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1 Introduction

In a previous work [1], we obtained a surprising connection between the class of exchangeable
coalescents and certain remarkable stochastic flows on the interval [0, 1]. The main purpose of
the present paper is to derive more explicit information about these flows, and in particular to
represent them as solutions of stochastic differential equations.

Exchangeable coalescents, also called coalescents with simultaneous multiple collisions by
Schweinsberg [14], are processes taking values in the set P of all partitions of N, which appear
as asymptotic models for phenomena of coagulation that occur when studying the geneal-
ogy of large populations. They have been studied recently by Möhle, Sagitov, Pitman and
Schweinsberg [11, 12, 13, 14]. Roughly speaking, an exchangeable coalescent is a Markov pro-
cess Π = (Πt, t ≥ 0) in P, which satisfies the following two conditions. Firstly, for every s ≤ t,
the partition Πs is finer than Πt (blocks coagulate as time increases). Secondly, the semigroup
of Π satisfies a natural exchangeability property saying that in the coagulation phenomenon all
blocks play the same role. See [1] for a more precise definition.

The main result of [1] gives a one-to-one correspondence between exchangeable coalescents
and flows of bridges on [0, 1]. By definition, a bridge is a real-valued random process (B(r), r ∈
[0, 1]) with B(0) = 0 and B(1) = 1, which has right-continuous nondecreasing sample paths
and exchangeable increments. A flow of bridges is then a collection (Bs,t,−∞ < s ≤ t < ∞)
of bridges, satisfying the flow property Bs,u = Bs,t ◦ Bt,u for every s ≤ t ≤ u, and the usual
stationarity and independence of “increments” property (see Section 2.1 below for the precise
definition). These flows, or more precisely the dual flows B̂s,t = B−t,−s, fit in the general
framework of Le Jan and Raimond [9].

Let us briefly describe the basic connection between exchangeable coalescents and flows of
bridges [1], which may be viewed as an infinite-dimensional version of Kingman’s famous theo-
rem on the structure of exchangeable partitions of N. Start with a flow of bridges (Bs,t,−∞ <
s ≤ t < ∞) and consider an independent sequence (Vj)j∈N of i.i.d. uniform [0, 1] variables.
Write R(Bs,t) for the closed range of Bs,t. For every t ≥ 0 define a random partition Πt of N

by declaring that two distinct integers i and j belong to the same block of Πt if and only if
Vi and Vj belong to the same connected component of [0, 1]\R(B0,t). Then, (Πt, t ≥ 0) is an
exchangeable coalescent and conversely any exchangeable coalescent can be obtained in this
way from a (unique in law) flow of bridges.

In the present paper, we focus on the flows associated with an important subclass of ex-
changeable coalescents, namely the Λ-coalescents. Rougly speaking, Λ-coalescents are those
exhangeable coalescents where only one subcollection of blocks can coagulate at a time. The
law of such a process is characterized by a finite measure Λ on [0, 1] (see Section 2.2 for more
details). Important special cases are the Kingman coalescent (Λ = δ0) and the Bolthausen-
Sznitman coalescent (Λ is Lebesgue measure on [0, 1]). The class of Λ-coalescents was intro-
duced and studied by Pitman [12], under the name of coalescents with multiple collisions.

Let us now outline the main contributions of the present work. We let B = (Bs,t)−∞<s≤t<∞

be the flow of bridges associated with a Λ-coalescent in the sense of [1]. Sections 3 and 4 below
are devoted to the study of the Markov process

Ft = (B−t,0(x), x ∈ [0, 1]),
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and particularly of the p-point motion (Ft(r1), . . . , Ft(rp)), where r1 < · · · , rp are p fixed points
in [0, 1]. Assuming that Λ({0}) = 0 we prove in Section 3 that

(Ft(r1), . . . , Ft(rp))t≥0
(d)
= (X1

t , . . . , X
p
t )t≥0

where (X1, . . . , Xp) is the (unique in law) solution of the stochastic differential equation

X i
t = ri +

∫

[0,t]×]0,1[×]0,1]
M(ds, du, dx) x (1{u≤Xi

s−} −X i
s−), i = 1, . . . p

which is driven by a Poisson point measure M on R+×]0, 1[×]0, 1] with intensity ds du x−2Λ(dx).
The integral with respect to M should be understood as a stochastic integral with respect to a
compensated Poisson measure. A key intermediate step towards this representation is to obtain
a martingale problem characterizing the law of the p-point motion (Ft(r1), . . . , Ft(rp)).

In Section 4 we consider the case of the celebrated Kingman coalescent [8] (i.e. when Λ is
the Dirac point mass at 0). Then the p-point motion (Ft(r1), . . . , Ft(rp)) is a diffusion process
in

Dp := {x = (x1, . . . , xp) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp ≤ 1}
with generator

Ag(x) =
1

2

p∑

i,j=1

xi∧j(1 − xi∨j)
∂2g

∂xi∂xj
(x) ,

for g ∈ C2(Dp). Note that the components of this diffusion process coalesce when they meet,
and are also absorbed at 0 and 1.

The results of Sections 3 and 4 give insight in the behavior of the bridges Bs,t when s
decreases (recall that Ft = B−t,0). What can be said about Bs,t when t increases ? To answer
this question it is convenient to introduce the flow of inverses

Γs,t(r) = inf{u ∈ [0, 1] : Bs,t(u) > r}, r ∈ [0, 1[,

and Γs,t(1) = Γs,t(1−). Section 5 studies the corresponding (Markovian) p-point motions
(Γt(r1), . . . ,Γt(rp)), where Γt = Γ0,t. For a general measure Λ such that Λ({0}) = 0, we
show that the law of the p-point motion satisfies a martingale problem analogous to the one
obtained in Section 3 for Ft. In the Kingman case, we prove that (Γt(r1), . . . ,Γt(rp)) is a
diffusion process in Dp with generator

Ãg(x) =
1

2

p∑

i,j=1

xi∧j(1 − xi∨j)
∂2g

∂xi∂xj
(x) +

p∑

i=1

(
1

2
− xi)

∂g

∂xi
.

Again components of this diffusion process coalesce when they meet, but in contrast to the
diffusion with generator A they never reach 0 or 1.

Together with Section 4, this gives a fairly complete picture of the flow associated with the
Kingman coalescent. For every s < t, Bs,t is a step function, that is a nondecreasing function
taking only finitely many values. When t increases, the vector of jump times evolves like a
diffusion process with generator Ã, but the sizes of the jumps remain constant until the first
moment when two jump times coalesce (yielding a “coagulation” of the corresponding jumps).
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Conversely, when s decreases, the vector of values taken by Bs,t evolves like a diffusion process
with generator A, but the vector of jump times remains constant, until the moment when
two among the values taken by Bs,t coalesce (or one of them hits 0 or 1) thus provoking the
disappearance of one jump.

Finally, Section 6 discusses closely related flows on the circle T = R/Z rather than on [0, 1].
In the easy case where

∫
x−2Λ(dx) < ∞, corresponding to the simple flows in [1], we briefly

explain how the Poissonian construction of [1] can be adapted to give flows on T which are
associated with Λ-coalescents. A suitable limiting procedure then leads to a flow Θ = (Θt, t ≥ 0)
which is associated with the Kingman coalescent. Precisely, Θ is a Brownian flow (in the sense
of Harris [4]) on T, with covariance function

b(y, y′) =
1

12
− 1

2
d(y, y′)(1 − d(y, y′)),

where d is the distance on T. The connection with the Kingman coalescent can then be stated
as follows. For every t > 0, the range St of Θt is finite. For every y ∈ St we can define the
mass of y at time t as the Lebesgue measure of {x ∈ T : Θt(x) = y}. Then, as a process in the
variable t, the vector of masses of elements of St is distributed as the frequencies of blocks in
the Kingman coalescent. Alternative formulations and more precise results about the flow Θ
can be found in Section 6.

2 Preliminaries

2.1 Flows of bridges and exchangeable coalescents

To start with, we recall the basic correspondence between bridges on [0, 1] and exchangeable
random partitions of N := {1, 2, . . .}, which is a slight variation of a fundamental theorem of
Kingman.

A mass-partition is a sequence β = (β i, i ∈ N) with

β1 ≥ β2 ≥ . . . ≥ 0 and
∞∑

i=1

βi ≤ 1 .

Following Kallenberg [6], given a random mass partition β and an independent sequence (U i, i ∈
N) of i.i.d. variables with uniform distribution over [0, 1], we may define a stochastic process
B = (B(r), r ∈ [0, 1]) with exchangeable increments by

B(r) =
(
1 −

∞∑

i=1

βi
)
r +

∞∑

i=1

βi 1{U i≤r} , r ∈ [0, 1] . (1)

Observe that B has right-continuous increasing paths with B(0) = 0 and B(1−) = 1, and that
the ranked sequence of the jump sizes of B is given by the mass partition β.

In the sequel, we shall call bridge any process which can be expressed in the form (1). This
is equivalent to the definition given in [1] or in the introduction above. It is easy to check
that the composition of two independent bridges is again a bridge (this is essentially Bochner’s
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subordination), which motivates the following definition. A flow of bridges is a collection
(Bs,t ,−∞ < s ≤ t <∞) of bridges such that:

(i) For every s < t < u, Bs,u = Bs,t ◦Bt,u a.s.

(ii) The law of Bs,t only depends on t − s. Furthermore, if s1 < s2 < · · · < sn, the bridges
Bs1,s2, Bs2,s3, . . . , Bsn−1,sn

are independent.

(iii) B0,0 = Id and B0,t −→ Id in probability as t ↓ 0, in the sense of Skorokhod’s topology.

Recall that P denotes the set of all partitions of N. We also denote by Pn the (finite) set
of all partitions of {1, . . . , n}. The set P is equipped with the smallest topology for which the
restriction maps from P onto Pn are continuous, when Pn is equipped with the discrete topology.
A random partition (of N) is a random variable with values in P. It is said exchangeable if its
distribution is invariant under the natural action of the permutations of N on P.

There is a simple procedure to construct a random exchangeable partition from a bridge B,
which is a variant of Kingman’s paintbox process. Let R = {B(r), r ∈ [0, 1]}cl be the closed
range of B, so Rc = [0, 1]\R is a random open set which has a canonical decomposition into
disjoint open intervals, called the interval components of Rc. Introduce a sequence of i.i.d.
uniform variables on [0, 1], (Vi, i ∈ N), which is independent of the bridge B. We define a
random partition π(B) of N by declaring that the indices i ∈ N such that Vi ∈ R are the
singletons of π(B), and two indices i 6= j belong to the same block of π(B) if and only if Vi and
Vj belong to the same interval component of Rc. By the strong law of large numbers, the sizes
βk of the jumps of B correspond to the asymptotic frequencies of the blocks of π(B). Obviously
π(B) is exchangeable, and conversely, any exchangeable random partition π is distributed as
π(B) for a certain bridge B.

The basic result in [1] stems from the observation that, informally, the sequence of jump sizes
of a compound bridge B = B1 ◦B2 can be expressed as a certain coagulation of the jump sizes
of B1, where the coagulation mechanism is encoded by B2. This entails that when one applies
the above paintbox construction to a flow of bridges, one obtains a Markov process with values
in P, which starts from the partition of N into singletons, and is such that blocks of partitions
coagulate as time passes. To be specific, let (Bs,t)−∞<s≤t<∞ be a flow of bridges, and suppose
that the sequence (Vi, i ∈ N) introduced above is independent of the flow. Then, the process
(π(B0,t), t ≥ 0) is a P-valued Markov process belonging to the class of exchangeable coalescents
(see Definition 1 in [1] for a precise definition). Conversely, any exchangeable coalescent can be
obtained by this procedure (see Theorem 1 in [1]).

2.2 Λ-coalescents and generalized Fleming-Viot processes

Pitman [12] and Sagitov [13] have pointed at an important class of exchangeable coalescents
whose laws can be characterized by an arbitrary finite measure Λ on [0, 1]. Specifically, a Λ-
coalescent is a Markov process Π = (Πt, t ≥ 0) on P started from the partition into singletons,
whose evolution can be described as follows (see Theorem 1 in [12]).
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First, one introduces the rates

βp,k =
∫

Λ(dx) xk−2 (1 − x)p−k, (2)

for every integers 2 ≤ k ≤ p. Next, for every integer n and every time t ≥ 0, denote by Πn
t the

restriction of the partition Πt to {1, . . . , n}. Then each process (Πn
t , t ≥ 0) is a continuous time

Markov chain with values in the (finite) set Pn. The law of this Markov chain is characterized
by its transition rates : Starting from a partition in Pn with p non-empty blocks, for each
k = 2, . . . , p, every possible merging of k blocks (the other p− k blocks remaining unchanged)
occurs at rate βp,k, and no other transition is possible. This description of the restricted
processes Πn determines the law of the Λ-coalescent Π.

In this work, we shall be interested in the flow of bridges (Bs,t ,−∞ < s ≤ t < ∞) corre-
sponding to a Λ-coalescent in the sense explained above. In Sections 3 and 4 below, we will
study the process

Ft := B−t,0 , t ≥ 0 , (3)

which takes values in the set of all right-continuous nondecreasing functions from [0, 1] into
[0, 1]. This process will be called the Λ-process. From properties (i) and (ii) of a flow, it is
immediate to see that for every integer p ≥ 1 and every (x1, . . . , xp) ∈ [0, 1]p, the p-point motion
(Ft(x1), . . . , Ft(xp)) is Markovian with a Feller semigroup (see also the discussion in Section 5.1
of [1]).

For each t ≥ 0, the function Ft : [0, 1] → [0, 1] can be viewed as the distribution function of
a random probability measure ρt on [0, 1]:

Ft(x) = ρt([0, x]) , x ∈ [0, 1] .

Note that ρ0 = λ is Lebesgue measure on [0, 1]. The measure-valued process (ρt, t ≥ 0), which
can be interpreted as a generalized Fleming-Viot process, is studied in Section 5 of [1]. In the
next subsection, we recall some basic properties of this process that play a crucial role in the
present work.

2.3 Martingales for the generalized Fleming-Viot process

We first present a characterization of the law of the measure-valued process (ρt, t ≥ 0) as the
solution to a martingale problem which is expressed in terms of the rates (2). In this direction,
we first need to introduce some notation.

For every probability measure µ on [0, 1] and every bounded measurable function g : [0, 1] →
R, we write

µ(g) :=
∫

[0,1]
µ(dx)g(x) .

Let p ≥ 1 be an integer. For every i = 1, . . . , p, let hi : [0, 1] → R be a bounded measurable
function. We consider the function h : [0, 1]p → R defined by

h(x) :=
p∏

i=1

hi(xi) , x = (x1, . . . , xp) . (4)
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Next, for every subset of indices I ⊆ {1, . . . , p} with |I| ≥ 2, we write hI : [0, 1]p → R for the
function defined by

hI(x) :=
∏

i∈I

hi(x`) ×
∏

j 6∈I

hj(xj) , x = (x1, . . . , xp) ,

where ` = min I. Finally we set

Gh(µ) :=
∫
h dµ⊗p =

p∏

i=1

µ(hi) ; (5)

observe that

GhI
(µ) = µ

(
∏

i∈I

hi

)
∏

j 6∈I

µ(hj) .

Recall that Λ is a finite measure on [0, 1] and that the numbers βp,k defined in (2) are the
transition rates of the Λ-coalescent. We introduce an operator L acting on functions of the
type Gh :

LGh(µ) :=
∑

I⊆{1,...,p},|I|≥2

βp,|I| (GhI
(µ) −Gh(µ)) . (6)

The following statement essentially rephrases Theorem 3(i) in [1]. The functions considered in
[1] are supposed to be continuous rather than bounded and measurable. However the general
case follows from a standard argument (see e.g. Proposition 4.2 page 111 of [3]).

Theorem 1 The law of the process (ρt, t ≥ 0) is characterized by the following martingale
problem. We have ρ0 = λ and, for every integer p ≥ 1 and every bounded measurable functions
hi : [0, 1] → R, i = 1, . . . , p, the process

Gh(ρt) −
∫ t

0
dsLGh(ρs)

is a martingale, where h is defined by (4), Gh by (5), and LGh by (6).

Uniqueness for the martingale problem of Theorem 1 follows from a duality argument. To be
specific, the process (ρt, t ≥ 0) can be interpreted as a measure-valued dual to the Λ-coalescent
(Πp

t , t ≥ 0) in Pp, and we have the explicit formula

E[Gh(ρt)] = E
[ ∏

A block of Πp
t

λ
( ∏

i∈A

hi
)]

(7)

(see formula (18) in [1]). Specializing to the case hi = 1[0,x], we see that

E[Ft(x)
p] = E[x#Πp

t ], (8)

where #Πp
t denotes the number of blocks in Πp

t .
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3 A Poissonian SDE for Λ-processes

In this section, we assume that Λ is a finite measure on [0, 1] which has no atom at 0, i.e.
Λ({0}) = 0. Our goal is to get a representation of the Λ-process F as the solution to a
stochastic differential equation driven by a Poisson point process.

As a first step, we shall see that in the easy case when the measure Λ fulfils the condition

∫

[0,1]
x−2Λ(dx) <∞ , (9)

the Λ-process solves a simple Poissonian SDE which derives directly from an explicit construc-
tion of F given in [1]. In the general case, this Poissonian SDE still makes sense thanks to
the notion of stochastic integral with respect to a compensated point measure (see e.g. Jacod
[5]). We prove that the Λ-process is a weak solution of the Poissonian SDE, and that weak
uniqueness holds for this SDE. As a key tool, we establish that the law of the p-point motion
is characterized by a martingale problem.

3.1 The simple case

We start by recalling the Poissonian construction of the Λ-process in the special case when
(9) holds (see [1] Section 4). We denote by m(du, dx) the measure on ]0, 1[×]0, 1] defined by
m(du, dx) = du⊗ x−2Λ(dx). Consider a Poisson random measure on R+×]0, 1[×]0, 1],

M =
∞∑

i=1

δ(ti,ui,xi) ,

with intensity dt⊗m(du, dx). Here the atoms (t1, u1, x1), (t2, u2, x2), . . . of M are listed in the
increasing order of their first coordinate, which is possible since the measure m is finite by our
assumption (9). Next, for every u ∈]0, 1[ and x ∈]0, 1], we introduce the elementary function

bu,x(r) = (1 − x)r + x1{u≤r} , r ∈ [0, 1] .

The Λ-process (Ft, t ≥ 0) can then be obtained by composing to the left the elementary functions
bui,xi

as atoms (ti, ui, xi) are found in the Poisson measure M . Specifically, we set Ft = Id[0,1]

when t ∈ [0, t1[, and then for every integer k ≥ 1 and t ∈ [tk, tk+1[

Ft = buk,xk
◦ · · · ◦ bu1,x1 . (10)

It is straightforward to check from (10) that for every y ∈ [0, 1], the process (Ft(y) , t ≥ 0)
can also be described as the unique solution to the following Poissonian stochastic differential
equation

Ft(y) = y +
∫

[0,t]×]0,1[×]0,1]
M(ds, du, dx)xΨ(u, Fs−(y)) , (11)

where for every u ∈]0, 1[ and r ∈ [0, 1],

Ψ(u, r) = 1{u≤r} − r . (12)
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3.2 A martingale problem for the p-point motion

From now on, we come back to the general case where Λ is a finite measure on [0, 1] which
does not charge 0. Our purpose here is to characterize the law of the p-point motion of the
Λ-process as the unique solution to a martingale problem. In this direction, we first introduce
some notation.

Fix an integer p ≥ 1. For every y = (y1, . . . , yp) ∈ [0, 1]p and every function g : [0, 1]p → R

of class C2, we write, for u ∈]0, 1[ and x ∈]0, 1],

y + xΨ(u, y) := (y1 + xΨ(u, y1), . . . , yp + xΨ(u, yp)) ,

and then
∆u,xg(y) := g (y + xΨ(u, y)) − g(y) − xΨ(u, y) · ∇g(y) ,

where

Ψ(u, y) · ∇g(y) :=
p∑

i=1

Ψ(u, yi)∂ig(y1, . . . , yp) .

Next, observing that |∆u,xg(y)| ≤ Cx2 for some constant C > 0 depending only on g, we set

Lg(y) :=
∫

]0,1]
Λ(dx)x−2

∫ 1

0
du∆u,xg(y) .

Recall that
Dp := {x = (x1, . . . , xp) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp ≤ 1}. (13)

By construction, if y = (y1, . . . , yp) ∈ Dp, the p-point motion (Ft(y1), . . . , Ft(yp)) lives in Dp.
We already noticed that it has a Feller semigroup, so that we can assume that it has càdlàg
sample paths.

We will now characterize the distribution of the p-point motion by a martingale problem,
which is clearly related to Theorem 1 above.

Lemma 1 Let p ≥ 1 and (y1, . . . , yp) ∈ Dp. The law of the process ((Ft(y1), . . . , Ft(yp)), t ≥ 0)
is characterized by the following martingale problem. We have (F0(y1), . . . , F0(yp)) = (y1, . . . , yp)
and, for every function g : Dp → R of class C2, the process

g (Ft(y1), . . . , Ft(yp)) −
∫ t

0
dsLg (Fs(y1), . . . , Fs(yp)) , t ≥ 0

is a martingale.

Proof: We start by proving that the p-point motion does solve the martingale problem of the
lemma. Let k1, . . . , kp be nonnegative integers and set k = k1 + · · ·+kp. Set j(i) = 1 if and only
if 1 ≤ i ≤ k1 and, for j ∈ {2, . . . , p}, set j(i) = j if and only if k1 + · · ·+kj−1 < i ≤ k1 + · · ·+kj.
If A is a nonempty subset of {1, . . . , k}, we also set

j(A) = inf
i∈A

j(i).

9



Define a function g on Dp by

g(z1, . . . , zp) =
p∏

j=1

(zj)
kj . (14)

We start by calculating Lg. Noting that
∫ 1
0 duΨ(u, y) = 0 for every y ∈ [0, 1], we have

Lg(z1, . . . , zp) =
∫

]0,1]
Λ(dx)x−2

( ∫ 1

0
du
( p∏

j=1

((1 − x)zj + x1{u≤zj})
kj −

p∏

j=1

(zj)
kj

))

=
∑

I⊂{1,...,k},|I|≥2

βk,|I|
(( p∏

j=1

(zj)
kj−kI

j

)
zj(I) −

p∏

j=1

(zj)
kj

)
, (15)

where kIj = |{i ∈ I : j(i) = j}| for every nonempty subset I of {1, . . . , k} and every j ∈
{1, . . . , p}. The last equality is obtained by expanding the first product in the preceding line,
in a way very similar to [1] p.281.

Now define a function h on [0, 1]k by

h(x1, . . . , xk) =
k∏

i=1

1[0,yj(i)](xi).

In the notation of Section 2.3 we have, for every s ≥ 0,

Gh(ρs) =
p∏

j=1

ρs([0, yj])
kj = g(Fs(y1), . . . , Fs(yp)). (16)

We can also compute LGh(µ) from formula (6):

LGh(µ) =
∑

I⊂{1,...,k},|I|≥2

βk,|I|(GhI
(µ) −Gh(µ)) (17)

and
hI(x1, . . . , xk) =

(∏

i/∈I

1[0,yj(i)](xi)
)
× 1[0,yj(I)](x`) (18)

with ` = min I.

By comparing (17) and (18) with (15), we get for every s ≥ 0

LGh(ρs) = Lg(Fs(y1), . . . , Fs(yp)). (19)

From (16), (19) and Theorem 1 we obtain the martingale problem of the lemma in the special
case where g is of the type (14). The general case follows by a standard density argument.

It remains to prove uniqueness. To this end we use a duality argument analogous to the one
presented in Section 5.2 of [1]. Recall that Pk denotes the space of all partitions of {1, . . . , k}
and (Πk

t , t ≥ 0) is the Λ-coalescent in Pk. For every partition π ∈ Pk, and every (z1, . . . , zp) ∈ Dp

we set
P ((z1, . . . , zp), π) =

∏

A block of π

zj(A) .
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If L∗ denotes the generator of (Πk
t ), viewing P ((z1, . . . , zp), π) as a function of π, we have

L∗P ((z1, . . . , zp), π) =
∑

I⊂{1,...,#π},|I|≥2

βk,|I|
( ∏

A block of cI(π)

zj(A) −
∏

Ablock of π

zj(A)

)

where if A1, A2, . . . are the blocks of π, cI(π) is the new partition obtained by coagulating the
blocks Ai for i ∈ I. On the other hand, viewing P ((z1, . . . , zp), π) as a function of (z1, . . . , zp)
we can also evaluate LP ((z1, . . . , zp), π) from formula (15), and we easily obtain

L∗P ((z1, . . . , zp), π) = LP ((z1, . . . , zp), π) . (20)

Now suppose that (Z1
t , . . . , Z

p
t ) is a Dp-valued càdlàg process that solves the martingale problem

of the lemma with initial value (y1, . . . , yp), and let π0 be the partition of {1, . . . , k} in singletons.
By standard arguments (see Section 4.4 in [3]) we deduce from (20) that

E




p∏

j=1

(Zj
t )
kj


 = E[P ((Z1

t , . . . , Z
p
t ), π0)] = E

[
P ((y1, . . . , yp),Π

k
t )
]
. (21)

This is enough to show that the law of (Z1
t , . . . , Z

p
t ) is uniquely determined. 2

Remark. In the case where (Z1
t , . . . , Z

p
t ) = (Ft(y1), . . . , Ft(yp)), the identity (21) is of course

a special case of (7).

3.3 Weak existence and uniqueness for a Poissonian SDE

The identity (11) in the simple case treated in subsection 3.1 incites us to construct on a suitable
filtered probability space (Ω,F , (Ft),P):

• an (Ft)-Poisson point process M on R+×]0, 1[×]0, 1] with intensity dt ⊗ m(du, dx) := dt ⊗
du⊗ x−2Λ(dx),

• a collection (Xt(r), t ≥ 0), r ∈ [0, 1] of adapted càdlàg processes with values in [0, 1],

in such a way that for every r ∈ [0, 1], a.s.

Xt(r) = r +
∫

[0,t]×]0,1[×]0,1]
M(ds, du, dx) xΨ(u,Xs−(r)) . (22)

The Poissonian stochastic integral in the right-hand side should be understood with respect to
the compensated Poisson measure M (see e.g. Chapter 3 of [5]). This makes sense as |Ψ| ≤ 1
and

∫
x2m(du, dx) < ∞. Recall also that

∫ 1
0 duΨ(u, r) = 0 for all r ∈ [0, 1], so that roughly

speaking, the compensation plays no role.

A pair (M, (X·(r), r ∈ [0, 1])) satisfying the above conditions will be called a weak solution
of (22). The main result of this section is the following.

Theorem 2 There exists a weak solution of (22), which satisfies the additional property that
Xt(r1) ≤ Xt(r2) for every t ≥ 0, a.s. whenever 0 ≤ r1 ≤ r2 ≤ 1. Moreover, for every
such solution (M,X), every integer p ≥ 1 and every p-tuple (r1, . . . , rp) ∈ Dp, the process
((Xt(r1), . . . , Xt(rp)), t ≥ 0) has the same distribution as the p-point motion of the Λ-process
started at (r1, . . . , rp).
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Proof: The second part of the theorem (weak uniqueness) is an easy consequence of Lemma
1. Recall the notation m(du, dx) = du ⊗ x−2Λ(dx). Suppose that ((Z1

t , . . . , Z
p
t ), t ≥ 0) is a

Dp-valued adapted process which satisfies the SDE

Zi
t = ri +

∫

[0,t]×]0,1[×]0,1]
M(ds, du, dx)xΨ(u, Z i

s−) , i = 1, . . . , p.

Recall the notation ∆Z i
s = Zi

s − Zi
s− for the jumps of Z i. From the very definition of the

stochastic integral, Z i is a purely discontinuous martingale and the compensator of its jump
measure ∑

∆Zi
s 6=0

δ(s,∆Zi
s)

is the image of ds ⊗ m(du, dx) under the mapping (s, u, x) → xΨ(u, Z i
s−). By applying Itô’s

formula in the discontinuous case (see e.g. Meyer [10]), we see that (Z1, . . . , Zp) solves the
martingale problem of Lemma 1, and hence is distributed as the p-point motion of the Λ-
process.

It remains to establish the existence of a weak solution. We fix a sequence (r1, r2, . . .) of real
numbers which is everywhere dense in [0, 1]. In the first part of the proof, we also fix an integer
p ≥ 1.

Set
Yt = (Y 1

t , . . . , Y
p
t ) where Y i

t := Ft(ri) for i = 1, . . . , p ,

and recall Lemma 1. By comparison with Itô’s formula, we see that for every function g :
[0, 1]p → R of class C2, the predictable projection (in the filtration generated by the Λ-process)
of the finite variation process

∑

s≤t,∆Ys 6=0

(g(Ys) − g(Ys−) − ∆Ys · ∇g(Ys−))

is ∫ t

0
ds
∫
m(du, dx) (g (Ys− + xΨ(u, Ys−)) − g(Ys−) − xΨ(u, Ys−) · ∇g(Ys−)) .

(In order to apply Lemma 1, we first need to reorder r1, . . . , rp ; still the preceding assertion holds
without reordering.) By standard arguments, this entails that the dual predictable projection
of the measure ∑

s≥0,∆Ys 6=0

δ(s,∆Ys)

is ν(ω, ds, dy) defined as the image of ds⊗m(du, dx) under the mapping

(s, u, x) → (s, xΨ(u, Ys−)) .

Finally, we see that Y is a vector-valued semimartingale with characteristics (0, 0, ν).

We may now apply Theorem 14.80 of [5] (with w̌(ω, s, z) = xΨ(u, ω(s−)) for z = (u, x) ∈
D :=]0, 1[×]0, 1] and ω ∈ D ([0,∞[,Rp)) to see that we can define on a filtered probability space
(Ω,F , (Ft), P ) an (Ft)-Poisson point process M(dt, du, dx) with intensity dt⊗m(du, dx) and a

càdlàg adapted process Xt = (X1
t , . . . , X

p
t ) such that (X1, . . . , Xp)

L
= (Y 1, . . . , Y p) and

X i
t = ri +

∫

[0,t]×]0,1[×]0,1]
M(ds, du, dx)xΨ(u,X i

s−) (23)

12



for every i ∈ {1, . . . , p}.
Now write Qp for the distribution of (M,X1, . . . , Xp, 0, 0, . . .) on the product space Mr(R+×

D) × D(R+, [0, 1])N (here Mr(R+ × D) is the space of Radon measures on R+ × D equipped
with the usual weak topology). Notice that this product space is Polish, and that the sequence
(Qp) is tight (the one-dimensional marginals of Qp do not depend on p whenever p is large
enough). Hence we can find a subsequence (Qpn

) that converges weakly to Q∞.

We abuse the notation by writing M,X1, X2, . . . for the coordinate process on Mr(R+ ×
D)×D(R+, [0, 1])N, and let (Gt)t≥0 be the canonical filtration on this space. Plainly, under Q∞,
M is a (Gt)-Poisson random measure with intensity dtm(du, dx). Moreover a careful passage
to the limit shows that the equation (23) still holds Q∞-a.s. for every i = 1, 2, . . ..

Recall that for every p ≥ 1, (X1
t , . . . , X

p
t )t≥0 has the same distribution under Q∞ as the

p-point motion (Ft(r1), . . . , Ft(rp))t≥0. If r ∈ [0, 1] is fixed, we can therefore set

Xt(r) := lim
ri↓r

↓ X i
t ,

and the process (Xt(r), t ≥ 0) has the same distribution as (Ft(r), t ≥ 0) so that in particular
it has a càdlàg modification. A second moment calculation shows that

lim
ri↓r

∫ t

0

∫

D
M(ds, du, dx)xΨ(u,X i

s−) =
∫ t

0

∫

D
M(ds, du, dx)xΨ(u,Xs−(r))

in L2(Q∞). From (23) we now infer that (22) holds for every r ∈ [0, 1]. This completes the
proof. 2

4 The Kingman flow

Throughout this section we suppose Λ = δ0. Then the Λ-coalescent is Kingman’s coalescent
[8]. Indeed, the rates (2) are simply

βp,k =
{

1 if k = 2 ,
0 if k > 2 .

Proposition 1 For every x ∈ [0, 1], the process (Ft(x), t ≥ 0) has a continuous version which
is distributed as the unique strong solution to the SDE

Xt = x+
∫ t

0

√
Xs(1 −Xs)dWs , (24)

where (Ws, s ≥ 0) is a standard one-dimensional Brownian motion.

Proof: By applying Theorem 1 with hi = 1[0,y] for every i, we obtain that

Ft(y)
p − p(p− 1)

2

∫ t

0
ds(Fs(y)

p−1 − Fs(y)
p) is a martingale (25)
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for every integer p ≥ 1. Hence (or as a consequence of (8)), we have

E [Ft(y)
p] = yp +

p(p− 1)

2
(yp−1 − yp)t + o(t), (26)

where the remainder o(t) is uniform in y as t→ 0. Next, writing

(Ft(y) − y)4 = Ft(y)
4 − 4yFt(y)

3 + 6y2Ft(y)
2 − 4y3Ft(y) + y4 ,

and applying again (25), we get

E
[
(Ft(y) − y)4

]
=
∫ t

0
dsE

[
6(Fs(y)

3 − Fs(y)
4) − 12y(F 2

t (y) − Fs(y)
3) + 6y2(Fs(y) − Fs(y)

2)
]
.

Invoking (26), we deduce that there is some finite constant c (which does not depend of y) such
that

E
[
|Ft(y) − y|4

]
≤ ct2.

By the Markov property of the one-point motion Ft(x), we see that Kolmogorov’s criterion is
fulfilled, which ensures the existence of a continuous version. That the latter can be expressed
as a solution to (24) is now a standard consequence of (25) for p = 1, 2, see for instance
Proposition 4.6 in Chapter 5 of [7].

The dispersion coefficient x →
√
x− x2 is Hölder continuous with exponent 1/2 on the

interval [0, 1], so that we can apply the well-known Yamada-Watanabe criterion which gives
pathwise uniqueness for (24). We note that 0 and 1 are absorbing points for X. 2

We now turn our attention to the p-point motion of the flow. Recall the notation (13) and for
x = (x1, . . . , xp) ∈ Dp introduce the dispersion matrix σ(x) = (σi,j(x) : 1 ≤ i ≤ p, 1 ≤ j ≤ p+1)
defined by

σi,j(x) =
{

(1 − xi)
√
xj − xj−1 if i ≥ j ,

−xi
√
xj − xj−1 if i < j ,

(27)

where x0 = 0, xp+1 = 1 by convention. It is easily checked that for every x = (x1, . . . , xp) ∈ Dp,
the coefficients (ai,j(x))1≤i,j≤p of the matrix σ(x)σ∗(x) are given for x ∈ Dp by

ai,j(x) = xi∧j(1 − xi∨j) . (28)

We also introduce the operator

Ag(x) =
1

2

p∑

i,j=1

xi∧j(1 − xi∨j)
∂2g

∂xi∂xj
(x) , (29)

for g ∈ C2(Dp).

Theorem 3 For every integer p ≥ 1 and x = (x1, . . . , xp) ∈ Dp, the p-point motion

(Ft(x1), . . . , Ft(xp)) , t ≥ 0

has a continuous version which solves the martingale problem: For every g ∈ C2(Dp),

g(Ft(x1), . . . , Ft(xp)) −
∫ t

0
Ag(Fs(x1), . . . , Fs(xp)) ds

14



is a martingale. Furthermore the process (Ft(x1), . . . , Ft(xp)) is distributed as the unique strong
solution to the SDE

Xt = x+
∫ t

0
σ(Xs)dWs , (30)

where (Ws, s ≥ 0) is a standard (p+1)-dimensional Brownian motion and σ is defined by (27).

Proof: The existence of a continuous version of the p-point motion follows from Proposition
1. Next, fix two integers 1 ≤ k ≤ ` ≤ p and set h1 = 1[0,xk], h2 = 1[0,x`], so that ρt(h1) = Ft(xk)
and ρt(h2) = Ft(x`). Note also that h1h2 = h1. Just as in the proof of Proposition 1, we deduce
from Theorem 1 that

Ft(xk)Ft(x`) −
∫ t

0
Fs(xk)(1 − Fs(x`))ds , t ≥ 0

is a martingale. We conclude using Proposition 4.6 in Chapter 5 of [7] that (the continuous
version of) the process (Ft(x1), . . . , Ft(xp)) can be expressed as a solution to (30), and the
martingale problem of the theorem follows readily.

It remains to prove pathwise uniqueness for (30). Let X = (Xt, t ≥ 0) be a solution to (30).
It is convenient to introduce the p-dimensional simplex

∆p =
{
y = (y1, . . . , yp+1) : 0 ≤ yi ≤ 1 for i = 1, . . . , p+ 1 and

p+1∑

i=1

yi = 1
}

and the increments

Yt = (Y 1
t , . . . , Y

p+1
t ) where Y i

t = X i
t −X i−1

t , i = 1, . . . , p+ 1 ,

with the convention X0
t ≡ 0 and Xp+1

t ≡ 1. Then Y is a continuous process which lives in ∆p

and solves the SDE

Yt = y +
∫ t

0
τ(Ys)dWs , (31)

where y = (x1, x2 − x1, . . . , xp − xp−1, 1 − xp) and the dispersion matrix τ(y) = (τi,j(y) : 1 ≤
i, j ≤ p+ 1) is defined for y ∈ ∆p by

τi,j(y) =
{ −yi√yj if i 6= j ,

(1 − yi)
√
yi if i = j .

We shall establish by induction on p that (31) has a unique solution, where by a solution
we mean a ∆p-valued continuous adapted process such that (31) holds. For p = 1, this is easy,
so we assume from now on that p ≥ 2 and that uniqueness of the solution of (31) has been
established at order p− 1. The following argument is related to the proof of Lemma 3.2 in [4].

Suppose first that the starting point y = (y1, . . . , yp+1) lies on the boundary of the simplex

∂∆p = {y ∈ ∆p : yi = 0 for some i ∈ {1, . . . , p+ 1}} .
So there is some index i such that the martingale Y i

t starts from 0, and since it takes values in
[0, 1], we have Y i

t = 0 for all t ≥ 0. Consider the process Ỹ (respectively, W̃ ) obtained from Y
(respectively, W ) by suppressing the i-th coordinate, viz.

Ỹt =
(
Y 1
t , . . . , Y

i−1
t , Y i+1

y , . . . , Y p+1
t

)
, W̃t =

(
W 1

t , . . . ,W
i−1
t ,W i+1

y , . . . ,W p+1
t

)
.
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It is immediate that

Ỹt = ỹ +
∫ t

0
τ̃ (Ỹs)dW̃s ,

where the dispersion matrix τ̃ is obtained from τ by removing the i-th column and i-th row.
Since W̃ is a standard p-dimensional Brownian motion, this SDE is that corresponding to (31)
for the (p− 1)-point motion and we conclude that uniqueness holds in that case.

We now suppose that the starting point y belongs to the interior ∆p\∂∆p of the simplex.
Since the dispersion matrix τ is smooth in ∆p\∂∆p, the solution exists and is clearly unique up
to the first hitting time of ∂∆p by Y . By the strong Markov property of W at this first hitting
time, we are reduced to the case when the starting point lies on the boundary ∂∆p, for which
we already know that uniqueness holds.

We have thus shown the existence of a unique solution for (31), and pathwise uniqueness for
(30) readily follows. This completes the proof. 2

Corollary 1 The family of rescaled processes

t−1/2 (Ft(x) − x) , x ∈ [0, 1]

converges in the sense of finite-dimensional distributions to a Brownian bridge when t→ 0+.

Proof: One easily deduces from Theorem 3 that for every integer p ≥ 1 and x = (x1, . . . , xp) ∈
Dp, the p-tuple

1√
t
(Ft(x1) − x1, . . . , Ft(xp) − xp)

converges in distribution to a centered Gaussian variable (G(x1), . . . , G(xp)) with covariance
matrix σ(x)σ∗(x). From (28), we recognize the p-marginal of a standard Brownian bridge. 2

Remark. In the terminology of Harris [4] Section 11, we may say that the Brownian bridge is
the generating field of the flow (Ft).

5 The flow of inverses

In this section, we consider a finite measure Λ on [0, 1] and the flow of bridges (Bs,t)−∞<s≤t<∞

associated with the Λ-coalescent. The dual flow is B̂s,t = B−t,−s. Recall that the Λ-coalescent
(Πt, t ≥ 0) in P may be constructed by the formula Πt = π(B0,t) (cf Section 2).

For every s ≤ t, we set

Γs,t(u) = inf{r ≥ 0 : Bs,t(r) > u} , if u ∈ [0, 1[,

and Γs,t(1) = Γs,t(1−). The function u −→ Γs,t(u) is then nondecreasing and right-continuous
from [0, 1] into [0, 1]. Note that in contrast to bridges we may have Γs,t(0) > 0 or Γs,t(1) < 1.
If r ≤ s ≤ t, the identity Br,t = Br,s ◦Bs,t implies

Γr,t = Γs,t ◦ Γr,s , a.s. (32)

To simplify notation, we set Γt = Γ0,t.
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Theorem 4 Let p ≥ 1. For every (x1, . . . , xp) ∈ Dp, the process (Γt(x1), . . . ,Γt(xp)) is a
Markov process taking values in Dp with a Feller semigroup.

Proof: If follows from (32) that for every 0 ≤ s ≤ t we have Γt = Γ̃t−s ◦ Γs, where Γ̃t−s is
independent of Γs and distributed as Γt−s. This entails that the process (Γt(x1), . . . ,Γt(xp)) is
Markov with semigroup Qt characterized as follows: For (y1, . . . , yp) ∈ Dp, Qt((y1, . . . , yp), ·)
is the distribution of (Γt(y1), . . . ,Γt(yp)). We know that B0,s converges in probability to the
identity mapping Id as s→ 0, in the sense of the Skorokhod topology. It follows that the same
property holds for Γs as s → 0. Therefore Qt((y1, . . . , yp), ·) converges weakly to the Dirac
measure δ(y1,...,yp) as t → 0. To complete the proof of the Feller property, we need to verify
that the mapping (y1, . . . , yp) → Qt((y1, . . . , yp), ·) is continuous for the weak topology. To
this end, it is enough to prove that Γt(y) tends to Γt(x) a.s. as y → x, or equivalently that
Γt(x−) = Γt(x) a.s., for every fixed x ∈]0, 1[ (when x = 1 we just use the definition of Γt(1)).

We argue by contradiction, supposing that there exists t > 0 and x ∈]0, 1[ such that
P[Γt(x−) < Γt(x)] > 0. Equivalently, with positive probability there is a nonempty open
interval ]a, b[⊂]0, 1[ such that B0,t(r) = x for every x ∈]a, b[. Obviously this is possible only if
the bridge B0,t has zero drift (equivalently the partition Πt has no singletons) and finitely many
jumps (equivalently Πt has finitely many blocks). By known facts about the Λ-coalescent (see
Sections 3.6 and 3.7 of [12]), the previous two properties then hold a.s. for B0,r and Πr, for
every r > 0.

From the connection between bridges and coalescents, we see that on the event {Γt(x−) <
Γt(x)}, there is a subcollection of blocks of Πt whose union has asymptotic frequency x. Using
the Markov property at time t, we get that with positive probability the partition Πt+1 consists
of two blocks with respective frequencies x and 1 − x. Replacing t by t + 1 and x by 1 − x (if
necessary) we obtain that

P[|Πt| = (x, 1 − x, 0, 0, . . .)] > 0, (33)

where |π| denotes the ranked sequence of frequencies of the partition π.

To get a contradiction, let ε > 0 and recall that

Πt+ε
(d)
= c

Π̃t
(Πε), (34)

where Π̃t is a copy of Πt which is independent of (Πr, r ≥ 0) and c
Π̃t

(Πε) denotes the coagulation

of Πε by Π̃t (see [1] section 2.2). We will verify that

P[|c
Π̃t

(Πε)| = (x, 1 − x, 0, 0, . . .)] −→
ε→0

0. (35)

Together with (34) this clearly gives a contradiction with (33). Write #π for the number of
blocks of the partition π. Since #Πε converges to ∞ in probability as ε → 0, it is immediate
to see that

P[#(c
Π̃t

(Πε)) = 2 and #Π̃t 6= 2] −→
ε→0

0.

Therefore we can concentrate on the case #Π̃t = 2 and we denote by P∗ the conditional
probability P[· | #Π̃t = 2]. Since Π̃t is an exchangeable partition, the distribution of Π̃t under
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P∗ must be of the following type: There is a random variable q with values in ]0, 1[ such that,
under the probability measure P∗,

Π̃t
(d)
= ({i ≥ 1 : Xi = 1}, {i ≥ 1 : Xi = 0}),

where conditionally given q the variables Xi are independent Bernoulli variables with param-
eter q (and we may also assume that the Xi’s are independent of (Πr, r ≥ 0)). Write |Πε| =
(aε1, a

ε
2, . . . , a

ε
nε
, 0, 0, . . .) for the ranked sequence of frequencies of Πε. Then the ranked frequen-

cies of c
Π̃t

(Πε) are distributed under P∗ as the decreasing rearrangement of (Yε, 1−Yε, 0, 0, . . .),
where

Yε =
nε∑

i=1

aεi Xi.

Note that
∑nε

i=1 a
ε
nε

= 1 and that supi≥1 a
ε
i converges a.s. to 0 as ε→ 0. Also denote by

Vε =
(
q(1 − q)

nε∑

i=1

(aεi )
2
)1/2

the square root of the conditional variance of Yε knowing q and (Πr, r ≥ 0). By well-known
limit theorems for triangular arrays, the conditional distribution given q and (Πr, r ≥ 0) of

Zε :=
Yε − q

Vε

converges as ε→ 0 to the standard normal distribution on the line. It follows that

P∗[|c
Π̃t

(Πε)| = (x, 1 − x, 0, 0, . . .)] = P∗[Yε = x or Yε = 1 − x]

= P∗
[
Zε =

x− q

Vε
or Zε =

1 − x− q

Vε

]

= E∗
[
P∗
[
Zε =

x− q

Vε
or Zε =

1 − x− q

Vε

∣∣∣ q, (Πr)r≥0

]]

which tends to 0 as ε→ 0. This completes the proof of (35) and gives the desired contradiction.

2

In a way analogous to Lemma 1, we will now discuss the martingale problem satisfied by the
process (Γt(x1), . . . ,Γt(xp)).

Theorem 5 Suppose that Λ(0) = 0. For every function F ∈ C2(Dp) and every (y1, . . . , yp) ∈
Dp, set

L̃F (y1, . . . , yp) =
∫

Λ(dz) z−2
( ∫ 1

0
dv
(
F (ψz,v(y1), . . . , ψz,v(yp)) − F (y1, . . . , yp)

))
,

where

ψz,v(y) = 1{v>y}
(
(

y

1 − z
) ∧ v

)
+ 1{v≤y}

(
(
y − z

1 − z
) ∨ v

)

if 0 < z < 1, and ψ1,v(y) = v. Then, for every (u1, . . . , up) ∈ Dp,

F (Γt(u1), . . . ,Γt(up)) −
∫ t

0
L̃F (Γs(u1), . . . ,Γs(up)) ds

is a martingale.
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Remark. By using the Taylor expansion for F in the neighborhood of (y1, . . . , yp), it is not
hard to verify that the integral with respect to Λ(dz) in the definition of L̃F is absolutely
convergent, and moreover the function L̃F is bounded over [0, 1]p.

Proof: First observe that for every s ≥ 0 and u, x ∈ [0, 1[,

{Γs(u) < x} = {B0,s(x) > u} , a.s. (36)

The inclusion {Γs(u) < x} ⊂ {B0,s(x) > u} is obvious by definition. Conversely, since B0,s is
continuous at x, a.s., the condition B0,s(x) > u also implies that Γs(u) < x a.s.

Let g be a polynomial function on [0, 1]p and let f ∈ C∞([0, 1]p). Also set

G(t1, . . . , tp) =
∫ t1

0
du1

∫ t2

0
du2 . . .

∫ tp

0
dup g(u1, . . . , up),

F (t1, . . . , tp) =
∫ 1

t1
dx1

∫ 1

t2
dx2 . . .

∫ 1

tp
dxp f(x1, . . . , xp).

From (36), we get that for every u1, . . . , up, x1, . . . , xp ∈ [0, 1[,

P[Γs(u1) < x1, . . . ,Γs(up) < xp] = P[B0,s(x1) > u1, . . . , B0,s(xp) > up]

= P[B̂0,s(x1) > u1, . . . , B̂0,s(xp) > up].

Integrating with respect to the measure g(u1, . . . , up)f(x1, . . . , xp)du1 . . . dupdx1 . . . dxp, we
arrive at

∫

[0,1[p
du1 . . . dup g(u1, . . . , up) E

[
F (Γs(u1), . . . ,Γs(up)) − F (u1, . . . , up)

]

=
∫

[0,1[p
dx1 . . . dxp f(x1, . . . , xp) E

[
G(B̂0,s(x1), . . . , B̂0,s(xp)) −G(x1, . . . , xp)

]
. (37)

Denote by AF,G the right-hand side of (37). We can evaluate AF,G from the knowledge of the
generator L for the process (Fs(x1), . . . , Fs(xp)) = (B̂0,s(x1), . . . , B̂0,s(xp)) (strictly speaking we
should reorder x1, . . . , xp since the process (Fs(x1), . . . , Fs(xp)) and its generator were discussed
above in the case when (x1, . . . , xp) ∈ Dp; we will leave this trivial reduction to the reader).
Denoting by Pt the semigroup of this process, we have

E
[
G(Fs(x1), . . . , Fs(xp)) −G(x1, . . . , xp)

]
=
∫ s

0
dtLPtG(x1, . . . , xp).

To simplify notation, set x = (x1, . . . , xp) and Ψ(v, x) = (Ψ(v, x1), . . . ,Ψ(v, xp)) as in Section
3.2. From the formula for L (Section 3.2), the last displayed quantity is equal to

∫ s

0
dt
∫

Λ(dz)z−2
∫ 1

0
dv(PtG(x + zΨ(v, x)) − PtG(x)).

From the explicit formula for PtG when G is a polynomial function (see (21)), we see that
PtG is again a polynomial function and moreover we can get a uniform bound on the second
derivatives of PtG. Using Taylor’s formula, and the fact that

∫ 1
0 dvΨ(v, x) = 0, we get

∣∣∣
∫ 1

0
dv (PtG(x+ zΨ(v, x)) − PtG(x))

∣∣∣ ≤ C z2
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with a constant C independent of t, x, z. This allows us to apply Fubini’s theorem in order to
get

AF,G =
∫

[0,1[p
dx f(x)

∫ s

0
dt
∫

Λ(dz)z−2
∫ 1

0
dv (PtG(x + zΨ(v, x)) − PtG(x))

=
∫ s

0
dt
∫

Λ(dz)z−2
∫

[0,1[p
dx f(x)

∫ 1

0
dv (PtG(x + zΨ(v, x)) − PtG(x))

Then, from the definition of G and the fact that B̂0,t
(d)
= B0,t,

PtG(x+ zΨ(v, x)) − PtG(x)

= E[G(B̂0,t(x1 + zΨ(v, x1)), . . . , B̂0,t(xp + zΨ(v, xp))) −G(B̂0,t(x1), . . . , B̂0,t(xp))]

= E
[ ∫

[0,1[p
du1 . . . dup g(u1, . . . , up)

( p∏

i=1

1{ui<B0,t(xi+zΨ(v,xi))} −
p∏

i=1

1{ui<B0,t(xi)}

)]
.

At this point we use (36) with u replaced by ui and x replaced by xi, or by xi + zΨ(v, xi). We
also observe that the condition xi + zΨ(v, xi) > Γt(ui) holds if and only if xi > ψz,v(Γt(ui)),
or possibly xi = v in the case when ψz,v(Γt(ui)) = v. Since the case xi = v obviously gives no
contribution when we integrate with respect to dv, we get

∫ 1

0
dv(PtG(x+zΨ(v, x))−PtG(x)) =

∫ 1

0
dv
∫

[0,1[p
du g(u) E

[ p∏

i=1

1{xi>ψz,v(Γt(ui))}−
p∏

i=1

1{xi>Γt(ui)}

]
.

By substituting this in the preceding formula for AF,G, we arrive at

AF,G =
∫ s

0
dt
∫

Λ(dz)z−2
∫ 1

0
dv
∫

[0,1[p
du g(u)E

[
F (ψz,v(Γt(u1)), . . .) − F (Γt(u1), . . .)

]

=
∫

[0,1[p
du g(u)

∫ s

0
dt
∫

Λ(dz)z−2
∫ 1

0
dvE

[
F (ψz,v(Γt(u1)), . . .) − F (Γt(u1), . . .)

]
,

where the last application of Fubini’s theorem is easily justified by observing that there exists
a constant C such that for every z ∈]0, 1] and y1, . . . , yp ∈ [0, 1],

∣∣∣
∫ 1

0
dv(F (ψz,v(y1), . . . , ψz,v(yp)) − F (y1, . . . , yp))

∣∣∣ ≤ C z2.

From the Feller property of the process (Γt(u1), . . . ,Γt(up)) and the previous bound, we get
that the mapping

(u1, . . . , up) −→
∫ s

0
dt
∫

Λ(dz)z−2
∫ 1

0
dvE

[
F (ψz,v(Γt(u1)), . . .) − F (Γt(u1), . . .)

]

is continuous. By comparing with (37), we conclude that

E
[
F (Γs(u1), . . . ,Γs(up)) − F (u1, . . . , up)

]
=
∫ s

0
dtE

[
L̃F (Γt(u1), . . . ,Γt(up))

]
.

This gives the martingale problem stated in the theorem, at least for functions F of the type
considered above. The general case follows from an easy induction on p together with a density
argument to go from C∞ functions to C2 functions. 2
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A natural question is uniqueness for the martingale problem stated in Theorem 5 (compare
with Lemma 1). This does not seem to follow directly from our approach. Instead we will turn
to the case of the Kingman coalescent, where the law of the flow of inverses can be made more
explicit. Recall that the domain Dp has been defined in (13).

Theorem 6 Suppose that Λ = δ0. Let (u1, . . . , up) ∈ Dp. Then the process (Γt(u1), . . . ,Γt(up))
is a diffusion process in Dp with generator

Ãg(x) =
1

2

p∑

i,j=1

xi∧j(1 − xi∨j)
∂2g

∂xi∂xj
(x) +

p∑

i=1

(
1

2
− xi)

∂g

∂xi
(x) ,

for g ∈ C2(Dp).

Proof: This can be deduced from the martingale problem for the process (Ft(x1), . . . , Ft(xp))
in a way similar to the proof of Theorem 5. We will treat the case p = 1 and leave details of
the general case to the reader. Let f ∈ C2([0, 1]) and let g be a polynomial function on [0, 1].
As in the proof of Theorem 5, we set

F (x) =
∫ 1

x
f(y)dy , G(x) =

∫ x

0
g(u)du .

As in (37), we have

∫ 1

0
du g(u) E[F (Γs(u)) − F (u)] =

∫ 1

0
dx f(x) E[G(B̂0,s(x)) −G(x)], (38)

and
E[G(B̂0,s(x)) −G(x)] =

∫ s

0
dtAPtG(x). (39)

Fix t > 0 and set h = PtG. Recall from (29) that Ah(x) = 1
2
x(1− x)h′′(x). Note that h(0) = 0

and h(1) = G(1) =
∫ 1
0 g(u)du. Also set φ(x) = 1

2
x(1 − x)f ′(x) + (1

2
− x)f(x). Using two

integrations by parts, we get

∫ 1

0
dx f(x)Ah(x) = −

∫ 1

0
dx φ(x) h′(x)

= −φ(1)h(1) +
∫ 1

0
dx φ′(x) h(x)

= −φ(1)h(1) +
∫ 1

0
dx φ′(x)E

[ ∫ B̂0,t(x)

0
du g(u)

]

= −φ(1)h(1) +
∫ 1

0
du g(u)

∫ 1

0
dx φ′(x) P[Γt(u) < x]

= −
∫ 1

0
du g(u) E[φ(Γt(u))].

By combining this with (38) and (39) we arrive at

E[F (Γs(u)) − F (u)] = −
∫ s

0
dtE[φ(Γs(u))].
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The case p = 1 of the theorem easily follows. 2

Remark. By arguments similar to the proof of Theorem 3, it is easy to verify that unique-
ness holds for the martingale problem associated with the generator Ã. Moreover the process
(Γs(x1), . . . ,Γs(xp)) can be obtained as the unique strong solution of a stochastic differential
equation analogous to (30). In the case p = 1 in particular, (Γt(x), t ≥ 0) has the same law as
the process (Xt, t ≥ 0) solving the equation

Xt = x +
∫ t

0

√
Xs(1 −Xs) dWs +

∫ t

0
(
1

2
−Xs) ds,

where W is a standard linear Brownian motion. If x /∈ {0, 1}, then Xt never hits 0 or 1. This
property, which is in contrast with the diffusion process of Theorem 3, can be seen as follows.
If T0 := inf{t ≥ 0 : Xt = 0}, an application of Itô’s formula shows that, for t ∈ [0, T0[,

logXt = log x +
∫ t

0

√
1 −Xs

Xs

dWs −
t

2
.

Hence t
2
+ logXt is a local martingale on the stochastic interval [0, T0[, and cannot converge to

−∞ as t → T0. This proves that T0 = ∞ a.s., and a similar argument applies to the hitting
time of 1.

More about the Kingman flow.

Let us summarize the various results we have obtained for the flow associated with the
Kingman coalescent. Fix s, t ∈ R with s < t. Then, we know that the number Ns,t of jumps of
the bridge Bs,t is distributed as the number of blocks in the Kingman coalescent at time t− s.
Furthermore, conditionally on {Ns,t = p}, we may write

Bs,t(r) =
p−1∑

i=1

Y i
s,t 1[Zi

s,t,Z
i+1
s,t [(r) + 1[Zp

s,t,1]
(r), (40)

where the random vectors (Z1
s,t, . . . , Z

p
s,t) and (Y 1

s,t, . . . , Y
p−1
s,t ) are independent, (Z1

s,t, . . . , Z
p
s,t) is

distributed as the ordered statistics of p independent uniform variables on [0, 1] and (Y 1
s,t, . . . , Y

p−1
s,t )

is distributed as the ordered statistics of p− 1 independent uniform variables on [0, 1] (this last
property is needed only if p > 1). The first two properties follow from general facts about
bridges. The last one follows from the known distribution of block frequencies in the Kingman
coalescent (see [8]).

Next what happens in the representation (40) if we vary s and t ? First, if s is fixed, and
t increases, the vector (Y 1

s,t, . . . , Y
p−1
s,t ) will remain constant as long as Ns,t = p. Meanwhile,

Theorem 6 shows that the vector (Z1
s,t, . . . , Z

p
s,t) evolves as a diffusion process with generator Ã.

Eventually, two successive coordinates of this process will meet and coalesce, thus corresponding
to a coalescence in the Kingman coalescent. At the same time Ns,t jumps from p to p− 1, and
so on.

On the contrary, if we fix t and decrease s, the vector (Z1
s,t, . . . , Z

p
s,t) will remain constant

as long as Ns,t = p. Meanwhile, Theorem 3 shows that (Y 1
s,t, . . . , Y

p−1
s,t ) evolves as a diffusion

process with generator A. Eventually two successive coordinates of this process will coalesce,
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or the first one Y 1
s,t will be absorbed at 0, or the last one Y p−1

s,t will be absorbed at 1 (in
the genealogical interpretation of [1], each of these events corresponds to the extinction of a
subpopulation consisting of descendants of one individual at the initial generation). At that
moment, Ns,t jumps from p to p− 1, and so on.

6 Flows on the circle

6.1 A Poissonian construction

Our goal in this section is to investigate certain flows on the circle which are associated with
Λ-coalescents in a similar way to the flows on [0, 1] considered in the previous sections. We will
start with a Poissonian construction which is analogous to the one in Section 4 of [1]. For this
reason we will skip some details of the proofs.

We consider the one-dimensional torus T = R/Z. We denote by d(x, y) the distance on T

and by σ Lebesgue measure on T. If x, y ∈ T, we will denote by [[x, y]] the counterclockwise
arc going from x to y : If p is the canonical projection from R onto T, and if x1, resp. y1,
is the representative of x, resp. y, in [0, 1[, then [[x, y]] = p([x1, y1]) if x1 ≤ y1 and [[x, y]] =
p([x1, y1 + 1]) if x1 > y1. We also set d∗(x, y) = σ([[x, y]]). Finally, for every x ∈ T, we set
x̄ = x + 1

2
and if y ∈ T and y 6= x̄, we denote by [x, y] the shortest arc between x and y (that

is the range of the unique geodesic from x to y).

Let z ∈ T and a ∈]0, 1]. We denote by fa,z the unique continuous mapping from T into T

such that
fa,z(y) = z if d(y, z) ≤ a

2

and if d(y, z) > a
2
, fa,z(y) is the unique element of T such that

d(z̄, fa,z(y)) =
1

1 − a
d(z̄, y)

and
fa,z(y) ∈ [y, z]

(the latter condition makes sense only if y 6= z̄, which is the case where it is needed).

Note that the image of the restriction of σ to {y : d(y, z) > a/2} under the mapping fa,z is
(1 − a)σ. This is the key property needed for the subsequent developments.

Let ν be a finite measure on ]0, 1], and let N (dtdzda) be a Poisson point measure on R ×
T×]0, 1] with intensity dtσ(dz)ν(da). Then, for every s, t ∈ R with s ≤ t, define

Φs,t = fak ,zk
◦ fak−1,zk−1

◦ · · · ◦ fa1,z1 (41)

where (t1, z1, a1), . . . , (tk, zk, ak) are the atoms of N in ]s, t] × T×]0, 1], ordered in such a way
that t1 < · · · < tk. If k = 0, that is if there are no such atoms, we let Φs,t be the identity
mapping of T. By construction,

Φs,u = Φt,u ◦ Φs,t , if s ≤ t ≤ u.
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Finally, let V1, V2, . . . be a sequence of i.i.d. random variables which are uniformly distributed
on T. Also assume that this sequence is independent of the Poisson measure N . For every
s ≤ t, define a random equivalence relation Πs,t on N by declaring that i and j are in the same
block of Πs,t if and only if Φs,t(Vi) = Φs,t(Vj).

Proposition 2 The process (Π0,t, t ≥ 0) is a Λ-coalescent, with Λ(dx) = x2ν(dx).

This is very similar to Lemma 4 in [1], so that we will skip the proof. The crucial observation
is the following. Let a ∈]0, 1] and let Z be a random variable uniformly distributed over T,
independent of the sequence (Vj). For n ≥ 1, set Kn = |{i ≤ n : d(Z, Vi) ≤ a

2
}|. Then,

conditionally on Kn = k, the distinct values taken by fa,Z(Vi), i ≤ n, are distributed as
n− k + 1 independent uniform variables on T (compare with Lemma 2 of [1]).

Note that our presentation is a bit different from the one in [1], because we consider the
“flow of inverses” rather than the direct flow as in Section 4 of [1]. This explains the apparent
difference between (41) and formula (13) of [1].

At this point it would be tempting to continue in the spirit of Theorem 2 of [1] and to
consider a sequence (νn) such that the measures x2νn(dx) converge weakly to a given finite
measure Λ on [0, 1]. Denoting by Φn the flow associated with νn by the above construction, one
expects that the sequence Φn converges in a suitable sense to a limiting flow associated with
the Λ-coalescent. This convergence is indeed easy to obtain for the one-point motions, and
because of rotational invariance of our construction, we see that the limiting one-point motions
are Lévy processes on T. However, proving the convergence of several points motions is harder
because it does not seem easy to obtain a simple characterization of the limiting law. We will
not address this general problem here, but in the next subsection we will concentrate on the
case of the Kingman coalescent (Λ = δ0), which leads to a Brownian flow on T.

6.2 A remarkable Brownian flow

For every ε ∈]0, 1], let νε = ε−2δε, and let Φε = (Φε
s,t)−∞<s≤t<∞ be the Poissonian flow con-

structed in the preceding subsection with ν = νε.

Proposition 3 Let z1, . . . zp ∈ T. Then the processes

(Φε
0,t(z1), . . . ,Φ

ε
0,t(zp))t≥0

converge in distribution as ε ↓ 0, in the sense of weak convergence in the Skorokhod space
D(R+,T

p), towards a diffusion process with generator

Bg(y1, . . . , yp) =
1

2

p∑

i,j=1

b(yi, yj)
∂2g

∂yi∂yj
(y1, . . . , yp) , g ∈ C2(Tp),

where the function b is defined on T2 by

b(y, y′) =
1

12
− 1

2
d(y, y′)(1 − d(y, y′)). (42)
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As the proof will show, uniqueness holds for the martingale problem associated with the
generator B, so that the limit in the proposition is well defined.

In the terminology of Harris [4], we can identify the limiting flow as the (coalescing) Brownian
flow on T with covariance function b (note that b is translation invariant). In particular the
one-point motions are (scaled) Brownian motions on T.

Proof. First consider the case p = 1, z1 = z. In that case, we observe that Φε
0,t(z) is a

continuous-time random walk on T, with jump rate ε2 and symmetric jump distribution πε

given by ∫

T

πε(dy)ϕ(y) =
∫ ε/2

−ε/2
daϕ(a) +

∫ 1−ε/2

ε/2
daϕ

(ε(a− 1/2)

1 − ε

)
.

Notice that πε is supported on [−ε/2, ε/2] and that we slightly abuse notation by identifying
elements of [− ε

2
, ε

2
] with their equivalent classes in T. When ε → 0, the second moment of πε

behaves as

ε2
∫ 1

0
(a− 1

2
)2 da =

ε2

12
.

From well-known invariance principles, this is enough to conclude that the process (Φε
0,t(z))t≥0

converges in distribution, in the sense of weak convergence in the Skorokhod space D(R+,T),
towards a Brownian motion on T started at z (with generator 1

24
d2

dx2 instead of the usual 1
2
d2

dx2 ).

Let us come back to the general case p ≥ 1. From the case p = 1, we already know that
the family of the distributions of the processes (Φε

0,t(z1), . . . ,Φ
ε
0,t(zp))t≥0 is tight as ε → 0.

To prove the desired convergence we need to characterize the sequential limits of this family.
By construction, the process (Φε

0,t(z1), . . . ,Φ
ε
0,t(zp)) is a continuous-time Markov chain with

generator

Bεg(y1, . . . , yp) = ε−2
∫
σ(dz)

(
g(fε,z(y1), . . . , fε,z(yp)) − g(y1, . . . , yp)

)
.

Assume that g ∈ C2(Tp). Then Taylor’s expansion shows that as ε ↓ 0,

Bεg(y1, . . . , yp) =
ε−2

2

p∑

i,j=1

∂2g

∂yi∂yj
(y1, . . . , yp)

∫
(fε,z(yi) − yi)(fε,z(yj) − yj) σ(dz) + o(1),

where we again abuse notation by writing fε,z(yi) − yi for the representative of this element of
T in the real interval [−ε, ε]. Elementary calculations show that for every y, y ′ ∈ T,

lim
ε→0

ε−2
∫

(fε,z(y) − y)(fε,z(y
′) − y′) σ(dz) = b(y, y′)

where the function b(y, y′) is as in the statement of the theorem.

By a standard argument we obtain that any weak sequential limit (Γ1
t , . . . ,Γ

p
t ) of the family

(Φε
0,t(z1), . . . ,Φ

ε
0,t(zp)) as ε ↓ 0 solves the following martingale problem: For every g ∈ C2(Tp),

g(Γ1
t , . . . ,Γ

p
t ) −

∫ t

0
Bg(Γ1

s, . . . ,Γ
p
s) ds

is a martingale. It remains to verify that this martingale problem is well-posed. To this end,
let Γt = (Γ1

t , . . . ,Γ
p
t ) be any continuous process that solves the preceding martingale problem

with initial value (z1, . . . , zp). Fix i, j ∈ {1, . . . , n} and let

Ti,j = inf{t ≥ 0 : Γit = Γjt}.
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We first prove that
Γit = Γjt for every t ≥ Ti,j, a.s. (43)

Without loss of generality we may take i = 1 and j = 2. Let z0 ∈ T\{z1, z2} and

T0 = inf{t ≥ 0 : Γ1
t = z0 or Γ2

t = z0}.

For every t ≥ 0, set
Xt = d∗(z0,Γ

1
t ) − d∗(z0,Γ

2
t )

(recall that d∗(x, y) is the length of the counterclockwise arc from x to y). From the martingale
problem for Γ, we easily deduce that for every g ∈ C2(R) the process

g(Xt) −
1

2
|Xt|(1 − |Xt|)g′′(Xt)

is a local martingale on the stochastic interval [0, T0[ (the restriction to [0, T0[ is needed since
the function (x, y) −→ d∗(z0, x)−d∗(z0, y) is C2 only on T\{z0}). Now notice that the diffusion
process with generator 1

2
|x|(1 − |x|) d2

dx2 (in the real interval [−1, 1]) is absorbed at the origin.
We conclude that Γ1

t = Γ2
t for every t ∈ [T1,2, T0[, a.s. on {T1,2 < T0}. Our claim (43) follows

by applying a similar argument to the shifted process (Xs+t)t≥0 for any s ≥ 0.

Since the covariance function b is smooth outside the diagonal, the desired uniqueness prop-
erty easily follows from (43). See Lemma 3.2 in [4] for a similar argument. 2

We now turn to a more detailed discussion of properties of the limiting flow. Note that the
notion of a right-continuous function on T makes sense with an obvious meaning. A function
ϕ : T −→ T is said to be monotone if the condition y ∈ [[x, z]] implies ϕ(y) ∈ [[ϕ(x), ϕ(z)]].

By adapting arguments of Harris [4] (section 4), we may construct a collection (Θt(x))t≥0

indexed by x ∈ T, of continuous processes with values in T, in such a way that the following
holds:

(i) For every z1, . . . , zp, the process (Θt(z1), . . . ,Θt(zp)) is distributed as the solution of the
martingale problem associated with B started at (z1, . . . , zp).

(ii) For every t ≥ 0, the function x −→ Θt(x) is right-continuous and monotone.

(iii) The mapping t −→ (Θt(x), x ∈ T) is continuous with respect to the uniform norm on
Borel functions from T into T.

(iv) If x, y ∈ T and Sx,y = inf{t ≥ 0 : Θt(x) = Θt(y)} then Sx,y < ∞ and we have Θt(x) =
Θt(y) for every t ≥ Sx,y.

From now on we deal with a collection (Θt(x)) satisfying the above properties (i)–(iv).

Theorem 7 Let (V1, V2, . . .) be a sequence of independent uniform variables on T, which is
also independent of the collection (Θt(x)). For every t ≥ 0, let Πt be the random partition of N

constructed by saying that i and j are in the same block of Πt if and only if Θt(Vi) = Θt(Vj).
Then (Πt)t≥0 is a Kingman coalescent.
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Proof. Recall the Poissonian flow Φε of the beginning of this subsection, and fix p ≥ 1. As a
consequence of Proposition 3, we know that

(Φε
0,t(V1), . . . ,Φ

ε
0,t(Vp))t≥0 −→ (Θt(V1), . . . ,Θt(Vp))t≥0 (44)

in the sense of weak convergence in the Skorokhod space. By using the Skorokhod representation
theorem, we may and will assume that this convergence holds a.s. along a given subsequence
εk → 0. From now on we restrict our attention to values of ε belonging to this subsequence.
For i, j ∈ {1, . . . , p} with i 6= j, set

T εi,j = inf{t ≥ 0 : Φε
0,t(Vi) = Φε

0,t(Vj)}.

Lemma 2 We have
lim
ε→0

T εi,j = SVi,Vj
in probability

and the variable SVi,Vj
is exponentially distributed with mean 1.

We postpone the proof of the lemma. For every t ≥ 0, let Πε
0,t be the random partition

of N associated with Φε as explained before Proposition 2. By Proposition 2, we know that
the process (Πε

0,t)t≥0 is a Λ-coalescent with Λ = δε, and thus converges in distribution to the
Kingman coalescent as ε→ 0 (see Theorem 1 in [12]).

On the other hand, it immediately follows from Lemma 2 and our definitions that the
restriction of Πε

0,t to {1, . . . , p} converges in probability to the restriction of Πt. Hence we
conclude that the restriction of (Πt)t≥0 to {1, . . . , p} is distributed as the Kingman coalescent.
Since this holds for any p the proof is complete. 2

Proof of Lemma 2. It is clear from the a.s. convergence (44) that we have

SVi,Vj
≤ lim inf

ε→0
T εi,j , a.s.

To get the first part of the lemma, it is then enough to prove that E[T εi,j] converges to E[SVi,Vj
]

as ε → 0. From Proposition 2 and the known properties of the Λ-coalescent (see e.g. [12]
Example 19), or by a direct argument, it is easily checked that T ε

i,j has the same distribution
as U1 + · · ·+UNε

, where U1, . . . are independent exponential variables with mean ε2, and Nε is
independent of the sequence U1, . . . and such that P[Nε = k] = ε2(1− ε2)k−1 for every k ∈ N. It
immediately follows that E[T εi,j] = 1. Therefore the proof of the first assertion will be complete
if we verify the second assertion, that is SVi,Vj

is exponential with mean 1.

The following argument is related to Lemma 3.4 in Harris [4]. By using the martingale
problem and arguments similar to the proof of Proposition 3, it is easy to check that the process
(d∗(Θt(Vi),Θt(Vj)), 0 ≤ t < SVi,Vj

) is distributed as the diffusion with generator 1
2
x(1 − x) d2

dx2

with initial value uniform over [0, 1], up to its first hitting time of {0, 1} (notice that this is
the same diffusion as in Corollary 1). Consequently, if U is a random variable with uniform
distribution over [0, 1], and W is a standard linear Brownian motion, then SVi,Vj

has the same
distribution as T = inf{t ≥ 0 : Yt = 0 or 1}, where Y is the unique (strong) solution of the
stochastic equation

Yt = U +
∫ t

0

√
Ys(1 − Ys) dWs.
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Note that Y is absorbed at 0 and 1 and that E[Yt] = 1
2

for every t ≥ 0. From Itô’s formula, we
get that for every integer k ≥ 2,

E[Y k
t ] =

1

k + 1
+
k(k − 1)

2

∫ t

0
(E[Y k−1

s ] − E[Y k
s ])ds.

From this formula and an easy induction argument we get

E[Y k
t ] =

1

2
− k − 1

2(k + 1)
e−t.

The distribution of Yt readily follows: By letting k go to ∞ and using symmetry, we have first
P[Yt = 0] = P[Yt = 1] = 1

2
(1 − e−t) and we also see that, conditionally on {Yt /∈ {0, 1}}, Yt is

uniform on ]0, 1[. This is more than enough for our needs. 2

We observed in the preceding proof that the process (d∗(Θt(Vi),Θt(Vj)), 0 ≤ t < SVi,Vj
)

is distributed as the diffusion process in Corollary 1. This is generalized in the following
proposition, which provides a connection between the flow (Θt)t≥0 and the Kingman flow on
the interval [0, 1], thus shedding light on Theorem 7.

Recall our notation (Ft)t≥0 for the Λ-process and take Λ = δ0. For every x ∈ [0, 1], we can
view (Ft(x))t≥0 as a T-valued process: This simply means that we identify the values 0 and 1.

Proposition 4 Let 0 ≤ x1 < x2 < · · · < xp < 1. Then the Tp-valued processes
(
d∗(Θt(0),Θt(x1)), d

∗(Θt(0),Θt(x2)), . . . , d
∗(Θt(0),Θt(xp))

)
t≥0

and (
Ft(x1), Ft(x2), . . . , Ft(xp)

)
t≥0

have the same distribution.

Proof: The generator A of the Markov process (Ft(x1), Ft(x2), . . . , Ft(xp)) is known from
Theorem 3. From the knowledge of the generator B for the process (Θt(0),Θt(x1), . . . ,Θt(xp))
we can also identify the law of the process

(
d∗(Θt(0),Θt(x1)), d

∗(Θt(0),Θt(x2)), . . . , d
∗(Θt(0),Θt(xp))

)
t≥0

(compare with Section 5 of Harris [4]). Precisely, we verify that the latter process solves the
martingale problem associated with A, at least up to the stopping time S0,xp

, and we then use
an induction argument. Details are left to the reader. 2

As a consequence of Theorem 7 (or of the preceding proposition), we know that for every
t > 0 the range St of Θt is finite, and more precisely Nt = |St| is distributed as the number of
blocks in the Kingman coalescent at time t. Set

St = {U t
1, . . . , U

t
Nt
},

where U t
1 is drawn uniformly at random from St, and then the points U t

1, U
t
2, . . . , U

t
Nt

are listed
in counterclockwise order. The next corollary is a simple consequence of Proposition 4 and the
discussion at the end of Section 5.
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Corollary 2 Fix t > 0. Let

Mt = (σ(Θ−1
t (U t

1)), σ(Θ−1
t (U t

2)), . . . , σ(Θ−1
t (U t

Nt
)))

be the vector of masses attached to the points in St, and let

Dt = (d∗(U t
1, U

t
2), d

∗(U t
2, U

t
3), . . . , d

∗(U t
Nt
, U t

1))

be the vector of lengths of the adjacent intervals to the points in St. Then conditionally on
{Nt = k}, the vectors Mt and Dt are independent and both uniformly distributed on the simplex
{(x1, . . . , xk) ∈ [0, 1]k : x1 + · · · + xk = 1}.

Remarks. (i) There is in a sense more symmetry in the flow (Θt) than in the Kingman flow
on the interval [0, 1], for which the end points 0 and 1 play a special role. The fact that the
random vectors Mt and Dt have the same distribution is clearly related to Theorem 10.5 and
Corollary 10.6 in Harris [4], who deals with Brownian flows on the real line.

(ii) As a final observation, let us comment on the constant 1
12

in formula (42) for the covariance

function b. Let a > 0 and let βa be a Brownian motion on T started at 0 with generator a
2

d2

dx2 .
Assume that βa is independent of (Θt)t≥0 and for every t ≥ 0 set

Θa
t (y) = Θt(y) + βat , y ∈ T.

Then (Θa
t )t≥0 is a Brownian flow in T with covariance ba(y, y′) = b(y, y′) + a. Obviously,

Theorem 7, Proposition 4 and Corollary 2 remain valid if Θ is replaced by Θa.
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