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Abstract. Let G be a finite group and W be a faithful representation of G
over C. The group G acts on the field of rational functions C(W ). The ques-
tion whether the field of invariant functions C(W )G is purely transcendental
over C goes back to Emmy Noether. Using the unramified cohomology
group of degree 2 of this field as an invariant, Saltman gave the first ex-
amples for which C(W )G is not rational over C. Around 1986, Bogomolov
gave a formula which expresses this cohomology group in terms of the
cohomology of the group G.

In this paper, we prove a formula for the prime to 2 part of the unramified
cohomology group of degree 3 of C(W )G . Specializing to the case where G
is a central extension of an Fp-vector space by another, we get a method
to construct nontrivial elements in this unramified cohomology group. In
this way we get an example of a group G for which the field C(W )G is not
rational although its unramified cohomology group of degree 2 is trivial.
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1. Introduction

For any function field K over the field of complex numbers C, the unramified
cohomology groups Hi

nr(K, Q/Z) are subgroups of the Galois cohomology
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groups Hi(K, Q/Z) which are trivial if K is purely transcendental over C.
If K is the function field of a smooth projective variety X over C, then
the group H1

nr(K, Q/Z) is isomorphic to Hom(π1(X(C)), Q/Z), which is
trivial if X is unirational, and the group H2

nr(K, Q/Z) is isomorphic to the
Grothendieck–Brauer group Br(X). An avatar of this invariant was used
by Artin and Mumford in [ArMu] to construct examples of unirational
varieties over C which are not rational. The higher unramified cohomology
groups were first introduced by Colliot-Thélène and Ojanguren in [CTO]
to produce new examples of such varieties. Other examples based on these
unramified cohomology groups of higher degree were produced by the
author in [Pe1].

Let G be a finite group and W be a faithful linear representation of G
over a field k. The action of G on W induces an action of G on the function
field k(W ). A natural question, first raised by Emmy Noether [No, p. 222],
is to determine whether the field of invariant functions k(W )G is purely
transcendental over k. By the no-name lemma [BK, Lemma 1.3], if W
and W ′ are two faithful representations of G over k, then k(W ⊕ W ′)G is
rational over both k(W )G and k(W ′)G . Thus the stable rationality of k(W )G

over k does not depend on the choice of W . In 1969 and 1972, Swan
and Voskresenskiı̆ constructed examples for which Q(W )G is not rational
over Q (see [Sw] and [Vo]). However their method does not work over
an algebraically closed field of characteristic 0. In 1984, Saltman gave
the first example of a group G such that C(W )G is not stably rational
over C using the unramified cohomology group H2

nr(C(W )G, Q/Z) as an
obstruction. In a subsequent work [Bo1] Bogomolov made an in-depth study
of this cohomology group. More precisely he proved that there is a natural
isomorphism

⋂

B∈BG

Ker(H2(G, Q/Z) −→ H2(B, Q/Z)) ∼−→ H2
nr(C(W )G, Q/Z)

where BG denotes the set of bicyclic subgroups of G, that is the set of
subgroups of G which are isomorphic to a quotient of Z2. Using this iso-
morphism, he was able to compute explicitly this cohomology group when G
is the central extension of an Fp-vector space by another and thus to produce
new examples of finite groups G for which C(W )G is not stably rational
over C.

The aim of this text is to present similar results for the unramified
cohomology groups of degree 3. Theorem 1 gives an isomorphism up to
2-torsion from a quotient of a subgroup of H3(G, Q/Z) to the unramified
cohomology group H3

nr(C(W )G, Q/Z). When G is a central extension of
an Fp-vector space by another, we use this formula to get a description of
a subgroup of this unramified cohomology group in terms of linear algebra
(see Theorem 2). Then we use this construction to produce a group G
such that C(W )G is not stably rational over C although the unramified
cohomology group H2

nr(C(W )G, Q/Z) is trivial.
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The possibility of extending the work of Bogomolov to higher degrees
was first hinted to the author by J.-L. Colliot-Thélène around 1990. The first
steps toward this generalization were made by Saltman in [Sa2] where he
proved that the unramified cohomology group in degree three is contained
in the image of the inflation map

H3(G, Q/Z) −→ H3(C(W )G, Q/Z).

In [Bo2], Bogomolov gave a first description of the inverse image of
the group H3

nr(C(W )G, Q/Z) in H3(G, Q/Z) in geometrical terms. In the
present paper, we define a subgroup H3

nr(G, Q/Z) of the cohomology group
H3(G, Q/Z) purely in cohomological terms and prove that it coincides with
the inverse image of the unramified cohomology group.

One of the main difficulty which remained was to describe the kernel of
the inflation map. In [Pe3], we proved, extending ideas of Saltman [Sa2],
that there is a natural exact sequence

0 −→ CH2
G(C) −→ H3(G, Q/Z(2)) −→ H3(C(W )G, Q/Z(2))

where CH2
G(C) denotes the equivariant Chow group of codimension two

of a point. The main step of the proof of Theorem 1 relates the image
of CH2

G(C) with the permutation negligible classes introduced by Saltman
in [Sa2].

In Sect. 2 we introduce the notation used in the rest of this paper, Sect. 3
is devoted to the formula describing H3

nr(C(W )G, Q/Z) up to 2-torsion
and Sect. 4 contains its proof. In Sect. 5 we consider the case of a central
extension of an Fp-vector space by another one. The last section is devoted
to the construction of an explicit example.

I am very thankful to the referee who pointed out many weaknesses of
a former version of this paper.

2. Definitions

Let us fix some notation for the rest of this text.

Notation 1. Let k be a field of characteristic 0, k be an algebraic closure
of k. For any positive integer n, we denote by µn the n-th roots of unity in k
and for j in Z we put

µ⊗ j
n =

⎧
⎪⎨

⎪⎩

µ
⊗ j−1
n ⊗ µn if j > 1,

Z/nZ if j = 0,

Hom
(
µ

⊗− j
n , Z/nZ

)
if j < 0.

For i � 0, we consider the Galois cohomology groups

Hi
(
k, µ⊗ j

n

) = Hi
(

Gal(k/k), µ⊗ j
n

)



194 E. Peyre

as well as their direct limits

Hi(k, Q/Z( j)) = lim−→
n

Hi
(
k, µ⊗ j

n

)
.

If V is a variety over k, we also consider the étale sheaves µ
⊗ j
n and Q/Z( j)

on V .
For any function field over k, that is finitely generated as a field over k,

we denote by P(K/k) the set of discrete valuation rings A of rank one
such that k ⊂ A ⊂ K and such that the fraction field Fr(A) of A is K .
If A belongs to P(K/k), then let κA be its residue field and, for any strictly
positive integer i and any j in Z,

∂A : Hi
(
K, µ⊗ j

n

) −→ Hi−1
(
κA, µ⊗ j−1

n

)

be the corresponding residue map (see [CTO, p. 142]). They induce residue
maps

∂A : Hi(K, Q/Z( j)) −→ Hi−1(κA, Q/Z( j − 1)).

We then consider the unramified cohomology groups Hi
nr/k(K, Q/Z( j))

defined as the intersection

⋂

A∈P(K/k)

Ker
(
Hi(K, Q/Z( j))

∂A−→ Hi−1(κA, Q/Z( j − 1))
)
.

In particular, the unramified Brauer group may be described as

Brnr/k(K ) = H2
nr/k(K, Q/Z(1)).

We shall omit k from the notation when the field k is clear from the context.
Let us also recall that two function fields K and L are said to be stably

isomorphic over k if there exist indeterminates U1, . . . , Um, T1, . . . , Tn and
an isomorphism from K(U1, . . . , Um) to L(T1, . . . , Tn) over k. By [CTO,
Proposition 1.2], if K and L are stably isomorphic over k, then

Hi
nr

(
K, µ⊗ j

n

) ∼−→ Hi
nr

(
L, µ⊗ j

n

)
.

In particular, if k is algebraically closed and K stably rational over k then
Hi

nr(K, µ
⊗ j
n ) is trivial.

We shall also use the equivariant Chow groups as defined by Totaro
[To, Definition 1.2], Edidin, and Graham [EG, §2.2].

Definition 2. Let G be a finite group and W a faithful linear representation
of G over k. For any strictly positive n, let Un be the maximal open set
in Wn on which G acts freely. We have that codimWn(Wn −Un) � n. If Y is
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a quasi-projective smooth geometrically integral variety equipped with an
action of G over k, the equivariant Chow group of Y is defined by

CHi
G(Y ) = CHi((Y × Ui+2)/G)

where (Y × Ui+2)/G is the geometric quotient of Y × Ui+2 by G. We put
CHi

G(k) = CHi
G(Spec k), where the action of G on Spec k is trivial, and

define PicG(Y ) as CH1
G(Y ).

By [Pe3, Definition 3.1.3], if k is algebraically closed, the étale cycle
map induces a natural cycle map

cli : CHi
G(k) −→ H2i−1(G, Q/Z(i))

such that, by [Pe3, Example 3.1.1],

cl1 : PicG(k) ∼−→ H1(G, Q/Z(1))

is an isomorphism.

As indicated in the introduction, one of the main problem to com-
pute the unramified cohomology is to determine the kernel of the inflation
map

Ker(H3(G, Q/Z(2)) −→ H3(C(W )G, Q/Z(2))).

More generally, let us recall the notion of geometrically negligible classes,
due to Saltman, which is a variant of the notion introduced by Serre in his
lectures at the Collège de France in 1990–1991 [Se1].

Definition 3. If G is a finite group, M a G-module and k a field, then
a class λ in Hi(G, M) is said to be totally k-negligible if and only if for any
extension K of k and any morphism

ρ : Gal(Ks/K ) −→ G

where Ks is a separable closure of K, the image of λ by ρ∗ is trivial
in Hi(K, M). The class λ is said to be geometrically negligible if k = C.

Remark 1. As was proven by Serre (see also [Sa2, Proposition 4.5]), the
group of geometrically negligible classes in Hi(G, M) coincides with the
kernel of the map

Hi(G, M) −→ Hi(C(W )G, M).

In what follows, we shall be interested by the case where i = 3 and
M = Q/Z(2). We shall also assume that k = C. The map e : Q → C de-
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fined by e(x) = exp(2iπx) induces an isomorphism from Q/Z to Q/Z(1).
In the rest of this paper, we shall write explicitly the twist for the cohom-
ology of the fields but use Q/Z as coefficients for the cohomology of finite
groups, since the definition of a G-module Q/Z(i) depends on the choice
of a morphism from Gal(Ks/K ) to G for some field K .

Definition 4. We define the group H3
p (G, Q/Z) of permutation negligible

classes as the group

∑

H⊂G

CoresG
H(Im(H1(H, Q/Z)⊗2 ∪−→ H3(H, Q/Z))). (1)

where the cup-product on the right is given by the commutative diagram

Hi(G, Q/Z) × H j(G, Q/Z) ��˜

��
∪

Hi+1(G, Z) × H j+1(G, Z)

��
∪

Hi+ j+1(G, Q/Z) ��˜ Hi+ j+2(G, Z)

(2)

for any i � 1 and j � 1.

Remark 2. This group was first introduced by Saltman who defined it using
permutation modules [Sa2, p. 190] and proved that it may be described
as

H3
p (G, Q/Z) = Ker(H3(G, Q/Z) −→ H3(G, C(W )∗)),

where the map on the right-hand side is induced by the natural injection
Q/Z(1) → C(W )∗ [Sa2, Proposition 4.7]. In [Pe3, pp. 196–197], we prove
that this group coincides with the one defined by the formula (1).

Finally we shall also need to pull back the residue maps to the cohomology
of G.

Definition 5. For any subgroup H of G and any element g of the centralizer
ZG(H) of H in G, we define a map

∂H,g : H3(G, Q/Z) −→ H2(H, Q/Z)

as follows: let I be the subgroup generated by g. The natural morphism
m : (h, i) 
→ hi from H × I to G induces a map

m∗ : H3(G, Q/Z) −→ H3(H × I, Q/Z).
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But the projection pr2 : H × I → I induces a section of the restriction map

H3(H × I, Q/Z) −→ H3(I, Q/Z)

defined by the map i2 : I → H × I mapping i on (e, i). This yields
a morphism

H3(H × I, Q/Z)
sH,I−−→ Ker(H3(H × I, Q/Z) −→ H3(I, Q/Z))

given by sH,I (ξ) = ξ − pr∗2 ◦i∗2(ξ). Using Hochschild–Serre’s spectral se-
quence [HS]

E p,q
2 = H p(H, Hq(I, Q/Z)) ⇒ H p+q(H × I, Q/Z)

and the fact that H2(I, Q/Z) = 0 we get a map

H3(H × I, Q/Z) −→ H2(H, H1(I, Q/Z)). (3)

But evaluation at g defines an injection

H1(I, Q/Z) ∼−→ Hom(I, Q/Z) ↪→ Q/Z

which yields

∂ : H3(H × I, Q/Z) −→ H2(H, Q/Z).

The map ∂H,g is then defined as the composite ∂ ◦ m∗. We define

H3
nr(G, Q/Z) =

⋂

H⊂G
g∈ZG(H )

Ker(∂H,g).

Remark 3. In [Bo2, p. 10, Definition], Bogomolov defines the notion of
unramified elements relatively to an element g of G. Our definition of the
residue map may be seen as an algebraic version of his construction.

Remark 4. With similar arguments, one can easily define for any sub-
group H of G and any g in ZG(H) a morphism

∂H,g : H2(G, Q/Z) −→ H1(H, Q/Z) ∼−→ Hom(H, Q/Z)

and

H2
nr(G, Q/Z) =

⋂

H⊂G
g∈ZG(H )

Ker(∂H,g).
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Let us show that

H2
nr(G, Q/Z) =

⋂

B∈BG

Ker(H2(G, Q/Z) −→ H2(B, Q/Z))

where BG denotes the set of bicyclic subgroups of G.
If γ belongs to the right hand side, let H be a subgroup of G, let g belong

to ZG(H), and let x ∈ H; the group B = 〈g, x〉 is a bicyclic group of G
and the functoriality of the Hochschild–Serre spectral sequence provides
a commutative diagram

H2(G, Q/Z) ��
∂H,g

��
ResG

B

H1(H, Q/Z)

��
ResH〈x〉

H2(B, Q/Z) ��
∂〈x〉,g

H1(〈x〉, Q/Z).

Since ResG
B (γ) = 0, for any x in H we have ResH

〈x〉(∂H,g(γ)) = 0. But
H1(H, Q/Z) is canonically isomorphic to Hom(H, Q/Z) and we get
that ∂H,g(γ) = 0.

Conversely, if γ belongs to H2
nr(G, Q/Z) and B is a bicyclic subgroup

of G, then ResG
B (γ) belongs to H2

nr(B, Q/Z). But

H2(B, Q/Z) ∼−→ Hom(Λ2 B, Q/Z)

(see [Bro, p. 127]). The group Λ2 B is either trivial or cyclic generated by
an element of the form u ∧v. In the latter case, one has that ∂〈u〉,v is injective
and ResG

B (γ) = 0.

3. Description of the unramified cohomology group

The first aim of this paper is to prove the following theorem:

Theorem 1. If G is a finite group and if W is a faithful representation of G
over C then the inflation map induces a surjective map

H3
nr(G, Q/Z)/H3

p (G, Q/Z) −→−→ H3
nr(C(W )G, Q/Z),

the kernel of which is killed by a power of 2.

Remarks 5. (i) If G is of odd order, the above map is an isomorph-
ism. However, in [Sa2, Theorem 4.14], Saltman gave an example of
a 2-group for which the kernel of this map is not trivial.
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(ii) Using Remark 4, Bogomolov’s theorem for the unramified Brauer
group [Bo1, Theorem 3.1] could be stated as

H2
nr(G, Q/Z) ∼−→ H2

nr(C(W )G, Q/Z).

4. Proof of the main theorem

We shall first recall the result relating the geometrically negligible classes
to the equivariant Chow group of codimension 2.

Notation 6. If V is a variety over a field k of characteristic 0, V (p) denotes
the set of points of codimension p in V . For any x in V (p), let κ(x) be its
residue field. We also denote by H i

ét(µ
⊗ j
n ) the Zariski sheaf correspond-

ing to the presheaf mapping U to Hi
ét(U, µ

⊗ j
n ). We define similarly the

sheaf H i
ét(Q/Z( j)) and K j the Zariski sheaf corresponding to the presheaf

mapping U to Ki(U), the i-th group of Quillen K -theory.
We denote by |X| the cardinal of a set X.

The following proposition follows from [Pe3, Theorem 2.3.1], but we
shall now give a direct proof of it which is due to Colliot-Thélène.

Proposition 1. Let G be a finite group, W be a faithful representation of G
over C, and U be an open subset in W on which G acts freely. We assume
that codimW (W − U) is bigger than 4. Then there is a canonical exact
sequence

0 −→ CH2
G(C) −→ H3(G, Q/Z) −→ H0

Zar

(
U/G,H 3

ét (Q/Z(2))
) −→ 0.

Proof. Let X = U/G. By [CT, (3.10)], the Bloch–Ogus spectral sequence
[BO] yields an exact sequence

0 −→ H1
Zar

(
X,H 2

ét

(
µ⊗2

n

)) −→ H3
ét

(
X, µ⊗2

n

)

−→ H0
Zar

(
X,H 3

ét

(
µ⊗2

n

)) −→ CH2(X)/n −→ H4
ét

(
X, µ⊗2

n

)
. (4)

By [CT, (3.2)], there also is an exact sequence

0 −→ H1(X,K2)/n −→ H1
(
X,H 2

ét

(
µ⊗2

n

)) −→ CH2(X)n −→ 0 (5)

which follows from an argument of Bloch and Ogus and from the
Merkur′ev–Suslin theorem. Since we assumed that codimW (W − U) � 4,
the definition of the Chow groups gives the equality

CH2(U) = CH2(W ) = {0},
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the Brown–Gersten–Quillen spectral sequence [Q, §7.5] yields that

H1(U,K2) = H1(W,K2) = {0},
and the Bloch–Ogus spectral sequence implies that

H0
Zar

(
U,H 3

ét

(
µ⊗2

n

)) = H0
Zar

(
W,H 3

ét

(
µ⊗2

n

)) = 0.

But using a restriction-corestriction argument (see e.g. [Ro, p. 330 and
the proof of Theorem 7.1]) for the map π : U → U/G, we get that the
corresponding groups for X are killed by |G|. In particular, this implies that

lim−→
n

CH2(X)/n = 0 and lim−→
n

H1(X,K2)/n = 0.

Taking inductive limits, the exact sequence (4) provides an exact sequence

0 −→ H1
Zar

(
X,H 2

ét (Q/Z(2))
) −→ H3

ét(X, Q/Z(2))

−→ H0
Zar

(
X,H 3

ét (Q/Z(2))
) −→ 0

and the exact sequence (5) yields an isomorphism

H1
Zar

(
X,H 2

ét (Q/Z(2))
) ∼−→ CH2(X).

By definition of the equivariant Chow groups we have that CH2(X)
is CH2

G(C). We get an exact sequence

0 −→ CH2
G(C) −→ H3

ét(X, Q/Z(2)) −→ H0
Zar

(
X,H 3

ét (Q/Z(2))
) −→ 0.

By [Pe3, Lemma 3.1.1], the Hochschild–Serre spectral sequence yields an
isomorphism

H3
ét(X, Q/Z(2)) ∼−→ H3(G, Q/Z(2)). ��

To get the group of geometrically negligible classes in H3(G, Q/Z), it
remains to compute the image of CH2

G(C) in that group.

Proposition 2. If G is a finite group, then the prime to 2 part of the group of
geometrically negligible classes in H3(G, Q/Z) is contained in the group
H3

p (G, Q/Z) of permutation negligible classes.

Remark 6. The fact that the group H3
p (G, Q/Z) is contained in the group

of geometrically negligible classes was first noted by Saltman [Sa2, Prop-
osition 4.7(b)]. We give a new proof of this fact for self-completeness.
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Let H be a subgroup of G and W be a faithful linear representation of G.
There is a commutative diagram

H1(H, Q/Z) ⊗ H2(H, Z) ��∪

��

H3(H, Q/Z)

��

H3(C(W )H, Q/Z(1))

��

H1(H, C(W )∗) ⊗ H2(H, Z) ��∪ H3
(
C(W )H, Gm

)
.

Let µ∞ be the group of the roots of unity in C. Since the group C(W )
∗
/µ∞

is a Q-vector space, the vertical map on the bottom right of the previous dia-
gram is an isomorphism. By Hilbert’s theorem 90 the group H1(H, C(W )∗)
is trivial. Thus the image of the cup-product in H3(H, Q/Z) is contained in
the subgroup of geometrically negligible classes. Using the commutativity
of

H3(H, Q/Z) ��

��
CoresG

H

H3(C(W )H , Q/Z)

��
Cores

H3(G, Q/Z) �� H3(C(W )G, Q/Z)

we get the inclusion

H3
p (G, Q/Z) ⊂ Ker

(
H3(G, Q/Z) −→ H3(C(W )G, Q/Z)

)
.

Proof of Proposition 2. Let p be a prime factor of |G| and Gp be a p-Sylow
subgroup of G. By the definition of permutation negligible classes (1), we
have that

CoresG
Gp

(
H3

p (Gp, Q/Z)
) ⊂ H3

p (G, Q/Z).

We also have commutative diagrams

H3(G, Q/Z) ��

��
ResG

Gp

H3(C(W )G, Q/Z)

��
Res

H3(Gp, Q/Z) �� H3(C(W )Gp, Q/Z)
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and

H3
p (Gp, Q/Z) ��

��
CoresG

Gp

H3(Gp, Q/Z) ��

��
CoresG

Gp

H3(C(W )Gp, Q/Z)

��
Cores

H3
p (G, Q/Z) �� H3(G, Q/Z) �� H3(C(W )G, Q/Z).

If the top sequence is exact, then the fact that CoresG
Gp

◦ ResG
Gp

is the multi-
plication by the integer [G :Gp] and a simple chase in the diagrams gives that
the p-primary part of the bottom sequence is exact. Hence we are reduced
to the case where G is a p-group for p an odd prime.

It is well known that the group CH2
G(C) is generated by Chern classes

of representations of G (see [EKLV, Appendix C.3], [To, p. 257], and
[Pe3, Corollary 3.1.9]).

Till the end of the proof, if i � 1, we identify the group Hi(G, Q/Z)
with the group Hi+1(G, Z) via the coboundary map. For any x, y in the
group H1(G, Q/Z) we denote by xy the cup-product x ∪ y defined by the
commutative diagram (2).

By [CTSS, Corollaire 1, p. 772], the map CH2
G(C) → H3(G, Q/Z)

which appears in the exact sequence of Proposition 1 coincides with the
cycle map cl2. Since cl2 ◦ c2 = c2 (see e.g. [Fu, Proposition 19.1.2]), we get
that the group H3

n (G, Q/Z) of geometrically negligible classes is generated
by Chern classes of representations of G. By the Whitney formula (see
e.g. [Fu, Theorem 3.2(e)]), if x and y belong to R(G), one has

c2(x + y) = c2(x) + c1(x)c1(y) + c2(y).

By Definition (1), we have that c1(x)c1(y) ∈ H3
p (G, Q/Z). Thus the induced

map

R(G)
c2−→ H3(G, Q/Z)/H3

p (G, Q/Z)

is a morphism of groups. We want to show that this morphism is trivial.
By Brauer’s theorem (see [Se3, §10.5, Theorem 20]), R(G) is generated

as a group by the representations induced from characters of subgroups. It
remains to show that for any subgroup H of G and any character χ of H ,
one has

c2
(

IndG
H χ

) ∈ H3
p (G, Q/Z).

Let Cores(2) : H1(G, Q/Z) → H3(G, Q/Z) be the map induced by the
intermediate transfer map

N2 : H2(G, Z) −→ H4(G, Z)

defined by Evens in [Ev1, Theorem 1, p. 63]. More generally, in [FMP, p. 2]
Fulton and MacPherson defined transfer maps f (n)∗ for finite étale coverings
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which they used to give an expression without denominators for Chern
classes of direct images. Using one of their result [FMP, Corollary 5.3] we
get the formula

c2
(

IndG
H χ

) = Cores(c2(χ)) + Cores(2)(c1(χ))

+ c1
(

IndG
H 1

)
. Cores(c1(χ)) + c2

(
IndG

H 1
)
.

Since χ is a representation of dimension 1, c2(χ) = 0. By [FMP, p. 4], for
any z in H1(H, Q/Z), one has

Cores(z2) − Cores(z)2 + 2 Cores(2)(z) = 0.

Since p �= 2, we get the relation

Cores(2)(z) = 1

2
(Cores(z)2 − Cores(z2))

and therefore the relation

c2
(

IndG
H χ

) = 1

2

(
CoresG

H(c1(χ))2 − CoresG
H(c1(χ)2)

)

+ c1
(

IndG
H 1

)
. CoresG

H(c1(χ)) + c2
(

IndG
H 1

)
.

It therefore remains to show that for any subgroup H of G, one has

c2
(

IndG
H 1

) ∈ H3
p (G, Q/Z).

We shall proceed by induction on [G : H]. If [G : H] = 1, then c2(1) = 0
and the result is proven. Let us assume the result for subgroups of index
strictly smaller than pm for m � 1. Let H be a subgroup of G
with [G : H] = pm . There exists a subgroup H1 of G such that H is
a normal subgroup of H1 of index p [Su, Theorem 1.6, p. 88]. We have

c2
(

IndG
H 1

) = c2
(

IndG
H1

(
IndH1

H 1
))

.

We may choose χ ∈ Hom(H1, C∗) such that H = Ker χ. Then the induced
representation IndH1

H 1 coincides with C[H1/H] and its class in R(H1) is
given by

IndH1
H 1 = 1 + χ + · · · + χ p−1.

Using the Whitney formula, we get

c2
(

IndG
H 1

) = c2
(

IndG
H1

(1) + · · · + IndG
H1

(χ p−1)
)

≡ c2
(

IndG
H1

(1)
) + · · · + c2

(
IndG

H1
(χ p−1)

)
mod H3

p (G, Q/Z).

By induction, we obtain that c2(IndG
H 1) belongs to H3

p (G, Q/Z). ��
Let us now describe the inverse image in H3(G, Q/Z) of the unramified

cohomology group of C(W )G .
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Proposition 3. The group H3
nr(G, Q/Z) is the inverse image in the group

H3(G, Q/Z) of the group H3
nr(C(W )G, Q/Z).

Proof. We denote by

ρ : Gal(C(W )/C(W )G) −→ G

the natural surjection. Let γ in H3
nr(G, Q/Z). We want to prove that its

image ρ∗(γ) in H3(C(W )G, Q/Z) is unramified. Let A be a ring of the
set P(C(W )G/C), as defined in Sect. 2. Let B be an element of the set
P(C(W )/C) above A. We denote by K the field C(W )G , by L the field
C(W ), by L̂ B the completion of L at B, by K̂ A the completion of K in L̂ B,
by L B an algebraic closure of L̂ B, and by K̂nr

A (resp. L̂nr
B ) the maximal

unramified extension of K A (resp. L B) in L B. Let D be the decomposition
group of B in G and I be the inertia group. We also put GA = Gal(L B/K̂ A),
GB = Gal(L B/L̂ B), IA = Gal(L B/K̂nr

A ), and IB = Gal(L B/L̂nr
B ). We have

the following diagram of fields

L B IB
BB
BB

��
����
��

K A

IA
BB

BB
L̂nr

B
I
��
� GB/IB

AA
AA

K̂nr
A

GA/IA
CC

C
L̂ B

D
��
�� ��

��

K̂ A

BB
BB

L
G
��
��

K

which yields a commutative diagram of groups

0 �� IA
��

jA

����
f I

GA
��πA

����
fG

GA/IA
��

����

0

0 �� I ��j
D ��π D/I �� 0.

(6)

On the other hand the residue map

H3(C(W )G, Q/Z(2))
∂A−−→ H2(κA, Q/Z(1))

is defined as the composite of the maps

H3(K, Q/Z(2)) −→ H3(K̂ A, Q/Z(2))

−→ H2
(
GA/IA, H1(IA, Q/Z(2))

) ∼−→ H2(κA, Q/Z(1))
(7)
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where the second map is induced be the Hochschild–Serre spectral sequence

H p
(
GA/IA, Hq(IA, Q/Z(2))

) ⇒ H p+q(GA, Q/Z(2))

(see [CTO, p. 142]). Indeed IA, which is isomorphic to Ẑ(1) is of co-
homological dimension 1, and the group H1(IA, Q/Z(n)) is canonically
isomorphic to Q/Z(n − 1). The latter fact gives the last morphism in (7).

We are going to relate the Hochschild–Serre spectral sequence for the
exact sequence

0 �� IA
��jA
GA

��πA
GA/IA

�� 0 (8)

to the one for the sequence

0 �� I ��i2
D × I ��

pr1
D �� 0,

where i2(a) = (e, a) for any a in I . The extension given by (8) is cen-
tral since the roots of unity are in C. By [Se2, II, §4, Théorème 2], the
field K̂ A is isomorphic to the field of formal series κA((T )), the exten-
sion K̂nr

A /K̂ A is isomorphic to the extension κA((T ))/κA((T )), and by
[Se2, IV, §2, Proposition 8] the field K A is isomorphic to the direct limit
of the fields lim−→ κA((T 1/n)). Such isomorphisms induce a splitting of the
central extension described in (8).

Using (6), we get that I is central in D and the morphism fG factorises
through a morphism ψ : GA → D × I : let r be a retraction of the map jA,
then the following diagram commutes

GA
��φ

��
fG

GA × IA

��
fG × f I

D D × Ioo
m

where we denote by φ the morphism sending g to (gr(g)−1, r(g)) and
by m : D × I → D the morphism sending (d, i) to di. Thus we get
a commutative diagram

0 �� IA
��jA

��
f I

GA
��πA

��
ψ

GA/IA
��

��
τ

0

0 �� I ��i2
D × I ��

pr1

��
m

D ��

��
π

0

0 �� I ��j
D ��π D/I �� 0

(9)
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which has exact lines and where τ is the only map making the diagram
commutative. For the cohomology groups we have the diagram

H3(G, Q/Z) ��Res

��

H3(D, Q/Z) ��m∗

��
f ∗
G

H3(D × I, Q/Z)

��
ψ∗

H3(K, Q/Z(2)) �� H3(K̂ A, Q/Z(2)) H3(GA, Q/Z(2))

(10)

which commutes by the definition of ψ and the diagram

H3(I, Q/Z) ��
pr∗2

��
f ∗
I

H3(D × I, Q/Z)

��
ψ∗

0 = H3(IA, Q/Z) ��r∗
H3(GA, Q/Z)

which commutes since pr2 ◦ψ = f I ◦r. Thus we get a commutative diagram

H3(D × I, Q/Z) ��ψ∗

��
sD,I

H3(GA, Q/Z(2))

Ker(H3(D × I, Q/Z) −→ H3(I, Q/Z)) ��
ψ∗

��

H3(GA, Q/Z(2))

��

H2(D, H1(I, Q/Z)) �� H2
(
GA/IA, H1(IA, Q/Z(2))

)

(11)

where the map sD,I has been introduced in Definition 5 and the vertical maps
in the bottom square come from the Hochschild–Serre spectral sequence.
Using Diagrams (10) and (11) we may choose a generator g of I so that the
diagram

H3(G, Q/Z) ��
∂D,g

��

H2(D, Q/Z)

��

H3(C(W )G, Q/Z(2)) ��∂A
H2(κA, Q/Z(1))

(12)

commutes. Therefore ∂A(γ) = 0 whenever γ belongs to H3
nr(G, Q/Z) and

H3
nr(G, Q/Z) ⊂ ρ∗−1(H3

nr(C(W )G, Q/Z(2))
)
.
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We now want to prove the reverse inclusion. For any positive in-
teger i, let Hi

gnr(G, Q/Z) be the inverse image in Hi(G, Q/Z) of the group
Hi

nr(C(W )G, Q/Z(2)). For any morphism of groups π : H → G, we have

π∗(Hi
gnr(G, Q/Z)

) ⊂ Hi
gnr(H, Q/Z).

Indeed let W be a faithful representation of G and V be a faithful represen-
tation of H . Then W is a representation of H via π and V ⊕ W a faithful
representation of H . But we have the following field inclusions

C(W )G ⊂ C(W )H ⊂ C(V ⊕ W )H .

Therefore, we get a commutative diagram

H3(G, Q/Z) ��π∗

��

H3(H, Q/Z)

��

H3(C(W )G, Q/Z(2)) ��i
H3(C(V ⊕ W )H , Q/Z(2))

and by [CTO, p. 143] the image by i of H3
nr(C(W )G, Q/Z(2)) is contained in

the unramified cohomology group H3
nr(C(V ⊕ W )H, Q/Z(2)). This implies

the claim.
We have to show that for any γ in H3

gnr(G, Q/Z), for any subgroup H
of G, and for any g in ZG(H) generating a subgroup I of G, we have
∂H,g(γ) = 0. By the last claim and the definition of ∂H,g, we can restrict
ourselves to the case where G = H × I . In that particular case, let W be
a faithful representation of H and χ be the representation of dimension 1
of I defined by the injection I ↪→ C∗ sending g to e(1/|I |). Then W ⊕ χ
is a faithful representation of G. We may consider C(W ⊕ χ) as C(W )(T )
where T is an indeterminate and define B ∈ P(C(W ⊕ χ)/C) as the
valuation defined by the divisor T = 0. Let A be the intersection of B
with

C(W ⊕ χ)G = C(W )H(T |I |).

We now are precisely in the situation described in the first part of the proof
and the commutative diagram from (12) may be written as

H3(G, Q/Z) ��
∂H,g

��

H2(H, Q/Z)

��

H3(C(W ⊕ χ)G , Q/Z) ��∂A
H2(C(W )H , Q/Z).

(13)

But it is well known that the group of geometrically negligible classes in
H2(G, Q/Z) is trivial. Indeed, let µ∞ be the group of roots of unity in C,
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the group C∗/µ∞ being a Q-vector space, H2(G, Q/Z) is isomorphic to
H2(G, C∗) and there is an exact sequence

0 −→ C∗ −→ C(W )∗ −→ Div(W ) −→ 0

where Div(W ) is the free abelian group of the divisors of codimension 1
on W . Its natural basis is globally invariant under the action of G. Thus, using
Shapiro’s lemma, we have that H1(G, Div(W )) = 0 and the morphism

H2(G, C∗) −→ H2(G, C(W )∗)

is injective. The claim then follows from Hilbert’s theorem 90 (see
[Se2, X, §4, Proposition 6]). Therefore the vertical map on the right of
Diagram (13) is injective and, if γ belongs to H3

gnr(G, Q/Z), then
∂H,g(γ) = 0. ��

5. Central extensions of vector spaces

5.1. The setting

By a result of Fischer [Fi, p. 78], if G is abelian and W a faithful linear
representation of G over C, then C(W )G is rational over C. Therefore
the first interesting groups are central extensions of an Fp-vector space by
another one. The example considered by Saltman in [Sa1] is of this type.
The unramified Brauer group of C(W )G was computed for such groups G
by Bogomolov in [Bo1, Lemma 5.1]. A few preliminary results in degree 3
were given in [Pe2].

Notation 7. Let U and V be two Fp-vector spaces for p an odd prime
number and let

0 −→ V
ι−→ G

π−→ U −→ 0

be a central extension of U by V such that exp(G) = p. Without loss of
generality, we may assume that V = [G, G] or in other words, that the map
γ : Λ2U → V defined by

[g1, g2] = ι ◦ γ(π(g1) ∧ π(g2))

for any g1, g2 in G is surjective. By [Bro, §IV.3, Exercise 8], this map γ de-
termines this extension up to isomorphism. More precisely, we may choose
a set-theoretic section s : U → G of π such that

∀u1, u2 ∈ U, s(u2)s(u1u2)
−1s(u1) = ι

(
1

2
γ(u1 ∧ u2)

)
. (14)



Unramified cohomology and Noether’s problem 209

Remark 7. If Z(G) �= [G, G] then G is isomorphic to a product E × H
where E is the Fp-vector space Z(G)/[G, G]. Let W (resp. W ′) be a faithful
linear representation of H (resp. E) over C. Then W ⊕ W ′ is a faithful
representation of G and the field C(W⊕W ′)G is the compositum of the fields
C(W )H and C(W ′)E over C. By Fisher’s result, it is rational over C(W )H .
Thus we may assume that Z(G) = [G, G].
Notation 8. For any Fp-vector space E we denote by E∨ its dual. For any
positive integer i there is a natural isomorphism (see [Bki1, A III, p. 154,
Proposition 7])

Λi(E∨) −→ (Λi E)∨

f1 ∧ · · · ∧ fi 
−→
(
v1 ∧ · · · ∧ vi 
−→

∑

σ∈Si

ε(σ) f1(vσ(1)) . . . fi(vσ(i))
)
.

From now on, we identify Λi(E∨) with (Λi E)∨ and denote it by Λi E∨. For
any subset F of Λi E (resp. Λi E∨) we denote by F⊥ its orthogonal in Λi E∨
(resp. Λi E).

The surjective linear map γ induces an injection

γ∨ : V ∨ −→ Λ2U∨.

We also put

K2 = γ∨(V ∨) ⊂ Λ2U∨ and K3 = γ∨(V ∨) ∧ U∨ ⊂ Λ3U∨.

We put Si = (Ki)⊥ ⊂ ΛiU if i = 2 or 3. Let S3
dec (resp. S2

dec) be the subgroup
of S3 (resp. S2) generated by the elements of the form u ∧ v for u ∈ Λ2U
(resp. U) and v ∈ U . We define Ki

max ⊃ Ki as the orthogonal in ΛiU∨
of Si

dec for i = 2 or 3.
We consider the map

ηG : ΛiU∨ −→ Hi(G, Q/Z)

defined as the composite map

ΛiU∨ ∼−→ Λi H1(U, Fp)
∪−→ Hi(U, Fp)

−→ Hi(U, Q/Z)
π∗−→ Hi(G, Q/Z) (15)

where ∪ is the cup-product. It induces a map

ΛiU∨ −→ Hi(C(W )G, Q/Z(i − 1)) (16)

obtained by composing the maps

ΛiU∨ ηG−−→ Hi(G, Q/Z) −→ Hi(C(W )G, Q/Z(i − 1)).
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5.2. The result

Let us recall the result of Bogomolov: by [Bo1, Lemma 5.1], the map defined
by (16) induces an isomorphism

K2
max/K2 ∼−→ Brnr(C(W )G ) = H2

nr(C(W )G, Q/Z(1)).

Our aim in this paragraph is to prove the following result:

Theorem 2. With notation as above, the map defined in (16) induces an
injection

K3
max/K3 ↪→ H3

nr(C(W )G, Q/Z).

Remark 8. In [Pe2, §9.3], we construct an example of a 2-group for which

Ker(Λ3U∨ −→ H3(C(W )G, Q/Z)) �⊂ K3.

This shows that the condition p �= 2 is necessary.

5.3. The cohomology of an Fp-vector space

Let us first prove a few basic facts about the cohomology groups of an
Fp-vector space.

Lemma 1. If p is a prime number and E an Fp-vector space, then for any
strictly positive integer i, one has

pHi(E, Q/Z) = {0}.

Proof. We prove the lemma by induction on the dimension n of E. The
result is true if n = 0. If n � 1, let E ′ be a subgroup of index p in E. We
may identify E with E ′ ⊕Fp. Let m p (resp. m′

p) be the multiplication by p in
Hi(E, Q/Z) (resp. Hi(E ′, Q/Z)). Then m p = CoresE

E′ ◦ ResE
E′ . But we have

IdHi (E′,Q/Z) = ResE
E′ ◦ pr∗1

where pr1 is the projection from E to E ′. We get

m p = CoresE
E′ ◦ ResE

E′ ◦ pr∗1 ◦ ResE
E′

= m p ◦ pr∗1 ◦ ResE
E′

= pr∗1 ◦ m′
p ◦ ResE

E′ .

By induction, m′
p = 0 and we get that m p is trivial. ��
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Notation 9. Let p be a prime number. For any group G and any integer
i � 0, let

δi : Hi(G, Z/pZ) −→ Hi+1(G, Z/pZ)

be the Bockstein operator defined as the boundary map associated to the
short exact sequence

0 −→ Z/pZ −→ Z/p2Z −→ Z/pZ −→ 0.

We denote by δ : H∗(G, Z/pZ) → H∗(G, Z/pZ) the map defined by the
maps δi . Note that δ is a derivation of the ring H∗(G, Fp) and that δ2 = 0
(see [Ev2, p. 28]).

Let p be an odd prime and E be an Fp-vector space. We denote by
S∗(E∨) the symmetric algebra on the Fp-vector E∨. There is a unique
homomorphism of algebras

ρ : Λ∗(E∨) ⊗ S∗(E∨) −→ H∗(E, Fp)

mapping Si(E∨) ⊗ Λ j(E∨) in H2i+ j(E, Fp), so that the map

Λ1(E∨) ⊗ Fp −→ H1(E, Fp)

is induced by the natural isomorphism τ : E∨ ∼−→ H1(E, Fp) and the map

Fp ⊗ S1(E∨) −→ H2(E, Fp)

is induced by the composite map δ ◦ τ . By [AM, Corollary II.4.3], the map ρ
is an isomorphism of algebras. We also denote by δ the derivation ρ−1 ◦ δ ◦ρ
of the algebra Λ∗(E∨) ⊗ S∗(E∨). It follows from the constructions that for
any x in E∨,

δ(x ⊗ 1) = 1 ⊗ x and δ(1 ⊗ x) = 0. (17)

The projection rp : Z → Fp induces a ring homomorphism

rp∗ : H∗(E, Z) −→ H∗(E, Fp).

We also denote by jp : Z/pZ → Q/Z the natural injection.

Proposition 4. With the previous notation, if i > 0, then the map

rp∗ : Hi(E, Z) −→ Hi(E, Fp)

is injective and the groups Im(rp∗), Ker(δi) and Im(δi−1) coincide in the
group Hi(E, Fp).
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Proof. Since the multiplication by p is trivial in Hi(E, Q/Z) for i > 0, it
is trivial in Hi(E, Z) as well. The short exact sequence

0 −→ Z
×p−→ Z

rp−→ Fp −→ 0

induces for i > 0 short exact sequences

0 −→ Hi(E, Z)
rp∗−→ Hi(E, Fp)

β−→ Hi+1(E, Z) −→ 0;
therefore rp∗ is injective.

We have a natural commutative diagram

0 �� Z ��×p

��

rp

Z ��
rp

��

rp2

Z/pZ �� 0

0 �� Z/pZ �� Z/p2Z ��
r p2

p
Z/pZ �� 0

with exact lines which induces a commutative diagram

0 �� Hi(E, Z) ��
rp∗

��

r
p2∗

Hi(E, Fp) ��β
Hi+1(E, Z)

� �

��

rp∗

�� 0

Hi(E, Z/p2Z) ��
r p2

p∗
Hi(E, Fp) ��δi

Hi+1(E, Fp)

(18)

with exact lines. The commutativity of the left hand square yields the

inclusion of Im(rp∗) in Im(r p2

p∗ ), the exactness of the lines implies that

Ker(β) = Im(rp∗) ⊂ Im
(
r p2

p∗
) = Ker(δi).

But the injectivity of rp∗ and the commutativity of the right hand square im-
ply that Ker(δi) is contained in Ker(β). Thus Im(rp∗) = Ker(δi). Using
the corresponding diagram for i − 1 and the surjectivity of β we get
that Im(rp∗) = Im(δi−1). ��
Corollary 1. If i � 1, the morphism

jp∗ : Hi(E, Fp) −→ Hi(E, Q/Z)

is surjective and induces an isomorphism from Coker(δi−1) to the group
Hi(E, Q/Z).
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Proof. Since multiplication by p is trivial in Hi(E, Q/Z), the exact se-
quence

0 −→ Fp
jp−→ Q/Z

×p−−→ Q/Z −→ 0

gives an exact sequence

Hi−1(E, Q/Z)
δ′

i−1−−→ Hi(E, Fp)
j p∗−−→ Hi(E, Q/Z) −→ 0

which proves that the map jp∗ is surjective and that the cokernel of δ′
i−1 is

isomorphic to Hi(E, Q/Z). On the other hand, let γ : Q → Q/Z be the
map sending x on the class of x/p; we have a commutative diagram

0 �� Z ��

��

rp

Q ��

��
γ

Q/Z �� 0

0 �� Fp ��
j p

Q/Z ��×p
Q/Z �� 0

with exact lines which yields a commutative diagram

Hi−1(E, Q/Z)

Hi(E, Z)

Hi(E, Fp).

��oooooo

��
δ′

i−1

OO
OO

O

��

rp∗

For any i > 0 the map Hi−1(E, Q/Z) → Hi(E, Z) is surjective. Thus
Im(δi−1) = Im(rp∗) coincides with Im(δ′

i−1). ��
Notation 10. We denote by φi the natural map Λi E∨ ↪→ Hi(E, Q/Z)
defined as the composite map

Λi E∨ ρ−→ Hi(E, Fp) −→ Hi(E, Q/Z)

and by ψi the map from Si(E∨) to H2i−1(E, Q/Z) given as the composite
map

Si(E∨) ∼−→ Si H2(E, Z)
∪−→ H2i(E, Z) ∼−→ H2i−1(E, Q/Z)

(this corresponds to the cup-product defined by (2)).

Corollary 2. The following maps are isomorphisms

E∨ φ1−→ H1(E, Q/Z),

Λ2 E∨ φ2−→ H2(E, Q/Z),
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and

Λ3 E∨ ⊕ S2(E∨)
φ3+ψ2−−−−→ H3(E, Q/Z).

Proof. The map φ1 is the composite of the isomorphisms

E∨ ∼−→ Hom(E, Q/Z) ∼−→ H1(E, Q/Z).

By Corollary 1, the map ρ induces an isomorphism

σ2 : Coker(E∨ δ−→ Λ2 E∨ ⊕ E∨) −→ H2(E, Q/Z)

where, by (17), one has δ(x) = (0, x) and σ2(x, 0) = φ2(x).
Similarly, we have an isomorphism σ3 from the group

Coker(Λ2 E∨ ⊕ S1(E∨) −→ Λ3 E∨ ⊕ Λ1 E∨ ⊗ S1(E∨))

to the group H3(E, Q/Z), where, since δ is a derivation with δ2 = 0, we
get from (17) that

δ((u ∧ v, t)) = (0, u ⊗ v − v ⊗ u)

for any u, v ∈ E∨ and any t in S1(E∨). Since p �= 2, the quotient
E∨ ⊗ E∨/Λ2E∨ is canonically isomorphic to S2(E∨) and we get that σ3
induces an isomorphism

σ3 : Λ3 E∨ ⊕ S2(E∨) −→ H3(E, Q/Z).

We have that the restriction of σ3 to Λ3 E∨ coincides with φ3. Using the
diagram (18), for any u, v ∈ E∨, we have

σ3(uv) = jp∗(ρ(u ⊗ v)) = jp∗(τ(u) ∪ δ(τ(v)))

= jp∗(τ(u) ∪ β(τ(v))) = ψ1(u) ∪ β(τ(v)) = ψ2(uv)

where the three cup-products correspond respectively to the natural product
maps

Fp ⊗ Fp −→ Fp, Fp ⊗ Z −→ Fp and Q/Z ⊗ Z −→ Q/Z. ��

5.4. The inverse image of the unramified cohomology group

We now turn back to the proof of Theorem 2. To begin with, we shall prove
the following proposition:
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Proposition 5. The inverse image in Λ3U∨ of the unramified cohomology
group H3

nr(C(W )G, Q/Z(2)) coincides with K3
max.

Remark 9. When K2 is generated by elements of the form u ∧ v with u
in U∨ and v in U∨, this proposition may be deduced from [Pe1, Theorem 2]
and [Pe2, Proposition 9.4 and Lemma 9.3]. For the general case, we shall
give a direct proof based upon Proposition 3.

Notation 11. Let E be a vector space of finite dimension over Fp and let u
be any non zero element of E. The complex

0 −→ Fp
×u−→ E

u∧·−−→ Λ2 E
u∧·−−→ · · · u∧·−−→ Λdim(E)E −→ 0

is exact and induces by duality an exact sequence

0 −→ Λdim(E)E∨ du−−→ Λdim(E)−1E∨ du−−→ · · · du−−→ E∨ du−−→ Fp −→ 0.

If u = 0, we put du = 0.

Remarks 10. The morphism du is characterised by the fact that

du(u
∨ ∧ v) = v and du(w) = 0

for any v, w ∈ Λ∗(u⊥) and any u∨ ∈ E∨ such that u∨(u) = 1.
The complex (Λ∗U∨, du) is the Koszul complex for u considered as an

element of U∨∨ (see [Bki2, §9]).

Notation 12. For any subgroup H of G, let VH be V ∩ H and UH be
π(H) ⊂ U . We have a commutative diagram with exact rows

0 �� VH
��

��
κH

H

��

�� UH
��

��
λH

0

0 �� V ��ι
G ��π

U �� 0.

For any i � 0, we denote by λ∗
H : ΛiU∨ → ΛiU∨

H the map induced by the
injection λH .

Lemma 2. Let H be a subgroup of G and g be an element of ZG(H).
Let u = π(g). The following diagram

Λ3U∨ ��du ��du ��du ��du

��

Λ2U∨ ��
λ∗

H ��
λ∗

H ��
λ∗

H ��
λ∗

H
Λ2U∨

H

��

H3(G, Q/Z) ��
∂H,g

H2(H, Q/Z)

is commutative.
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Proof. If g is trivial, then ∂H,g and du are trivial. Otherwise, let I be the sub-
group of G generated by g. The group I is an Fp-vector space of dimension 1
and there is a canonical isomorphism

Λ3U∨
H ⊕ Λ2U∨

H ⊗ I∨ −→ Λ3
(
U∨

H ⊕ I∨)

x + y ⊗ i 
−→ x + y ∧ i.
(19)

We denote by pr2 : Λ3U∨
H → Λ2U∨

H ⊗ I∨ the projection on the second
factor and by g∨ the unique element of I∨ such that g∨(g) = 1. Let

m : UH × I → U

be the morphism sending (u, i) on λH(u) + π(i) and let

m∗ : Λ3U∨ → Λ3(U∨
H ⊕ I∨)

be the induced map. Then we have commutative diagrams

H × I ��

��

G

��
π

UH × I ��m
U

and

Λ3U∨ ��du

��
m∗

Λ2U∨

��

Λ3(U∨
H ⊕ I∨) ��

pr2
Λ2U∨

H ⊗ I∨

where the vertical map on the right maps x onto λ∗
H(x) ⊗ g∨. Therefore, by

definition of ∂H,g, it remains to prove the commutativity of the following
diagram

Λ3(U∨
H ⊕ I∨) ��

pr2

��
ηH×I

Λ2U∨
H ⊗ I∨

��

H3(H × I, Q/Z) �� H2(H, H1(I, Q/Z))

where the map at the bottom was defined in (3) using the Hochschild–Serre
spectral sequence. But this commutativity follows from the fact that for
any element of Λ3(U∨

H ⊕ I∨) written as x + y ∧ g∨ with x ∈ Λ3U∨
H and

y ∈ Λ2U∨
H , one has

sH,I

(
ηH×I (x + y ∧ g∨)

) = ηH×I (x + y ∧ g∨)

and the compatibility of the Hochschild–Serre spectral sequence with the
cup-product. ��
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Proof of Proposition 5. In this proof, we denote by Λ3U∨
nr the inverse image

of the group H3
nr(C(W )G, Q/Z(2)) in Λ3U∨. Let H be a subgroup of G.

The Hochschild–Serre spectral sequence for the extension

0 −→ VH −→ H −→ UH −→ 0

gives an exact sequence

H1(VH, Q/Z) −→ H2(UH, Q/Z) −→ H2(H, Q/Z)

that is

V ∨
H −→ Λ2U∨

H −→ H2(H, Q/Z).

By [Pe2, p. 135], the map V ∨
H → Λ2U∨

H is given by −γ t
|Λ2UH

. Its image

coincides with λ∗
H(K2). Since

Ker
(
λ∗

H : Λ2U∨ −→ Λ2U∨
H

) = (
Λ2UH

)⊥
,

for any element y of Λ2U∨, one has that ηH(λ∗
H(y)) is trivial in the group

H2(H, Q/Z) if and only if y belongs to K2 + (Λ2UH )⊥. Let us also remark
that the condition g ∈ ZG(H) is equivalent to γ(u ∧ UH ) = {0}. Using
Lemma 2, Proposition 3 and the definition of H3

nr(G, Q/Z), we see that an
element y of Λ3U∨ belongs to Λ3U∨

nr if and only if for any u in U and any
subgroup U ′ of U such that γ(U ′ ∧ u) = {0}, one has that

du(x) ∈ K2 + (Λ2U ′)⊥. (20)

For a given u in U , it is enough to check this condition for a maximal U ′,
that is for

U ′ = {v ∈ U | v ∧ u ∈ S2} = du(K2)⊥.

But for any subgroup F of U one has (Λ2 F)⊥ = F⊥ ∧ U∨. Therefore
(
Λ2

(
du(K2)⊥))⊥ = du(K2) ∧ U∨.

We have proven that the group Λ3U∨
nr may be described as

⋂

u∈U

d−1
u

(
K2 + du(K2) ∧ U∨)

.

Let u∨ be an element of U∨ such that u∨(u) = 1. One has

d−1
u

(
K2 + du(K2) ∧ U∨) = (

K2 + du(K2) ∧ U∨) ∧ u∨ + Λ3(u⊥)

= K2 ∧ u∨ + du(K2) ∧ u∨ ∧ u⊥ + Λ3(u⊥).

But du(K2) ∧ u∨ + Λ2(u⊥) = K2 + Λ2(u⊥). Therefore

d−1
u

(
K2 + du(K2) ∧ U∨) = K2 ∧ U∨ + Λ3(u⊥) = K3 + Λ3(u⊥)
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and

Λ3U∨
nr =

⋂

u∈U

(K3 + Λ3(u⊥)).

By definition,

K3
max = ({u ∧ v ∈ S3 | u ∈ U, v ∈ Λ2U})⊥

=
⋂

u∈U

(
du(K3)⊥ ∧ u

)⊥ =
⋂

u∈U

d−1
u

(
du(K3)

)

=
⋂

u∈U

(K3 + Λ3(u⊥))

which concludes the proof of the proposition. ��

5.5. Weights on the cohomology

To prove Theorem 2 it remains to prove that

K3 = Ker(Λ3U∨ −→ H3(C(W )G, Q/Z))

or, using Theorem 1, that K3 is the inverse image of H3
p (G, Q/Z) in Λ3U∨.

As a first step we introduce a notion of weights on the cohomology of
subgroups of G.

Proposition 6. There exists an action (λ, g) 
→ λ.g of F∗
p on the group G

which verifies

∀g ∈ G,∀λ ∈ F∗
p, π(λ.g) = λπ(g). (21)

Moreover, for any such action, one has

∀v ∈ V,∀λ ∈ F∗
p, λ.ι(g) = ι(λ2g).

Remark 11. This action is not unique. But since ι(V ) = [G, G], any auto-
morphism of G induces an automorphism of U and we get a morphism
Aut(G) → Aut(U). Any element in its kernel is an automorphism of the
form g 
→ ι( f(π(g)))g for an element f of Hom(U, V ). In other words we
have an exact sequence

0 −→ Hom(U, V ) −→ Aut(G) −→ Aut(U).

The group F∗
p acts on Hom(U, V ) by multiplication and the actions on G

which satisfy the condition of the proposition form an affine space under
the vector space of cocycles Z1(F∗

p, Hom(U, V )). But these cocycles are of
the form λ 
→ (λ − 1) f for f in Hom(U, V ).
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Proof of Proposition 6. To prove the proposition we use the fact that,
by (14), G is isomorphic to V × U equipped with the group law given by

(v, u)(v′, u′) =
(

v + v′ + 1

2
γ(u ∧ u′), u + u′

)

for any u, u′ in U and any v, v′ in V . We define an action of F∗
p on V ×U by

∀λ ∈ F∗
p,∀v ∈ V,∀u ∈ U, λ.(v, u) = (λ2v, λu).

This action is compatible with the group law above. Indeed

λ.((v, u)(v′, u′)) = λ.

(
v + v′ + 1

2
γ(u ∧ u′), u + u′

)

=
(

λ2v + λ2v′ + λ2

2
γ(u ∧ u′), λu + λu′

)

and

λ.(v, u)λ.(v′, u′) = (λ2v, λu)(λ2v′, λu′)

=
(

λ2v + λ2v′ + 1

2
γ(λu ∧ λu′), λu + λu′

)

for any λ in F∗
p, any v, v′ in V , and any u, u′ in U .

The last assertion of the proposition follows from the fact that ι(V ) is
[G, G] and the relation [g, g′] = ι ◦ γ(π(g) ∧ π(g′)) for any g, g′ in G. ��
Definition 13. We now fix an action as in Proposition 6. If H is a sub-
group of G, such that ι(V ) ⊂ H, then H is the kernel of the natural
surjection G 
→ U/UH and, thanks to (21), is invariant under the action
of F∗

p. This action induces an action of F∗
p on the cohomology groups

Hi(H, Q/Z).
There is an isomorphism of rings

χ : Z/(p − 1)Z −→ EndZ(F∗
p)

which sends the class of k to the endomorphism λ 
→ λk.
Let i � 0 be an integer. Let Hi(H, Q/Z)[p] be the p-torsion part

of the cohomology group Hi(H, Q/Z). For any k in Z/(p − 1)Z we de-
fine

Hi(H, Q/Z)[p](k) = {
x ∈ Hi(H, Q/Z)[p]∣∣∀λ ∈ F∗

p, λ.x = λkx
}
.

Lemma 3. The sum
∑

k∈Z/(p−1)Z Hi(H, Q/Z)[p](k) is a direct sum.
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Proof. If ξ is a generator for F∗
p then Hi(H, Q/Z)[p](k) is the eigenspace

for the eigenvalue ξk with respect to the operator defined by ξ . ��
Most of the rest of this section is devoted to the proof of the fact that

H3
p (G, Q/Z) is contained in H3(G, Q/Z)[p](−2) + H3(G, Q/Z)[p](−4)

and therefore does not meet the image of Λ3U∨, contained in the group
H3(G, Q/Z)[p](−3).

5.6. Triviality of the corestriction

By definition, the group H3
p (G, Q/Z) is generated by elements of the form

CoresG
H(u ∪ v) for H a subgroup of G and u, v in H1(H, Q/Z). We first want

to prove that we only have to consider subgroups H which contain ι(V ).

Lemma 4. With notation as above, if H is a subgroup of G such that the
center of G is not contained in H and if u, v belong to H1(H, Q/Z), then

CoresG
H(u ∪ v) = 0.

Proof. Let H ′ be the subgroup of G generated by H and Z(G). Then

CoresG
H(u ∪ v) = CoresG

H ′ ◦ CoresH ′
H (u ∪ v).

Let us choose a decomposition

Z(G) = (Z(G) ∩ H) ⊕ E

we get an isomorphism H × E ∼−→ H ′. Then

CoresH ′
H = CoresH ′

H ◦ ResH ′
H ◦ pr∗1 = |E| pr∗1 .

But p divides |E| and pu ∪ v = 0. Therefore CoresG
H(u ∪ v) = 0. ��

When ι(V ) ⊂ H , then the cohomology groups of H and G are equipped
with an action of F∗

p as described in Definition 13. The corestriction is
compatible with these actions, since the action on H is the restriction of the
action on G.

Lemma 5. One has

H1(H, Q/Z) = H1(H, Q/Z)[p](−1) ⊕ H1(H, Q/Z)[p](−2). (22)

Moreover the inflation map H1(UH, Q/Z) → H1(H, Q/Z) and the restric-
tion map H1(H, Q/Z) → H1(VH, Q/Z) induce isomorphisms

U∨
H

∼−→ H1(H, Q/Z)[p](−1)
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and

(VH/[H, H])∨ ∼−→ H1(H, Q/Z)[p](−2).

Proof. The group H1(H, Q/Z) is isomorphic to

Hom(H, Q/Z) = (H/[H, H])∨.

There is a natural exact sequence

0 −→ VH/[H, H] −→ H/[H, H] −→ UH −→ 0

which induces the upper line of the following commutative diagram

U∨
H

��

�� (H/[H, H])∨

��

�� V ∨
H

��

H1(UH, Q/Z) �� H1(H, Q/Z) �� H1(VH, Q/Z)

in which vertical maps are isomorphisms. Let ξ be a generator of F∗
p.

By construction (see Proposition 6), ξ acts on U∨
H by multiplication by

ξ−1 and on V ∨
H by multiplication by ξ−2. Let fξ be the operator defined

by ξ on H1(H, Q/Z). Since f p−1
ξ = Id, the endomorphism fξ is semi-

simple and it follows from the above diagram that the eigenvalues of
its action on H1(H, Q/Z) ⊗Fp Fp are ξ−1 and ξ−2. We get the decom-
position

H1(H, Q/Z) = H1(H, Q/Z)[p](−1) ⊕ H1(H, Q/Z)[p](−2)

and the requested isomorphisms. ��
Lemma 6. With the preceding notation,

CoresG
H

(
H1(H, Q/Z)[p](−1) ∪ H1(H, Q/Z)[p](−2)

) = {0}.

Proof. Let x belong to H1(H, Q/Z)[p](−1) and y to H1(H, Q/Z)[p](−2).
By Lemma 5, x comes from an element z of H1(G, Q/Z). By the transfer
formula [Bro, (3.8), p. 112],

CoresG
H(x ∪ y) = CoresG

H

(
ResG

H(z) ∪ y
) = z ∪ CoresG

H(y).

But CoresG
H(y) is in H1(G, Q/Z) = H1(G, Q/Z)[p](−1) since this group

is isomorphic to U∨ and in the group H1(G, Q/Z)[p](−2). Therefore it is
trivial. ��
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5.7. Proof of Theorem 2

We now complete the proof of Theorem 2. Let H be a subgroup of G such
that ι(V ) ⊂ H . First note that if x belongs to H1(H, Q/Z)[p](k) and y to
H1(H, Q/Z)[p](l) then

CoresG
H(x ∪ y) ∈ H3(G, Q/Z)[p](k+l).

Using Lemma 5 and Lemma 6, we get that for any x, y in H1(H, Q/Z) we
have

CoresG
H(x ∪ y) ∈ H3(G, Q/Z)[p](−2) + H3(G, Q/Z)[p](−4).

Using Lemma 4, and the definition of the H3
p (G, Q/Z), we get that

H3
p (G, Q/Z) ⊂ H3(G, Q/Z)[p](−2) + H3(G, Q/Z)[p](−4).

But the image of Λ3U∨ in H3(G, Q/Z) is contained in H3(G, Q/Z)[p](−3)

and does not meet H3
p (G, Q/Z). Using Proposition 2 we get that the kernel

of the map

Λ3U∨ −→ H3(C(W )G, Q/Z)

coincides with the kernel of the map Λ3U∨ → H3(G, Q/Z), which is K3

by [Pe2, Lemma 9.3]. We then apply Proposition 5 to conclude the proof.

6. A special case

If the dimension of U is less than 5 then any λ in Λ3U may be written as
λ = u ∧ v with u in U and v in Λ2U (see [Re, §1.4]). Therefore K3 = K3

max
whenever dim U � 5. Let us give an example with dim U = 6.

Theorem 3. Let U and V be two Fp-vector spaces of dimension 6 for p
an odd prime. We denote by (ui)1�i�6 a basis of U and (vi)1�i�6 a basis
of V . We denote by (u∨

i )1�i�6 the dual basis of U∨. Let γ be the element of
Λ2U∨ ⊗ V defined by

γ = v1 ⊗ (
u∨

1 ∧ u∨
2 − u∨

4 ∧ u∨
5

) + v2 ⊗ (
u∨

2 ∧ u∨
3 − u∨

5 ∧ u∨
6

)

+ v3 ⊗ u∨
1 ∧ u∨

4 + v4 ⊗ u∨
2 ∧ u∨

5 + v5 ⊗ u∨
3 ∧ u∨

6 + v6 ⊗ u∨
4 ∧ u∨

6 .

This defines a map γ : Λ2U → V. Let

0 −→ V −→ G −→ U −→ 0



Unramified cohomology and Noether’s problem 223

be the corresponding central extension (see Notation 7), then for any faithful
representation W of G one has

Brnr(C(W )G ) = {0}
but

H3
nr(C(W )G, Q/Z) �= {0}.

In particular, C(W )G is not a rational extension of C.

Proof. By [Bo1, Lemma 5.1], one has

Brnr(C(W )G ) ∼−→ K2
max/K2.

But

K2 = 〈
u∨

1 ∧ u∨
2 − u∨

4 ∧ u∨
5 , u∨

2 ∧ u∨
3 − u∨

5 ∧ u∨
6 ,

u∨
1 ∧ u∨

4 , u∨
2 ∧ u∨

5 , u∨
3 ∧ u∨

6 , u∨
4 ∧ u∨

6

〉

and

K2⊥ = 〈
u1 ∧ u2 + u4 ∧ u5, u2 ∧ u3 + u5 ∧ u6,

u3 ∧ u4, u6 ∧ u1, u1 ∧ u3, u2 ∧ u4, u3 ∧ u5, u5 ∧ u1, u6 ∧ u2
〉
.

Since

u1 ∧ u2 + u4 ∧ u5 = (u1 + u4) ∧ (u2 + u5) + u2 ∧ u4 + u5 ∧ u1

and

u2 ∧ u3 + u5 ∧ u6 = (u2 + u5) ∧ (u3 + u6) + u6 ∧ u2 + u3 ∧ u5,

we have

K2
dec
⊥ = K2⊥

and K2 = K2
max.

This proves the first assertion. We now compute K3 and K3
max

K3 = 〈
u∨

1 ∧ u∨
4 ∧ u∨

5 , u∨
1 ∧ u∨

2 ∧ u∨
3 − u∨

1 ∧ u∨
5 ∧ u∨

6 ,

u∨
1 ∧ u∨

2 ∧ u∨
5 , u∨

1 ∧ u∨
3 ∧ u∨

6 , u∨
1 ∧ u∨

4 ∧ u∨
6 ,

u∨
2 ∧ u∨

4 ∧ u∨
5 , u∨

2 ∧ u∨
5 ∧ u∨

6 , u∨
1 ∧ u∨

2 ∧ u∨
4 ,

u∨
2 ∧ u∨

3 ∧ u∨
6 , u∨

2 ∧ u∨
4 ∧ u∨

6 ,

u∨
1 ∧ u∨

2 ∧ u∨
3 − u∨

3 ∧ u∨
4 ∧ u∨

5 ,

u∨
3 ∧ u∨

5 ∧ u∨
6 , u∨

1 ∧ u∨
3 ∧ u∨

4 , u∨
2 ∧ u∨

3 ∧ u∨
5 ,

u∨
3 ∧ u∨

4 ∧ u∨
6 , u∨

1 ∧ u∨
2 ∧ u∨

4 ,

u∨
2 ∧ u∨

3 ∧ u∨
4 − u∨

4 ∧ u∨
5 ∧ u∨

6 ,

u∨
2 ∧ u∨

4 ∧ u∨
5 , u∨

3 ∧ u∨
4 ∧ u∨

6 , u∨
1 ∧ u∨

2 ∧ u∨
5 ,

u∨
2 ∧ u∨

3 ∧ u∨
5 , u∨

1 ∧ u∨
4 ∧ u∨

5 , u∨
3 ∧ u∨

5 ∧ u∨
6 ,

u∨
4 ∧ u∨

5 ∧ u∨
6 , u∨

1 ∧ u∨
2 ∧ u∨

6 − u∨
4 ∧ u∨

5 ∧ u∨
6 ,

u∨
2 ∧ u∨

3 ∧ u∨
6 , u∨

1 ∧ u∨
4 ∧ u∨

6 , u∨
2 ∧ u∨

5 ∧ u∨
6

〉
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= 〈
u∨

1 ∧ u∨
2 ∧ u∨

3 − u∨
1 ∧ u∨

5 ∧ u∨
6 , u∨

1 ∧ u∨
2 ∧ u∨

3 − u∨
3 ∧ u∨

4 ∧ u∨
5 ,

u∨
1 ∧ u∨

2 ∧ u∨
4 , u∨

1 ∧ u∨
2 ∧ u∨

5 , u∨
1 ∧ u∨

2 ∧ u∨
6 , u∨

1 ∧ u∨
3 ∧ u∨

4 ,

u∨
1 ∧ u∨

3 ∧ u∨
6 , u∨

1 ∧ u∨
4 ∧ u∨

5 , u∨
1 ∧ u∨

4 ∧ u∨
6 , u∨

2 ∧ u∨
3 ∧ u∨

4 ,

u∨
2 ∧ u∨

3 ∧ u∨
5 , u∨

2 ∧ u∨
3 ∧ u∨

6 , u∨
2 ∧ u∨

4 ∧ u∨
5 , u∨

2 ∧ u∨
4 ∧ u∨

6 ,

u∨
2 ∧ u∨

5 ∧ u∨
6 , u∨

3 ∧ u∨
4 ∧ u∨

6 , u∨
3 ∧ u∨

5 ∧ u∨
6 , u∨

4 ∧ u∨
5 ∧ u∨

6

〉
.

Therefore

K3⊥ = 〈u1 ∧ u2 ∧ u3 + u3 ∧ u4 ∧ u5 + u5 ∧ u6 ∧ u1, u1 ∧ u3 ∧ u5〉.
By [Pe1, p. 264, Example 2],

S3
dec = 〈u1 ∧ u3 ∧ u5〉.

Therefore K3
max/K3 ∼−→ Fp and by Theorem 2, we get that

H3
nr(C(W )G, Q/Z) �= {0}. ��
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