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Let X' be a smooth, proper, geometrically connected variety over a
finite fleld F,, ¢g=p’. Let Z}X) be the group of zerc-cycles of degree
zero on X. Frobenius substitutions define a map

0 Z3(X) —> nf*om(X)

where z$°"(X) denotes the abelian geometric fundamental group of X
which classifies abelian étale covers of X which do not arise from extending
the base field. This group is well-known to be finite ([15], Theorem 2),
and Lang showed ([16], Statement 5, p. 314) that @ factors through rational
equivalence of cycles to give a surjective map ([21], Théoréme 3, p. 146) of
torsion groups ‘

f: Ay(X) —> 780 X)

where AlX) is the group of zero-cycles of degree zero module rational
equivalence. That A,(X) is a torsion group is classical, see for example
[7], proof of Proposition 4. In particular, ¢ induces a surjection 6, on
l-primary components for all prime numbers I. One way of stating the
reciprocity law for the unramified class field theory of function fields in
one variable over a finite field is that if X is a curve then # is an
isomorphism. Kato and Saito showed [14] that if X 4s a surface then 6
18 an isomorphism and then a standard geometric argument ([14], §9)
allows one to deduce that ¢ is an isomorphism for X projective of any
dimension.

In [7], p. 789, Colliot-Théléne, Sansuc and Soulé gave another proof of
the prime-to-p part of the above result of Kato-Saito using the theorem
of Merkur’ev-Suslin [17] and the Weil conjectures for étale cohomology
with twisted coefficients as proved by Deligne [9]. However, their argu-
ment relied on the commutativity of a certain diagram ([7], Proposition 1)
which complicated the argument considerably. A proof of the p-part using
the theorem of Bloch-Gabber-Kato [3] and the logarithmic cohomology of
Bloch-Tllusie-Milne was given by M. Gros [10], who used a diagram similar
to the one used in [7]. The purpose of this note is to show how one may
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use a counting argument along with the theorems of Merkur’ev-Suslin,
Bloch-Gabber-Kato and Deligne to avoid the complication of the above-
mentioned diagrams and hence give o simple (but high-flown) proof of
the result of Kato-Saito. As a matter of fact, a counting argument in
the same spirit already appears in a paper of Milne ([19], Corollary 8.4,
p.283). We end the paper with a corollary (Corollary 4) which follows
easily from the theorem but which does not seem to be present in the
literature. This corollary is essentially equivalent to the theorem and our
interest in its stems from Conjecture B in [8], p. 443,

1. Preliminaries

Notations will be as in [6] and [7]. In particular, given an abelian
group A4, a prime number [ and gz positive integer =, we set mA=
{reA,l"x=0) and All}= DLnA. Cohomology with coefficients in twisted

n=1

groups of roots of unity v (ieZ) is étale cohomology, but cohomology
with coefficients in K-theory sheaves is Zariski cohomology. Let us recall
the basic theorems :

THEOREM A (Merkur’ev-Suslin, [17]). Let k be o Jield and n o positive
integer prime to the characteristic of k. Then the Galois symbol

R,,: Kol|nKyk — H(k, #?2)

18 an isomorphism.

THEOREM B (Bloch-Kato [3], Gabber). Let %k be o perfect field of
characteristic p>0 and let X be g smooth variety over k. Then the
“differential symbol”

‘—KZ/pnCKZ —_— l)71(2)

is an vsomorphism of Zariski sheaves for any positive nteger n.

THEOREM C (Gabber, [7], Théoréme 3, p. 782). Let X be a smooth
projective variety over q Jinite field. Then for any non-negative integers
i and r such that i+, r+1, the group HE (X, v.(r)) is finite.

2. Proof of the reciprocity law

Let X Dbe a smooth geometrically connected variety over a field k,
and let £(X) be its function field. Let I#char. k be a prime number, and
let » be a positive integer. Bloch ([11, [2], Lecture 5, see also [7], p.778)
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showed that combining the Gersten-Quillen resolution of the sheaf K, with
the results of Bloch-Ogus [4] and with the Merkur’ev-Suslin theorem (Theorem
A above) yields an exact sequence (which is functorial in #):

(#) 0— HNX, K,)/I* — NH(X, 157 —> nCHYX) —> 0
where NH*(X, p%)=Ker[ H'(X, v — H(k(X), LS.
The following proposition is due to Panin {{20], Theorem 2.11, a) and b)).

PROPOSITION 1. Let X be a smooth, proper, geometrically conmected
variety over a finite field F,, q=p’. Then for any prime number l#p,
we have

a) HY(X, HIRQZ,=0.
b) There is a natural isomorphism of finite groups

NH(X, @ Z,(2)) => CHYX){l} .

PROOF. Passing to the direct limit over = in the exact sequences (x),
we get an exact sequence:

0— H'(X, K)QQZ, —> NH(X, Q[ Z,(2)) —> CHYX){l} —> 0.

By the Weil conjectures as proved by Deligne (cf. [7], Theorem 2, p. 780)
the group H*X, Q,/Z,(2)) is finite and hence so is NH*(X, Q,/Z,(2)). Since
HY X, K)QQ/Z, is now [-divisible and finite, it must be zero. This com-
pletes the proof of the proposition.

THEOREM 1. Let X be a smooth, proper, gecmetrically connected
surface over a finite field F,, q=p" and let 1= p be ¢ prime number.
Then the reciprocity map

s A XN} — z¥om(X){},

defined as the map 0 of the introduction restricted to l-primary torsion,
18 an 1somorphism.

PROOF. Consider the sequence of homomorphisms between finite groups
(cf. Introduction and Proposition 1):

AO(X){Z} I ATH'?(X’ QZ/ZZ(Z))CH3(X, Qz/Zz(Z)) I Hé()f, Zl(2)){l}

—> (X)L}

Here the first map is the inverse of the isomorphism of Proposition 1, b),
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the second is the natural inclusion, the third is the Bockstein map ([7],
p. 774) which is an isomorphism because H*(X, Q,(2))=0 (Weil conjectures,
[7], p. 781) and the fourth is the arithmetic Poincaré duality isomorphism
([7], p. 789, (45)"). Now the composite map between finite groups, say

Ayt A X)) — w8 (X) {1}

is not a priori the same as the map 4,. However, 8, is surjective (Intro-

duction), hence
2 Al X){l} = s rseom( X)L} .

But 4, is injective and hence
2 A(XN) = grgeom( X)) .
Thus these groups have the same order and so both g, and 4, are isomor-

phisms. This completes the proof of Theorem 1.

COROLLARY 1 (cf. [7], Remarque 2, p. 790). For X as above, the natural

elusion
NHY(X, Q,/Z,(2))C H X, QZ,2))

is an isomorphism. In other words, the natural map
H'(X, Q/Z,(2)) — HY(Fy(X), Q. Z,(2))
s zero. Similar statements hold for X=Xx FqF_'q .
PROOF. Indeed, 4, is an isomorphism and all thE other maps in the
above composite are isomorphisms. The statement for X follows by passing

to the direct limit over finite extensions of F, or by noting that F(x)
has cohomological dimension two.

We now turn to the p-part. Let X be a smooth geometrically con-
nected variety over a perfect field & of characteristic p>0. In a simpler
fashion than above (see the proof of Lemma 1 below) there is an exact
sequence :

0 —> H'(X, Ko)/p" —> H(X, Kofp") —> ynCHYX) —> 0
which Theorem B allows us to rewrite as:

() 0 —> HYX, SN/ D" —> H'(Xzagy v1(2)) ~> jnCH*(X) —> 0.

D In [7], the notation 73 (X)RZ; was used as an unfortunate abuse of notation
for lim z¢®(X) /1"
n
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PROPOSITION 2. Let X be a smooth, projective, geometrically connected
variety over a finite field F,, q=p’. Then:
a) H'X, X)RQ,Z,=0.

b) There is a natural isomorphism of Jinite groups:

H'(Xzar veo(2)) > CHY X){p} .

PROOF. We have a natural injection :
HI(XZar, Voo(2)) — Hl(Xét’ Voo(z)) .

Now by Theorem C, this last group is finite. Passing to the limit over n
in (%+), we see that HY(X, HIRQ,/Z, is both finite and p-divisible, hence
is zero. This completes the proof of the proposition.

THEOREM 2. Let X be a smooth, projective, geometrically comnected,
surface over a finite field » 9=p'. Then the map

Op: A X){p} — a¥=™(X){p},
defined as the map 6 of the introduction restricted to p-primary torsion,

18 an isomorphism.

PROOF. Consider the sequence of homomorphisms between finite groups
(cf. Introduction and Proposition 2):

Al XHp} —> H'(Xzar ve(2)) s HY( X1y vo(2))
— HY(X, 5(2)){p} —> n%=°™(X){p}.
Here the first map is the inverse of the isomorphism of Proposition 2, the
second is the natural injection, the third is the “Bockstein map” which is
an isomorphism because H'(X,$(2)) is torsion (cf. [7], proof of Théoréme 3
and [10], Lemme 2.1.16) and the last map is given by the “Milne duality

isomorphism” ([18], Theorem 1.9 combined with [7], Lemme 3 and induc-
tion). Now the composite map between finite groups

Ayt Al X)p} - 78 X){p}

is again not a priori the same as the map 0, However, #, is surjective
(Introduction), hence

$A(XHp}= g% X){p}.

But 4, is injective and hence
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3 Ao X){p} = gr2o™(X){p}.

Thus these groups have the same order and so both 6, and 1, are iso-
morphisms. This completes the proof of Theorem 2.

COROLLARY 2. For X as in Theorem 2, the natural injection
HI(XZar: Voo(g)) s Hl(Xét) 2)00(2))
18 an isomorphism. A similar statement is true for X=XX FqF’q.

PROOF. Indeed, 4, is an isomorphism and all of the other maps in
the above composite are isomorphisms. The statement for X now follows
by passage to the direct limit over finite extensions of F,.

COROLLARY 3. For X as above, we have:

a) Ker[A(X) — Ay(X)] —Naél; HY(Fy, H(X, Z/2)){1})

where Ker' denotes the prime-to-p part of the torsion group
Ker[A(X) — A(X)].

b) Ker[ Af(X) —> A(X)}{p} > H(F,, H'(X4, 5(2)){p}).

¢} The natural map
AfX) —> A(X)°

is surjective, where G=Gal(F,/F,).

PROOF. Consider the following diagram :
0—H(F,, H(X, Q/Z,(2)))—> H*X, Q| Z,(2)— H'(X, Q| Z/(2))° —>0

; L l

0—>Ker [Ay(X)—> AJ(X)|{l} ——— A(X)} ——— A(X){1}° .

Here the top row is deduced from the Hochschild-Serre spectral sequence
and the two right vertical maps are the isomorphisms of Proposition 1
combined with Corollary 1 (that the right vertical map is an isomorphism
follows from Prop. 1 and Cor. 1 by passage to the direct limit over X,
for L/F, a finite extension). This proves the prime-to-p part of ¢). The
right square is clearly commutative and this induces the left vertical
arrow which is then seen to be an isomorphism. An argument with the
Weil conjectures (cf. [7], Théoréme 2 and its proof) yields the isomorphism
of finite groups
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H'(Fy, HY(X, Qi Z,(2))) — H\(F,, H(X, Z(2)){l})

which proves a).
To prove b) and the p-part of c¢), consider the diagram :

0 —> H'(Fo, H'(X, va(2))) —> H'(X¢&, vo(2)) —> H (Xg, vu(2))¢ —> 0
v

it I

0 —> Ker [Ay(X) —> Ay(X){p}——— A X){p}—>A,(X){p}®

which is constructed in the same way as the diagram above. The two
right vertical maps are isomorphisms by Proposition 2 combined with
Corollary 2. This proves the p-part of c). The diagram induces the left
vertical arrow which is also seen to be an isomorphism. Now another
argument with the Weil conjectures for crystalline cohomology (cf. [7],
(35) and statement (iii) p. 784) yields the isomorphism of finite groups:

HYF,, H'(X&, v(2))) => H'(F,, H(Xe:, 5(2)){p})

which proves b). This completes the proof of the corollary.
Before stating the next corollary we record two lemmas which will
be needed for its proof.

LEMMA 1. Let X be a smooth, proper, geometrically connected variety
over a fintte field F,, q=p’. Then
(i) HYF,, HAX, J,))=0 for i=2
(ii) HUF, KF(X)/HYX, J,)=0
(i) HYF,, KF(X)) => HYF,, K,F(X)/H(X, X))
(iv) H'X, v.(2))=H'X, K){p}.

PROOF. By ([5], Theorem B and Remark 5.2), we have
H{(F,, K,F,(X))=0

and then taking cohomology of the obvious exact sequence of Gal(F'q/Fq).-
modules :

0~ HYX, Ho) —> KF( X) —> K, F(X)/H"(X, K») —> 0

shows that (i) implies (ii) and (iii). Let us prove (i), which is clear for
1=3.
To prove the prime-to-p part of (i) we use the following sublemma :

SUBLEMMA. Let | be a prime number and let G be a group of
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cohomological dimension one for torsion modules. Let M be a G-module
which 1is an extension of a torsion G-module by an l-divisible G-module.
Then the l-primary component of HYG, M) is zero.

The proof of the sublemma is easy and will be omitted. It follows from
Theorem 1.8 of [6] that for X as in the lemma and l#p, the group
HYX, K,) satisfies the hypotheses of the sublemma. This proves the
prime-to-p part of (i).

To prove the p-part of (i) we proceed as follows: By [22], Theorem
1.10, K,F,(X) has no p-torsion and hence H(X, ;) has no p-torsion. Also,
K,F,(X) having no p-torsion implies that the sheaf onH e 1s zero. Thus
there is an exact sequence

"
O-——>J{’2»—>J{'2——>J(’2/p"—-—>0_

Taking cohomology of this sequence, using Theorem B and passing to the
direct limit over n, we get an exact sequence:

O —_—> HO(X’ CJCZ)@Qp/Zp —— HO(XZau VW(2)) I }II(X’ c]{2){?9} I O .

Now H*Xzar ve(2)) 22 H'( X4, v-(2)) and by Theorem C, this last group is
finite. Hence HYX, X.)®Q,/Z,=0. This and the above remarks imply
that H(X, X,) is uniquely p-divisible. A limit argument yields (iv) which
is the p-primary analogue of [20], Corollary 2.3, or [6], Theorem 2.1.
Another limit argument shows that H%X, X, is uniquely p-divisible
(compare with [6], Theorem 1.8) and hence the p-primary component of
HYF,, H(X, X,)) is zero. This proves (i) and completes the proof of the
lemma.

LEMMA 2. For X a surface as above, the group HYF,, H(X, K3) is
JSinite and isomorphic to the group

l@] H\(F,, H(X, Z,2)){l}) & H'(F,, H'(X, 5(2)){p}) .

PROOF. As usual we break up the proof into the prime-to-p part and
the p-part. Let l#p be a prime number. Then it follows from Theorems
2.1 and 2.2 of [6], or [20], Corollary 2.3 and Theorem 2.11, that we have
an exact sequence of Gal(F,/F,)-modules :

0 — H¥X, Q//Z,(2)) — H'(X, K,) — H'(X, K)QZ[1]1]] — 0.

Since H'(X, K)®Z[1/l] is uniquely I-divisible, so is [HYX, K,)RZ[1/1]]¢
(GzGal(Fq/Fq)) and HY(F,, H(X, K)®QZ[1/1]){I}=0. By the last part of the
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proof of Corollary 3,a), we have H\(F,, H( X, Q,/Z,(2))) =HYF,, H'(X, Z,2))1}.
Hence the boundary map
[HI(X’ J{2)®Z[1/ZHG —— Hl(Frp HE(X’ QL/ZL(Z)))

maps a uniquely [-divisible group to a finite l-primary group and so is
zero. This gives the desired isomorphism

Hl(Fq’ HI(X’ JCZ)){Z} > Hl(Fq’ 1{3()?’ ZL(2)){Z}) .

The prime-to-p part of the lemma now follows from the fact that
H*X, Z,(2)){l} is zero for almost all I. This last fact is most easily seen
by noting that H*X, Z,(2)){l} may be identified (non-canonically) with the
l-primary component of the torsion subgroup of the Néron-Severi group
of X (cf. [11], 8.11, p. 147).

To prove the p-part, we observe that it follows from Proposition 2,
a), (going over to F’q) and Lemma 1, (iv), that there is an exact sequence
of G-modules :

0 — H'(Xe, vo(2)) —> HY(X, Ko) —> H'(X, KR Z[1]p] —> 0.

By the proof of Corollary 3, b), the group H'(F,, H(X¢,v..(2))) is finite
and isomorphic to HYF,, HY(Xs, 9(2)){p}). Now the exact same argument
we used in the proof of the prime-to-p part shows that

HY(F,, H\(X, K,)){p}= H(F,, H'(Xs, 2(2)){p}) .
This completes the proof of Lemma 2.

REMARK 1. Although it is not in general true that the group
HYX,5(7)){p} is finite, this is true for =0 or 1 (cf. [13], p. 194, comments
after Corollaire IV 3.5). We thank M. Gros for this remark.

We may now state the promised corollary to Theorems 1 and 2.
COROLLARY 4. For X a surface as above, the map
HY(Fyy Ko (X)) — 1(F, @ Fuw),
induced by the tame symbol, is mjective.,

PROOF. Consider the Gersten-Quillen complex which computes the
K-cohomology of X:

b

_ _ div
KF(X)— QE_IFQ(%)X — 5 Z.

x 2

M
-y
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Let Z=Ker(div), J=Im(div), so that there are exact sequences:

a) 0 —> K F(X)/HY(X, K;) —> & —> H'(X, K;) —> 0
b) 0> % — EB_’IFq(x)*——»J———»O
c) 0> J—>PZ-—>CHX)—>0.

reX?

Taking cohomology of a) and using Proposition 3.6 of [6], we get a long
exact sequence:

() Hl(Fq, KZFQ(X)/HO(X, HK)) — Ker[CHYX)—CH¥X)]
— > HY(F,, H(X, J,)) — HF,, K,F(X)|H'(X, K,)) — HXF,, Z).

By Lemma 1, (ii), the first group vanishes. We claim that the map
Ker[CHYX)-»CH*X)] —> HYF,, H(X, X))

in the above cohomology sequence is an isomorphism. Indeed, by a com-
bination of Corollary 8, a), b) and Lemma 2, there is some isomorphism
between these finite groups. But the map in question is injective so if
must be an isomorphism as well! This and Lemma 1, (iii), yield the
injection :

(i) HAF, K,F (X)) —. HF,, Z).

Now taking Galois cohomology of sequence c) and using Corollary 3, c),

Shapire’s lemma HYF,, § Z)=0 and the well-known existence of a
reX?

O-cycle of degree 1 on X, we get that H'(F,, J)=0, and then taking Galois
cohomology of sequence b), we get the injection
(i) HYF,, %) H2<Fq, @ Fq(x)*>.
TEX
Putting (i) and (ii) together yields the corollary.
REMARK 2. It is easy to see that Corollary 4 implies the isomorphism

Ker[CH¥X)—CHAX)] => H\F,, H(X, X)),

hence Corollary 3. However, we have been unable to deduce Corollary 4
except by this somewhat tortuous route.
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