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Introduction

Universal torsors were invented by Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc;
for smooth projective varieties X with H1(X,O) = 0 they play the role similar to that of
n-coverings of elliptic curves. The foundations of the theory of descent on torsors were laid
in a series of notes in Comptes Rendus de l’Académie des Sciences de Paris in the second
half of the 1970s, and a detailed account was published in [4]. The theory has strong
number theoretic applications if the torsors can be described by explicit equations, and
if the resulting system of equations can be treated using some other methods, whether
algebraic or analytic. Such is the case for surfaces fibred into conics over P

1
k: the universal

torsors over these surfaces are closely related to complete intersections of quadrics of a
rather special kind. To describe them we use the following terminology. If Z ⊂ A

m
k is

a closed subset of an affine space with a coordinate system over a field k, then the
variety obtained from Z by multiplying coordinates by non-zero numbers will be called a
dilatation of Z. If exactly n geometric fibres of the conic bundleX → P

1
k are singular, then

there is a non-singular quadric Q ⊂ A
2n
k such that the universal torsors over X are stably

birationally equivalent to the product of a complete intersection of n− 2 dilatations
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of Q, and a Severi–Brauer variety (see [4, Theorem 2.6.1]). This description was key
to a plethora of applications to the Hasse principle, weak approximation, zero-cycles,
R-equivalence and rationality problems (see, for example, [2,6]). A similar approach to
cubic and more general smooth del Pezzo surfaces without a pencil of rational curves
requires better understanding of their universal torsors. Known descriptions of universal
torsors over diagonal cubic surfaces (see [4, 2.5] and [5, 10]) lack simplicity and symmetry
of the conic bundle case.

A non-singular quadric in A
2n
k can be regarded as a homogeneous space of the simple

Lie group G associated with the root system Dn which naturally appears in connection
with conic bundles with n singular fibres (see, for example, [10]). Indeed, over an alge-
braically closed field we can identify Q with the orbit of the highest weight vector of
the fundamental 2n-dimensional representation V of G. Then the ‘essential’ part of the
torsor is the intersection of n− 2 dilatations of this homogeneous space by the elements
of a maximal torus in GL(V ).

Our first aim in this paper is to obtain a similar description in the case of del Pezzo
surfaces. (Recall that these two families exhaust all minimal smooth projective rational
surfaces, according to the classification of Enriques, Manin and Iskovskih.) We build
on the results of our previous paper [16], where we studied split del Pezzo surfaces,
i.e. the case when the Galois action on the set of exceptional curves is trivial. The
main result of [16] is a construction of an embedding of a universal torsor over a split
del Pezzo surface X of degree 5, 4, 3 or 2 into the orbit of the highest weight vector of
a fundamental representation of the simple simply connected Lie group G which has the
same root system as X, i.e. A4, D5, E6 or E7, respectively. This orbit is the punctured
affine cone over G/P , where P ⊂ G is a maximal parabolic subgroup. The embedding is
equivariant with respect to the action of the Néron–Severi torus T of X, identified with a
split maximal torus of G extended by Gm. In Theorem 2.5 we describe universal torsors
over split del Pezzo surfaces of degree d as intersections of 6 − d dilatations of the affine
cone over G/P by k-points of the maximal torus of GL(V ) which is the centralizer of T
in GL(V ). This gives a more conceptual approach to the equations appeared previously
in the work of Popov [14] and Derenthal [7] (see also [8,11,20–22]). This approach can
be called a global description of torsors compared to their local description obtained by
Colliot-Thélène and Sansuc in [4, 2.3].

For a general del Pezzo surface X of degree 4, 3 or 2 with a rational point we construct
an embedding of a universal torsor over X into the same homogeneous space as in the
split case, but this time equivariantly with respect to the action of a (possibly, non-split)
maximal torus of G (see Theorem 4.4). The case of del Pezzo surfaces of degree 5, where a
rational point comes for free by a theorem of Enriques and Swinnerton-Dyer, was already
known [18, Theorem 3.1.4]. The proof of Theorem 4.4 uses a recent result of Gille [9]
and Raghunathan [15] which classifies maximal tori in quasi-split algebraic groups. This
result implies that the Néron–Severi torus T of X embeds into the same split group G

extended by Gm, exactly as in the case of a split del Pezzo surface.
The condition on the existence of a rational point on X is not a restriction in the case

of degree 5, but is clearly a restriction for smaller degrees, limiting the scope of possible
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applications. However, if X is a del Pezzo surface of degree 4, this condition is necessary
as well as sufficient for our construction: if X can be realized inside a twisted form of the
quotient of G/P by a maximal torus, then X has a rational point (see Corollary 4.5 (i)).
Finally, in Corollary 4.6 we show that any universal torsor over a del Pezzo surface of
degree 4 with a k-point is a dense open subset of the intersection of the affine cone over
a twisted form of G/P with its dilatation by a k-point of the centralizer of T in GL(V ).

We recall the construction of [16] in § 1 alongside with all necessary notation. In § 2 we
describe torsors over split del Pezzo surfaces as intersections of dilatations of the affine
cone over G/P . In § 3 we prove a uniqueness property used in the proof of the main
results in the non-split case in § 4.

1. Review of the split case

Preliminary remarks

Let k be a field of characteristic 0 with an algebraic closure k̄.
Let V be a vector space over k, and let T ⊂ GL(V ) be a split torus, i.e. T � Gn

m for
some n. Let Λ ⊂ T̂ be the set of weights of T in V , and let Vλ ⊂ V be the subspace of
weight λ. We have V =

⊕
λ∈Λ Vλ. Let S be the centralizer of T in GL(V ), i.e.

S =
∏

λ∈Λ

GL(Vλ) ⊂ GL(V ).

In what follows we always assume that dimVλ = 1 for all λ ∈ Λ; then S is a maximal
torus in GL(V ). Let πλ : V → Vλ be the natural projection. For A ⊂ V we write A× for
the set of points of A outside

⋃
π−1

λ (0).
Let r = 4, 5, 6 or 7. A split del Pezzo surface X of degree d = 9 − r is the blowing-up

of P
2 in r k-points in general position (i.e. no three points are on a line and no six are on

a conic). The Picard group PicX is a free abelian group of rank r + 1, generated by the
classes of exceptional curves on X. Let T = Gr+1

m . Once an isomorphism T̂
∼−−→ PicX is

fixed, T is called the Néron–Severi torus ofX. A universal torsor f : T → X is anX-torsor
with structure group T , whose type is the isomorphism T̂

∼−−→ PicX (see [18, p. 25]).
We call a divisor in T an exceptional divisor if it is the inverse image of an exceptional
curve in X.

Now suppose that dimV equals the number of exceptional curves on X. We can make
an obvious but useful observation.

Lemma 1.1. Let T → X be a universal torsor over a split del Pezzo surface X. Let φ
and ψ be T -equivariant embeddings T → V such that for each weight λ ∈ Λ the divisors
of functions πλφ and πλψ are equal to the same exceptional divisor with multiplicity 1.
Then ψ = s ◦ φ for some s ∈ S(k).

Proof. Since T is a universal torsor we have k[T ]∗ = k∗, hence two regular functions
with equal divisors differ by a non-zero multiplicative constant. �
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Construction in the split case

Let the pair consisting of a root system R of rank r and a simple root α be one of the
pairs in the list

(A4, α3), (D5, α5), (E6, α6), (E7, α7). (1.1)

Here and elsewhere in this paper we enumerate roots as in [3]. Let G be the split simply
connected simple group with split maximal torus H and root system R. Let ω be the
fundamental weight dual to α, and let V = V (ω) be the irreducible G-module with the
highest weight ω. It is known that V is faithful and minuscule (see [3]). Let P ⊂ G be
the maximal parabolic subgroup such that G/P ⊂ P(V ) is the orbit of the highest weight
vector. The affine cone over G/P is denoted by (G/P )a.

It is easy to check that the G-module S2(V ) is the direct sum of two irreducible
submodules V (ω1) ⊕ V (2ω). For r � 6, V (ω1) is a non-trivial irreducible G-module of
least dimension; it is a minuscule representation of G. If r = 7, then V (ω1) is the adjoint
representation; it is quasi-minuscule, that is, all the non-zero weights have multiplicity 1
and form one orbit of the Weyl group W of R. If pr is the natural projection S2(V ) →
V (ω1), and Ver : V → S2(V ) is the Veronese map x �→ x2, then it is well known that
(G/P )a is the fibre (pr ◦ Ver)−1(0) (as a scheme, see [1, Proposition 4.2], and references
therein).

Let S be the centralizer of H in GL(V ). Since the eigenspaces of H in V are one
dimensional, V has a coordinate system with respect to which S is the diagonal torus.
Let the torus T ⊂ S be the extension of H by the scalar matrices Gm ⊂ GL(V ). Note
that an eigenspace of H in V is also an eigenspace of T , so that there is a natural bijection
between the corresponding sets of characters.

As in [16] we denote by V sf the dense open subset of V consisting of the points
whose H-orbits are closed and whose stabilizers in T are trivial; the first of these con-
ditions is stability in the sense of Mumford [13]. Let (G/P )sfa = (G/P )a ∩ V sf . In [16]
we constructed a T -equivariant closed embedding of T into (G/P )sfa such that each
weight hyperplane section T ∩ π−1

λ (0) is an exceptional divisor with multiplicity 1. Then
X× = f(T ×) is the complement to the union of exceptional curves on X.

We need to recall the details of this construction. It starts with the case (R, α) =
(A4, α3) where the torsor T is the set of stable points of (G/P )a which is the affine cone
over the Grassmannian Gr(2, 5) (see [18, 3.1]). Thus T is open and dense in (G/P )a in
this case. As in [16] we use dashes to denote the previous pair in (1.1); the previous pair
of (A4, α3) is (A1 × A2, α

(1)
1 + α

(2)
2 ), though it will not be used. For r � 5 we assume

that a torsor T ′ ⊂ (G′/P ′)sfa over a split del Pezzo surface of degree 10 − r is already
constructed, and proceed to construct T as follows.

Let Λn ⊂ Λ be the set of weights λ such that n is the coefficient of α in the decompo-
sition of ω − λ into a linear combination of simple roots. Let Vn =

⊕
λ∈Λn

Vλ, then

V =
⊕

n�0

Vn. (1.2)
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The subspaces Vn are G′-invariant. In fact, Vn = 0 for n > 3 so that

V = V0 ⊕ V1 ⊕ V2 ⊕ V3,

and V3 = 0 unless r = 7. The degree 0 component V0 � k is the highest weight subspace,
and the degree 1 component V1 is isomorphic to V ′ as a G′-module. The G′-module V2

is irreducible with highest weight ω1. For r = 7 we have V3 � k.
As in [16], let gt be the element of T such that gt|Vi

= t1−i id, where t ∈ k̄∗. Let
U ⊂ (G/P )a be the set of points of (G/P )a outside (V0 ⊕ V1) ∪ (V2 ⊕ V3). The natural
projection π : V → V1 defines a morphism U → V1 \ {0} which is the composition of
a torsor under Gm = {gt | t ∈ k̄∗} and the morphism inverse to the blowing-up of
(G′/P ′)a \ {0} in V1 \ {0} [16, Corollary 4.2]. There is a G′-equivariant affine morphism
exp : V1 → (G/P )a such that π ◦ exp = id, and the affine cone over exp(V1) is dense in
(G/P )a. As in [16] we write exp(x) = (1, x, p(x), q(x)). We mentioned above that the G′-
module V2 is a direct summand of S2(V1). The map p can be identified, up to a non-zero
constant, with the composition of the natural map V1 → S2(V1) with the projection to
V2. Is this notation the scheme (G′/P ′)a is the fibre p−1(0).

Since V2 is the direct sum of one-dimensional weight spaces, it has a natural coordinate
system. The weight coordinates of p(x) will be written as pµ(x), where µ ∈ W ′ω1.

The choice of a point in V × defines an isomorphism V × � S compatible with the
action of S. Using this isomorphism we define a multiplication on V ×, and then extend
it to V . However, none of our formulae will depend of this isomorphism.

Suppose that T ′ ⊂ (G′/P ′)a ⊂ V ′ = V1 is such that f ′ : T ′ → X ′ = T ′/T ′ is
a universal torsor over a del Pezzo surface X ′, moreover, the T ′-invariant hyperplane
sections of T ′ are the exceptional divisors. In [16] we proved that for any k̄-point x0 in
T ′× there exists a non-empty open subset Ω(x0) ⊂ (G′/P ′)×

a , whose definition is recalled
in the beginning of the next section, such that for any y0 in Ω(x0) the orbit T ′y0 is the
scheme-theoretic intersection x−1

0 y0T ′ ∩ (G′/P ′)a (see [16, Corollary 6.4]). Therefore, if
T is the proper transform of x−1

0 y0T ′ in U , then X = T /T is the blowing-up of X ′ at
f ′(x0). Consequently, one proves that T ⊂ (G/P )sfa . Equivalently, T can be defined as
the affine cone (without zero) over the Zariski closure of exp(x−1

0 y0T ′ \T ′y0) in (G/P )sfa .
The construction of an embedding of a universal torsor over X into (G/P )sfa is the

main result of [16] (Theorem 6.1). The following corollary to this theorem complements
it by showing that our embedding is in a sense unique.

Corollary 1.2. Let T ⊂ V sf be a closed T -invariant subvariety such that T /T is a split
del Pezzo surface and the weight hyperplane sections of T are the exceptional divisors
with multiplicity 1. Then for some s ∈ S(k) the torsor sT is a subset of (G/P )a obtained
by our construction (for some choice of a basis of simple roots of our root system R).

Proof. The construction of [16] recalled above produces a universal torsor T̃ over the
same split del Pezzo surface X inside (G/P )a, satisfying the condition that the weight
hyperplane sections are the exceptional divisors with multiplicity 1. The identifications
of the exceptional curves on X with the weights of V coming from T and T̃ may be
different, however the permutation that links them is an automorphism of the incidence
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graph of the exceptional curves on X. It is well known (see [12, Chapter 4]) that the
automorphism group of this graph is the Weyl group W of R. Thus replacing T̃ by its
image under the action of an appropriate element of W (that is, a representative of this
element in the normalizer of H in G), we ensure that the identification of the weights
with the exceptional curves is the same for both embeddings. (The choice of this element
in W is equivalent to the choice of a basis of simple roots in our construction.) The
multiplicity 1 condition in the construction of [16] is easily checked by induction from
the case r = 4 where we consider the Plücker coordinate hyperplane sections of Gr(2, 5).
It remains to apply Lemma 1.1. �

Let us recall some more notation. For µ ∈ Wω1 ⊂ Ĥ we write S2
µ(V ) for the H-eigen-

space of S2(V ) of weight µ, and S2
µ(V )∗ for the dual space. Let Verµ be the Veronese

map V → S2(V ) followed by the projection to S2
µ(V ). For r = 6 we write S3

0(V ) for the
zero weight H-eigenspace in S3(V ), and Ver0 : V → S3

0(V ) for the corresponding natural
map.

As in the previous corollary, we denote by T ⊂ V sf a closed T -invariant subvariety
such that T /T is a split del Pezzo surface and the weight hyperplane sections of T are
exceptional divisors with multiplicity 1. Let I ⊂ k[V ∗] be the ideal of T , Iµ = I∩S2

µ(V )∗,
and, for r = 6, let I0 = I ∩ S3

0(V )∗.
Let µ̃ be the character by which T acts on S2

µ(V ). The T -invariant hypersurface in T
cut by the zeros of a form from S2

µ(V )∗ \ Iµ is mapped by f : T → X to a conic on X.
The class of this conic in PicX, up to sign, is µ̃ ∈ T̂ under the isomorphism T̂ � PicX
given by the type of the torsor f : T → X (see the comments before Proposition 6.2
in [16]). The conics on X in a given class form a two-dimensional linear system, hence
the codimension of Iµ in S2

µ(V )∗ is 2 (see [16, Formula (15)]). Let I⊥
µ ⊂ S2

µ(V ) be the
two-dimensional zero set of Iµ. The corresponding projective system defines a morphism
fµ : X → P

1
k = P(I⊥

µ ) whose fibres are the conics of the class µ̃. The link between Verµ

and fµ is described in the following commutative diagram:

V ⊃

Verµ

��

(G/P )a ⊃

��

T ��

��

X

fµ

��
S2

µ(V ) ⊃ p⊥
µ ⊃ I⊥

µ \ {0} �� P1
k

(1.3)

Here p⊥
µ is the zero set of pµ ∈ S2

µ(V )∗.

Lemma 1.3. For µ ∈ Wω1 the vertical maps in (1.3) are surjective. Moreover, we have
dimS2

µ(V ) = r − 1.

Proof. For the two right-hand maps the statement is clear. The map V → S2
µ(V ) is

surjective because all eigenspaces of T in V are one dimensional. Since dimS2
µ(V ) does

not change if we replace µ by wµ for any w ∈ W , to calculate dimS2
µ(V ) we can assume

that µ = ω1. But ω1 is a weight of H ′ in V2, so we have S2
ω1

(V ) = S2
ω1

(V1) ⊕ (V2)ω1 , where
dim(V2)ω1 = 1. Starting with the case of the Plücker coordinates for r = 4, one shows by
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induction that dimS2
ω1

(V ) = r − 1. Hence dimS2
µ(V ) = r − 1 and so dim p⊥

µ = r − 2 for
any µ.

To compute Verµ((G/P )a) we can continue to assume that µ = ω1. If x is in
V1, then Verω1 sends exp(x) ∈ (G/P )a to Verω1(x) + pω1(x). Thus the projection of
Verω1((G/P )a) to S2

ω1
(V1) = Verω1(V1), which is a vector space of dimension r − 2, is

surjective. Hence Verω1 maps (G/P )a surjectively onto p⊥
ω1

. �

Let {xν | ν ∈ Λ1} be a set of T -homogeneous coordinates in V1. Arguing by induction
as in this proof, it is easy to show starting with the case of the Plücker coordinates on
Gr(2, 5) that pµ(x) is the sum of all the monomials of weight µ with non-zero coefficients:

pµ(x) =
∑

{ν,η∈Λ1|ν+η=µ}
cνηx

νxη, cνη �= 0.

We finish this section with some remarks on the equations of G/P in the case E7. In
this case V is the minimal 56-dimensional representation of G. Let g be the Lie algebra of
G, and let h be the Lie algebra of H ⊂ G, so that h is a Cartan subalgebra of g. We have
the decomposition S2(V ) � V (2ω) ⊕ g, so p : V → g is the composition of the natural
map V → S2(V ) and the projection S2(V ) → g. If α is a root of g, we define pα(x) as
the composition of p with the projection to gα. We have (G/P )a = p−1(0). Moreover,
the ideal I((G/P )a) is generated by the quadratic forms pα(x), and by seven quadratic
forms of weight zero which are the compositions of p with the projection g → h followed
by α : h → k, where α ∈ h∗ is a simple root.

If µ is a weight of V we denote byHµ the image of µ in h under the natural isomorphism
h∗ ∼−−→ h defined by the Killing form.

Lemma 1.4. The set p(V ) ∩ h is the union of lines spanned by the vectors Hµ, where
µ ∈ Λ.

Proof. Let h ∈ p(V ) ∩ h. Since p is a G-invariant map, we have Gh ⊂ p(V ). Note that

dimGh = dim g − dimZ(h),

where Z(h) is the centralizer of h in g. On the other hand, we have dim p(V ) � 56, hence

dimZ(h) � 77. (1.4)

Note that Z(h) ⊂ g is a reductive Lie algebra containing h. Thus the Dynkin diagram of
the semisimple part of Z(h) is obtained from the Dynkin diagram E7 by removing some
of the nodes; the dimension of the centre of Z(h) is the number of removed nodes. By
direct inspection Z(h) satisfies (1.4) only if its semisimple part is of type E6. Thus Z(h)
is conjugate to the centralizer of Hω, since the latter is defined by all the simple roots
except α. Therefore, for some w ∈ W the vector w(h) is proportional to Hω, thus h is
proportional to Hµ for some weight µ ∈ Wω = Λ. �

Lemma 1.5. Let N be the zero set of the quadratic forms pα(x) for all the roots α of
g. Then the irreducible components of N are (G/P )a and the two-dimensional spaces
Vµ ⊕ V−µ for all µ ∈ Λ.
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Proof. Let x ∈ N . If p(x) = 0, then x ∈ (G/P )a. So assume p(x) �= 0. Then by the
previous lemma p(x) is a multiple of Hµ for some µ ∈ Λ, and we may assume without loss
of generality that µ = ω. Since p is G-equivariant, the Lie algebra gx of the stabilizer of x
in G is a subalgebra of Z(Hω). But Z(Hω) is isomorphic to the direct sum of the simple
Lie algebra g′ of type E6, dim g′ = 78, and the one-dimensional centre. It is clear that
dim gx � dim g − 56 = 77, therefore we must have g′ ⊂ gx. Consider the decomposition
V = V0 ⊕ V1 ⊕ V2 ⊕ V3, and let xi be the component of x in Vi. Then gx contains g′ if
and only if x1 = x2 = 0. Thus x ∈ Vω ⊕ V−ω. (Note that p(x) �= 0 implies gx = g′.) �

Corollary 1.6. The closed set (G/P )sfa ⊂ V sf is given by the equations pα(x) = 0 for
all the roots α of g.

Proof. The stabilizer of any vector x ∈ Vµ ⊕ V−µ in T has positive dimension, so x is
not stable. Thus N sf = (G/P )sfa . �

2. Torsors over split del Pezzo surfaces

Unless stated otherwise we assume that r � 5, so that G′ is of type A4, D5 or E6. Recall
that we use dashes to denote objects related to the ‘previous’ root system. If r(u) is
a symmetric n-form on V1, then for any x ∈ V1, r(xu) is another symmetric form (we
multiply x, u ∈ V1 coordinate-wise). In what follows u is always a mute variable.

Let x0 be a k-point of T ′×. We define the dense open subset Ω(x0) ⊂ (G′/P ′)×
a as

the set of k̄-points x such that exp(x−1
0 xT ′×) is not contained in V \ V ×, that is, in the

union of weight hyperplanes of V . For r = 5 or 6 the set Ω(x0) is the complement to the
union of the closed subsets

Zµ(x0) = {x ∈ (G′/P ′)a | pµ(x−1
0 xu) ∈ I ′

µ}

for all weights µ of V2; for r = 7 one also removes the closed subset

Z0(x0) = {x ∈ (G′/P ′)a | q(x−1
0 xu) ∈ I ′

0}.

The condition y0 ∈ Ω(x0) implies that for all µ the vectors Verµ(x0) and Verµ(y0) are
not proportional. Since dimS2

µ(V1)∗ = 2 + dim I ′
µ, we see that for any y0 ∈ T ′ ∩ Ω(x0)

the subspace I ′
µ ⊂ S2

µ(V1)∗ consists of the forms vanishing at x0 and y0.
Recall that π : V → V1 is the natural projection (cf. (1.2)).

Lemma 2.1. Let x0 be a k-point of T ′×, and let y0 be a k-point of Ω(x0) ∩ T ′. Let T
be the torsor defined as the affine cone over the Zariski closure of exp(x−1

0 y0T ′ \ T ′y0)
in (G/P )sfa . Then we have the following statements.

(i) The closed set Zµ(x0) ⊂ (G′/P ′)a consists of the k̄-points x in (G′/P ′)a such that
pµ(x−1

0 y0x) = 0. For r = 7 the closed set Z0(x0) consists of the k̄-points x in
(G′/P ′)a such that q(x−1

0 y0x) = 0.
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(ii) The open set Ω(x0) ∩ T ′ is the inverse image of the complement to all exceptional
curves on X ′ and to all conics on X ′ passing through f ′(x0). For r = 7 one also
removes from the cubic surface X ′ ⊂ P

3
k the nodal curve cut by the tangent plane

to X ′ at f ′(x0). We have T × = π−1(Ω(x0) ∩ T ′).

(iii) We have t = exp(x−1
0 y2

0) ∈ T ×.

Proof. (i) The inclusion of Zµ(x0) into the hypersurface given by pµ(x−1
0 y0x) = 0 is

clear: assigning the variable u the value y0 ∈ T ′ we see that pµ(x−1
0 xu) ∈ I ′

µ implies that
pµ(x−1

0 xy0) = 0. Conversely, let us prove that every point x of (G′/P ′)a satisfying the
condition pµ(x−1

0 y0x) = 0, is in Zµ(x0). Using Lemma 1.3 we see that the set of quadratic
forms pµ(x−1

0 yu) on V1 for a fixed x0 and arbitrary y ∈ (G′/P ′)a is a vector subspace
L ⊂ S2

µ(V1)∗ of codimension 1, in fact this is the space of forms vanishing at x0. As was
pointed out before the statement of the lemma, I ′

µ is the subspace of L of codimension 1
consisting of the forms vanishing at y0. This proves the desired inclusion.

Now let r = 7. The inclusion of Z0(x0) into the hypersurface q(x−1
0 y0x) = 0 is clear for

the same reason as above. Conversely, let x ∈ (G′/P ′)a(k̄) be such that q(x−1
0 y0x) = 0.

We need to prove that q(x−1
0 xu) vanishes for any k̄-point u of T ′. In the end of the proof

of Proposition 6.2 of [16] we showed that the dual space H0(X ′,O(−KX′))∗ is a four-
dimensional vector subspace of S3

0(V1), so that we have a commutative diagram similar
to (1.3):

V1 ⊃

Ver0
��

T ′ ��

��

X ′

ϕ

��
S3

0(V1) ⊃ H0(X ′,O(−KX′))∗ \ {0} �� P(H0(X ′,O(−KX′))∗)

where ϕ is the anticanonical embedding X ′ ↪→ P
3
k. In [16] we also showed that for

any x ∈ (G′/P ′)a(k̄) the cubic form q(x−1
0 xu), considered as a linear form on S3

0(V1),
vanishes on the tangent space Tx0 � P

2
k to ϕ(X ′) ⊂ P

3
k at ϕf ′(x0). It is thus obvious

that if q(x−1
0 xu) vanishes at any point of ϕ(X ′) outside of Tx0 , then q(x−1

0 xu) vanishes
at any k̄-point u of T ′. But ϕf ′(y0) /∈ Tx0 , otherwise q(x−1

0 y0z) = 0 for any k̄-point z of
(G′/P ′)a contradicting the assumption that y0 is in Ω(x0). Thus q(x−1

0 xy0) = 0 implies
that q(x−1

0 xu) ∈ I ′
0.

(ii) The geometric description of Ω(x0) ∩ T ′ follows from [16, Corollary 6.3]. Hence
Ω(x0) ∩ T ′ is obtained from T ′ by removing the images π(E) of all exceptional divisors
E ⊂ T , so that π(T ×) = Ω(x0) ∩ T ′.

(iii) Recall that exp(x) gives a section of the natural morphism π : T → x−1
0 y0T ′ over

the complement to the fibre T ′y0. Thus t ∈ T . Since y0 is in Ω(x0) ∩ T ′ we see from (ii)
that t is in T ×. �

Let T ⊂ V sf be a closed T -invariant subvariety such that T /T is a split del Pezzo
surface and the weight hyperplane sections of T are exceptional divisors with multiplic-
ity 1. The torsor T defines an important subset of the torus S. Namely, let Z be the
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closed subset of S consisting of the points s such that sT ⊂ (G/P )a (which implies
sT ⊂ (G/P )sfa ). Equivalently, Z =

⋂
x∈T ×(k̄) x

−1(G/P )×
a . The set Z is T -invariant, since

such are (G/P )a and T . In the case when T ⊂ (G/P )sfa , the variety Z contains the
identity element 1 ∈ S(k).

Lemma 2.2. Under the assumptions of Lemma 2.1 for r = 4 we have Z = T , and
for r � 5 we have π(Z) = y−1

0 Ω(x0) which is dense and open in y−1
0 (G′/P ′)×

a . The
closed subvariety Z ⊂ S is the affine cone (without zero) over t−1 exp(x−1

0 y0Ω(x0)); in
particular, Z is geometrically integral, and t−1T × ⊂ Z. For r = 5 this inclusion is an
equality.

Proof. The statement in the case r = 4 is clear since T is dense in (G/P )a, and the only
elements of S that leave G/P = Gr(2, 5) invariant are the elements of T . Now assume
that r � 5. For a fixed x0, in order to construct an embedding T ⊂ (G/P )a we can
choose any y in the dense open subset Ω(x0) ⊂ (G′/P ′)a. The embeddings defined by
(x0, y0) and (x0, y) satisfy the conditions of Lemma 1.1. We obtain an element s ∈ Z
such that π(s) = y−1

0 y. Thus π(Z) contains y−1
0 Ω(x0).

Let us prove that π(Z) ⊂ y−1
0 (G′/P ′)×

a . Let π0 : V → V0 � k be the natural projection.
Choose y ∈ T ⊂ (G/P )a such that π(y) = y0 ∈ Ω(x0) ⊂ (G′/P ′)×

a . By Lemma 4.1 of [16]
we have π0(y) = 0. Thus π0(sy) = 0 for any s ∈ Z. But since sy ∈ (G/P )a, an inspection
of cases in Lemma 4.1 of [16] shows that π(sy) = π(s)y0 ∈ (G′/P ′)×

a . Therefore, π(Z) ⊂
y−1
0 (G′/P ′)×

a . Next, we note that st ∈ (G/P )×
a (since t ∈ T × by Lemma 2.1). The

coordinates of the projection of st to V2 equal pµ(π(s)x−1
0 y2

0), up to a non-zero constant,
hence pµ(π(s)x−1

0 y2
0) �= 0 for all µ. But for r � 6 the open set y−1

0 Ω(x0) ⊂ y−1
0 (G′/P ′)×

a
is given by pµ(x−1

0 y2
0u) �= 0, by Lemma 2.1 (i). For r = 7 a similar argument shows that

q(π(s)x−1
0 y2

0) �= 0. Thus we obtain the equality π(Z) = y−1
0 Ω(x0).

By Lemma 2.1 (iii), t = exp(x−1
0 y2

0) is in T × so we have tZ ⊂ (G/P )×
a . Since Z is

invariant under the action of Gm = {gt | t ∈ k̄∗}, we see from Lemma 4.1 of [16] that
Z is a Gm-torsor over π(Z) = y−1

0 Ω(x0). Moreover, t−1 exp(x−1
0 y2

0x) is a section of this
torsor. This proves that Z is the affine cone over t−1 exp(x−1

0 y0Ω(x0)).
If r = 5, then Ω(x0) is a dense open subset of T ′ as both sets are Zariski open in

Gr(2, 5). Thus the last statement follows from Lemma 2.1 (ii). �

This lemma implies that dim Z = 2 + dimG′/P ′ which equals 8, 12, 18 for r = 5, 6, 7,
respectively.

Definition 2.3. We say that r − 3 points z0, . . . , zr−4 in Z(k̄) are in general position if
for any weight µ ∈ Wω1 the vectors Verµ(zi), i = 0, . . . , r − 4, are linearly independent.

Lemma 2.4. Let T ⊂ V sf be a closed T -invariant subvariety such that T /T is a split
del Pezzo surface and the weight hyperplane sections of T are exceptional divisors with
multiplicity 1. Then Z contains r − 3 k-points in general position. More precisely, for
any k-point z0 of Z the points (z1, . . . , zr−4) ∈ Z(k)r−4 such that z0, z1, . . . , zr−4 are in
general position, form a dense open subset of Zr−4.
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Proof. We first note that Verµ(Z) is dense in a vector subspace of S2
µ(V ) of dimension

r − 3. Indeed, assume without loss of generality that µ = ω1. Then, as in the proof of
Lemma 1.3, we have S2

ω1
(V ) = S2

ω1
(V1) ⊕ (V2)ω1 . The image of tZ consists of the points

Verω1(x
−1
0 y0u) + pω1(x

−1
0 y0u), where u is in Ω(x0), by Lemma 2.2. Since Verω1 sends

(G′/P ′)a to a vector space of dimension r − 3, by Lemma 1.3, we see that Verω1(tZ) is
a dense subset of a vector space of this dimension. Hence the same is true for Z.

We can choose the points z1, . . . , zr−4 in Z(k) one by one, in such a way that zn is
in the complement to the union of the inverse images under Verµ of the linear span of
Verµ(zi), i = 0, . . . , n−1. This complement is non-empty since Verµ(Z) is a Zariski dense
subset of a vector space of dimension r − 3. �

Equations for T have been given by Popov [14] and Derenthal [7, 8]. The following
result gives a concise natural description of these equations, in terms of the well-known
equations of (G/P )a ⊂ V .

Theorem 2.5. Let r = 4, 5, 6 or 7. Every split del Pezzo surface X of degree 9 − r has
a universal torsor T which is an open subset of the intersection of r − 3 dilatations of
(G/P )a by k-points of the diagonal torus S:

T =
⋂

z∈Z(k̄)

z−1(G/P )sfa =
r−4⋂

i=0

z−1
i (G/P )sfa , (2.1)

where z0 = 1, z1, . . . , zr−4 are k-points of Z ⊂ S in general position.

For r = 4, 5, 6, 7 the number of quadratic equations defining T ⊂ V sf is 5, 20, 81, 504,
respectively (recall that E7 has 126 roots). Our equations appear to be the same as those
obtained in [14] and [7] except for r = 7. This is probably because we describe T in an
open subset V sf of V , so we obtain a subset of the 529 equations for the Zariski closure of
T in V (cf. Corollary 1.6). See [8], [11], [20], [21] and [22] for more details and explicit
computations.

Proof of Theorem 2.5. We proceed by induction on r. For r = 4 our statement
is [18, Theorem 3.1]. Recall that the ideal of (G′/P ′)a is generated by the quadratic
forms pµ(x), µ ∈ W ′ω1. Thus the induction assumption implies that I ′, the ideal of T ′,
is the radical of the ideal generated by the weight µ components I ′

µ = I ′ ∩ S2
µ(V1)∗, for

all µ ∈ W ′ω1.
By Corollary 1.2 it is enough to prove the theorem for T which satisfies the assumptions

of Lemma 2.1. The torsor T is clearly contained in the closed set

S =
⋂

s∈Z(k̄)

s−1(G/P )sfa ⊂ V sf .

Since T is closed in V sf , for the first equality in (2.1) it is enough to prove that T is
dense in S. For this it is enough to show that x−1

0 y0T ′ is dense in π(S).
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For v ∈ V ⊗ k̄ we write v = (v0, v1, v2, v3), where vi ∈ Vi ⊗ k̄. Similarly, we write
s ∈ S(k̄) as (s0, s1, s2, s3), where si ∈ GL(Vi ⊗ k̄). In this notation the set

⋂

s∈Z(k̄)

{(s−1
0 t, s−1

1 tx, s−1
2 tp(x), s−1

3 tq(x)) | x ∈ V1 ⊗ k̄, t ∈ k̄∗}

is dense in S. This set can also be written as
⋂

s∈Z(k̄)

{(t, x, (ts0)−1s−1
2 p(s1x), (ts0)−2s−1

3 q(s1x)) | x ∈ V1 ⊗ k̄, t ∈ k̄∗}.

Since (1, 1, 1, 1) ∈ Z, we see that π(S) is contained in the set of x ∈ V1 ⊗ k̄ such that for
all s ∈ Z(k̄) we have

s−1
0 s−1

2 p(s1x) = p(x).

Let J ⊂ k[V ∗
1 ] be the ideal of x−1

0 y0T ′, and Jµ = J ∩S2
µ(V1)∗. Then dim I ′

µ = dimJµ, so
that Jµ has codimension 2 in S2

µ(V1)∗. Lemma 1.3 implies that the linear span L of the
quadratic forms pµ(yy−1

0 x) on V1 for a fixed y0 ∈ (G′/P ′)×
a and arbitrary y ∈ (G′/P ′)×

a
has codimension 1 in S2

µ(V1)∗ (in fact, L is the space of forms vanishing at y0). Lemma 2.2
implies that L coincides with the linear span of the quadratic forms pµ(s1x), for all
s ∈ Z(k̄). Hence the linear span of the forms s−1

0 s−1
2,µpµ(s1x)−pµ(x), for all s ∈ Z(k̄), has

codimension at most 2 in S2
µ(V1)∗. However, the inclusion x−1

0 y0T ′ ⊂ π(S) implies that
this space is in Jµ, and thus coincides with Jµ. This holds for every µ, but the induction
assumption implies that J is the radical of the ideal generated by the components Jµ for
all µ ∈ W ′ω1. Hence x−1

0 y0T ′ = π(S).
Let us prove the second equality in (2.1). For r < 7 the ideal of (G/P )a is generated by

the forms pµ(x), µ ∈ Wω1, so that the closed set (G/P )sfa ⊂ V sf is given by the equations
pµ(x) = 0. The last statement also holds for r = 7 by Corollary 1.6: here (G/P )sfa ⊂ V sf is
given by the equations pµ(x) = 0 for all the roots µ of g. If z0, . . . , zr−4 are k-points of Z
in general position, then the quadratic forms pµ(ziu) span a subspace of dimension r − 3
in Iµ = I ∩ S2

µ(V ∗), where I is the ideal of T . But dim Iµ = r − 3, hence Iµ is generated
by the pµ(ziu), i = 0, . . . , r − 4. The already proved first equality in (2.1) implies that I
is the radical of the ideal generated by the Iµ. This proves the second equality in (2.1),
and so completes the proof of the theorem. �

Remark. In the case r = 5 the general position condition has a simple geometric mean-
ing. By the last claim of Lemma 2.2 we have T × = sZ for some s ∈ S(k) well defined
up to an element of T (k). If T ⊂ (G/P )sfa , then Z contains 1, so that s is a k-point of
T ×. Then the previous theorem implies

T × = sZ = (G/P )×
a ∩ r−1s(G/P )×

a , so that T = (G/P )sfa ∩ r−1s(G/P )sfa , (2.2)

where r is a k-point in T × such that f(s) and f(r) are points in X× not contained in
a conic on X (cf. diagram (1.3)). Here f(s) is uniquely determined by T , whereas f(r)
can be any point of X× outside the 10 conics through f(s).
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This remark can be seen as a particular case of the following description of Z. For any
g and h in T ×(k) such that Verµ(h) and Verµ(g) are not proportional for any µ ∈ Wω1,
we have Z = g−1(G/P )×

a ∩ h−1(G/P )×
a . The proof is similar to that of Theorem 2.5; we

omit it here since we shall not need this fact.
To construct r − 3 points in Z in general position is not hard, because the points of Z

are parametrized by polynomials. Indeed, decompose V1 = V1,0 ⊕ V1,1 ⊕ V1,2 similarly to
(1.2), and consider the points t−1 exp(x−1

0 y0 exp(vi)), where v1, . . . , vr−3 in V1,1 satisfy
certain open conditions which are easy to write down using Lemma 2.2.

3. A uniqueness result

Before we proceed to the main result of this section (Proposition 3.4) we prove an aux-
iliary statement concerning the divisors on del Pezzo surfaces.

We continue to assume that X is a split del Pezzo surface of degree 9 − r. Let X×

be the complement to the union of exceptional curves on X. The group DivX\X×(X) of
divisors supported in X \X× is freely generated by the exceptional curves. The kernel
of the natural surjective map DivX\X×(X) → PicX is the subgroup of principal divisors
supported inX\X×, and so is identified with k[X×]∗/k∗. Thus we have an exact sequence

0 → k[X×]∗/k∗ → DivX\X×(X) → PicX → 0. (3.1)

The elements of the set Λ of weights of T in V are in a canonical bijection with the set of
exceptional curves on X. For λ ∈ Λ we denote by �λ the exceptional curve corresponding
to λ. Let Xλ be the del Pezzo surface of degree 10 − r obtained from X by contracting
�λ. The morphism X → Xλ defines the injective maps

DivXλ\X×
λ

(Xλ) → DivX\X×(X), PicXλ → PicX,

and identifies X× with an open subset of X×
λ . We obtain the following commutative

diagram of abelian groups

0 �� ∏
λ∈Λ k[X

×
λ ]∗/k∗ ��

��

∏
λ∈Λ DivXλ\X×

λ
(Xλ) ��

��

∏
λ∈Λ PicXλ ��

��

0

0 �� k[X×]∗/k∗ �� DivX\X×(X) �� PicX �� 0
(3.2)

Lemma 3.1. When 4 � r � 7 the left-hand vertical map in (3.2) is surjective.

Proof. The intersection index defines an integral bilinear form on DivX\X×(X) whose
kernel is k[X×]∗/k∗, so that the induced form on PicX is non-degenerate. We note that
any exceptional curve �λ can be included into the support of a principal divisor as follows:
if �λ′ is an exceptional curve such that (�λ′ .�λ) = 1, then �λ + �λ′ is a degenerate fibre of
a pencil of conics on X. Any such pencil has r − 1 � 3 degenerate fibres each consisting
of a pair of exceptional curves intersecting transversally at one point. Let �1 + �2 and
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�ν + �ν′ be two more degenerate fibres of the same pencil. Then �λ + �λ′ − �1 − �2 is in
k[X×

ν ]∗/k∗. Moreover, �1 and �2 are in DivXλ\X×
λ

(Xλ).
Choose any weight λ. If r � 6, then any two intersecting exceptional curves intersect

transversally at one point. Thus any element x ∈ k[X×]∗/k∗ can be written as x =
m�λ +

∑
mi�i +D, where m,mi ∈ Z, the divisor D is in DivXλ\X×

λ
(Xλ), and (�λ.�i) = 1

for all i. Since (�2λ) = −1 we have m =
∑
mi. The argument of the previous paragraph

shows that x is a sum of elements from k[X×
ν ]∗/k∗, for some ν ∈ Λ, and a principal divisor

in DivXλ\X×
λ

(Xλ). By injectivity of the map PicXλ → PicX this principal divisor comes
from k[X×

λ ]∗/k∗.
If r = 7 there is exactly one exceptional curve �λ′ such that (�λ.�λ′) = 2. Modifying

our x by an element from some k[X×
ν ]∗/k∗ we can arrange that �λ′ is not in the support

of x. Then we conclude as above. �

We denote by R the torus S/T , so that we have an exact sequence of split k-tori:

1 → T → S → R → 1. (3.3)

Our construction identifies Ŝ with the free abelian group DivX\X×(X). The type of the
universal torsor T → X is an isomorphism of free abelian groups T̂ ∼−−→ PicX. Thus
(3.3) is the dual sequence of (3.1). Let Rλ, Sλ, Tλ be tori whose groups of characters are
k[X×

λ ]∗/k∗, DivXλ\X×
λ

(Xλ), PicXλ, respectively. Dualizing diagram (3.2) we obtain the
following commutative diagram of tori:

1 �� T ��

��

S ��

��

R ��

��

1

1 �� ∏
λ∈Λ T

λ �� ∏
λ∈Λ S

λ �� ∏
λ∈ΛR

λ �� 1

(3.4)

Corollary 3.2. If s ∈ S(k̄) is such that for every λ ∈ Λ the image of s in Sλ belongs to
Tλ, then s ∈ T (k̄).

Proof. By Lemma 3.1 the right-hand map in (3.4) is injective. �

After this digression we return to universal torsors over del Pezzo surfaces and their
embeddings into homogeneous spaces.

The choice of y0 plays the role of a ‘normalization’ for the embedding of the torsor
T into (G/P )a. It is convenient to choose these normalizations in a coherent way. Let
M1, . . . ,Mr be k-points in general position in P

2
k, and let Xr be the blowing-up of P

2
k in

M1, . . . ,Mr. We can identify X×
r with an open subset U ⊂ P

2
k. Choose u0 ∈ U(k). At

every step of our inductive process we can choose the points y0 in the fibre of T ′ → X ′

over u0. Thus we get a compatible family of the y0 (more precisely, of torus orbits) that
are mapped to each other by the surjective maps T → T ′. In our previous notation, the
point t = exp(x−1

0 y2
0) must be taken for the point y0 of the next step.

If A is a subset of the torus S, then we denote by Pn(A) ⊂ S the set of products of n
elements of A in S. We define P0(A) = T .
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Proposition 3.3. Let r and n be integers satisfying 4 � r � 7, 0 � n � r − 4. Under
the assumptions of Lemma 2.1, if at every step of our construction we choose the points
y0 over a fixed point of U , then we have the following statements:

(i) Pn+1(t−1T ×) ⊂ t−1(G/P )×
a ;

(ii) Pn(t−1T ×) ⊂ Z.

Proof. Parts (i) and (ii) of the proposition are clearly equivalent. For n = 0 the inclusion
(i) is the main theorem of [16], and this finishes the case r = 4. Let n � 1. Recall that
the projection π maps t−1T onto y−1

0 T ′. Assume that we have the desired inclusions for
n− 1 and for both torsors T ′ and T , namely

Pn(t−1T ×) ⊂ t−1(G/P )×
a , Pn(y−1

0 T ′×) ⊂ y−1
0 (G′/P ′)×

a .

By Lemma 4.1 of [16] every k̄-point of (G/P )×
a can be written as gx ·exp(v), where x ∈ k̄∗,

and v ∈ V1⊗k̄. By the first inclusion in induction assumption this is also true for elements
of tPn(t−1T ×). Since T is gx-invariant, we have exp(v) ∈ tPn(t−1T ×). On applying π to
both sides we deduce v ∈ x−1

0 y2
0 Pn(y−1

0 T ′×). Applying the second inclusion in induction
assumption we obtain v ∈ x−1

0 y0(G′/P ′)×
a . Therefore, Pn(t−1T ×) is contained in the

affine cone over t−1 exp(x−1
0 y0(G′/P ′)×

a ). But this implies Pn(t−1T ×) ⊂ Z, since tZ is
the intersection of the affine cone over exp(x−1

0 y0(G′/P ′)×
a ) with V ×, by Lemma 2.2.

This proves (ii), and hence also (i). �

Proposition 3.4. Let r = 4, 5, 6 or 7, and let T ⊂ V sf be a closed T -invariant subvariety
such that X = T /T is a split del Pezzo surface of degree 9 − r, and the weight hyperplane
sections of T are exceptional divisors with multiplicity 1. Let Z ⊂ S be the closed subset
of points z such that zT ⊂ (G/P )a. Then there is a unique s ∈ S(k) defined up to an
element of T (k), such that Pr−4(T ×) ⊂ sZ.

Proof. By Corollary 1.2, up to replacing T by its dilatation by an element of S(k), we
can assume that T ⊂ (G/P )a is constructed as in Lemma 2.1. Thus the existence of s
follows from Proposition 3.3. We prove the uniqueness by induction on r. For r = 4 the
only elements of S that leave Gr(2, 5) invariant are the elements of T , so that Z = T in
this case, hence our statement is clear.

Now let us assume that r � 5. By Lemma 2.2 the inclusion Pr−4(t−1T ×) ⊂
sZ implies that Pr−4(y−1

0 T ′×) is contained in π(s)y−1
0 (G′/P ′)×

a , from which it fol-
lows that T ′× · Pr−5(y−1

0 T ′×) ⊂ π(s)(G′/P ′)×
a . By the definition of Z ′ this implies

Pr−5(y−1
0 T ′×) ⊂ π(s)Z ′. By induction assumption π(s) is unique up to an element

of T ′(k).
Recall that T ′ is a universal torsor over the surface X ′ obtained from X by blowing

down an exceptional curve, say �λ in the notation of the beginning of this section. In this
notation we have X ′ = Xλ and T ′ = Tλ. The argument in the previous paragraph works
for any weight λ ∈ Λ. Thus Corollary 3.2 implies that our s is unique up to an element
of T (k). �

Remark. For r = 5 the inclusion Pr−4(T ×) ⊂ sZ is an equality by the last claim of
Lemma 2.2, but this is no longer so for r = 6 or 7, for dimension reasons.



16 V. V. Serganova and A. N. Skorobogatov

4. Non-split del Pezzo surfaces

Let Γ = Gal(k̄/k). Let G be a split simply connected semisimple group over k with a
split maximal k-torus H and the root system R. Let N be the normalizer of H in G, and
let W = N/H be the Weyl group. The action of N by conjugation gives rise to an action
of W on the torus H. Since H is split, the Galois group Γ acts trivially on W . Thus
the continuous 1-cocycles of Γ with values in W are homomorphisms Γ → W , and the
elements of H1(k,W ) are homomorphisms Γ → W considered up to conjugation in W .

Theorem 4.1 (Gille–Raghunathan). For any σ ∈ Hom(Γ,W ) the twisted torus Hσ

is isomorphic to a maximal torus of G.

Proof. See [9, Theorem 5.1 (b)] or [15, Theorem 1.1]. �

Recall from [17, I.5.4] that we have an exact sequence of pointed sets

1 → N(k) → G(k) → (G/N)(k)
ϕ−→ H1(k,N) → H1(k,G).

(Note by the way that the last map here is known to be surjective.) The homogeneous
space G/N is the variety of maximal tori of G, so that an equivalent form of the Gille–
Raghunathan theorem is the surjectivity of the composite map

(G/N)(k) → H1(k,N) → H1(k,W ) = Hom(Γ,W )/conj .

We fix an embedding ofHσ as a maximal torus of G, this produces a k-point [Hσ] in G/N .
The choice of a k̄-point g0 in G such that g0Hg−1

0 = Hσ defines a 1-cocycle ρ : Γ → N(k̄),
ρ(γ) = g−1

0 · γg0, which is a lifting of σ ∈ Z1(k,W ) = Hom(Γ,W ). We have [ρ] = ϕ[Hσ],
see [17, I.5.4], moreover, the image of [ρ] in H1(k,G) is trivial.

Let G → GL(V ) be an irreducible representation of G. Define T ⊂ GL(V ) as the torus
generated by H and the scalar matrices Gm. The group N acts by conjugation on T .
The twisted torus Tσ is an extension of Hσ by Gm.

Let (G/P )a ⊂ V be the orbit of the highest weight vector (with zero added to it);
P ⊂ G is a parabolic subgroup, and (G/P )a is the affine cone over G/P . The maximal
torus Hσ ⊂ G acts on (G/P )a, and so does Tσ. Define (G/P )sf,σa to be the dense open
subset of (G/P )a consisting of the points with closed Hσ-orbits and trivial stabilizers
in Tσ.

The group N ⊂ G acts on V preserving V sf and V ×, thus giving rise to the action
of W on V sf/T and on V ×/T by automorphisms of algebraic varieties (not necessarily
preserving some group structure on V ×/T ). The action of N preserves (G/P )sfa ⊂ V , thus
W acts on Y = (G/P )sfa /T . Hence we define the twisted forms (V sf/T )σ, (V ×/T )σ and
Yσ. The variety (V ×/T )σ is an open subset of the quasi-projective toric variety (V sf/T )σ

which contains Yσ as a closed subset.

Lemma 4.2. The k-varieties Yσ and (G/P )sf,σa /Tσ are isomorphic.

Proof. Recall that g0 ∈ G(k̄) is a point such that ρ(γ) = g−1
0 · γg0 ∈ Z1(k,N)

is a cocycle that lifts σ ∈ Z1(k,W ) = Hom(Γ,W ). The image of ρ in Z1(k,G) is
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a coboundary, so that the inner form Gρ is isomorphic to G, and the twisted space
(G/P )a,ρ is isomorphic to (G/P )a. The map x �→ g0x on k̄-points of (G/P )a gives rise to
an isomorphism of k-varieties (G/P )a,ρ

∼−−→ (G/P )a compatible with the isomorphism
Gρ

∼−−→ G that sends g to g0gg−1
0 . The embedding H ↪→ G gives rise to an embedding

Hσ = Hρ ↪→ Gρ, so that Tσ acts on (G/P )a,ρ on the left. We obtain a Tσ-equivariant
isomorphism (G/P )a,ρ

∼−−→ (G/P )a.
Let (G/P )sfa,ρ be the subset of (G/P )a,ρ consisting of the points with closed Hσ-

orbits with trivial stabilizers in Tσ. The closedness of orbits and the triviality of sta-
bilizers are conditions on k̄-points, hence we obtain a Tσ-equivariant k-isomorphism
(G/P )sfa,ρ

∼−−→ (G/P )sf,σa . It descends to an isomorphism Yσ
∼−−→ (G/P )sf,σa /Tσ. �

Corollary 4.3. For any homomorphism σ : Γ → W the twisted variety Yσ has a k-point,
and so does (V ×/T )σ, so that (V ×/T )σ � Rσ.

Proof. Since k is an infinite field, any dense open subset of (G/P )a contains k-points.
Thus Y ×

σ (k) �= ∅, but this is a subset of (V ×/T )σ, so that this variety also has a k-
point. �

Remark. This approach via the Gille–Raghunathan theorem generalizes a key ingredi-
ent in the second author’s proof of the Enriques–Swinnerton-Dyer theorem that every
del Pezzo surface of degree 5 has a k-point, from quotients of Grassmannians by the
action of a maximal torus to quotients of homogeneous spaces of quasi-split semisimple
groups [19].

We now assume that R is the root systems of rank r in (1.1), and that the highest
weight of the G-module V is the fundamental weight dual to the root indicated in (1.1).
Then V is minuscule, so that the centralizer S of H in GL(V ) is a torus. Let R = S/T .
The group N acts by conjugation on T and hence also on S and R. The connected
component of 1 acts trivially, so we obtain an action of W on these tori (preserving the
group structure). On twisting T , S and R by σ we obtain an exact sequence of k-tori:

1 → Tσ → Sσ → Rσ → 1. (4.1)

Note in passing that the character group Ŝ has an obvious W -invariant basis, which
gives rise to a Galois invariant basis of Ŝσ. In other words, Sσ is a quasi-trivial torus; in
particular, H1(k, Sσ) = {1} as follows from Hilbert’s Theorem 90. Note also that V ×/T

is a torsor under R, so that (V ×/T )σ is a torsor under Rσ. By Corollary 4.3 this torsor
is trivial, that is, there is a (non-canonical) isomorphism (V ×/T )σ � Rσ.

Let X be a del Pezzo surface over k, not necessarily split, of degree 9 − r, where r
is the rank of the root system R. Let X̄ be the surface obtained from X by extending
the ground field from k to k̄. Our construction identifies Ŝ with the free abelian group
DivX̄\X̄×(X̄) generated by the exceptional curves on X̄, and T̂ with Pic X̄ (via the type
of the universal torsor T → X). The Galois group permutes the exceptional curves on
X̄, thus defining a homomorphism σX : Γ → W , where W is the Weyl group of R. This
homomorphism is well defined up to conjugation in W , so we have a well defined class
[σX ] ∈ H1(Γ,W ), where Γ acts trivially on W .
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We now assume σ = σX . Then we get isomorphisms of Γ -modules

Ŝσ = DivX̄\X̄×(X̄), T̂σ = Pic X̄,

thus Tσ is the Néron–Severi torus of X. The dual sequence of (4.1) coincides with the
natural exact sequence of Γ -modules

0 → k̄[X×]∗/k̄∗ → DivX̄\X̄×(X̄) → Pic X̄ → 0.

There is a natural bijection between the morphisms X× → Rσ and the homomorphisms
of Γ -modules R̂σ → k̄[X×]∗. Universal torsors onX exist if and only if the exact sequence
of Γ -modules

1 → k̄∗ → k̄[X×]∗ → k̄[X×]∗/k̄∗ → 1 (4.2)

is split [18, Corollary 2.3.10]. Any splitting of this sequence gives a map

R̂σ = k̄[Rσ]∗/k̄∗ = k̄[X×]∗/k̄∗ → k̄[X×]∗,

and hence defines a morphism φ : X× → Rσ. By the ‘local description of torsors’ (see [4,
2.3] or [18, Theorem 4.3.1]) the restriction of a universal X-torsor to X× is the pull-back
of the torsor Sσ → Rσ to X× via φ. Moreover, this gives a bijection between the splittings
of (4.2) and the universal X-torsors. In our case it is easy to see that φ is an embedding.
The isomorphism R̂σ = k̄[X×]∗/k̄∗ comes from our construction, thus after extending
the ground field to k̄, the morphism φ coincides, up to translation by a k̄-point of R,
with the embedding of X̄× into (V ⊗k k̄)×/T̄ obtained from the embedding T̄ × ⊂ V̄ ×.

Theorem 4.4. Let r = 4, 5, 6 or 7. Let X be a del Pezzo surface of degree 9 − r

with a k-point, and let σ ∈ H1(Γ,W ) be the class defined by the action of the Galois
group on the exceptional curves of X. There exists an embedding X ↪→ Yσ such that the
divisors in Yσ \ Y ×

σ cut the exceptional curves on X with multiplicity 1. The restriction
of (G/P )sf,σa → Yσ to X ⊂ Yσ is a universal X-torsor whose type is the isomorphism
T̂σ = Pic X̄.

Proof. A del Pezzo surface X of degree 4 with a k-point is unirational, i.e. X is domi-
nated by a k-rational variety (see Chapter IV, Theorem 29.4 and Theorem 30.1 in [12]).
Therefore, k-points are Zariski dense in X, in particular, X×(k) �= ∅.

From Corollary 4.3 we get an embedding Y ×
σ ↪→ Rσ, which becomes unique if we

further assume that a given k-point of Y ×
σ goes to the identity element of Rσ.

Since X(k) �= ∅, there is a unique embedding φ : X× → Rσ such that the induced map
φ∗ : R̂σ → k̄[X×]∗ is a lifting of the isomorphism R̂σ = k̄[Rσ]∗/k̄ ∼−−→ k̄[X×]∗/k̄∗, and φ
sends a given k-point of X× to 1.

Let L be the k-subvariety of the torus Rσ whose points are r ∈ Rσ(k̄) such that
rX× ⊂ Y ×

σ , where the multiplication is the group law of Rσ. To prove the first statement
we need to show that L(k) �= ∅. Let Pn(X×) be the k-subvariety of Rσ whose k̄-points are
products of n elements of X×(k̄) in Rσ(k̄). The surface X̄ is split, hence it follows from
Proposition 3.4 that there exists a unique c ∈ Rσ(k̄) such that Pr−4(X×)(k̄) ⊂ cL(k̄).
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But since Pr−4(X×) and L are subvarieties of Rσ defined over k we conclude that c is a
k-point. If m is a k-point of X×, then c−1mr−4 is a k-point of L, as required.

To check that the restriction of (G/P )sf,σa → Yσ to X ⊂ Yσ is a universal torsor we
can go over to k̄ where it follows from our main theorem in the split case. �

Remark. Let X be a del Pezzo surface with a k-point, of degree 5, 4, 3 or 2. Although
(G/P )a contains some universal X-torsor, other universal X-torsors of the same type are
naturally embedded into certain twists of (G/P )a. Indeed, all torsors of the same type
are obtained from any of them by twisting by the cocycles in Z1(k, Tσ). The natural map
Hσ → Tσ gives a surjection H1(k,Hσ) → H1(k, Tσ) since H1(k,Gm) = {1} by Hilbert’s
Theorem 90. Therefore, it is enough to consider the twists of T ⊂ (G/P )a by cocycles
θ ∈ Z1(k,Hσ). The twisted torsor Tθ is contained in the twist of (G/P )a by the 1-cocycle
in Z1(k,G) coming from θ ∈ Z1(k,Hσ). By general theory [17, I.5] the twisted variety
θ(G/P )a is a left homogeneous space of the inner form of G defined by θ. (We note for
the sake of completeness that by Steinberg’s theorem every class in H1(k,G) comes from
H1(k,Hσ) for some maximal torus Hσ ⊂ G. Note also that since H1(k,SL(n)) = {1}
all twisted forms of Gr(2, 5) that appear in out context are isomorphic to Gr(2, 5).) The
twisted form θ(G/P )a naturally embeds into the twist of V by the image of the cocycle
θ in Z1(k, Sσ). Since H1(k, Sσ) = {1} this is a vector space (non-canonically) isomorphic
to V and acted on by Sσ.

Corollary 4.5. Let X be a del Pezzo surface of degree 4 such that universal X-torsors
exist. Let σ ∈ H1(Γ,W ) be the class defined by the action of the Galois group on the
exceptional curves of X.

(i) X× and Y ×
σ are k-subvarieties of Rσ. Moreover, Yσ contains cX for some c ∈ Rσ(k)

if and only if X has a k-point.

(ii) If X ⊂ Yσ, then X = Yσ ∩ cd−1Yσ for some c, d ∈ X×(k). More precisely, c is the
same as in the proof of Theorem 4.4, and d is any k-point of X× which is not on
a conic through c.

Proof. (i) In view of Theorem 4.4 it remains to prove the ‘only if’ part. We note that Y ×
σ

embeds into Rσ by Corollary 4.3. The existence of universal X-torsors implies that X×

embeds into Rσ, as was discussed before Theorem 4.4. For r = 5 the inclusion X× ⊂ cL
from the proof of Theorem 4.4 is an equality by the remark in the end of § 3. Hence if L
has a k-point, then so does X×.

(ii) By unirationality ofX the setX(k) is Zariski dense inX, and hence L(k) = c−1X×(k)
is Zariski dense in L. Since X ⊂ Yσ, the variety X is contained in Yσ ∩ cd−1Yσ for any
d ∈ X×(k), and this inclusion is an equality for any d not on a conic in X that passes
through c, see the remark after the proof of Theorem 2.5. �
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Corollary 4.6. Let X be a del Pezzo surface of degree 4 with a k-point.

(i) X has a universal torsor which is the intersection

(G/P )sf,σa ∩ s(G/P )sf,σa ,

where s is a k-point of Sσ whose image in Rσ is c/d for some c, d ∈ X×(k).

(ii) Let T be any universal X-torsor. Then there exists a cocycle θ ∈ Z1(k,Hσ) such
that

T = θ(G/P )sf,σa ∩ s · θ(G/P )sf,σa ,

where s is as in part (i).

Proof. By Theorem 4.4 the inverse image of X ⊂ Yσ in (G/P )sf,σa is a universal X-
torsor. By part (ii) of Corollary 4.5 it remains to show that we can choose d ∈ X×(k) not
on a conic through c with the additional condition that c/d is in the image of Sσ(k) in
Rσ(k). Let X̃ ⊂ P

3
k be the cubic surface obtained by blowing-up c in X. The exceptional

divisor E ⊂ X̃ is a line in P
3
k, and the proper transforms of the 10 conics through c on

X are the 10 lines in X̃ that meet E. Let x ∈ E(k) be a point that does not belong
to these 10 lines. The intersection of the tangent plane TX̃,x with X̃ is the union of E
and a geometrically integral conic C. Since C contains the k-point x we have C � P

1
k.

Taking the projection to X we construct a morphism ψ : A
1
k → X such that ψ(0) = c

and ψ(A1
k \ {0}) does not meet the 10 conics through c on X. It is well known and easy

to prove that H1(A1
k, Tσ) = H1(k, Tσ), thus for any k-point d ∈ ψ(A1

k(k)) ∩X× the class
[Td] ∈ H1(k, Tσ) of the fibre of T → X at d equals [Tc]. Thus the map Rσ(k) → H1(k, Tσ)
defined by the exact sequence (4.1) sends c/d to zero, so that c/d is in the image of Sσ(k)
in Rσ(k).

Since every universal X-torsor can be obtained from any other torsor of the same type
by twisting by some cocycle θ ∈ Z1(k,Hσ) (cf. the remark after Theorem 4.4), part (ii)
is a consequence of part (i). �

Thus any universal torsor over X is an open subset of the intersection of two k-
dilatations of θ(G/P )a for some cocycle θ ∈ Z1(k,Hσ).

Acknowledgements. The ideas that led us to Theorem 2.5 originate in A.N.S.’s dis-
cussions with Victor Batyrev, to whom we are deeply grateful.
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