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Real rational surfaces without a real point

By

J-L. CoLLIOT-THELENE

A smooth projective geometrically connected variety X defined over a field k is called
rational if it becomes birational to a projective space after some extension of the ground
field k. In this note we are interested in rational varieties over the field R of real numbers
which do not possess a real point.

In dimension 1, up to R-isomorphism, there is a unique such variety, namely the real
plane conic C without a real point in projective plane PZ, defined in homogeneous
coordinates by the equation

X2=0.

1

ive

i

In dimension 2, three obvious such surfaces are: the product C x g P&, the product
C x g C, and the quadric @ = IP§ defined in homogeneous coordinates by the equation

3
> X2=0.
i=0
An easy exercise shows that these three surfaces are R-birational to one another. We
provide a “modern” proof for a fact which was already known to Annibale Comessatti

[4]:

Theorem. Let X be a smooth projective geometrically connected surface over R. Assume
that X¢ = X x i € is rational, and that X has no real point. Then X is R-birational to the
quadric Q < P2 without a real point.

The theorem implies the following corollary, due to Parimala and Sujatha [13]:

Corollary. In the function field R(X) of a real rational surface without a real point,
(— 1) is a sum of two squares.

Parimala and Sujatha give a unified proof for the corollary, based on some K-theoretical facts.
The proof of our Theorem is based on the birational classification of rational surfaces over an
arbitrary field, due to Enriques, Manin, Iskovskih [9] (see also Mori [12]). It also relies on classical
facts regarding nonsingular plane quartics. We shall freely use methods and results from the bira-
tional theory of surfaces, as may be found in [5] or [11].
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the genus of Y is 3, hence odd, implies that all Tate cohomology groups H'(G, J (T)),
where G = Gal(C/R) = {1, g}, are equal to Z/2.

In terms of the period lattice M of the abelian variety J (C), lattice which fits into an
exact sequence of G-modules:

0-M->C*->J(@ -0,

the G-lattice M is G-isomorphic to a sum Z @ Z[G]/1 + ¢) ® Z[G]>. From this we
deduce that the group ,J (R) of real 2-torsion points is isomorphic to (M/2 M)¢ = (Z/2)*.
Let L, be a real bitangent, which cuts out on Y twice the real divisor (P + Q). If L,
is another real bitangent, cutting out on Y twice the real divisor (R + S), then the class
of the real divisor (R 4+ § — P — Q) defines a point in ,J (R) <= Pic(Yp)®. If L, + L,, this
point is non trivial; indeed, it is a well-known fact that a smooth plane quartic curve is
not hyperelliptic. For the same reason, distinct bitangents L, and L, give rise to distinct
points in ,J (R). Thus the total number of real bitangents certainly cannot exceed 16.

As a matter of fact, this number is exactly 4 (Atiyah ([1], p. 62); this reference was pointed out to
me by Parimala.

We may therefore find two distinct bitangents L, and L, of Y which are each defined
over € and are conjugate. If we let E; = X be one the components of f (L)), its
conjugate E, — X¢ lies above L,. Thus E, and E, do not meet and they may therefore
be simultaneously blown down over R, contradicting the assumption that X is IR-mini-
mal.

If d = 4, the linear system associated to the anticanonical line bundle makes X into a
smooth intersection of two quadrics in IPg. There are 16 exceptional curves of the first
kind on X¢, which are none other than the 16 lines lying over X¢. Let E; < X be such
a line. It may not be defined over R, since X (R) = §. Let E, be its conjugate. If the two
lines E, and E, meet, they meet in one point which is clearly a real point. Since X (R) = 0,
this is impossible. Thus E; and E, do not meet, but then they may be simultaneously
blown down over R, contradicting the assumption that X is IR-minimal.

If d = 6, there are 6 exceptional curves of the first kind (“lines”) on X, whose config-
uration is well-known: If lines be represented by dots, and two dots be connected by
a segment if the lines meet, one gets a hexagon. Defining the distance in an obvious
way, one sees that there are exactly 3 sets of pairs of lines (L, , L,) such that the distance
of L; to L, is equal to 3. Thus one of these sets must be defined over R, and X is not
R-minimal.

We are thus left with the case d = 8. Two possibilities may occur. Either X is the
blow-up of IPZ in one point, or X is C-isomorphic to P¢ x IP¢. In the first case, there
exists a unique exceptional curve E of the first kind on X . This curve is then defined over
R and isomorphic to Pg, hence X (R) is not empty, which we excluded. Thus we may
assume that X is C-isomorphic to P¢ x P¢. The structure of the Picard group of such
a surface is well-known:

Pic(X¢) =Ze, & Ze,,

with (e;.e,) = 1,(ey.e;) = 0, (e;.¢;) = 0,and w = —2e, — 2e,, the classes e, and e, being
given by the line bundles O (1) on each of the factors P. From these formulas, one sees
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Proof of the theorem. We may assume that X is R-minimal. According to
the classification of rational surfaces over a perfect field, X is then R-isomorphic to a
surface of one of the following types:

I) A standard conic bundle X/Y: there is a fibration p: X — Y of X over a smooth
projective curve Y of genus zero, any geometric fibre of which is isomorphic to a plane
conic, which is either smooth or is a union of two exceptional curves of the first kind,
meeting transversally in one point (such fibres are called degenerate fibres).

II) A Del Pezzo surface X, i.e. a rational surface whose anticanonical bundle » ™! is
ample. We then let d = (w.w) be the “degree” of the surface X. Here 1 <d <9.

Assume first that X is a standard conic bundle p: X — C.

If C(IR) = @, the function field R (C) is of cohomological dimension 1, and the generic
fibre of p, which is a conic over R(C), has a rational point, hence is isomorphic to the
projective line over IR (C), so that X is IR-birational to IPZ x C, hence to Q.

If C(R) # @, then C is isomorphic to IP£. No fibre of p above an R-point of C may be
degenerate, since X (R) would then contain the singular point of such a fibre. On the other
hand, if a fibre of p above a nonreal closed point of C were degenerate, it would give rise
to a pair of disjoint conjugate exceptional curves of the first kind, which could then be
contracted, contradicting the assumption that X is R-minimal. Thus no fibre of p is
degenerate, and standard facts on conic bundles over the projective line (one may also use
Milnor’s exact sequence for the Witt group ([10], IX, §3)) then imply that the generic fibre
of p is a (smooth) conic over R (IP}) which comes from a smooth conic Z over R. Thus
X is R-birational to Z x y IP4. From X (R) = @, we conclude Z(IR) = §, i.e. Z 2 C, hence
X is R-birational to C x i P, itself R-birational to Q.

We now assume that X is a Del Pezzo surface.

The degree d = (w.w) must be even. Indeed, d is the image of the pair
{(w, w) € Pic(X) x Pic(X) under the composite map

Pic(X) x Pic(X) 2 CH,(X)-%5 Z,

where Pic(X) denotes the Picard group of X and CH,(X) denotes the Chow group of
zero-cycles on X modulo rational equivalence, and “int” denotes the intersection of cycle
classes (see [6]). If d is odd, one may produce a O-cycle of odd degree on X, hence also
an R-point, since finite field extensions of R are of degree either 1 or 2.

Thus the degree d may be either 2, 4, 6 or 8. We shall use well-known facts about Del
Pezzo surfaces, which may be read off from [11] or [5].

If d = 2, then the linear system associated to the anticanonical line bundle ™! gives
rise to a finite morphism f : X — IP§ which makes X into a double cover of IPZ ramified
along a smooth plane quartic Y. The quartic Y possesses 28 bitangents, and for each
bitangent L, the inverse image f ~! (L) consists of two exceptional curves of the first kind
on X¢, which meet transversally in 2 points. One thus gets all the 56 exceptional curves
of the first kind on X¢. The hypothesis X (R) = § implies Y (R) = §.

Now a smooth plane quartic ¥ without real points cannot have all its 28 bitangents
real. This is most easily deduced from classical facts in the following manner. Let J be the

jacobian of Y. Thus J (C) is the subgroup of the Picard group Pic(Yg) consisting of classes

of divisors of degree zero. As was shown by Klein and Weichold, a more algebraic
approach being due to Witt and Geyer [7], the hypothesis Y(IR) = @ and the fact that
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that complex conjugation acting on Pic(X¢) either permutes e, and e,, or it acts trivially
on Pic(Xg).

Let L, = X¢ be a curve corresponding to a section of the line bundle e, . This is none
other than a line IP¢ x N, for some point N € IP{. If e, be transformed into e, by complex
conjugation, then L, is transformed by this same conjugation into a curve L, which is
a line M x IP¢, for some point M e IP{, and the intersection point of L, and L, is a real
point of X, and there are no such points. Thus complex conjugation acts trivially on
Pic(Xg).

Quite generally, there is an exact sequence (e.g. [3])

0 — Pic(X) —» Pic(X¢)? - Br(R})

where ¢ denotes complex conjugation. Since ¢ acts trivially on Pic(X¢) and Br(R) is
killed by 2, each of the classes 2 ¢;(i = 1, 2) actually belongs to Pic (X). The linear system
associated to 2¢; (i = 1, 2) defines an IR-morphism X -» IPZ, whose image is a smooth
conic C; = IP{, and the product of these two morphisms defines an R-isomorphism
X = C; xg C,. All this is easily checked by going over to €. Now since X (R) is empty,
at least one of the C; (R) is empty, and X is IR-isomorphic either to C x g P} orto C x x C,
both of which are R-birational to Q. [

Remark 1. Let G = {1, o} where o denotes complex conjugation. As any G-lattice, the G-lattice
Pic(X¢) admits a decomposition

Pic(Xo) = Z° ® (Z[G)/(t + o)) @ (Z[G])
where the natural integers a, b, ¢ are well-defined, in view of:

H!(G, Pic(Xy) = (Z/2)°

H?*(G, Pic(Xg) = (Z/2)°.

In the course of their proof, Partimala and Sujatha show that X (R) = § implies a = 2 and b = 0 (for
a different approach, see Wall [15]). This result also follows from our approach. Indeed, if Q is the
smooth quadric without a real point, the computation made in our study of Del Pezzo surfaces of
degree 8 shows that G acts trivially on Pic(Qy). Hence H?(G, Pic(Qg)) = (Z/2)? and H' (G, Pic(Qp)
= 0. Any smooth projective surface over IR without a real point which is birational to Q can be
deduced from Q by a sequence of blowing-ups and blowing-downs, each elementary blowing-up
being by necessity in a pair of complex conjugate points, since there are no real points. Now for such
an elementary blowing-up say U — V, we have Pic(Ug) = Pic(Vg) @ Z[G], hence H'(G, Pic(Uy)
~ HY(G, Pic(Vp) fori=1,2

Remark 2. Hilbert ([8], see also Choi/Lam [2]) showed that any positive definite polynomial
P(x, y) e R[x, y] (x, y two independent variables) of total degree at most 4 is the sum of three squares
of functions (actually polynomials) in the rational function field R (x, y).

As we shall now see, this result also follows from the result of Parimala and Sujatha (Corollary 1
above) — which itself relies on deep facts from algebraic K-theory. Let us assume that the affine
quartic defined by P (x, y) = 0 in the affine plane extends to a non-singular quartic in IPZ (the other
cases are left to the reader). The double cover of the real affine plane defined by z> 4+ P(x, y) = 0
extends to a double cover X — IPg, where X is a (smooth) Del Pezzo surface of degree 2 (see [5]),
and X (R) = §. Corollary 1 above ensures that (— 1) is a sum of two squares in the field R (X). It
only remains to use the well-known lemma (see [10] X1.2.6):

Lemma. Let k be a field, char(k) +£2. Let abe ink,a +0. Let K = k(\/—a). If (—1) is a sum
of two squares in K, then a is a sum of three squares in k. [
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Remark 3. The converse of the above lemma also holds. One may thus use Hilbert’s result to
prove that for any Del Pezzo surface X of degree 2 without a real point, (— 1) is a sum of two squares
in R(X). Given any Del Pezzo surface X with X (R) empty, one may blow up pairs of conjugate
complex points (in general position) until one gets a Del Pezzo surface of degree 2. Combining this
with the classification argument, one gets another proof of Corollary 1, which avoids the discussion
of real bitangents to a smooth plane quartic without a real point.

Remark 4. Let X be a smooth projective real rational surface such that X (R) is non empty and
consists of exactly one connected component. Some time ago, I conjectured that X is then R-bira-
tional to PZ (I have now realized that this also was known to Comessatti {4].) A modern proof was
given by Silhol ([14], VL6.5). His proof is also based on the birational classification of rational
surfaces.
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