′))≤ δ/2. Indeed, in the definition (16) of
DH(φ(t), φ(t′)), we may restrict the infimum of the quantities

∑
D◦H(ai−1, ai) to the case

where a1, . . . , ak−1 all belong to Int(R1), because if for instance aj /∈ Int(R1), we have
j∑
i=1

D◦H(ai−1, ai)≥DH(φ(t), aj)≥ δ.

If a1, . . . , ak−1 all belong to Int(R1), we have
∑
D◦H(ai−1, ai) =

∑
D̃◦(ai−1, ai), and thus

we obtain that D̃(φ(t), φ(t′))≤DH(φ(t), φ(t′)). The reverse bound follows from (29).

We can now combine Lemma 11 with the discussion of the end of Section 4.1. For every
0≤ u≤ v ≤−W∗(ωi1), we use the notation

Γ′[u,v] = {γ′(t) : u≤ t≤ v},

and we similarly define Γ′′[u,v]. We let the sequence (δk)k≥1 be as in Lemma 10, and we recall
the definition (27) of the event Emε .

LEMMA 12. Let ε ∈ (0,1/4). The following property holds with probability at least 9/10
under P(· |Emε ). For every integer k ≥ 1 such that 2−k−4 > ε, for every continuous path
(φ(t))0≤t≤1 in R1 such that φ(0) ∈ Γ′[1−2−k,1−2−k−3] and φ(1) ∈ Γ′′[1−2−k,1−2−k−3], the length
(with respect to DH) of φ is at least δk.

PROOF. First note that we may restrict our attention to paths φ satisfying condition (H)
of Lemma 11: Indeed, set u= sup{t ∈ [0,1] : φ(t) ∈ Γ′} and v = inf{t ∈ [u,1] : φ(t) ∈ Γ′′},
and observe that replacing φ by a portion of the geodesic γ′ (resp. of the geodesic γ′′) on the
interval [0, u] (resp. on [v,1]) will only decrease its length. By Lemma 11, if φ satisfies (H),
its length with respect to DH is the same as its length with respect to D̃, provided we view φ

as a path in S(ωi1). In particular, this length is bounded below by D̃(φ(0), φ(1)). The desired
result now follows from Lemma 10.

We also need an analog of Lemma 12 when R1 is replaced by R∗. The situation in that
case is a bit different since S(ω∗) is no longer identified bijectively with R∗. Instead, R∗
appears as a quotient space of S(ω∗), where, for u ∈ (0,1], the points γ′(u) and γ′′(u) of the
left and right boundary geodesics in S(ω∗) are identified in R∗ if (and only if) u≥ µ0, where

(30) µ0 := sup{−W∗(ωi) : i ∈ I} ≥ 1− ε.
We can nonetheless define the range Γ′ (resp. Γ′′) of the left boundary geodesic (resp. of
the right boundary geodesic) as a closed subset of R∗, and make sense of the sets Γ′[u,v]

and Γ′′[u,v] for 0 ≤ u ≤ v ≤ 1. We have Γ′[u,v] ∩ Γ′′[u,v] = ∅ if v < µ0. The reader will easily
check that an analog of Lemma 11 remains valid when R1 is replaced by R∗, provided
that we add the constraint DH(φ(t), b∗) > ε for every t ∈ [0,1] in condition (H). Then, the
proof of Lemma 12 when R1 is replaced by R∗ goes through almost without change: recall
that we have assumed δk < 2−k−5, and therefore a path (φ(t))0≤t≤1 in R∗ such that φ(0) ∈
Γ′[1−2−k,1−2−k−3] will not visit the set {x ∈R∗ :D(x,x∗)≤ ε} if its length is bounded by δk.
The preceding discussion is summarized in the following statement.

LEMMA 13. The statement of Lemma 12 remains valid if R1 is replaced by R∗.
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4.3. The first-moment estimate. We again fix m ∈ {1,2,3} (m + 1 will correspond to
what we called m in the introduction). For x, y ∈m∞, we recall our notation B•(y)

r (x) for
the hull of radius r centered at x relative to y, which makes sense if D(x, y)> r.

For x, y ∈m∞ and ε ∈ (0, r), we let F (m)
ε,r (x, y) be equal to 1 ifD(x, y)> r and there exist

m+ 1 geodesic paths (ξ0(t))0≤t≤r, (ξ1(t))0≤t≤r, . . . , (ξm(t))0≤t≤r with ξi(0) ∈ ∂B•(y)
r (x)

and ξi(r) = x, for every i ∈ {0, . . . ,m}, such that the sets {ξi(t) : 0 ≤ t ≤ r − ε}, for
i ∈ {0, . . . ,m}, are disjoint. If these conditions do not hold, we take F (m)

ε,r (x, y) = 0. By
convention, if ε≥ r, we take F (m)

ε,r (x, y) = 1 if D(x, y)> r and F (m)
ε,r (x, y) = 0 otherwise.

In the case r = 1, we also define F̃ (m)
ε,1 (x, y) exactly as F (m)

ε,1 (x, y), except that we require
the additional property that the geodesics ξ0, ξ1, . . . , ξm satisfy

(31) D(ξi(t), ξj(t))≥ δk
for every t ∈ [1 − 2−k−1,1 − 2−k−2], for every k ≥ 1 such that 2−k−4 > ε, and for every
0≤ i < j ≤m. Here the sequence (δk)k≥1 is fixed as in Lemma 12.

We let Ñ0 denote the measure with density 1
σ with respect to N0.

PROPOSITION 14. There exists a constant c > 0 such that, for every ε ∈ (0,1/4), we
have

Ñ0

(∫
Vol(dx)1{D(x,x∗)<2} F̃

(m)
ε,1 (x,x∗)

)
≥ c εm.

PROOF. By the symmetry properties of the Brownian sphere (Section 2.6), we have

Ñ0

(∫
Vol(dx) 1{D(x,x∗)<2} F̃

(m)
ε,1 (x,x∗)

)
= N0

(
1{D(x∗,x0)<2} F̃

(m)
ε,1 (x∗, x0)

)
=

3

2
N[1]

0

(
1{D(x∗,x0)<2} F̃

(m)
ε,1 (x∗, x0)

)
.

We then use Theorem 8, noting that the indicator function 1{D(x∗,x0)<2} is a function of

m∞\B•(x0)
1 (x∗) and that F̃ (m)

ε,1 (x∗, x0) can be written as a function of the hull B•(x0)
1 (x∗):

for this last fact, observe that geodesics from the boundary of B•(x0)
1 (x∗) to the center x∗ are

the same for D and for the intrinsic distance of the hull, and that in condition (31) we can
also replace D by the intrinsic distance, since if D(ξi(t), ξj(t)) is smaller than the intrinsic
distance between ξi(t) and ξj(t), this means that a geodesic (for D) from ξi(t) to ξj(t) has
to intersect the boundary of the hull, and thus D(ξi(t), ξj(t)) is at least 1/2. It follows from
Theorem 8 and these observations that

N[1]
0

(
1{D(x∗,x0)<2} F̃

(m)
ε,1 (x∗, x0)

)
= N[1]

0

(
θ(ZW∗+1)N[1]

0 (F̃
(m)
ε,1 (x∗, x0) |ZW∗+1)),

where θ(z) is the probability for a free pointed Brownian disk of perimeter z that the distance
from the distinguished point to the boundary is smaller than 1. Since we also know that, under
N[1]

0 (· |ZW∗+1 = z), B•(x0)
1 (x∗) is distributed as a standard hull of radius 1 and perimeter z

(as defined in Section 3.1), the proof of Proposition 14 reduces to establishing the following
claim.

Claim. Let H be a standard hull of radius 1 and perimeter z as in Section 3.1, and, for
every ε ∈ (0,1/4), let Amε be the event where there exist m + 1 geodesics (η0(t))0≤t≤1,
(η1(t))0≤t≤1, . . . , (ηm(t))0≤t≤1 from the boundary ∂H to the center of the hull, such that the
sets {ηj(t) : 0≤ t≤ 1− ε} are disjoint, and moreover

(32) DH(ηi(t), ηj(t))≥ δk
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for every t ∈ [1 − 2−k−1,1 − 2−k−2], for every k ≥ 1 such that 2−k−4 > ε, and for every
0≤ i < j ≤m. Then there exists a constant c > 0 (depending on z) such that P(Amε )≥ c εm.

In the remaining part of the proof, we establish the preceding claim. We consider the
event Emε defined in (27). Then P(Emε ) is just the probability that a Poisson variable with
parameter 3z

2 ((1− ε)−2 − 1) is greater than or equal to m, and thus there exists a constant
c′ such that P(Emε )≥ c′εm. To get the desired lower bound, it remains to verify that we have
also P(Amε |Emε )≥ c′′ with another constant c′′ > 0. To this end, we rely on Lemma 12 and
Lemma 13. For every 1≤ j ≤m (resp. for j = 0), we write Bm,jε for the intersection of Emε
with the event where the property of Lemma 12 holds when R1 is replaced by Rj (resp. by
R∗). We then know that

P((Bm,jε )c |Emε )≤ 1

10
, for every 0≤ j ≤m,

and, if

Bmε =

m⋂
j=0

Bm,jε ,

it follows that P(Bmε |Emε )≥ 1/2. So to get our claim we only need to verify that Bmε ⊂Amε .
From now on, we argue on the event Emε , and we let i1, . . . , im be the indices such that

W∗(ωi)<−1 + ε, as defined at the beginning of Section 4.2. Then ti1 , . . . , tim are elements
of [0, z]⊂H, and, recalling the definition of the exploration process (Es)s∈[0,Σ], we set

s′j:= inf{s ∈ [0,Σ] : Es = tij} , s′′j:= sup{s ∈ [0,Σ] : Es = tij}, for 1≤ j ≤m,

s′0:= inf{s ∈ [0,Σ] : Es = U∗} , s′′0:= sup{s ∈ [0,Σ] : Es = U∗}.

We can then consider the simple geodesics (γs′j (t))0≤t≤1 and (γs′′j (t))0≤t≤1, for every 0 ≤
j ≤m, as defined in Section 3.1. We note that γs′j (0) = γs′′j (0) and γs′j (r) 6= γs′′j (r) if 0 <
r < µj , where µ0 was defined in (30) and µj :=−W∗(ωj) ∈ (1− ε,1) if 1≤ j ≤m. On the
other hand, γs′j (r) = γs′′j (r) if µj ≤ r ≤ 1. The set

{γs′j (r) : 0≤ r ≤ µj} ∪ {γs′′j (r) : 0≤ r ≤ µj}

is the range of a simple cycle, and (the closure of) the connected component of the comple-
ment of this simple cycle that does not contain the point ΠH(0) of ∂H coincides with the slice
Rj = ΠH(T(ωij )) (resp. with R∗ = ΠH(T(ω∗)) when j = 0). More precisely, for 1≤ j ≤m,
the set {γs′j (r) : 0 ≤ r ≤ µj} is the left boundary of Rj , and the set {γs′′j (r) : 0 ≤ r ≤ µj}
is the right boundary of Rj . Similarly, we can interpret {γs′0(r) : 0 ≤ r ≤ µ0} as the left
boundary of R∗, and {γs′′0 (r) : 0≤ r ≤ µ0} as the right boundary of R∗. Since γs′j and γ′s′j
are geodesics to b∗, we have

DH(b∗, γs′j (r)) = 1− r =DH(b∗, γs′′j (r))

for every r ∈ [0,1].
To complete the proof, we verify that, if Bmε holds, then Amε also holds, and we can take

ηj = γs′j for 0 ≤ j ≤ m. We first observe that, thanks to the fact that W∗(ωij ) < −1 + ε
for 1 ≤ j ≤m, the sets {γs′j (t) : 0 ≤ t ≤ 1− ε}, 0 ≤ j ≤ 1− ε, are disjoint. Then, we use
the defining property of Bmε to get that, for every integer k ≥ 1 such that 2−k−4 > ε, the
length of any continuous path starting from {γs′j (t) : 1− 2−k ≤ t ≤ 1− 2−k−3}, ending in
{γs′′j (t) : 1− 2−k ≤ t≤ 1− 2−k−3} and staying in the slice Rj (in R∗ if j = 0) is bounded
below by δk. Let us explain why this implies that

(33) DH(γs′i(t), γs′j (t))≥ δk
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b∗R∗

R1

R2

∂`R1

∂rR1

∂rR2

∂`R2

∂H

FIG 1. A schematic representation of the standard hull H and the slices R∗, R1, R2 in the case when Emε holds
with m= 2. The two dashed cycles are the boundaries of the hulls of respective radii 1− 2−k and 1− 2−k−3

centered at b∗. The end of the proof of Proposition 14 relies on the fact that a continuous path starting on the left
boundary ∂`R1 and ending on ∂`R2 and staying in the annulus delimited by the two dashed cycles will have to
cross one of the two slices R1 and R2.

for every t ∈ [1 − 2−k−1,1 − 2−k−2], for every k ≥ 1 such that 2−k−4 > ε, and for every
0≤ i < j ≤m.

For simplicity we take i = 1 and j = 2 but the same argument works as well for any
choice of i and j. Fix k ≥ 1 such that 2−k−4 > ε and t0 ∈ [1− 2−k−1,1− 2−k−2]. Consider
a continuous path (φ(r))0≤r≤1 such that φ(0) = γs′1(t0) ∈ ∂`R1 and φ(1) = γs′2(t0) ∈ ∂`R2.
We need to show that the length of φ is bounded below by δk. We may and will assume that
DH(b∗, φ(r)) ∈ [2−k−3,2−k] for every r ∈ [0,1], because otherwise the length of φ will be
bounded below by 2−k−3 ≥ δk.

We then set

r0 := sup{r ∈ [0,1] : φ(r) ∈ ∂`R1} , r1 := inf{r ∈ [r0,1] : φ(r) ∈ ∂rR1 ∪ ∂rR2}.

We note that the set {r ∈ [0,1] : φ(r) ∈ ∂rR1 ∪ ∂rR2} is not empty, so that the definition
of r1 makes sense. Indeed, from the construction of H (or via a planarity argument), it is
easy to verify that a path (ψ(r))r∈[0,1] starting on ∂`R1 and ending on ∂`R2, such that
DH(b∗,ψ(r)) ≥ ε for every r ∈ [0,1], must hit ∂rR1 ∪ ∂rR2 before (or at the same time)
it hits ∂`R2 — see Fig. 1 for an illustration.

Then we consider two cases:

• Either φ(r1) ∈ ∂rR1, and then the restriction of φ to [r0, r1] stays in R1, and is a path
to which we can apply the definition of the event Bm,1ε . It follows that the length of this
restricted path is at least δk.

• Or φ(r1) ∈ ∂rR2, then we set

r2 := sup{r ∈ [r1,1] : φ(r) ∈ ∂rR2} , r3 := inf{r ∈ [r2,1] : φ(r) ∈ ∂`R2},

and the restriction of φ to [r2, r3] is a path that stays in R2 and to which we can apply
the definition of the event Bm,2ε . Again it follows that the length of this restricted path is
bounded below by δk.
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In both cases, we conclude that the length of φ is at least δk. Hence the lower bound (33)
holds (for i= 1 and j = 2). We have thus obtained that Bmε ⊂Amε , which completes the proof
of the proposition.

5. The key estimate. As previously in Corollary 9, it will be convenient to use the no-
tation Zx∗(x0)

r = ZW∗+r , for r > 0 such that W∗ <−r. It will also be useful to consider the
boundary size Zz(x∗)r of the hull B•(x∗)r (z), for every z ∈m∞ such that D(x∗, z)> r. To this
end, we can set

(34) Zz(x∗)r = lim inf
ε→0

ε−2Vol((B•(x∗)r (z))c ∩Br+ε(z)) ,

and we know from (19) and the symmetry properties of the Brownian sphere that the liminf
in the last display is indeed a limit for a.e. z (such that D(x∗, z) > r), with respect to the
volume measure on m∞. We can similarly consider the boundary size Zx∗(z)r of the hull
B
•(z)
r (x∗).
As in the previous section, the integer m ∈ {1,2,3} is fixed and we recall the definition

of F (m)
ε,r (x, y) and Ñ0 from the beginning of Section 4.3. Also recall that F (m)

ε,r (x, y) = 0 if
D(x, y)≤ r.

LEMMA 15. Let δ ∈ (0,1). There exists a constant C(δ) such that, for every ε ∈ (0,1/8)

and every integer k ≥ 0 such that 2−k > 2ε,

Ñ0

(∫ ∫
Vol(dx)Vol(dy)1{D(x,y)∈[2−k+2,2−k+3]}F

(m)
ε,1 (x,x∗)F

(m)
ε,1 (y,x∗)

)
(35)

≤C(δ) 2−(4−m)k+δk ε2m.

PROOF. To simply notation, we write Fε,r(x, y) instead of F (m)
ε,r (x, y) in the proof. Let

Aε,k denote the left-hand side of (35). We can write Aε,k in the form

Aε,k = N0

(
σ

∫ ∫
Vol(dx)

σ

Vol(dy)

σ
Γε,k(x∗, x, y)

)
,

with an appropriate function Γε,k. Thanks to (13), we have also

Aε,k = N0

(
σ

∫
Vol(dz)

σ
Γε,k(z,x∗, x0)

)
,

which leads to

Aε,k = N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
Vol(dz)Fε,1(x∗, z)Fε,1(x0, z)

)
.

We write Aε,k =A′ε,k +A′′ε,k, where A′ε,k is obtained from the right-hand side of the last dis-

play by restricting the integral with respect to Vol(dz) to the set (B
•(x0)
2−k (x∗)∪B•(x∗)2−k (x0))c.

First step. We start by estimating A′ε,k. Note that the property z /∈B•(x0)
2−k (x∗) ∪B•(x∗)2−k (x0)

means that z and x0 are in the same connected component of (B2−k(x∗))
c, and similarly

z and x∗ are in the same connected component of (B2−k(x0))c. Consequently, under the
condition z /∈B•(x0)

2−k (x∗)∪B•(x∗)2−k (x0), we have

(36) B
•(z)
2−k (x∗) =B

•(x0)
2−k (x∗) , B

•(z)
2−k (x0) =B

•(x∗)
2−k (x0).
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We next observe that

Fε,1(x∗, z)≤ Fε,2−k(x∗, z)× F2−k+4,1(x∗, z),

where we recall our convention for F2−k+4,1(x∗, z) when 2−k+4 ≥ 1. We have also
Fε,1(x0, z)≤ Fε,2−k(x0, z), so that A′ε,k is bounded above by

N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}

×
∫

(B
•(x0)

2−k
(x∗)∪B•(x∗)

2−k
(x0))c

Vol(dz)Fε,2−k(x∗, z)F2−k+4,1(x∗, z)Fε,2−k(x0, z)

)
.

Under the condition z /∈B•(x0)
2−k (x∗)∪B•(x∗)2−k (x0), (36) holds, which implies

1{D(x0,x∗)>2−k}Fε,2−k(x∗, z)≤ Fε,2−k(x∗, x0),

1{D(x0,x∗)>2−k}Fε,2−k(x0, z)≤ Fε,2−k(x0, x∗).

It follows that

A′ε,k ≤N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}Fε,2−k(x∗, x0)Fε,2−k(x0, x∗)(37)

×
∫

(B
•(x0)

2−k
(x∗)∪B•(x∗)

2−k
(x0))c

Vol(dz)F2−k+4,1(x∗, z)
)
.

We now want to apply Corollary 9 to the right-hand side. We observe that Fε,2−k(x∗, x0) is
a function of the hull B•(x0)

2−k (x∗), and Fε,2−k(x0, x∗) is the same function applied to the hull
B
•(x∗)
2−k (x0). On the other hand, the quantity

(38) 1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
(B
•(x0)

2−k
(x∗)∪B•(x∗)

2−k
(x0))c

Vol(dz)F2−k+4,1(x∗, z)

is a function of Cx∗,x0

2−k , with the notation of Corollary 9. Let us explain this in the case
where 2−k+4 < 1 (the case 2−k+4 ≥ 1 is easier and left to the reader). The indica-
tor function 1{D(x∗,x0)∈[2−k+2,2−k+3]} is the indicator function of the event where the (in-
trinsic) distance between the two boundaries of Cx∗,x0

2−k lies between 2−k+2 − 2−k+1 and
2−k+3 − 2−k+1. Furthermore, if D(x∗, x0) ∈ [2−k+2,2−k+3] and D(x∗, z) > 1, we have
(B
•(x0)
2−k (x∗)∪B•(x∗)2−k (x0))⊂B•(z)2−k+4(x∗). Let ∆1 stand for the first boundary of Cx∗,x0

2−k (that
is, ∆1 = ∂B

•(x0)
2−k (x∗)) and, using our notation Dintr,C for the (extended) intrinsic distance

on Cx∗,x0

2−k , define the hull of radius r centered at ∆1 relative to z as the complement of the
connected component of {x ∈ Cx∗,x0

2−k :Dintr,C(x,∆1)> r} that contains z (this makes sense
if Dintr,C(∆1, z) > r). It follows from the preceding considerations that the integral with
respect to Vol(dz) in (38) can be rewritten as∫

Cx∗,x0
2−k

Vol(dz)Gk(z),

where Gk(z) ∈ {0,1} and Gk(z) = 1 if and only if the (intrinsic) distance between z and ∆1

is greater than 1− 2−k, and if there are m+ 1 disjoint paths of (intrinsic) length 1− 2−k+4

between the boundary of the hull of radius 1 − 2−k centered at ∆1 relative to z and the
boundary of the same hull of radius 2−k+4 − 2−k.
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Thanks to the previous observations, we can apply Corollary 9 to the right-hand side of
(37), and we get that

A′ε,k ≤N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}Θ

2−k,Zx∗(x0)

2−k
(Hε) Θ

2−k,Zx0(x∗)
2−k

(Hε)

×
∫

(B
•(x0)

2−k
(x∗)∪B•(x∗)

2−k
(x0))c

Vol(dz)F2−k+4,1(x∗, z)

)
,(39)

where Hε (applied to a space belonging to M•b) denotes the event where there are m + 1
geodesic paths from the boundary to the distinguished point, that are disjoint up to the time
when there are at distance ε from the distinguished point. We note that, thanks to Proposition
7, we have

(40) Θ2−k,z(Hε)≤C (εz23k)m ∧ 1,

with a universal constant C . To simplify notation, we write ϕε,k(z) = Θ2−k,z(Hε).
Thanks to the symmetry properties of the Brownian sphere (13), we can interchange the

roles of z and x0 in (39), and we arrive at

A′ε,k ≤N0

(
F2−k+4,1(x∗, x0)

∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}(41)

×ϕε,k(Z
x∗(z)
2−k )ϕε,k(Z

z(x∗)
2−k )1{x0 /∈B•(z)

2−k
(x∗)∪B•(x∗)

2−k
(z)}

)
.

Under the condition x0 /∈ B•(z)2−k (x∗) ∪ B•(x∗)2−k (z), we have B•(x∗)2−k (z) = B
•(x0)
2−k (z) and

B
•(z)
2−k (x∗) =B

•(x0)
2−k (x∗). It follows in particular that Zx∗(z)2−k =Zx∗(x0)

2−k . Hence, the right-hand
side of (41) is equal to

N0

(
F2−k+4,1(x∗, x0)ϕε,k(Z

x∗(x0)
2−k )

∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}(42)

×ϕε,k(Z
z(x∗)
2−k )1{x0 /∈B•(z)

2−k
(x∗)∪B•(x∗)

2−k
(z)}

)
.

Let us assume that 2−k+4 < 1 and argue on the event where D(x∗, x0) > 1. We observe
that the quantity

ϕε,k(Z
x∗(x0)
2−k )

∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z

z(x∗)
2−k )1{x0 /∈B•(z)

2−k
(x∗)∪B•(x∗)

2−k
(z)}

is a function of B•(x0)
2−k+4(x∗). To this end, note that the condition D(x∗, z) ∈ [2−k+2,2−k+3]

implies that z ∈ B2−k+4(x∗), and also that B•(x0)
2−k (z) ⊂ B•(x0)

2−k+4(x∗) (if y ∈ B•(x0)
2−k (z), any

path from y to x0 has to intersect ∂B•(x0)
2−k (z), which is contained in B2−k+4(x∗), and

this exactly means that y ∈ B•(x0)
2−k+4(x∗)). Using (19), it follows that, under the conditions

x0 /∈B•(z)2−k (x∗) ∪B•(x∗)2−k (z) and D(x∗, z) ∈ [2−k+2,2−k+3], the quantity Zz(x∗)2−k = Zz(x0)
2−k is

determined by the hull B•(x0)
2−k+4(x∗), and clearly the same is true for Zx∗(x0)

2−k . In addition, the
condition x0 /∈B•(z)2−k (x∗) ∪B•(x∗)2−k (z) can also be expressed in terms of the hull B•(x0)

2−k+4(x∗)
since it is equivalent to saying that z is in the same connected component of B2−k(x∗)

c as
the boundary of this hull, and similarly if x∗ and z are interchanged.

On the other hand, F2−k+4,1(x∗, x0) is a function of m∞\B•(x0)
2−k+4(x∗) with the notation

of Theorem 8. This theorem, or more precisely the remark following the statement of the
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theorem, shows that B•(x0)
2−k+4(x∗) and m∞\B•(x0)

2−k+4(x∗) are conditionally independent given
Zx∗(x0)

2−k+4 under N[1]
0 . Recalling that F2−k+4,1(x∗, x0) can be nonzero only if D(x∗, x0)> 1, it

follows that the quantity (42) is equal to

3

2
N[1]

0

(
N[1]

0

(
F2−k+4,1(x∗, x0)

∣∣∣Zx∗(x0)
2−k+4

)
ϕε,k(Z

x∗(x0)
2−k )(43)

×
∫

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )1{x0 /∈B•(z)

2−k
(x∗)∪B•(x∗)

2−k
(z)}

)
.

We now need a lemma.

LEMMA 16. There exists a constant Cm such that, for every ε ∈ (0,1/2] and z > 0

N[1]
0

(
Fε,1(x∗, x0)

∣∣∣Zx∗(x0)
ε = z

)
≤Cm zm/2.

We postpone the proof of this lemma to Appendix A. Thanks to the lemma, the quantity
(43) can be bounded above by

(44) C ′mN
[1]
0

(
(Zx∗(x0)

2−k+4 )m/2ϕε,k(Z
x∗(x0)
2−k )

∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z

z(x∗)
2−k )

)
where C ′m is a constant.

We have assumed that 2−k+4 < 1, but if 2−k+4 ≥ 1, replacing F2−k+4,1(x∗, x0) by
1{D(x∗,x0)>1} immediately shows that (42) is also bounded by a quantity similar to (44)

without the term (Zx∗(x0)
2−k+4 )m/2. For simplicity, we assume until the end of the first step that

2−k+4 < 1, but clearly the bounds that follow are also valid when 2−k+4 ≥ 1.
We use the Cauchy-Schwarz inequality to bound the quantity (44) by

C ′mN[1]
0

(
(Zx∗(x0)

2−k+4 )mϕε,k(Z
x∗(x0)
2−k )2

)1/2
(45)

×N[1]
0

((∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z

z(x∗)
2−k )

)2)1/2
.

Consider the first term of the product, recalling that, by definition,Zx∗(x0)
2−k =ZW∗+2−k . Using

the bound (40) and again the Cauchy-Schwarz inequality, we get that

N[1]
0

(
(Zx∗(x0)

2−k+4 )mϕε,k(Z
x∗(x0)
2−k )2

)1/2
≤C (ε23k)mN[1]

0 ((Zx∗(x0)
2−k )4m)1/4N[1]

0 ((Zx∗(x0)
2−k+4 )2m)1/4.

Thanks to the bound (15), we arrive at

(46) N[1]
0

(
(Zx∗(x0)

2−k+4 )mϕε,k(Z
x∗(x0)
2−k )2

)1/2
≤C(ε23k)mc

1/4
4m 2−2mkc

1/4
2m 2−m(k−4) =C ′′m ε

m.

We then estimate the second term in the product of (45). By the bound (40), we have

N[1]
0

((∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z

z(x∗)
2−k )

)2)1/2

≤C (ε23k)mN[1]
0

((∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]} (Zz(x∗)2−k )m

)2)1/2

≤C (ε23k)mN[1]
0

(
Vol(B2−k+3(x∗))

∫
Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]} (Zz(x∗)2−k )2m

)1/2
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=
2

3
C (ε23k)mN0

(
1{D(x∗,x0)>1}Vol(B2−k+3(x∗))

×
∫

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]} (Zz(x∗)2−k )2m
)1/2

,

using the Cauchy-Schwarz inequality and then the definition of N[1]
0 . In the last integral under

N0, we can use (13) to interchange the roles of x0 and z, and then get that the right-hand side
of the last display is equal to

2

3
C (ε23k)mN0

((∫
Vol(dz)1{D(x∗,z)>1}

)
Vol(B2−k+3(x∗))(47)

× 1{D(x∗,x0)∈[2−k+2,2−k+3]} (Zx0(x∗)
2−k )2m

)1/2

.

Fix an integer p≥ 4 and set q = p/(p− 1). We assume that p is chosen sufficiently large so
that 2

q −
1
pq −

1
p > 2− δ. By the Hölder inequality, we have

N0

((∫
Vol(dz)1{D(x∗,z)>1}

)
Vol(B2−k+3(x∗))1{D(x∗,x0)∈[2−k+2,2−k+3]} (Zx0(x∗)

2−k )2m

)(48)

≤N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]} (Vol(B1(x∗)

c))q
)1/q

×N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]} (Vol(B2−k+3(x∗))

p(Zx0(x∗)
2−k )2pm

)1/p

=A1/q ×B1/p.

Let us estimateA andB separately. Using the fact that (conditionally on σ) x0 is uniformly
distributed over m∞, we get

A≤N0

( 1

σ
Vol(B2−k+3(x∗) (Vol(B1(x∗)

c))q
)

(49)

≤N0

(
σ−q(Vol(B1(x∗)

c))q
2
)1/q
×N0

(
Vol(B2−k+3(x∗))

p
)1/p

≤Kq ×
(
c(p)(2

−k+3)4p−2
)1/p

=K ′q 2−4k+2k/p,

using the bounds on moments of the volume of balls (Lemma 4), together with the fact that

N0

(
σ−q(Vol(B1(x∗)

c))q
2
)
<∞.

The latter estimate is easily obtained by writing, for every s > 0,

N0

(
σ−q(Vol(B1(x∗)

c))q
2
∣∣∣σ = s

)
≤ sq2−qN0(B1(x∗)

c 6= ∅ |σ = s)≤C sq2−q exp(−c s−1/3)

by an estimate of [29, Proposition 14]. The right-hand side of the last display is integrable
with respect to s−3/2ds as soon as q2 − q < 1/2, which holds here because p≥ 4.
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Let us consider now the quantity B. By the Cauchy-Schwarz inequality, B ≤
√
B′B′′,

where

B′ = N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]} (Vol(B2−k+3(x∗))

2p
)
,

B′′ = N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]} (Zx0(x∗)

2−k )4pm
)
.

We have first

B′ ≤N0

(
(Vol(B2−k+3(x∗))

2p
)
≤ c(2p)(2

−k+3)8p−2 ≤ c̃p 2−8pk+2k,

using again Lemma 4. Then,

B′′ ≤N0

(
(Zx0(x∗)

2−k )4pm
)

= N0

(
(Zx∗(x0)

2−k )4pm
)

= N0((ZW∗+2−k)
4pm),

where we made the convention that all quantities Zx0(x∗)
2−k , Zx∗(x0)

2−k , ZW∗+2−k are equal to 0

if D(x∗, x0) =−W∗ ≤ 2−k. From (15), we now get

B′′ ≤N0(W∗ <−2−k)×N[2−k]
0

(
(ZW∗+2−k)

4pm
)
≤ 3

2
22k × c4pm 2−8pmk = c′′p 2−8pmk+2k.

By combining our estimates on B′ and B′′, we arrive at

B ≤
√
B′B′′ ≤ cp 2−4p(m+1)k+2k.

Using also (48) and (49), we get that the quantity (47) is bounded above by

2

3
C (ε23k)m ×

(
(K ′q 2−4k+2k/p)1/q (cp 2−4p(m+1)k+2k)1/p

)1/2

=Cp ε
m 2−k(−3m+ 2

q
− 1

pq
+2(m+1)− 1

p
)

≤C ′p εm 2−(4−m)k+δk,

by our choice of p. By combining this estimate with (46), we obtain that the quantity (45) is
bounded above by

C ′m ×C ′′mεm ×C
′
εm 2−(4−m)k+δk = C̃mε

2m 2−(4−m)k+δk.

Since A′ε,k was bounded above by the quantity (45), we have obtained the desired bound for
A′ε,k.

Second step. We now need to get a similar bound for

A′′ε,k = N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
B
•(x0)

2−k
(x∗)∪B•(x∗)

2−k
(x0)

Vol(dz)Fε,1(x∗, z)Fε,1(x0, z)

)
.

For obvious symmetry reasons (we can interchange x∗ and x0), it is enough to bound

A′′′ε,k :=N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
B
•(x0)

2−k
(x∗)

Vol(dz)Fε,1(x∗, z)Fε,1(x0, z)

)
(50)

≤N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
B
•(x0)

2−k
(x∗)

Vol(dz)Fε,1(x∗, z)Fε,2−k(x0, z)

)
.

Let us argue on the event where D(x∗, x0) ∈ [2−k+2,2−k+3], and note that this property
implies B•(x0)

2−k (x∗) ∩ B•(x∗)2−k (x0) = ∅. In the integral with respect to Vol(dz), we consider
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z
x∗ x0

FIG 2. Illustration of a “bottleneck” case where z ∈ B•(x0)
2−k (x∗) and B•(x∗)

2−k (x0) ⊂ B
•(z)
2−k (x∗). The shaded

part represents B•(z)
2−k (x∗), and the hatched part represents B•(x∗)

2−k (x0). The dashed curve is meant to represent

the boundary of B•(x0)
2−k (x∗).

points z such that D(x∗, z)> 1 (otherwise Fε,1(x∗, z) = 0) and the fact that z ∈B•(x0)
2−k (x∗)

is equivalent to saying that x0 and z are different components of B2−k(x∗)
c. Furthermore,

we have then

(51) B
•(x∗)
2−k (x0)⊂B•(z)2−k (x∗)

because the condition D(x∗, x0) ∈ [2−k+2,2−k+3] ensures that every point of ∂B•(x∗)2−k (x0)
belongs to the same connected component of B2−k(x∗)

c as x0, and by the preceding ob-
servations this boundary is entirely contained in B•(z)2−k (x∗). See Fig. 2 for an illustration. It
now follows that B•(z)2−k (x0) =B

•(x∗)
2−k (x0) because clearly z and x∗ are in the same connected

component ofB2−k(x0)c (a geodesic path from x∗ to ∂B•(z)2−k (x∗) does not intersectB2−k(x0)

since it stays within distance 2−k from x∗, and then (51) shows that x∗ is connected to z by
a path avoiding B2−k(x0)).

From the equality B•(z)2−k (x0) = B
•(x∗)
2−k (x0) which holds for the relevant values of z, we

conclude that, in the right-hand side of (50), we can replace Fε,2−k(x0, z) by Fε,2−k(x0, x∗),
and we have thus

(52) A′′′k ≤N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}Fε,2−k(x0, x∗)

∫
B
•(x0)

2−k
(x∗)

Vol(dz)Fε,1(x∗, z)

)

At this point, we observe that Fε,2−k(x0, x∗) is a function of the hull B•(x∗)2−k (x0), whereas
one can verify that

1{D(x∗,x0)∈[2−k+2,2−k+3]}

∫
B
•(x0)

2−k
(x∗)

Vol(dz)Fε,1(x∗, z)

is a function of m∞\B•(x∗)2−k (x0) (in both cases, spaces are equipped with their intrinsic dis-
tances). Let us explain this. We know that (under the condition D(x∗, x0) ∈ [2−k+2,2−k+3])
we have B•(x0)

2−k (x∗)⊂m∞\B•(x∗)2−k (x0), and moreover the property z ∈ B•(x0)
2−k (x∗) holds if

and only if z is not in the same component ofB2−k(x∗)
c as the boundary of m∞\B•(x∗)2−k (x0).

Then, assuming that z ∈ B•(x0)
2−k (x∗) and D(x∗, z) > 1, we observe that any geodesic from

∂B
•(z)
1 (x∗) to x∗ stays in the same connected component of B2−k(x∗)

c as z until it comes
within distance 2−k from x∗, and this component is contained in m∞\B•(x∗)2−k (x0) by (51).
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We then apply Theorem 8 (together with (12)) to get that, under N0(· |D(x0, x∗)> 2−k)

and conditionally on Zx0(x∗)
2−k , B•(x∗)2−k (x0) and m∞\B•(x∗)2−k (x0) are independent, and the con-

ditional distribution of B•(x∗)2−k (x0) is the law of a standard hull of radius 2−k and perimeter
Zx0(x∗)

2−k . It follows that the right-hand side of (52) is equal to

(53) N0

(
1{D(x∗,x0)∈[2−k+2,2−k+3]}ϕε,k(Z

x0(x∗)
2−k )

∫
B
•(x0)

2−k
(x∗)

Vol(dz)Fε,1(x∗, z)

)
.

Thanks to (13), we can now interchange the roles of x0 and z and get that the quantity (53)
is also equal to

(54) N0

(
Fε,1(x∗, x0)

∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
using once again the fact that z ∈ B•(x0)

2−k (x∗) is equivalent to x0 ∈ B•(z)2−k (x∗). Now we ob-
serve that

Fε,1(x∗, x0)≤ F2−k,1(x∗, x0)Fε,2−k(x∗, x0).

On one hand, F2−k,1(x∗, x0) is a function of m∞\B•(x0)
2−k (x∗), and on the other hand,

Fε,2−k(x∗, x0)

∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

is a function of the hull B•(x0)
2−k (x∗). For this last point, we observe that, for points z that are

relevant in the integral with respect to Vol(dz), we have B•(x∗)2−k (z) ⊂ B•(x0)
2−k (x∗) (by (51),

recalling that we interchanged the roles of x0 and z), and we also note that, if z belongs to
the hull B•(x0)

2−k (x∗), a geodesic (with respect to the distance D) from z to x∗ may hit the
boundary of the hull but cannot exit the hull, so that the intrinsic distance between z and x∗
relative to the hull indeed coincides with D(x∗, z). Using Theorem 8, and replacing N0 by
N[1]

0 (recall that Fε,1(x∗, x0) = 1 implies D(x∗, x0)> 1), we get that (54) is bounded above
by

3

2
N[1]

0

(
N[1]

0 (F2−k,1(x∗, x0) |Zx∗(x0)
2−k )Fε,2−k(x∗, x0)

×
∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
≤ 3Cm

2
N[1]

0

(
(Zx∗(x0)

2−k )m/2Fε,2−k(x∗, x0)

×
∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
by Lemma 16. Comparing with (44), we see that the same arguments as in the first step would
allow us to complete the proof if we could replace Fε,2−k(x∗, x0) by ϕε,k(Z

x∗(x0)
2−k ) in the

right-hand side of the last display. Unfortunately, it is not so easy to justify this replacement.
Let a > 0. To simplify notation, we write N[1],a

0 := N[1]
0 (· |Zx∗(x0)

2−k = a), so that, under
N[1],a

0 , B•(x0)
2−k (x∗) is distributed as a standard hull of radius 2−k and perimeter a, and we

have to evaluate

Mε,k(a) := N[1],a
0

(
Fε,2−k(x∗, x0)

∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
.



34

As we already explained in the proof of Theorem 8, B•(x0)
2−k (x∗) corresponds in the Brownian

snake representation to the excursions of W below level W∗ + 2−k. Let us write (ωi)i∈I

and ω∗ for these excursions, in a way similar to Section 3.1. Under N[1],a
0 , ω∗ is distributed

according to N0(· |W∗ =−2−k), and
∑

i∈I δωi is an independent Poisson point measure with
intensity aN0(· |W∗ > −2−k). As in Section 4.1, we can associate a slice S(ωi) with each
excursion ωi, resp. a slice S(ω∗) with ω∗, and this slice corresponds to a subset of B•(x0)

2−k (x∗)
(this correspondence preserves the volume and is bijective except in the case of S(ω∗), as we
explained in Section 4.2), in such a way that the union of these subsets is the whole hull
B
•(x0)
2−k (x∗), up to a set of zero volume. Then, we have,

(55)
∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2,2−k+3]}ϕε,k(Z
z(x∗)
2−k ) = Ψε,k(ω∗) +

∑
i∈I

Ψε,k(ω
i),

where, for ω ∈ S0 such that W∗(ω)≥−2−k,

Ψε,k(ω) :=

∫
S(ω)

Vol(dz̃)1{D̃(x̃∗,z̃)∈[2−k+2−(W∗+2−k),2−k+3−(W∗+2−k)]}ϕε,k(Z
z̃(x̃∗)
2−k ).

We have used the notation of Section 4.1 and the fact that, for every point z̃ of the slice S(ω)
at distance greater than 2−k from the distinguished point x̃∗, we can define the hull of radius
2−k centered at z̃ (relative to x̃∗) and its boundary size Z z̃(x̃∗)2−k via the analog of formula
(34). The point in (55) is to observe that any point z of B•(x0)

2−k (x∗) such that D(x∗, z) ∈
[2−k+2,2−k+3] corresponds to a point z̃ of the slice S(ωi) for some i ∈ I (or of S(ω∗)), such
that D̃(x̃∗, z̃) =D(x∗, z)− (2k +W∗(ωi)) (or D̃(x̃∗, z̃) =D(x∗, z)), and moreover the hull
of radius 2−k centered at z in m∞ is contained in B•(x0)

2−k (x∗) and identified with the same
hull centered at z̃ in the slice, so that these two hulls have the same boundary size. To check
the last property, we also use the easy fact that the identification of the slice S(ωi) with a
subset of B•(x0)

2−k (x∗) is isometric on the set {z̃ ∈ S(ωi) : D̃(x̃∗, z̃) ≥ 2−k+1} (and similarly
for S(ω∗)).

As in the proof of Proposition 7 (cf. formula (18)), we have Fε,2−k(x∗, x0) = 1{N≥m},
where N := #{i ∈ I :W∗(ω

i)<−2−k + ε}. Therefore, we can write

(56) Mε,k(a) = N[1],a
0

(
1{N≥m}

(
Ψε,k(ω∗) +

∑
i∈I

Ψε,k(ω
i)
))

.

Under N[1],a
0 , the variable N is Poisson with parameter 3a

2 ((2−k− ε)−2− (2−k)−2) and thus,
as in (40),

N[1],a
0 (N ≥m)≤C(εa23k)m.

Since ω∗ is independent of
∑

i∈I δωi , we have plainly
(57)
N[1],a

0

(
1{N≥m}Ψε,k(ω∗)

)
= N[1],a

0 (N ≥m)N[1],a
0 (Ψε,k(ω∗))≤C(εa23k)mN[1],a

0 (Ψε,k(ω∗)).

Set I ′ = {i ∈ I :W∗(ω
i)<−2−k + ε} (so that N = #I ′). Since N is also independent of the

point measure
∑

i∈I\I′ δωi , we get similarly

(58) N[1],a
0

(
1{N≥m}

∑
i∈I\I′

Ψε,k(ω
i)
)
≤C(εa23k)mN[1],a

0

( ∑
i∈I\I′

Ψε,k(ω
i)
)
.
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The delicate part is to estimate

N[1],a
0

(
1{N≥m}

∑
i∈I′

Ψε,k(ω
i)
)

=

∞∑
p=m

pN[1],a
0 (N = p)N0(Ψε,k(ω) | − 2−k <W∗ <−2−k + ε)

(59)

≤C ′(εa23k)mN0(Ψε,k(ω) | − 2−k <W∗ <−2−k + ε).

We use the spine decomposition of Section 2.4 to verify that, for every r ∈ (2−k − ε,2−k),
one can couple a snake trajectory ω(r) distributed according to N0(· |W∗ =−r) with a snake
trajectory ω(2−k) distributed according to N0(· |W∗ =−2−k) in such a way that the following
holds. The slice S(ω(r)) is identified isometrically (and in a manner preserving both the
volume measure and the first distinguished point x̃∗) to a closed subset of S(ω(2−k)), and
moreover, if z is a point of S(ω(r)) whose distance from x̃∗ is greater than 2−k+1, the hull of
radius 2−k centered at z in S(ω(r)) is identified with the same hull in S(ω(1)), and these two
hulls have the same boundary size — here we omit a few details that are left to the reader. It
follows that Ψε,k(ω(r))≤ Ψ̃ε,k(ω(2−k)), where Ψ̃ε,k ≥Ψε,k is defined as Ψε,k, except that the
interval [2−k+2,2−k+3] is replaced by [2−k+2 − 2−k,2−k+3]. Hence we have
(60)
N0(Ψε,k(ω) | − 2−k <W∗ <−2−k + ε)≤N0(Ψ̃ε,k(ω) |W∗ = 2−k) = N[1],a

0 (Ψ̃ε,k(ω∗)).

Finally, using (56), (57), (58), (59), (60) and the analog of (55) where [2−k+2,2−k+3] is
replaced by [2−k+2 − 2−k,2−k+3] and Ψε,k is replaced by Ψ̃ε,k, we get the existence of a
constant C ′′ such that

Mε,k(a)≤C ′′(εa23k)mN[1],a
0

(∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2−2−k,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
.

It follows that A′′′ε,k is bounded by a constant times

N[1]
0

(
(Zx∗(x0)

2−k )m/2×(C ′′(εZx∗(x0)
2−k 23k)m

×
∫
B
•(x0)

2−k
(x∗)

Vol(dz)1{D(x∗,z)∈[2−k+2−2−k,2−k+3]}ϕε,k(Z
z(x∗)
2−k )

)
,

and we get an upper bound by replacing the integral over B•(x0)
2−k (x∗) by the same integral

over m∞. The very same arguments that we used in the first step to bound the quantity (44),
now show that A′′′ε,k is bounded above by a constant times ε2m2−(4−m)k+δk. This completes
the proof of Lemma 15.

LEMMA 17. Let α ∈ (0,4 −m). There exists a constant Cα such that, for every ε ∈
(0,1/2),

(61) Ñ0

(∫ ∫
Vol(dx)Vol(dy)1{D(x,y)<ε}D(x, y)−αF

(m)
ε,1 (x,x∗)

)
≤Cα ε2m.

PROOF. As previously, we write Fε,r(x, y) instead of F (m)
ε,r (x, y) in the proof. Let Âε,k

denote the left-hand side of (61). In a way similar to the beginning of the proof of Lemma
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15, we can use the symmetry properties of the Brownian sphere to write Âε,k in a different
form. We write

Âε,k = N0

(
σ

∫ ∫
Vol(dx)

σ

Vol(dy)

σ
Γ̂ε,k(x∗, x, y)

)
,

with an appropriate function Γ̂ε,k, and observe that we have also

Âε,k = N0

(
σ

∫
Vol(dz)

σ
Γ̂ε,k(x0, x∗, z)

)
= N0

(
Fε,1(x∗, x0)

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α
)

=
3

2
N[1]

0

(
Fε,1(x∗, x0)

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α
)
.

We then note that the quantity Fε,1(x∗, x0) is a function of m∞\B•(x0)
ε (x∗), whereas∫

Vol(dz)1{D(x∗,z)<ε}D(x∗, z)
−α is a function of B•(x0)

ε (x∗). We can thus apply Theorem
8 to obtain that the right-hand side of the last display is also equal to

3

2
N[1]

0

(
N[1]

0 (Fε,1(x∗, x0) |Zx∗(x0)
ε )

∫
Vol(dz)1{D(x∗,z)<ε}D(x∗, z)

−α
)
.

From Lemma 16, we get the bound

Âε,k ≤
3

2
CmN[1]

0

(
(Zx∗(x0)

ε )m/2
∫

Vol(dz)1{D(x∗,z)<ε}D(x∗, z)
−α
)
.

The remaining part of the argument is now easy. Write k(ε)≥ 1 for the smallest integer such
that 2−k(ε) < ε. Fix κ ∈ (0,1) such that α− (4−m) + κ < 0. For every k ≥ k(ε), we have

N[1]
0

(
(Zx∗(x0)

ε )m/2
∫

Vol(dz)1{2−k<D(x∗,z)≤2−k+1}D(x∗, z)
−α
)

≤ 2kαN[1]
0

(
(Zx∗(x0)

ε )m/2 Vol(B2−k+1(x∗))
)

≤ 2kαN[1]
0

(
(Zx∗(x0)

ε )m
)1/2

N[1]
0

(
(Vol(B2−k+1(x∗)))

2
)1/2

≤Cm,κ 2kα × εm × 2−(4−κ)k,

using Lemma 4 and the bound (15). By summing over k ≥ k(ε), we arrive at

N[1]
0

(
(Zx∗(x0)

ε )m/2
∫

Vol(dz)1{D(x∗,z)<ε}D(x∗, z)
−α
)
≤Cm,κ εm

∞∑
k=k(ε)

2−k(4−α−κ)

≤C ′m,κ εm 2−k(ε)(4−α−κ)

≤C ′m,κ ε2m.

This completes the proof.

6. Proof of Theorem 1. As previously, m ∈ {1,2,3} is fixed. Recall the definition of
F̃

(m)
ε,1 in Section 4.3. For every ε ∈ (0,1/32), we introduce the measure νε on m∞ defined

by

νε(dx) := ε−m F̃
(m)
ε,1 (x,x∗)1{D(x,x∗)<2}Vol(dx).
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We use the notation

Rmax = max{D(x,x∗) : x ∈m∞}

and note that νε is the zero measure ifRmax < 1 (recall that F̃ (m)
ε,1 (x,x∗) = 0 ifD(x,x∗)< 1).

We will then argue under the finite measure

Ñ?0 := Ñ0(· ∩ {Rmax ≥ 1}).

As an immediate consequence of Proposition 14, we have

(62) Ñ?0(〈νε,1〉)≥ c,

with a positive constant c independent of ε. On the other hand, if δ ∈ (0,1) is fixed, we can
use Lemma 15 and Lemma 17 to bound the integral under Ñ?0 of the quantity∫ ∫

νε(dx)νε(dy)D(x, y)−(4−m−δ)

≤ ε−2m

∫ ∫
Vol(dx)Vol(dy)F

(m)
ε,1 (x,x∗)F

(m)
ε,1 (y,x∗)1{D(x,y)<4}D(x, y)−(4−m−δ),

where we used the trivial bound F̃ (m)
ε,1 (x,x∗)≤ F (m)

ε,1 (x,x∗), and the fact that D(x,x∗)< 2

and D(y,x∗) < 2 imply D(x, y) < 4. Let k(ε) be the greatest integer such that 2−k > 2ε.
Using Lemma 15, we have

Ñ?0
(
ε−2m

∫∫
Vol(dx)Vol(dy)F

(m)
ε,1 (x,x∗)F

(m)
ε,1 (y,x∗)1{2−k(ε)+2≤D(x,y)<4}D(x, y)−(4−m−δ)

)
=

k(ε)∑
k=1

Ñ?0
(
ε−2m

∫∫
Vol(dx)Vol(dy)F

(m)
ε,1 (x,x∗)F

(m)
ε,1 (y,x∗)

× 1{2−k+2≤D(x,y)<2−k+3}D(x, y)−(4−m−δ)
)

≤
k(ε)∑
k=1

C(δ/2) 2−(4−m)k+(δ/2)k × 2−(−k+2)(4−m−δ)

≤C(δ/2)

∞∑
k=1

2−kδ/2

=C ′(δ)

with some constant C ′(δ). On the other hand, using the trivial bound F (m)
ε,1 (y,x∗)≤ 1, the fact

that 2−k(ε) ≤ 4ε, and Lemma 17, we have

Ñ?0
(
ε−2m

∫∫
Vol(dx)Vol(dy)F

(m)
ε,1 (x,x∗)F

(m)
ε,1 (y,x∗)1{D(x,y)<2−k(ε)+2}D(x, y)−(4−m−δ)

)
≤ Ñ?0

(
ε−2m

∫∫
Vol(dx)Vol(dy)F

(m)
16ε,1(x,x∗)1{D(x,y)≤16ε}D(x, y)−(4−m−δ)

)
≤C ′′(δ),

with some constant C ′′(δ). Summarizing, we have

(63) Ñ?0
(∫ ∫

νε(dx)νε(dy)D(x, y)−(4−m−δ)
)
≤K(δ)
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for a certain constantK(δ) depending only on δ. Since the measure νε(dx)νε(dy) is supported
on pairs (x, y) such that D(x, y)< 4, the bound (63) also implies that

(64) Ñ?0(〈νε,1〉2)≤ 64K(δ).

From (62) and (64), a standard application of the Cauchy-Schwarz inequality shows that we
can find two positive constants a and c0 such that

Ñ?0(〈νε,1〉 ≥ a)≥ c0.

Finally, using (63) and (64), we can find A> 0 large enough such that

Ñ?0

({∫ ∫
νε(dx)νε(dy)D(x, y)−(4−m−δ) ≤A

}
∩
{
a≤ 〈νε,1〉 ≤A

})
≥ c0/2.

Then, let (εn)n∈N be a sequence in (0,1/32) that converges to 0. The event

Θ := limsup
n→∞

({∫ ∫
νεn(dx)νεn(dy)D(x, y)−(4−m−δ) ≤A

}
∩
{
a≤ 〈νεn ,1〉 ≤A

})
has Ñ?0-measure at least c0/2. Let us argue on the event Θ. On this event, we can find a
(random) subsequence (νεnp )p∈N that converges weakly to a limiting nonzero finite measure
ν0 such that ∫ ∫

ν0(dx)ν0(dy)D(x, y)−(4−m−δ) ≤A<∞.

We claim that ν0 is supported on the set S(m+1) of (m + 1)-geodesic stars. If our claim
holds, an application of the classical Frostman lemma shows that dim(S(m+1))≥ 4−m− δ
on the event Θ.

Let us justify our claim. Let x belong to the topological support of ν0. If V is an open
neighborhood of x in m∞, then, for p large enough, we must have νεnp (V )> 0 and conse-

quently there exists a point y of V such that F̃ (m)
εnp ,1

(y,x∗) = 1. It follows that we can find
a sequence (xn)n∈N in m∞ that converges to x, and a sequence (ε′n)n∈N of positive reals
converging to 0, such that, for every n ∈ N, F̃ (m)

ε′n,1
(xn, x∗) = 1. This means that there exist

geodesics (ξ
(n)
0 (t))t∈[0,1], (ξ

(n)
1 (t))t∈[0,1], . . . , (ξ

(n)
m (t))t∈[0,1] that terminate at xn and are such

that, for every 0≤ i < j ≤m, we have

D(ξ
(n)
i (t), ξ

(n)
j (t))≥ δk

for every t ∈ [1 − 2−k−1,1 − 2−k−2] and k ≥ 1 such that 2−k−4 ≥ ε′n. By a compactness
argument, up to extracting subsequences, we may assume that, for every i ∈ {0, . . . ,m},

ξ
(n)
i (t) −→

n→∞
ξ

(∞)
i (t) , uniformly in t ∈ [0,1],

where the limit (ξ
(∞)
i (t))t∈[0,1] must be a geodesic path that terminates at x. Furthermore, we

have for every 0≤ i < j ≤m,

D(ξ
(∞)
i (t), ξ

(∞)
j (t))≥ δk,

for every t ∈ [1− 2−k−1,1− 2−k−2] and every integer k ≥ 1, and this ensures that the sets
{ξ(∞)
i (t) : t ∈ [3/4,1)} are disjoint, so that x is an (m+ 1)-geodesic star, proving our claim.
At this point, we have proved that the dimension of the set of all (m+ 1)-geodesic stars is

at least 4−m−δ on an event of positive Ñ?0-measure. Clearly, we can replace Ñ?0 by Ñ0 or N0.
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To simplify notation, set N{a}0 := N0(· |W∗ =−a) for every a > 0. Via a scaling argument,
we also get that the dimension of the set of (m+ 1)-geodesic star is at least 4−m− δ on an
event of positive N{a}0 -probability. We now want to argue that the latter property even holds
on an event of full N{a}0 -probability, and we need to a kind of zero-one law argument, for
which it is more convenient to use the Brownian plane.

LEMMA 18. On the same probability space, we can construct both the Brownian plane
P and a two-pointed random metric space m

{1}
∞ distributed according to the law of m∞

under N{1}0 , in such a way that, for every ε ∈ (0,1), there is an event Eε of positive proba-
bility and independent of m{1}∞ , such that the following holds. Write x{1}∗ and x{1}0 for the
two distinguished points of m{1}∞ , and let B•1−ε(m

{1}
∞ ) stand for the hull defined as the com-

plement of the connected component containing x{1}0 of the complement of the closed ball of
radius 1− ε centered at x{1}∗ in m

{1}
∞ . Similarly, write B•1−ε(P) for the complement of the

unbounded component of the complement of the closed ball of radius 1− ε centered at the
distinguished point of P . On the event Eε, the interior Int(B•1−ε(m

{1}
∞ )) equipped with its

intrinsic metric is isometric to Int(B•1−ε(P)) equipped with its intrinsic metric.

This lemma is obtained by comparing the construction of the Brownian plane in [9] with
the spine decomposition of N{1}0 in Section 2.4. We refer to Appendix B below for a detailed
argument.

With the notation of the lemma, we have a.s.,

(65) m{1}∞ \
⋃
ε>0

B•1−ε(m
{1}
∞ ) = {x{1}0 }.

To justify this, argue under N{1}0 (dω) and observe that if x= Π(a) ∈m∞\{x0}, labels along
the line segment from a to ρ(ω) in T(ω) must take negative values, which ensures by the bound
(11) that x belongs to B•1−ε(x∗) for ε > 0 small enough.

It now follows from (65) and the considerations preceding the lemma that, for ε > 0 small
enough, the set of all (m + 1)-geodesic stars of m{1}∞ that lie in Int(B•1−ε(m

{1}
∞ )) has di-

mension at least 4−m− δ with positive probability. Hence (here we use the fact that Eε is
independent of m{1}∞ ), the set of all (m + 1)-geodesic stars of P that lie in Int(B•1−ε(P))
has also dimension at least 4 −m − δ with positive probability, for ε > 0 small enough.
The scaling invariance of P now shows that, for every a > 0, the event where the set of all
(m+ 1)-geodesic stars of P that lie in Int(B•a(P)) has dimension at least 4−m− δ has the
same (positive) probability. Writing S(m+1)(P) for the set of all (m+ 1)-geodesic stars of
P , we get that the event⋂

a>0

{
dim(S(m+1)(P)∩B•a(P))≥ 4−m− δ

}
has also positive probability. However, using the construction of P given in [9] (see below
the proof of Lemma 18), it is not hard to verify that the latter event belongs to an asymptotic
σ-field which contains only events of probability 0 or 1. We thus get that the property

dim(S(m+1)(P)∩B•a(P))≥ 4−m− δ
holds for every a > 0, a.s. Since δ ∈ (0,1) was arbitrary, we conclude that

dim(S(m+1)(P)∩B•a(P))≥ 4−m,
for every a > 0, a.s. Finally, using the coupling between the Brownian sphere and the Brow-
nian plane found in [8, Theorem 1], one gets that the same property holds for the Brownian
sphere.
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APPENDIX A: PROOF OF LEMMA 16

On the event {W∗ <−1}, we define Mε as the number of excursions below W∗ + 1 that
hit W∗ + ε. As in the proof of Proposition 7, we have N[1]

0 a.e.,

F
(m)
ε,1 (x∗, x0) = 1{Mε≥m+1}.

So we have to bound N[1]
0 (Mε ≥m+ 1 |ZW∗+ε = z) for m ∈ {1,2,3} (recall that Zx∗(x0)

ε =
ZW∗+ε). To this end, we will rely on explicit calculations. For every a > 0, we write ha(z)
for the density of the law of Z−a under N0(· ∩ {Z−a 6= 0}), as given in [22, Proposition 3]:

(66) ha(z) :=
( 3

2a2

)2
ψ(

3z

2a2
)

where

(67) ψ(x) =
2√
π

(x1/2 + x−1/2)− 2(x+
3

2
)ex erfc(

√
x), x > 0.

We also recall from [21, Corollary 13] that, for every a > 0, the density of ZW∗+a under N[a]
0

is the function

(68) z 7→ 1

a

√
3

2πz
exp

(
− 3z

2a2

)
.

LEMMA 19. For every ε ∈ (0,1), we have N[1]
0 (Mε = 1) = 1− ε and

N[1]
0 (Mε = 2) =

1

2
(1− ε)

(
1− (1− ε)2

)
, N[1]

0 (Mε = 3) =
3

8
(1− ε)

(
1− (1− ε)2

)2
.

PROOF. By [21, Proposition 12] (see also the remark after this proposition), the condi-
tional distribution of Mε − 1 under N[1]

0 knowing that ZW∗+1 = z is Poisson with parameter

zN0(−1<W∗ <−1 + ε) = z
( 3

2(1− ε)2
− 3

2

)
.

Since the distribution of ZW∗+1 is given by (68), the formulas of the lemma follow by
straightforward calculations.

LEMMA 20. Let ε ∈ (0,1). The law of Z−1+ε under N0(· |W∗ =−1) has density

fε(z) := ε−3 z exp
(
− 3z

2ε2

)
h1−ε(z).

The law of Z−1+ε under N0(· | − 1<W∗ <−1 + ε) has density

f̃ε(z) :=
( 3

2(1− ε)2
− 3

2

)−1
exp

(
− 3z

2ε2

)
h1−ε(z).

PROOF. Let v > 0 and a > v. An application of the special Markov property gives, for
any nonnegative measurable function ϕ on [0,∞) such that ϕ(0) = 0,

N0

(
1{W∗>−a}ϕ(Z−v)

)
= N0

(
ϕ(Z−v) exp

(
− 3Z−v

2(a− v)2

))
=

∫ ∞
0

dz hv(z)ϕ(z) exp
(
− 3z

2(a− v)2

)
.
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Hence the joint density of the pair (−W∗,Z−v) under N0(· ∩ {W∗ <−v}) is the function

(a, z) 7→ 1{a>v}
3z

(a− v)3
exp

(
− 3z

2(a− v)2

)
hv(z).

On the other hand, the density of −W∗ under N0(· ∩ {W∗ < −v}) is the function a 7→
1{a>v} 3a−3. It follows that, for a > v, the density of Z−v under N0(· | −W∗ = a) is

z 7→ a3

(a− v)3
z exp

(
− 3z

2(a− v)2

)
hv(z).

The case a= 1, v = 1− ε gives the first assertion of the lemma.
The proof of the second assertion is straightforward. For a function ϕ as above,

N0

(
ϕ(Z−1+ε)1{−1<W∗<−1+ε}

)
= N0

(
ϕ(Z−1+ε) exp(−Z−1+εN−1+ε(W∗ ≤−1))

)
= N0

(
ϕ(Z−1+ε) exp(− 3

2ε2
Z−1+ε)

)
=

∫ ∞
0

dz h1−ε(z)ϕ(z) exp(− 3z

2ε2
)

and the desired result follows since N0(−1<W∗ <−1 + ε) = 3
2(1−ε)2 −

3
2 .

LEMMA 21. Let ε ∈ (0,1). The law of ZW∗+ε under N[1]
0 has density

gε(z) := 2ε−3 z exp
(
− 3z

2ε2

)∫ ∞
1−ε

daha(z).

PROOF. We rely on a formula found in [21, Proposition 12], which gives for any nonneg-
ative measurable function ϕ on [0,∞),

N0(1{W∗<−1}ϕ(ZW∗+ε)) = 3ε−3

∫ −1+ε

−∞
dbN0

(
Zb exp

(
− 3Zb

2ε2

)
ϕ(Zb)

)
= 3ε−3

∫ ∞
1−ε

da

∫ ∞
0

dz zϕ(z) exp
(
− 3z

2ε2

)
ha(z)

= 3ε−3

∫ ∞
0

dz zϕ(z)
(∫ ∞

1−ε
daha(z)

)
exp

(
− 3z

2ε2

)
.

The desired result follows since N0(W∗ <−1) = 3/2.

Let us use the preceding lemmas to evaluate N[1]
0 (Mε = 1 |ZW∗+ε = z). For any nonnega-

tive measurable function ϕ on [0,∞), we have

N[1]
0 (1{Mε=1}ϕ(ZW∗+ε)) = N[1]

0 (Mε = 1)×N[1]
0 (ϕ(ZW∗+ε) |Mε = 1)

= (1− ε)
∫ ∞

0
dz fε(z)ϕ(z),

by Lemma 19 and Lemma 20, using also the fact that the law ofZW∗+ε under N[1]
0 (· |Mε = 1)

coincides with the law of Z−1+ε under N0(· |W∗ = −1) (see [21, Proposition 12]). On the
other hand,

N[1]
0 (1{Mε=1}ϕ(ZW∗+ε)) = N[1]

0

(
ϕ(ZW∗+ε)N

[1]
0 (Mε = 1 |ZW∗+ε)

)
=

∫ ∞
0

dz gε(z)ϕ(z)N[1]
0 (Mε = 1 |ZW∗+ε = z),
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by Lemma 21. By comparing the last two displays, we get

N[1]
0 (Mε = 1 |ZW∗+ε = z) = (1− ε) fε(z)

gε(z)
=

(1− ε)h1−ε(z)

2
∫∞

1−ε daha(z)
=

h1((1− ε)−2z)

2
∫∞

1 daha((1− ε)−2z)
,

where the last equality is a consequence of (66).
We can similarly compute N[1]

0 (Mε = 2 |ZW∗+ε = z). Observing that the law of ZW∗+ε
under N[1]

0 (· |Mε = 2) has density fε ∗ f̃ε (use again [21, Proposition 12]), and recalling the
formula for N[1]

0 (Mε = 2) in Lemma 20, the same argument shows that

N[1]
0 (Mε = 2 |ZW∗+ε = z) = N[1]

0 (Mε = 2)
fε ∗ f̃ε(z)
gε(z)

=
(1− ε)3

∫ z
0 dy yh1−ε(y)h1−ε(z − y)

6z
∫∞

1−ε daha(z)

=

∫ (1−ε)−2z
0 dy yh1(y)h1((1− ε)−2z − y)

6(1− ε)−2z
∫∞

1 daha((1− ε)−2z)
.

Similarly, since the law of ZW∗+ε under N[1]
0 (· |Mε = 3) has density fε ∗ f̃ε ∗ f̃ε, we get

N[1]
0 (Mε = 3 |ZW∗+ε = z) = N[1]

0 (Mε = 3)
fε ∗ f̃ε ∗ f̃ε(z)

gε(z)

=

∫ (1−ε)−2z
0 dy y h1(y)h1 ∗ h1((1− ε)−2z − y)

12(1− ε)−2z
∫∞

1 daha((1− ε)−2z)
.

We note that N[1]
0 (Mε =m |ZW∗+ε = z) only depends on the quantity (1− ε)−2z, which we

could have seen from a scaling argument.
At this stage, we use the explicit formula for the functions ha in (66) and (67) to get

asymptotic expansions as z→ 0. We have first

h1(z) =
33/22−1/2

√
π

1√
z
− 27

4
+

35/221/2

√
π

√
z +O(z)

and

(69) 2

∫ ∞
1

daha(z) =
33/22−1/2

√
π

1√
z
− 9

2
+

35/22−1/2

√
π

√
z +O(z).

From the preceding formula for N[1]
0 (Mε = 1 |ZW∗+ε = z), it follows that

N[1]
0 (Mε = 1 |ZW∗+ε = z) = 1 +O(

√
z), as z→ 0,

where the remainder O(
√
z) is uniform in ε ∈ (0,1/2]. Hence N[1]

0 (Mε ≥ 2 |ZW∗+ε = z) =
O(
√
z), which gives the case m= 1 of Lemma 16.

Similarly, tedious but straightforward calculations show that∫ z

0
dy y h1(y)h1(z − y) =

27

4
z − 39/22−3/2

√
π

z3/2 +O(z2)∫ z

0
dy y h1(y)h1 ∗ h1(z − y) =

37/22−1/2

√
π

z3/2 +O(z2).
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To simplify notation, write z′ = (1− ε)−2z. Then we get(
2

∫ ∞
1

daha(z
′)
)
N[1]

0 (Mε ≤ 2 |ZW∗+ε = z) = h1(z′) +
1

3z′

∫ z′

0
dy yh1(y)h1(z′ − y)

=
33/22−1/2

√
π

1√
z′
− 9

2
+

35/22−3/2

√
π

z′1/2 +O(z′).

Comparing with (69), we obtain that N[1]
0 (Mε ≤ 2 |ZW∗+ε = z) = 1 + O(z) as z→ 0, and

thus N[1]
0 (Mε ≥ 3 |ZW∗+ε = z) = O(z), giving the case m = 2 of Lemma 16. Finally, we

have also(
2

∫ ∞
1

daha(z
′)
)
N[1]

0 (Mε ≤ 3 |ZW∗+ε = z)

= h1(z′) +
1

3z′

∫ z′

0
dy yh1(y)h1(z′ − y) +

1

6z′

∫ z′

0
dy yh1(y)h1 ∗ h1(z′ − y)

=
33/22−1/2

√
π

1√
z′
− 9

2
+

35/22−1/2

√
π

z′1/2 +O(z′).

Comparing again with (69), we get that N[1]
0 (Mε ≤ 3 |ZW∗+ε = z) = 1 +O(z3/2) as z→ 0,

and thus N[1]
0 (Mε ≥ 4 |ZW∗+ε = z) = O(z3/2), which gives the case m = 3 of Lemma 16

and completes the proof of this lemma.

APPENDIX B: PROOF OF LEMMA 18

We start by recalling the construction of the Brownian plane as described in [9]. We con-
sider a nine-dimensional Bessel process R = (Rt)t≥0 started at 0, and, conditionally on R,
two independent Poisson point measures N and N ′ on [0,∞)×S with the same intensity

dtNRt(dω ∩ {W∗(ω)> 0}).

It is convenient to write

N =
∑
i∈I

δ(ti,ωi) , N
′ =
∑
i∈J

δ(ti,ωi),

where the indexing sets I and J are disjoint. We then consider the (non-compact) R-tree T∞
defined by

T∞ := [0,∞)∪
( ⋃
i∈I∪J

T(ωi)

)
,

where for every i ∈ I ∪ J , the root of T(ωi) is identified with the point ti of [0,∞): we view
T(ωi) as grafted on the “spine” [0,∞) at height ti. In fact, we consider the trees T(ωi) for i ∈ I
as grafted to the left side of the spine, and the trees T(ωi) for i ∈ J as grafted to the right
side of the spine. This is reflected in the exploration process (E∞s )s∈R of T∞, which is such
that {E∞s : s ≤ 0} is exactly the union of the spine and of the trees T(ωi) for i ∈ I , whereas
{E∞s : s≥ 0} is the union of the spine and of the trees T(ωi) for i ∈ J (we refer to [22, Section
2.4] for a more precise definition of (E∞s )s∈R). The exploration process allows us to define
intervals on the tree T∞. We make the convention that, if s, s′ ∈ R and s > s′, the “interval”
[s, s′] is equal to [s,∞) ∪ (−∞, s′]. Then if a, b ∈ T∞, there is a smallest “interval” [s, s′]
such that E∞s = a and E∞s′ = b, and we take [a, b]∞ = {E∞r : r ∈ [s, s′]}.
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We also assign labels (Λa)a∈T∞ to the points of T∞. If a= t belongs to the spine [0,∞),
we take Λa = Rt. If a ∈ T(ωi) for some i ∈ I ∪ J , we let Λa be the label of a in T(ωi). We
then define, for every a, b ∈ T∞,

D∞,◦(a, b) := Λa + Λb − 2 max
(

min
c∈[a,b]∞

Λc, min
c∈[b,a]∞

Λc

)
,

and we let D∞(a, b) be the maximal symmetric function of the pair (a, b) that is bounded
above by D∞,◦(a, b) and satisfies the triangle inequality. It turns out that the property
D∞(a, b) = 0 holds if and only if D∞,◦(a, b) = 0. The Brownian plane P can then be de-
fined as the quotient space T∞/{D∞ = 0}, which is equipped with the distance induced by
D∞ and with a distinguished point which is the point 0 of the spine. We write Π∞ for the
canonical projection from T∞ onto P .

Thanks to Section 2.4, the Bessel process R and the point measuresN andN ′ can also be
used to construct a random snake trajectory distributed according to N0(· |W∗ =−1), whose
genealogical tree is identified to

T1 := [0,L1]∪
( ⋃
i∈I∪J,ti≤L1

T(ωi)

)
,

where we make the same identifications as for T∞ and, for every r > 0, we have set

Lr := sup{t≥ 0 :Rt = r}.

We may and will view T1 as the subset of T∞ obtained by removing the part of the spine
above height L1 (and of course the trees T(ωi) grafted to this part). Write [a, b]1 for the
intervals on the tree T1. Following the construction of the Brownian sphere in Section 2.5, we
define D1,◦(a, b) for a, b ∈ T1 by the very same formula as D∞,◦(a, b) above, but replacing
the intervals [a, b]∞ and [b, a]∞ by [a, b]1 and [b, a]1 respectively. We note that D1,◦(a, b)≤
D∞,◦(a, b) for a, b ∈ T1 since we have clearly [a, b]1 ⊂ [a, b]∞. Finally, we letD1(a, b) be the
maximal symmetric function of a, b ∈ T1 that is bounded above by D1,◦(a, b) and satisfies
the triangle inequality, and we define m

{1}
∞ as the quotient space T1/{D1 = 0}, which is

equipped with the metric induced by D1 and the two distinguished points which are the
points 0 and L1 (bottom and top of the spine). Then m

{1}
∞ has the distribution of m∞ under

N0(· |W∗ =−1). We write Π1 for the canonical projection from T1 onto m
{1}
∞ .

We then claim that the conclusion of Lemma 18 holds if we take

Eε := {W∗(ωi)> 1− ε

2
for every i ∈ I ∪ J such that ti > 1}.

We note that P(Eε) > 0 (as a simple consequence of the formula for N0(W∗ < −r)) and
that Eε is independent of m{1}∞ . We then verify that, if Eε holds, B•1−ε(m

{1}
∞ ) and B•1−ε(P)

can be identified as sets. For every r > 0, let F∞r be the set of all a ∈ T∞ such that the
minimal label along the geodesic from a to ∞ in T∞ is smaller than or equal to r. Then
B•r (P) = Π∞(F∞r ) (see formula (16) in [9]). Similarly, for every r ∈ (0,1), let F 1

r be the set
of all a ∈ T1 such that the minimal label along the geodesic from a to L1 in T1 is smaller than
or equal to r. Then, we have B•r (m

{1}
∞ ) = Π1(F 1

r ) as a consequence of the bound (11). Next,
on the event Eε, one immediately gets that F∞1−ε = F 1

1−ε. Furthermore, still on the event Eε,
for a, b ∈ F∞1−ε, we have Π∞(a) = Π∞(b) if and only Π1(a) = Π1(b). The fact that Π∞(a) =
Π∞(b) implies Π1(a) = Π1(b) is trivial since D1 ≤D∞. Conversely, if Π1(a) = Π1(b), the
only case where we do not immediately get Π∞(a) = Π∞(b) is when [a, b]1 6= [a, b]∞ and
Λa = Λb = min{Λc : c ∈ [a, b]1}. In that case however, the interval [a, b]1 must contain the
point L1 (top of the spine), and also the geodesic from a to L1 in T1, so that Λa = Λb ≤ 1− ε
(by the definition of F 1

1−ε), and then min{Λc : c ∈ [a, b]1}= min{Λc : c ∈ [a, b]∞} (because
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labels on T∞\T1 are greater than 1 − ε/2). Finally we have also Π∞(a) = Π∞(b) in that
case.

The preceding considerations show that, on the event Eε, the sets B•1−ε(m
{1}
∞ ) and

B•1−ε(P) are identified. Very similar arguments (using formula (17) in [9], and its analog
for m{1}∞ ) show that the boundary of B•1−ε(m

{1}
∞ ) in m

{1}
∞ is also identified to the boundary

of B•1−ε(P) in P . Note that the topology induced by D∞ on B•1−ε(m
{1}
∞ ) =B•1−ε(P) must

be the same as the one induced by D1 since both are compact and D1 ≤D∞. Finally, us-
ing the definitions of the distances D∞ and D1, one checks that, for every compact subset
K of Int(B•1−ε(m

{1}
∞ )) = Int(B•1−ε(P)), for every x, y ∈ K such that D∞(x, y) is small

enough, resp. such that D1(x, y) is small enough, one has D∞(x, y) = D1(x, y) (we omit
a few details here). It follows that the intrinsic distance on Int(B•1−ε(m

{1}
∞ )) coincides with

the intrinsic distance on Int(B•1−ε(P)), and this completes the proof.

APPENDIX C: PROOF OF LEMMA 5

We assume that the Brownian plane P is constructed as explained in Appendix B. Let
r > 0. According to formula (18) in [9], the random variable Zr can be obtained as

Zr =
∑

i∈I∪J,ti>Lr

Zr(ωi).

If 0< r < u, the spine decomposition of N0(· |W∗ =−u) in Section 2.4 shows that

(70)
∑

i∈I∪J,Lr<ti<Lu

Zr(ωi)

has the distribution of ZW∗+r under N0(· |W∗ =−u) (compare (70) with the right-hand side
of (5)). From the last two displays, we immediately obtain that the random variable ZW∗+r
under N0(· |W∗ =−u) is stochastically dominated by Zr . The lemma follows.
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