Real rational surfaces without a real point By ## J.-L. COLLIOI-THÉLÈNE A smooth projective geometrically connected variety X defined over a field k is called rational if it becomes birational to a projective space after some extension of the ground field k. In this note we are interested in rational varieties over the field \mathbb{R} of real numbers which do not possess a real point. In dimension 1, up to \mathbb{R} -isomorphism, there is a unique such variety, namely the real plane conic C without a real point in projective plane $\mathbb{P}^2_{\mathbb{R}}$, defined in homogeneous coordinates by the equation $$\sum_{i=0}^{2} X_i^2 = 0.$$ In dimension 2, three obvious such surfaces are: the product $C \times_{\mathbb{R}} \mathbb{P}^1_{\mathbb{R}}$, the product $C \times_{\mathbb{R}} C$, and the quadric $Q \subset \mathbb{P}^3_{\mathbb{R}}$ defined in homogeneous coordinates by the equation $$\sum_{i=0}^{3} X_i^2 = 0.$$ An easy exercise shows that these three surfaces are **R**-birational to one another. We provide a "modern" proof for a fact which was already known to Annibale Comessatti [4]: **Theorem.** Let X be a smooth projective geometrically connected surface over \mathbb{R} . Assume that $X_{\mathbb{C}} = X \times_{\mathbb{R}} \mathbb{C}$ is rational, and that X has no real point. Then X is \mathbb{R} -birational to the quadric $Q \subset \mathbb{P}^3_{\mathbb{R}}$ without a real point. The theorem implies the following corollary, due to Parimala and Sujatha [13]: **Corollary.** In the function field $\mathbb{R}(X)$ of a real rational surface without a real point, (-1) is a sum of two squares. Parimala and Sujatha give a unified proof for the corollary, based on some K-theoretical facts. The proof of our Theorem is based on the birational classification of rational surfaces over an arbitrary field, due to Enriques, Manin, Iskovskih [9] (see also Mori [12]). It also relies on classical facts regarding nonsingular plane quartics. We shall freely use methods and results from the birational theory of surfaces, as may be found in [5] or [11]. the genus of Y is 3, hence odd, implies that all Tate cohomology groups $\hat{H}^i(G, J(\mathbb{C}))$, where $G = \text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$, are equal to $\mathbb{Z}/2$. In terms of the period lattice M of the abelian variety $J(\mathbb{C})$, lattice which fits into an exact sequence of G-modules: $$0 \to M \to \mathbb{C}^3 \to J(\mathbb{C}) \to 0$$, the G-lattice M is G-isomorphic to a sum $\mathbb{Z} \oplus \mathbb{Z}[G]/(1+\sigma) \oplus \mathbb{Z}[G]^2$. From this we deduce that the group ${}_2J(\mathbb{R})$ of real 2-torsion points is isomorphic to $(M/2M)^G \cong (\mathbb{Z}/2)^4$. Let L_0 be a real bitangent, which cuts out on Y twice the real divisor (P+Q). If L_1 is another real bitangent, cutting out on Y twice the real divisor (R+S), then the class of the real divisor (R+S-P-Q) defines a point in $_2J(\mathbb{R}) \subset \operatorname{Pic}(Y_{\mathbb{C}})^G$. If $L_1 \neq L_0$, this point is non trivial; indeed, it is a well-known fact that a smooth plane quartic curve is not hyperelliptic. For the same reason, distinct bitangents L_1 and L_2 give rise to distinct points in $_2J(\mathbb{R})$. Thus the total number of real bitangents certainly cannot exceed 16. As a matter of fact, this number is exactly 4 (Atiyah ([1], p. 62); this reference was pointed out to me by Parimala. We may therefore find two distinct bitangents L_1 and L_2 of $Y_{\mathbb{C}}$ which are each defined over \mathbb{C} and are conjugate. If we let $E_1 \subset X_{\mathbb{C}}$ be one the components of $f^{-1}(L_1)$, its conjugate $E_2 \subset X_{\mathbb{C}}$ lies above L_2 . Thus E_1 and E_2 do not meet and they may therefore be simultaneously blown down over \mathbb{R} , contradicting the assumption that X is \mathbb{R} -minimal. If d=4, the linear system associated to the anticanonical line bundle makes X into a smooth intersection of two quadrics in $\mathbb{P}^4_{\mathbb{R}}$. There are 16 exceptional curves of the first kind on $X_{\mathbb{C}}$, which are none other than the 16 lines lying over $X_{\mathbb{C}}$. Let $E_1 \subset X_{\mathbb{C}}$ be such a line. It may not be defined over \mathbb{R} , since $X(\mathbb{R}) = \emptyset$. Let E_2 be its conjugate. If the two lines E_1 and E_2 meet, they meet in one point which is clearly a real point. Since $X(\mathbb{R}) = \emptyset$, this is impossible. Thus E_1 and E_2 do not meet, but then they may be simultaneously blown down over \mathbb{R} , contradicting the assumption that X is \mathbb{R} -minimal. If d = 6, there are 6 exceptional curves of the first kind ("lines") on $X_{\mathbb{C}}$, whose configuration is well-known: If lines be represented by dots, and two dots be connected by a segment if the lines meet, one gets a hexagon. Defining the distance in an obvious way, one sees that there are exactly 3 sets of pairs of lines (L_1, L_2) such that the distance of L_1 to L_2 is equal to 3. Thus one of these sets must be defined over \mathbb{R} , and X is not \mathbb{R} -minimal. We are thus left with the case d=8. Two possibilities may occur. Either $X_{\mathbb{C}}$ is the blow-up of $\mathbb{P}^2_{\mathbb{C}}$ in one point, or $X_{\mathbb{C}}$ is \mathbb{C} -isomorphic to $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$. In the first case, there exists a unique exceptional curve E of the first kind on $X_{\mathbb{C}}$. This curve is then defined over \mathbb{R} and isomorphic to $\mathbb{P}^1_{\mathbb{R}}$, hence $X(\mathbb{R})$ is not empty, which we excluded. Thus we may assume that $X_{\mathbb{C}}$ is \mathbb{C} -isomorphic to $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$. The structure of the Picard group of such a surface is well-known: $$\operatorname{Pic}(X_{\mathbb{C}}) = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2$$ with $(e_1.e_2) = 1$, $(e_1.e_1) = 0$, $(e_2.e_2) = 0$, and $\omega = -2e_1 - 2e_2$, the classes e_1 and e_2 being given by the line bundles O(1) on each of the factors $\mathbb{P}^1_{\mathbb{C}}$. From these formulas, one sees Proof of the theorem. We may assume that X is \mathbb{R} -minimal. According to the classification of rational surfaces over a perfect field, X is then \mathbb{R} -isomorphic to a surface of one of the following types: - I) A standard conic bundle X/Y: there is a fibration $p: X \to Y$ of X over a smooth projective curve Y of genus zero, any geometric fibre of which is isomorphic to a plane conic, which is either smooth or is a union of two exceptional curves of the first kind, meeting transversally in one point (such fibres are called degenerate fibres). - II) A Del Pezzo surface X, i.e. a rational surface whose anticanonical bundle ω^{-1} is ample. We then let $d = (\omega.\omega)$ be the "degree" of the surface X. Here $1 \le d \le 9$. Assume first that X is a standard conic bundle $p: X \to C$. If $C(\mathbb{R}) = \emptyset$, the function field $\mathbb{R}(C)$ is of cohomological dimension 1, and the generic fibre of p, which is a conic over $\mathbb{R}(C)$, has a rational point, hence is isomorphic to the projective line over $\mathbb{R}(C)$, so that X is \mathbb{R} -birational to $\mathbb{P}_{\mathbb{R}}^1 \times C$, hence to Q. If $C(\mathbb{R}) \neq \emptyset$, then C is isomorphic to $\mathbb{P}^1_{\mathbb{R}}$. No fibre of p above an \mathbb{R} -point of C may be degenerate, since $X(\mathbb{R})$ would then contain the singular point of such a fibre. On the other hand, if a fibre of p above a nonreal closed point of C were degenerate, it would give rise to a pair of disjoint conjugate exceptional curves of the first kind, which could then be contracted, contradicting the assumption that X is \mathbb{R} -minimal. Thus no fibre of p is degenerate, and standard facts on conic bundles over the projective line (one may also use Milnor's exact sequence for the Witt group ([10], IX, § 3)) then imply that the generic fibre of p is a (smooth) conic over \mathbb{R} ($\mathbb{P}^1_{\mathbb{R}}$) which comes from a smooth conic Z over \mathbb{R} . Thus X is \mathbb{R} -birational to $Z \times_{\mathbb{R}} \mathbb{P}^1_{\mathbb{R}}$. From $X(\mathbb{R}) = \emptyset$, we conclude $Z(\mathbb{R}) = \emptyset$, i.e. $Z \cong C$, hence X is \mathbb{R} -birational to $C \times_{\mathbb{R}} \mathbb{P}^1_{\mathbb{R}}$, itself \mathbb{R} -birational to Q. We now assume that X is a Del Pezzo surface. The degree $d = (\omega.\omega)$ must be even. Indeed, d is the image of the pair $(\omega, \omega) \in \text{Pic}(X) \times \text{Pic}(X)$ under the composite map $$\operatorname{Pic}(X) \times \operatorname{Pic}(X) \xrightarrow{\operatorname{int}} CH_0(X) \xrightarrow{\operatorname{deg}} \mathbb{Z},$$ where Pic(X) denotes the Picard group of X and $CH_0(X)$ denotes the Chow group of zero-cycles on X modulo rational equivalence, and "int" denotes the intersection of cycle classes (see [6]). If d is odd, one may produce a 0-cycle of odd degree on X, hence also an \mathbb{R} -point, since finite field extensions of \mathbb{R} are of degree either 1 or 2. Thus the degree d may be either 2, 4, 6 or 8. We shall use well-known facts about Del Pezzo surfaces, which may be read off from [11] or [5]. If d=2, then the linear system associated to the anticanonical line bundle ω^{-1} gives rise to a finite morphism $f:X\to \mathbb{P}^2_{\mathbb{R}}$ which makes X into a double cover of $\mathbb{P}^2_{\mathbb{R}}$ ramified along a smooth plane quartic Y. The quartic $Y_{\mathbb{C}}$ possesses 28 bitangents, and for each bitangent L, the inverse image $f^{-1}(L)$ consists of two exceptional curves of the first kind on $X_{\mathbb{C}}$, which meet transversally in 2 points. One thus gets all the 56 exceptional curves of the first kind on $X_{\mathbb{C}}$. The hypothesis $X(\mathbb{R})=\emptyset$ implies $Y(\mathbb{R})=\emptyset$. Now a smooth plane quartic Y without real points cannot have all its 28 bitangents real. This is most easily deduced from classical facts in the following manner. Let J be the jacobian of Y. Thus $J(\mathbb{C})$ is the subgroup of the Picard group $Pic(Y_{\mathbb{C}})$ consisting of classes of divisors of degree zero. As was shown by Klein and Weichold, a more algebraic approach being due to Witt and Geyer [7], the hypothesis $Y(\mathbb{R}) = \emptyset$ and the fact that that complex conjugation acting on $\operatorname{Pic}(X_{\mathbb{C}})$ either permutes e_1 and e_2 , or it acts trivially on $\operatorname{Pic}(X_{\mathbb{C}})$. Let $L_1 \subset X_{\mathbb{C}}$ be a curve corresponding to a section of the line bundle e_1 . This is none other than a line $\mathbb{P}^1_{\mathbb{C}} \times N$, for some point $N \in \mathbb{P}^1_{\mathbb{C}}$. If e_1 be transformed into e_2 by complex conjugation, then L_1 is transformed by this same conjugation into a curve L_2 which is a line $M \times \mathbb{P}^1_{\mathbb{C}}$, for some point $M \in \mathbb{P}^1_{\mathbb{C}}$, and the intersection point of L_1 and L_2 is a real point of X, and there are no such points. Thus complex conjugation acts trivially on $\mathrm{Pic}(X_{\mathbb{C}})$. Quite generally, there is an exact sequence (e.g. [3]) $$0 \to \operatorname{Pic}(X) \to \operatorname{Pic}(X_{\mathbb{C}})^{\sigma} \to \operatorname{Br}(\mathbb{R})$$ where σ denotes complex conjugation. Since σ acts trivially on $\operatorname{Pic}(X_{\mathbb C})$ and $\operatorname{Br}(\mathbb R)$ is killed by 2, each of the classes $2\,e_i\,(i=1,2)$ actually belongs to $\operatorname{Pic}(X)$. The linear system associated to $2\,e_i\,(i=1,2)$ defines an $\mathbb R$ -morphism $X\to\mathbb P^2_{\mathbb R}$, whose image is a smooth conic $C_i\subset\mathbb P^2_{\mathbb R}$, and the product of these two morphisms defines an $\mathbb R$ -isomorphism $X\cong C_1\times_{\mathbb R} C_2$. All this is easily checked by going over to $\mathbb C$. Now since $X(\mathbb R)$ is empty, at least one of the $C_i(\mathbb R)$ is empty, and X is $\mathbb R$ -isomorphic either to $C\times_{\mathbb R} \mathbb P^1_{\mathbb R}$ or to $C\times_{\mathbb R} C$, both of which are $\mathbb R$ -birational to $\mathbb Q$. Remark 1. Let $G = \{1, \sigma\}$ where σ denotes complex conjugation. As any G-lattice, the G-lattice $Pic(X_{\mathbb{C}})$ admits a decomposition $$\operatorname{Pic}(X_{\mathfrak{C}}) \cong \mathbb{Z}^a \oplus (\mathbb{Z}[G]/(1+\sigma))^b \oplus (\mathbb{Z}[G])^c$$ where the natural integers a, b, c are well-defined, in view of: $$H^1(G, \operatorname{Pic}(X_{\mathbb{C}})) \cong (\mathbb{Z}/2)^b$$ $H^2(G, \operatorname{Pic}(X_{\mathbb{C}})) \cong (\mathbb{Z}/2)^a$ In the course of their proof, Partimala and Sujatha show that $X(\mathbb{R}) = \emptyset$ implies a = 2 and b = 0 (for a different approach, see Wall [15]). This result also follows from our approach. Indeed, if Q is the smooth quadric without a real point, the computation made in our study of Del Pezzo surfaces of degree 8 shows that G acts trivially on $\operatorname{Pic}(Q_{\mathbb{C}})$. Hence $H^2(G, \operatorname{Pic}(Q_{\mathbb{C}})) \cong (\mathbb{Z}/2)^2$ and $H^1(G, \operatorname{Pic}(Q_{\mathbb{C}})) \cong 0$. Any smooth projective surface over \mathbb{R} without a real point which is birational to Q can be deduced from Q by a sequence of blowing-ups and blowing-downs, each elementary blowing-up being by necessity in a pair of complex conjugate points, since there are no real points. Now for such an elementary blowing-up say $U \to V$, we have $\operatorname{Pic}(U_{\mathbb{C}}) \cong \operatorname{Pic}(V_{\mathbb{C}}) \oplus Z[G]$, hence $H^1(G, \operatorname{Pic}(U_{\mathbb{C}})) \cong H^1(G, \operatorname{Pic}(V_{\mathbb{C}}))$ for i = 1, 2. Remark 2. Hilbert ([8], see also Choi/Lam [2]) showed that any positive definite polynomial $P(x, y) \in \mathbb{R}[x, y]$ (x, y two independent variables) of total degree at most 4 is the sum of three squares of functions (actually polynomials) in the rational function field $\mathbb{R}(x, y)$. As we shall now see, this result also follows from the result of Parimala and Sujatha (Corollary 1 above) – which itself relies on deep facts from algebraic K-theory. Let us assume that the affine quartic defined by P(x, y) = 0 in the affine plane extends to a non-singular quartic in $\mathbb{P}^2_{\mathbb{R}}$ (the other cases are left to the reader). The double cover of the real affine plane defined by $z^2 + P(x, y) = 0$ extends to a double cover $X \to \mathbb{P}^2_{\mathbb{R}}$, where X is a (smooth) Del Pezzo surface of degree 2 (see [5]), and $X(\mathbb{R}) = \emptyset$. Corollary 1 above ensures that (-1) is a sum of two squares in the field $\mathbb{R}(X)$. It only remains to use the well-known lemma (see [10] XI.2.6): **Lemma.** Let k be a field, char(k) \neq 2. Let a be in k, $a \neq 0$. Let $K = k(\sqrt{-a})$. If (-1) is a sum of two squares in K, then a is a sum of three squares in k. \square Remark 3. The converse of the above lemma also holds. One may thus use Hilbert's result to prove that for any Del Pezzo surface X of degree 2 without a real point, (-1) is a sum of two squares in $\mathbb{R}(X)$. Given any Del Pezzo surface X with $X(\mathbb{R})$ empty, one may blow up pairs of conjugate complex points (in general position) until one gets a Del Pezzo surface of degree 2. Combining this with the classification argument, one gets another proof of Corollary 1, which avoids the discussion of real bitangents to a smooth plane quartic without a real point. Remark 4. Let X be a smooth projective real rational surface such that $X(\mathbb{R})$ is non empty and consists of exactly one connected component. Some time ago, I conjectured that X is then \mathbb{R} -birational to $\mathbb{P}^2_{\mathbb{R}}$ (I have now realized that this also was known to Comessatti [4].) A modern proof was given by Silhol ([14], VI.6.5). His proof is also based on the birational classification of rational surfaces. ## References - [1] M. F. Atiyah, Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4) 4, 47-62 (1971). - [2] M.-D. Choi and T.-Y. Lam, Extremal positive semidefinite forms. Math. Ann. 231, 1-18 (1977). - [3] J.-L. Colliot-Thélène, Quelques propriétés arithmétiques des surfaces rationnelles (d'après Manin). Sém. de théorie des nombres, Bordeaux (1971–1972), exposé 13. - [4] A. COMESSATTI, Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale. Math. Ann. 73, 1-72 (1912). - [5] M. Demazure, Surfaces de Del Pezzo. In: Séminaire sur les singularités des surfaces, LNM 777, 21-69, Berlin-Heidelberg-New York 1980. - [6] W. FULTON, Intersection Theory. Ergeb. Math. Grenzgeb. (3) 2, Berlin-Heidelberg-New York 1984. - [7] W.-D. Geyer, Ein algebraischer Beweis des Satzes von Weichold über reelle algebraische Funktionenkörper. In: Algebraische Zahlentheorie, 83–98, Oberwolfach 1964, Bibliographisches Institut, Mannheim. - [8] D. HILBERT, Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342-350 (1888). - [9] V. A. Iskovsкін, Minimal models of rational surfaces over arbitrary fields. Math. USSR-Izv. 14, 17–39 (1980). - [10] T.-Y. LAM, The algebraic theory of quadratic forms. Benjamin/Cummings 1973, 1980. - [11] Yu. I. Manin, Cubic Forms, Algebra, Geometry, Arithmetic Nauka, Moscow 1972; Amsterdam 1974, 1986. - [12] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116, 133-176 (1982). - [13] R. PARIMALA and R. SUJATHA, Levels of non-real function fields of real rational surfaces. Amer. J. Math. 113, 757-761 (1991). - [14] R. SILHOL, Real algebraic surfaces, LNM 1392, Berlin-Heidelberg-New York 1989. - [15] C. T. C. Wall, Real forms of smooth Del Pezzo surfaces. J. Reine Angew. Math. 375/376, 47-66 (1987). Eingegangen am 11. 5. 1990 Anschrift des Autors: J.-L. Colliot-Thélène C.N.R.S., Mathématiques URA 752 Bâtiment 425 Université de Paris-Sud F-91405 Orsay France