
UNRAMIFIED WITT GROUPS OF

REAL ANISOTROPIC QUADRICS

J.-L. Colliot-Thélène and R. Sujatha

Abstract. The unramified Witt group of the real anisotropic conic and the real

anisotropic quadric surface are known to be finite groups, cyclic of order 4. We
prove that the unramified Witt group of the real anisotropic quadric of dimension d,

3 ≤ d ≤ 6 is finite, cyclic of order 8, with the form < 1 > as the generator.

Let k be a field of characteristic 6= 2 and K/k a finitely generated field ex-
tension of k. The unramified Witt group Wnr(K/k) is a subgroup of W (K), the
Witt group of quadratic forms over K, and has interesting applications (see [CT-
O], [O]). For any poistive integer i, one may also define the unramified subgroup
Hi
nr(R(Q3),Z/2) of the étale cohomology group Hi(R(Q3),Z/2).
If X/k is a geometrically integral variety over the field k, and k(X) denotes the

function field of X, by abuse of terminology, we refer to the group Wnr(k(X)/k),
as the unramified Witt group of X. In this note, we prove that the unramified
Witt groups of the real anisotropic quadrics Qd of dimension d, 3 ≤ d ≤ 6, are
finite, cyclic of order 8 with the form < 1 > as the generator. In lower dimensions,
a similar result was known for the real anisotropic conic (Theorem 6.2 of [P] with
a slight modification for the projective conic) and the anisotropic quadric surface,
the groups then being cyclic of order 4. The finiteness of the unramified Witt group
for anisotropic quadrics of dimension ≥ 7 is an open question.

Here is the plan of the paper. Section 1 recalls a few basic facts about quadratic
forms, the unramified Witt group and unramified cohomology. Section 2 starts
with various étale cohomology computations of quadrics (here we use the results of
Artin-Verdier-Cox [C] on the étale cohomological dimension of real varieties without
a real point). These computations together with Karpenko’s computations of the
Chow groups of 3-dimensional quadrics [K] enable us to show that the map

CH2(Q3)/2→ H4(Q3,Z/2),

which is induced by the cycle map into étale cohomology, is an injection. From
the properties of the Bloch-Ogus spectral sequence it then follows that the group
H3
nr(R(Q3),Z/2) vanishes. Standard properties of unramified cohomology then

imply H3
nr(R(Qd),Z/2) = 0 for 3 ≤ d ≤ 6, and use of a well-known result of Arason

[A] together with a result of Merkurjev-Suslin [M-S1] and Rost [R] on Milnor’s
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K3-group lead to H3
nr(R(Qd),Z/2) = Z/2 for d ≥ 7. Since higher unramified

cohomology is rather hard to compute, these results seem to be of independent
interest. They also enable us to show that the cycle class map

CH2(Qd)/2→ H4(Qd,Z/2)

is an injection for all d.
Section 3 applies the vanishing of H3

nr(R(Q3),Z/2) to the computation of the
unramified Witt group Wnr(R(Q3)) (which by a standard argument coincides with
Wnr(R(Qd)) for any d, 3 ≤ d ≤ 6). We use the map W (R(Q3))→W (R(Q3×Q2)),
whose kernel is known (Arason, Pfister [A]) and investigate the induced map on
unramified Witt groups. The image is easily determined because Wnr(R(Q3×Q2))
is isomorphic to Wnr(R(Q2)). Recall that In(F ) denotes the n-th power of the
fundamental ideal of the Witt group of a field F . To control the kernel of the above
map, we use the injection of I3(R(Q3)) into H3(R(Q3),Z/2). This injection follows
from the vanishing of I4(R(Q3)) [AEJ] together with the known injectivity of the
Milnor map I3F/I4F → H3(F,Z/2) for any field F (char F 6= 2) (Merkurjev-Suslin
[M-S1], [R]). The final argument is provided by the vanishing of H3

nr(R(Q3),Z/2),
established in section 2.

§1. Preliminaries

All fields considered in this note are of characteristic different from 2 unless
otherwise mentioned. Given a field k and a finitely generated field extension K/k,
we denote by VK the set of all rank one discrete valuations on K, which are trivial
on k. Given an element ν ∈ VK , there exists a “second residue homomorphism”
∂πν

: W (K) → W (k(ν)) (cf. [Sc, Ch. VI, 2.5]), where πν is a parameter for the
valuation ν and k(ν) is the residue field at ν. The homomorphism ∂πν

depends on
the choice of a parameter but the kernel of ∂πν depends only on ν and hence may
be denoted ker ∂ν . The unramified Witt group of K/k, denoted Wnr(K/k), or just
Wnr(K) when there is no possible confusion of the ground field, is defined as

Wnr(K/k) =
⋂
ν∈VK

ker ∂ν .

Given a k-extension L of K, the natural map W (K) → W (L) induces a map
Wnr(K) → Wnr(L) on the corresponding unramified Witt groups [O, Proposition
7.1].

Let X/k be a smooth geometrically integral variety and k(X) denote its function
field. We denote the set of codimension one points of X by X(1) . Since X is
smooth, the elements of X(1) give elements in Vk(X). If x ∈ X(1) and πx is a
fixed uniformising parameter for the valuation corresponding to x, then we denote
the corresponding second residue homomorphism by ∂x. Given an element q ∈
W (k(X)), it is easily seen that ∂x(q) 6= 0 for finitely many x ∈ X(1). Clearly there
is a complex

(1) 0→Wnr(k(X))→W (k(X))
⊕

x∈X(1)
∂x

−→
⊕

x∈X(1)

W (k(x))
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where k(x) denotes the residue field at a point x ∈ X(1).
Recall that a quadratic form φ over k is said to be an n-fold Pfister form if it is

isometric to a form of the type

< 1, a1 > ⊗ < 1, a2 > ⊗ · · ·⊗ < 1, an >, ai ∈ k∗.

We denote such a form by � a1, a2, · · · an �. For a Pfister form, the properties of
being isotropic and hyperbolic coincide. The following proposition is well-known
([A] Satz 1.3).

Proposition 1.1. Let k be a field and φ an n-fold Pfister form over k, n ≥ 2. Let
Xφ be the projective quadric defined by φ and let k(Xφ) denote the function field of
Xφ. Then the kernel of the natural map

W (k)→W (k(Xφ))

is the ideal generated by the class of φ. �

Recall that a quadratic form ψ defined over k is said to be a Pfister neighbour of
an n-fold Pfister form φ over k if dimension ψ ≥ 2n−1 + 1 and ψ is isometric to a
subform of φ. A Pfister neighbour ψ of φ has the following property: ψ is isotropic
over a field extension K/k ⇐⇒ φ is isotropic over K. Further, it is easily seen that
the function field k(Xρ) of the projective quadric defined by a quadratic form ρ
over k of rank at least three is a purely transcendental extension of k if and only if
the form ρ is isotropic. These properties are used to prove the following

Lemma 1.2. Let φ be an n-fold Pfister form over k and ψ a Pfister neighbour of
φ. Let Xφ (respectively Xψ) denote the corresponding projective quadric and k(Xφ)
(respectively k(Xψ)) be the function field. Then Wnr(k(Xφ)) ∼= Wnr(k(Xψ)).

Proof. Consider the product variety Xφ ×k Xψ and the natural projections given
by πφ : Xφ ×k Xψ → Xφ and πψ : Xφ ×k Xψ → Xψ. Clearly k(Xφ ×k Xψ), the
function field of Xφ ×k Xψ, coincides with k(Xφ)(Xψ) and k(Xψ)(Xφ). Since Xψ

(respectively Xφ) has a k(Xψ)-rational point, (respectively k(Xφ)-rational point),
namely the generic point, the above remarks imply that Xφ (respectively Xψ)
also has a k(Xψ)-rational point (respectively k(Xφ)-rational point). Thus the field
k(Xφ)(Xψ) is a purely transcendental extension of both k(Xφ) and k(Xψ). Since the
unramified Witt groups are invariant under purely transcendental extensions (cf.
[O, Proposition 7.2]), we have Wnr(k(Xφ)) ∼= Wnr(k(Xφ ×k Xψ)) ∼= Wnr(k(Xψ))
and the lemma is proved. �

We now recall some results about cohomology groups. Given a field k and a
finitely generated field extension K/k, the “unramified cohomology groups” with
coefficients in Z/2, denoted Hi

nr(K/k) or just Hi
nr(K), i ≥ 1, if there is no

ambiguity of the ground field, are subgroups of the Galois cohomology groups
Hi(G(Ks/K),Z/2) where Ks denotes a separable closure of K (cf. [CT-O]). We
denote the Galois cohomology groups Hi(G(Ks/K),Z/2) by Hi(K). The groups
Hi
nr(K) are defined as

Hi
nr(K) =

⋂
ν∈VK

ker ∂ν ,

where VK is the set of rank one valuations on K that are trivial on k, ν ∈ VK and
∂ν is the residue homomorphism [CT-O, §1],

∂ν : Hi(K)→ Hi−1(k(ν)),
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with k(ν) denoting the residue field of the valuation.
The unramified cohomology groups are invariant under purely transcendental

extensions [CT-O, Proposition 1.2]. Thus, in the spirit of Lemma 1.2, we have

Lemma 1.3. Let φ be an n-fold Pfister form over k and ψ a Pfister neighbour
of φ. Let Xφ (respectively Xψ) be the corresponding projective quadric and k(Xφ)
(respectively k(Xψ)) be the function field. Then Hi

nr(k(Xφ)) ∼= Hi
nr(k(Xψ)). �

Given an integral variety X/k of dimension d, the sheaves Hn, for n ≥ 0 are
the Zariski sheaves associated to the presheaf U 7−→ Hn(U), where Hn(U) =
Hn
ét(U, µ2), µ2 denoting the étale sheaf of square roots of unity. By the results of

Bloch-Ogus [B-O], if X is smooth and integral, a flasque resolution of the sheaf Hn
is given by
(2)
0→ Hn → iη∗H

n(k(X))→
⊕

x∈X(1)

ix∗H
n−1(k(x))→ · · ·

⊕
x∈X(d)

ix∗H
n−d(k(x))→

where k(X) is the function field of X, X(i) is the set of points of codimension i
in X, η is the generic point and k(x) is the residue field at the point x. Taking
the complex of global sections of the above resolution, we see that the homology
groups of this complex correspond to the Zariski cohomology groups Hi(X,Hn)
of the sheaf Hn. In fact, if X is also proper, we have Hn

nr(k(X)) = H0(X,Hn)
[CT-O, Remarque 1.1.3]. Thus the groups H0(X,Hi) are birational invariants of
X (cf. [CT-P, 1.3]).

The “local-to-global” spectral sequence (cf. [B-O, §6 and Remark 6.4])

Ep,q2 = Hp(X,Hq) =⇒ Hn(X) = En

relates the Zariski cohomology groups of the sheaves Hn to the étale cohomology
groups Hn(X) = Hn

ét(X,µ2).
Finally, we observe that the unramified cohomology groups of a smooth, projec-

tive, integral variety X can be related to the unramified Witt group of X whenever
the homomorphisms en : In(k(X))→ Hn(k(X)), (cf. [AEJ]) are well-defined. This
is done by considering the induced filtration (Imnr(k(X)))m≥0 on Wnr(k(X)), where,
by definition

Imnr(k(X)) = Im(k(X)) ∩Wnr(k(X)),

I(k(X)) being the fundamental ideal of even dimensional forms and Im(k(X))
its m-th power. If the homomorphisms en and en−1 are well-defined, we get a
commutative diagram [CT-P, Proposition 1.5.1]

(3)
0→ Innr(k(X))→ In(k(X))→⊕x∈X(1)In−1(k(X))

↓ ↓ en ↓ en−1

0→H0(X,Hn)→Hn(k(X))→⊕x∈X(1)Hn−1(k(X))

with the top row a complex, the bottom row exact and notation as before. The
maps en : InF → Hn(F ) are known to be well-defined for all fields F , whenever
n ≤ 3, with kernel precisely equal to In+1(F ). Thus there exist isomorphisms
en : In(F )/In+1(F ) ∼= Hn(F ) for 0 ≤ n ≤ 3 (cf. [A], [Me], [M-S1], [R]).
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§2. Étale cohomology of
quadrics and the cycle map

In this section we compute the étale cohomology groups of certain quadrics.
These computations are then used to compute the unramified cohomology group
H3
nr of all the real anisotropic quadrics (Proposition 2.7). We also prove the injec-

tivity of the cycle map
CH2(X)/2→ H4

ét(X,Z/2)

for all real anisotropic quadrics (Corollary 2.8). Let k be a field of characterisitic
zero. We first record a few results from étale cohomology, given a variety X of
dimension d. Cohomology will always be cohomology with coefficients in Z/2.
When using arbitrary finite coefficients, the isomorphisms and exact sequences that
follow would require Tate twists for the coefficients. However, since Z/2 is equal to
µ2, all sheaves µ⊗i2 , i ∈ Z coincide with Z/2.
2.a: Let Y ⊆ X be a closed immersion and U = X \ Y . Then there exists a long
exact localisation sequence [Mi, p 92]

(4) ....→ Hn
Y (X)→ Hn(X)→ Hn(U)→ Hn+1

Y (X)→ ....

where Hn
Y (X) denotes the étale cohomology groups of X with support in Y and

coefficients in the sheaf µ2.
2.b: More generally, let Z ⊆ Y ⊆ X be a sequence of closed immersions. Then
there is a long exact sequence

(5) ....→ Hi
Z(X)→ Hi

Y (X)→ Hi
Y \Z(X \ Z)→ Hi+1

Z (X)→ ....

with notation as in 2.a.
We refer to [Mi, Ch. VI, §6] for proofs of the purity results cited below, remarking

that though it is assumed there that the ground field is algebraically closed, the
proofs remain valid over an arbitrary ground field of characteristic zero (see [Ar,
SGA 4, XVI 3.8, 3.9, 3.10 and SGA 4, XIX 3.4]).
2.c: (Purity) Let Y ⊆ X be a closed immersion, with both X and Y smooth
over k, Y connected and everywhere of codimension c in X. Then there exists an
isomorphism

Hn
Y (X) ∼= Hn−2c(Y )

with notation as before. We give a brief description of this isomorphism. Let
HnY (Z/2) denote the Zariski sheaf on Y defined as in [Mi, p.241]. By [SGA 4,
XVI, 3.8], there exists an isomorphism of H2c

Y (Z/2) with the locally constant sheaf
(Z/2)Y on Y , i.e. H2c

Y (Z/2) ∼= (Z/2)Y . Further, by [SGA 4, XVI, 3.9], we have
HiY (Z/2) = 0 if i 6= 2c. Using this information in the spectral sequence [Mi, p.247]

Hp
ét(Y,H

q
Y (Z/2)) =⇒ Hn

Y (X)

we get an isomorphism

(6) Hi(Y ) ∼= Hi+2c
Y (X).
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This isomorphism gives rise to the Gysin map

Hi(Y ) ∼= Hi+2c
Y (X)→ Hi+2c(X)

where the latter map is obtained from the long exact localisation sequence (2.a).
2.d: Let X, Y as in 2.c. When n = 2c, by the isomorphism described above, we
get

Z/2 ∼= H0(Y ) ∼= H2c
Y (X).

The image of 1 ∈ H2c
Y (X) under this isomorphism is called the fundamental class

sY/X of Y in X.
2.e: Finally, we briefly discuss the cycle map and refer to [Mi, Ch. VI] for details
(see also [D, Cycle]). Given a smooth integral variety X/k, let Zn(X) denote the
free abelian group generated by closed integral subschemes of codimension n in X.
The cycle map in codimension n is a homomorphism

ρn : Zn(X)→ H2n(X)

into the étale cohomology group and is briefly described below. Given a smooth
integral closed subvariety Z of codimension n, the element ρn(Z) is defined to be
the image in H2n(X) of the fundamental class sZ/X in H2n

Z (X) (cf. 2.d) under
the natural map H2n

Z (X)→ H2n(X) (cf. 2.a). Equivalently, ρn(Z) is the image of
the non-trivial element of H0(Z) under the Gysin map H0(Z) → H2n(X). Using
purity [D], the map so defined can be extended to singular cycles and hence to the
whole group Zn(X) by linearity.

On the other hand, we have the local-to-global spectral sequence (cf. §1) con-
structed by Bloch-Ogus [B-O, §3],

Hp
Zar(X,H

q) =⇒ Hn
ét(X)

using the formalism of duality theory and trace map based on [D1, SGA 4, XVIII].
Further, by the results of Bloch-Ogus, we see that Hp(X,Hq) = 0 if p > q [B-O, 6.1
and 6.2] and Hp(X,Hp) = CHp(X)/2 [B-O, 6.3] (see also [B-O, 7.7], whose proof
extends to smooth varieties over arbitrary perfect fields), where CHp(X) denotes
the Chow group of algebraic cycles of codimension p modulo rational equivalence.
Therefore the above spectral sequence gives a natural map

CHp(X)/2→ H2p(X).

But this map coincides with the “classical” cycle map ρp described above, as is seen
using 7.2, 3.7 and 3.9 of [B-O] and working through the definition of ρp. In partic-
ular, the map ρp factors through rational equivalence and we get a homomorphism

ρp : CHp(X)/2→ H2p(X).

2.f: If Y
i
↪→ X is a closed embedding of smooth k-varieties, Y connected and

everywhere of codimension c, then we have the following commutative diagram:

CHn(Y ) i∗−−−−→ CHn+c(X)yρn

yρn+c

H2n(Y ) −−−−→ H2n+2c(X).
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Here the vertical maps are the cycle maps, the top horizontal map is the natural
map induced by the inclusion and the lower horizontal map is the Gysin map

H2n(Y ) ∼= H2n+2c
Y (X)→ H2n+2c(X).

That the diagram commutes follows from [Mi, Ch. VI, 9.3] observing that the result
remains valid over a ground field of characteristic zero.

For any smooth variety X/k, there is an exact sequence of sheaves in the étale
topology as follows,

0→ µ2 → Gm
2→ Gm → 0

where Gm is the sheaf associated to Gm(U) = Γ(U,OU )∗, the multiplicative group
of units of the sections of U , and µ2 is the étale sheaf of square roots of unity,
isomorphic to Z/2. From Kummer theory and Grothendieck’s Hilbert theorem 90
[Mi, Ch. III, §4], we get exact sequences

(7) 0→ Γ(X,OX)∗/Γ(X,OX)∗2 → H1
ét(X,µ2)→ 2Pic(X)→ 0

and

(8) 0→ Pic(X)/2→ H2
ét(X,µ2)→ 2Br(X)→ 0

where Γ(X,OX)∗ is the group of units of the global sections over X and 2Pic(X)
(respectively 2Br(X)) is the 2-torsion subgroup of the Picard group (respectively
étale cohomological Brauer group) of X. We abbreviate the étale cohomology
groups Hn

ét(U, µ2) to Hn(U) for a variety U .
For the rest of the discussion, we fix the ground field k to be the field R of

real numbers. The d-dimensional quadric Qd is defined by
d+1

Σ
i=0

X2
i = 0 in Pd+1

R . We

denote the corresponding smooth projective complex d-dimensional quadricQd×RC
by Cd. The following well-known lemma computes the étale cohomology groups of
the complex quadrics Cd. By the comparison theorem [Mi, Ch. III, Theorem 3.12],
these groups coincide with the usual singular cohomology groups of the underlying
complex manifold with coefficients in Z/2.

Lemma 2.1. Let Cd (d ≥ 2) be the d-dimensional complex quadric Qd×R C. Then
there exist isomorphisms

Hi(Cd) ∼= Hi−2(Cd−2) for i ≥ 2, d > 2, i 6= 2d, 2d− 1.

Further H0(Cd) ∼= Z/2, H1(Cd) = 0, H2d−1(Cd) = 0 for all d ≥ 1 and H2(C2) ∼=
Z/2⊕ Z/2.

Proof. Clearly H0(Cd) ∼= Z/2 for all d and hence H2d(Cd) ∼= Z/2, by Poincaré
duality. The exact sequence (7) gives H1(Cd) = 0, since Cd is a smooth, projective,
rational variety and the torsion in the Picard group is well-known [CT-S, Appendix
2.A] to be a birational invariant of smooth projective varieties. By Poincaré duality,
we deduce that H2d−1(Cd) = 0. The quadric C2 is isomorphic to P1

C×P1
C and hence

by the Künneth formula, H2(C2) ∼= Z/2⊕ Z/2. We now prove the first part of the
lemma. By a change of coordinates, we may assume that Cd is defined by the

equation X0X1 +
d+1

Σ
i=2

X2
i = 0 in Pd+1

C . Let Y = Yd be the hyperplane section of Cd
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defined by the hyperplane X1 = 0. The complement Cd \ Yd is then isomorphic to
the d-dimensional affine space AdC. The point P = (1 : 0 : 0 · · · : 0) is a singular
point on Yd and Yd \ P is an A1-bundle over the quadric Cd−2. Consider the
inclusions Yd ⊆ Cd ←↩ AdC. We have a long exact sequence (cf. 2.a)

(9) · · · → Hn
Yd

(Cd)→ Hn(Cd)→ Hn(AdC)→ Hn+1
Yd

(Cd)→ Hn+1(Cd)→ · · · .

Since the étale cohomology groupsHn(AdC) are trivial for n > 0 andH0(Cd) surjects
onto H0(Ad), we have H0

Yd
(Cd) = 0 and isomorphisms

(10) Hn
Yd

(Cd) ∼= Hn(Cd) for all n ≥ 1.

We now consider the chain of inclusions P ⊆ Yd ⊆ Cd and the corresponding long
exact sequence in étale cohomology (cf. 2.b). We then have a long exact sequence
as follows, (see (5))

(11) · · · → Hn
P (Cd)→ Hn

Yd
(Cd)→ Hn

Yd\P (Cd \ P )→ Hn+1
P (Cd)→ · · · .

Using “Purity” (cf. 2.c), we have isomorphisms

(12) Hn
P (Cd) ∼= Hn−2d(P ),

since P is a smooth closed point on Cd. Combining these isomorphisms, we get

(13) Hn
Yd

(Cd) ∼= Hn
Yd\P (Cd \ P ) for all n 6= 2d, 2d− 1.

Further, since Yd \ P ⊆ Cd \ P is smooth of codimension 1, we have

(14) Hn
Yd\P (Cd \ P ) ∼= Hn−2(Yd \ P ).

But Yd \ P is an A1-bundle over Cd−2 and since the étale cohomology with finite
coefficients of an affine bundle over a smooth variety X is isomorphic to the étale
cohomology of X, we see that

(15) Hn−2(Yd \ P ) ∼= Hn−2(Cd−2) for all n ≥ 2.

The isomorphisms (14), (13) and (10) now complete the proof of the lemma. �

As a corollary, we have the following

Proposition 2.2. Let Cd be the smooth projective complex quadric of dimension
d, d ≥ 1. Then H2i+1(Cd) = 0 for i ≥ 0 and H2i(Cd) ∼= Z/2 for 0 ≤ i ≤ d, i 6= d/2
if d even. If d is even, then we have Hd(Cd) ∼= Z/2⊕ Z/2. �

Recall that there exists an exact sequence of étale sheaves over a real variety X

0→ Z/2→ π∗Z/2→ Z/2→ 0

where π : XC → X is the étale map of degree 2 obtained by base change to C. This
induces a long exact sequence

(16) · · · → Hn(X)→ Hn(XC)→ Hn(X)
∪(−1)→ Hn+1(X)→ Hn+1(XC)→ · · ·

which is a generalisation of the corresponding sequence for the Galois extension C/R
[A, Corollary 4.6]. The connecting homomorphism is given by the cup-product with
the class of (−1) in H1(X) under the image of the natural map H1(Spec R) →
H1(X), noting that H1(Spec R) ∼= H1(R) ∼= R∗/R∗2. We use this sequence for the
quadrics Qd and the preceding lemma to compute the étale cohomology groups of
Q3 with µ2 coefficients. We have



UNRAMIFIED WITT GROUPS OF REAL ANISOTROPIC QUADRICS 9

Lemma 2.3. Let Q3 be the 3-dimensional real anisotropic quadric. Then the étale
cohomology groups of Q3 with Z/2 coefficients are given by

Hi(Q3) ∼= Z/2 for i = 0, 1, 5, 6,

Hi(Q3) ∼= Z/2⊕ Z/2 for i = 2, 3, 4, and

Hi(Q3) ∼= 0 for i ≥ 7.

Proof. By a result of Artin-Verdier-Cox [C, Theorem 2.1], the étale 2-cohomological
dimension of a real variety of dimension d with no R-rational points is ≤ 2d.
Hence Hi(Q3) = 0 for i ≥ 7. Clearly H0(Q3) ∼= Z/2. By the Kummer exact
sequence (7), we see that H1(Q3) ∼= R∗/R∗2 ∼= Z/2, since 2Pic(Q3) ⊆ 2Pic(C3) =
0, and C3 is rational. Further, by the exact sequence (8), we have H2(Q3) ∼=
Pic(Q3)/2 ⊕ 2Br(Q3). It is well-known that the Picard group Pic(C3) is isomor-
phic to Z, the generator being the class of a hyperplane section. For any proper
geometrically integral variety X/R, we have an exact sequence (cf. [CT-S, 1.5.0,
p.383]

(17) 0→ Pic(X)→ (Pic(XC))G → Br(R)→ K → H1(G,Pic(XC))

where G = Gal(C/R), XC = X ×R C, K denotes the kernel of the natural map
Br(X) → Br(XC) and (Pic(XC))G is the subgroup of elements of Pic(XC) fixed
under the action ofG. Since the generator of Pic(C3) is defined over R, the inclusion
in the above exact sequence gives an isomorphism Pic(Q3) ∼= Pic(C3) ∼= Z. Further,
we have Br(C3) = 0, the variety C3 being rational. Clearly, H1(G,Pic(C3)) = 0
and hence (17) gives an isomorphism Br(R) ∼= Br(Q3) ∼= Z/2. We remark that
this computation is valid for Qd, d ≥ 3 and hence Br(Qd) ∼= Z/2 for all d ≥ 3. The
exact sequence (16) together with Proposition 2.2 gives an exact sequence

(18) 0→ H1(Q3)→ H2(Q3)→ H2(C3)→ H2(Q3)→ H3(Q3)→ 0.

By the above computations, we have H1(Q3) ∼= Z/2 and H2(Q3) ∼= (Z/2)2. The
previous proposition and an easy computation of dimensions using the exact se-
quence (18) yields isomorphisms

(19) Z/2⊕ Z/2 ∼= H2(Q3) ∼= H3(Q3).

We now use a result of Cox [C, Proposition 2.2], which states that if X is a smooth
proper real variety of dimension d such that X(R) = ∅, then the natural map
H2d(X)→ H2d(XC) is zero. The cohomology sequence (16) along with Proposition
2.2 gives exact sequences

(20) 0→ (Z/2)2 → H4(Q3)→ Z/2→ H4(Q3)→ H5(Q3)→ 0

and

(21) 0→ H5(Q3)→ H6(Q3)→ H6(C3)→ H6(Q3)→ H7(Q3).

Since H7(Q3) = 0, the result of Cox quoted above gives isomorphisms H6(Q3) ∼=
H6(C3) ∼= Z/2 (Lemma 2.1) and H5(Q3) ∼= H6(Q3) ∼= Z/2. This is used in (20) to
see that H3(Q3) ∼= H4(Q3) ∼= (Z/2)2. Hence the lemma is proved. �

We need the following result which computes the cohomology group H2(Q2)
and Pic(Q2). The results about the Picard group are well-known (cf. [K]), but we
include them for the sake of completeness.
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Proposition 2.4. Let Q2 be the 2-dimensional real anisotropic quadric. Then the
Kummer sequence induces an isomorphism

Pic(Q2)/2 ∼= H2(Q2)

and both groups are isomorphic to (Z/2)2. The generators of Pic(Q2) are given
by the class of the hyperplane section h and the class ζ of the “double line cycle”
defined by X2

0 +X2
1 = 0, X0X3 +X1X2 = 0, X2

2 +X2
3 = 0.

Proof. Let C2 ⊂ P3
C be the complex quadric Q2 ×R C. After a C-linear change of

coordinates in P3
C, we see that the image of the Segre embedding P1

C × P1
C ↪→ P3

C
maps isomorphically onto the quadric C2. Consider the two one-parameter families
of lines given by (P1

C × pt) and (pt × P1
C). Clearly two lines intersect if and only if

they belong to different families. Further, the group Pic(C2) is generated by the
classes of any two intersecting lines. Let e1 (respectively e2) be the line defined
by X0 + iX1 = 0, X2 − iX3 = 0 (resp. X0 + iX1 = 0, X2 + iX3 = 0). Then
Pic(C2) ∼= Z[e1]⊕Z[e2] and under the action of the Galois group G = Gal(C/R) =
(1, σ), the line σ(e1) (resp. σ(e2)) is defined by X0− iX1 = 0, X2 + iX3 = 0 (resp.
X0− iX1 = 0, X2− iX3 = 0) and hence σ[ei] = [ei], i = 1, 2, where [ei] denotes the
class of ei in Pic(C2). Thus the Galois group acts trivially on Pic(C2) and hence
H1(G,Pic(C2)) = 0. The Brauer group Br(C2) is trivial, since C2 is birational to
P2

C. Thus the sequence (17) gives an exact sequence

(22) 0→ Pic(Q2)→ (Pic(C2))G → Br(R)→ Br(Q2)→ 0.

The natural map Br(R)→ Br(R(Q2)) factors as

Br(R)→→ Br(Q2) ↪→ Br(R(Q2))

where R(Q2) is the function field of the quadric Q2, and the second map is an injec-
tion since the Brauer group of a smooth variety injects into the Brauer group of its
function field [Mi, Ch. IV, Corollary 2.6]. But the quaternion algebra (−1,−1)/R
which is the non-trivial element of Br(R) splits in Br(R(Q2)), since -1 is a sum
of two squares in R(Q2). Hence the group Br(Q2) is trivial and we get an exact
sequence

0→Pic(Q2)→(Pic(C2))G
η→ Z/2→ 0.

q
Pic(C2)

Since [e1 + e2] is the class of a hyperplane section, it belongs to Pic(Q2), hence [e1]
and [e2] map to the same image under η. By the exact sequence above, this element
must be 1 and hence an element [ae1 + be2] in Pic(C2) maps to the class of (a+ b)
under the map η. Thus Pic(Q2) is identified with the subgroup of Z[e1] ⊕ Z[e2]
consisting of elements whose sum of coordinates is even, with the generators being
given by the class of the hyperplane [h] = [e1] + [e2] and the class [2e1], which
corresponds to the “double line cycle” ζ defined over R by

X2
0 +X2

1 = 0, X0X3 +X1X2 = 0, X2
2 +X2

3 = 0.

Therefore we have Pic(Q2) ∼= Z[h] ⊕ Z[ζ]. We now use this and the vanishing of
Br(Q2) proved above in the Kummer sequence (8) to get isomorphisms

(Z/2)[h]⊕ (Z/2)[ζ] ∼= Pic(Q2)/2 ∼= H2(Q2).

Hence the proposition is proved. �

We now prove the injectivity of the cycle map. This is used subsequently to
compute the unramified cohomology group H0(Q3,H3).
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Proposition 2.5. Let Qd be the real anisotropic quadric of dimension d, d = 2, 3.
Then the cycle map

ρ2 : CH2(Qd)/2→ H4(Qd)

is injective.

Proof. Recall that for a smooth integral variety X, we have the spectral sequence
(cf. §2)

Ep,q2 = Hp
Zar(X,H

q) =⇒ Hn
ét(X).

The above spectral sequence gives an exact sequence

(23) H3(X)→ H0(X,H3)→ CH2(X)/2→ H4(X).

By 2.e, the map on the extreme right is precisely the cycle map ρ2. If X is the two
dimensional quadric Q2, then we have H0(Q2,H3) ⊂ H3(R(Q2)) = 0 by [CT-P,
Proposition 1.2.1]. Using this in the exact sequence (23), we see that the cycle map
is injective. We now consider the case of the three dimensional quadric Q3 defined

by
3

Σ
i=0
X2
i = 0 in P3

R. The hyperplane section given by X4 = 0 embeds the two

dimensional quadric Q2 as a smooth closed subvariety of Q3. Consider the natural
map

CH1(Q2)
φ→ CH2(Q3).

By Karpenko’s computations of the Chow groups of quadrics, we have an iso-
morphism CH2(Q3) ∼= Z[h2] ⊕ (Z/2)[ζ ′] [K-Me, 1.8], where h is a hyperplane
section, ζ ′ = h2 − ζ, and ζ is the “double line cycle” discussed in Proposition
2.4, considered now as an element in CH2(Q3). By Proposition 2.4, we have
CH1(Q2) ∼= Z[h] ⊕ Z[ζ]. Under the map φ above, the class [h] maps to [h2] and
[h− ζ] maps to [ζ ′]. Therefore the map φ is surjective and comparing dimensions,
we see that the surjective map gives an isomorphism

(24) Pic(Q2)/2 ∼= CH1(Q2)/2 ∼= CH2(Q3)/2 ∼= (Z/2)2.

We now consider the complement U = Q3 \Q2 which is the three dimensional affine

variety defined by 1 +
3

Σ
i=0
X2
i = 0 in A4

R. We have the exact sequence (cf. (4))

(25) · · · → Hi
Q2

(Q3)→ Hi(Q3)→ Hi(U)→ Hi+1
Q2

(Q3)→ · · · .

Since UC = U×R C is affine and three dimensional over an algebraically closed field,
Hi(UC) = 0 for i > 3 [Mi, Ch. VI, Theorem 7.2]. We now use these results in the
long exact sequence corresponding to the étale map UC → U ( cf. (16))

· · · → Hi(U)→ Hi(UC)→ Hi(U)
∪(−1)→ Hi+1(U)→ · · ·

to get isomorphisms Hi(U) ∼= Hi+r(U) for all i ≥ 4, r ≥ 0. But by the result of
Cox, [C, Theorem 2.1], since U(R) = ∅, we have Hi(U) = 0 for i > 6. We use these
results in the exact sequence (25). Identifying the group H4

Q2
(Q3) with H2(Q3) (cf.

2.c), we obtain a diagram

(26)

Pic (Q2)/2 ∼= CH1(Q2)/2 −−−−→ CH2(Q3)/2yρ1 yρ2
H2(Q2) ∼= H4

Q2
(Q3) −−−−→ H4(Q3) −−−−→ H4(U) = 0.
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The horizontal map at the top is an isomorphism by (24). We have an isomorphism
Pic(Q2)/2 ∼= H2(Q2) from the Kummer sequence (8) and Proposition 2.4. Further,
by the discussion above, we have H4(U) = 0 and by Lemma 2.3, H4(Q3) ∼= (Z/2)2.
We claim that the above diagram commutes. To prove this, we first remark that
for a smooth variety X/k, we have a commutative diagram

Pic(X)/2
φ→ H2(X)

↓ o ↗ ρ1

CH1(X)/2

where ρ1 is the cycle map and φ is the boundary map given by the Kummer sequence
(cf. (8)). This is obvious by the very definition of the cycle map (cf. [Mi, Ch. VI,
Remark 9.6)]. Further, by 2.f, the diagram

CH1(Q2)/2 −−−−→ CH2(Q3)/2yρ1 yρ2
H2(Q2) −−−−→ H4(Q3)

is commutative. Hence the claim is proved and the left vertical map is an isomor-
phism in (26). The bottom map is also an isomorphism, being surjective between
two groups of the same order. Thus since all maps except the right vertical map
are isomorphisms and the square commutes, we see that

ρ2 : CH2(Q3)/2→ H4(Q3)

is also an isomorphism. Therefore the proposition is proved. �

We now compute the unramified cohomology group H0(Q3,H3). We have

Theorem 2.6. Let Q3 be the three dimensional real anisotropic quadric. Then the
unramified cohomology group H0(Q3,H3) is zero.

Proof. As observed in the proof of Proposition 2.5 (cf. (23)), the local-to-global
spectral sequence gives an exact sequence

(27) H3(Q3)→ H0(Q3,H3)→ CH2(Q3)/2
ρ2→ H4(Q3).

By Proposition 2.5, the map ρ2 above is injective. Thus to prove the theorem, it
suffices to prove that the homomorphism H3(Q3)→ H0(Q3,H3) is zero. We have
a commutative diagram as follows:

H2(Q3)
∪(−1)−−−−→ H3(Q3)y y

H0(Q3,H2)
∪(−1)−−−−→ H0(Q3,H3).

The group H0(Q3,H2), which is by definition (cf. §1) the kernel of the homomor-
phism H2(R(Q3))

∂→ ⊕
x∈Q(1)

3
H1(R(x)), is isomorphic to 2Br(Q3), the 2-torsion

subgroup of the Brauer group, by the Purity theorem for Brauer groups (cf. [Gr, §§6
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and 7]. The proof of Lemma 2.3 (cf. argument following (17)) gives isomorphisms
Z/2 ∼= 2Br(Q3) ∼= H0(Q3,H2), the non-trivial element being the image of the
quaternion algebra (−1,−1)/R, under the natural map Br(R) → Br(Q3). Again,
by the proof of Lemma 2.3, the top horizontal map is an isomorphism. Now, since
the element -1 is a sum of four squares in R(Q3), the form � 1, 1, 1�∈ I3(R(Q3))
is isotropic and hence hyperbolic. The maps en are known to be well-defined
on n-fold Pfister forms (cf. [AEJ]). Since � 1, 1, 1 � is isotropic, this implies
that e3(� 1, 1, 1 �) = (−1) ∪ (−1) ∪ (−1) is zero in H3(R(Q3)). Thus since
H0(Q3,H2) ∼= Z/2 < (−1) ∪ (−1) >, the bottom horizontal map in the above
commutative square is zero and hence the map H3(Q3) → H0(Q3,H3) is zero.
Therefore the theorem is proved. �

We now record some corollaries to the theorem.

Proposition 2.7. Let Qd be the real anisotropic quadric of dimension d and
R(Qd) be its function field. Then we have H3

nr(R(Qd)) = 0 for 1 ≤ d ≤ 6 and
H3
nr(R(Qd)) ∼= Z/2 for d ≥ 7, the non-trivial element being (−1) ∪ (−1) ∪ (−1).

Proof. Clearly H0(Qd,H3) = H3
nr(R(Qd)) = 0 for d ≤ 2, since the 2-cohomological

dimension of R(Qd) is d [CT-P, Proposition 1.2.1], and H0(Qd,H3) ⊂ H3(R(Qd)).
The quadrics Qd, 3 ≤ d ≤ 6 are defined by quadratic forms that are Pfister neigh-
bours of the 3-fold Pfister form � 1, 1, 1 � which defines the quadric Q6. By
Lemma 1.3 therefore, the unramified cohomology groups of Qd for 3 ≤ d ≤ 6 are
equal and by the above theorem, H0(Qd,H3) = 0 for 3 ≤ d ≤ 6.

We now assume that d ≥ 7. For any field F , char F 6= 2, there exists an exact
sequence [A]

(28) 0→ Z/2 < (−1) ∪ (−1) ∪ (−1) >→ H3(F )→ H3(F (Q6))

where F (Q6) is the function field of the quadric
7

Σ
i=0
X2
i = 0 in P7

F . In particular,

if F = R(Qd), d ≥ 7, restriction of the above exact sequence to the unramified
cohomology groups gives an exact sequence

(29) 0→ Z/2 < (−1) ∪ (−1) ∪ (−1) >→ H3
nr(R(Qd))→ H3

nr(R(Qd ×Q6)).

But R(Qd×Q6) is a purely transcendental extension of R(Q6). (In general, R(Qm×
Qn) is a purely transcendental extension of R(Qm) when n ≥ m, since the quadric
Qn has an R(Qm)-rational point if n ≥ m). Since the unramified cohomology groups
remain invariant under purely transcendental extensions, we see thatH3

nr(R(Q6)) ∼=
H3
nr(R(Qd×Q6)) = 0, and the above sequence yields an isomorphismH3

nr(R(Qd)) ∼=
Z/2 < (−1)∪ (−1)∪ (−1) >. We claim that the element (−1)∪ (−1)∪ (−1) is non-
zero in H3(R(Qd)). To prove this, we use the Merkurjev-Suslin-Rost isomorphism
[M-S1] K3(F )/2 ∼= H3(F ), where for a field F , char F 6= 2, Kn(F ) is the n − th
Milnor K-group of F and the isomorphism is obtained by mapping the class of the
symbol {a, b, c} in K3(F )/2 to (a)∪ (b)∪ (c) in H3(F ). Now (−1)∪ (−1)∪ (−1) = 0
in H3(R(Qd)) implies that {−1,−1,−1} belongs to 2K3(R(Qd)) and this in turn
implies that -1 is a reduced norm of the quaternion algebra (−1,−1)/R(Qd) [M-S,
Theorem 12.1]. But this is impossible as the element -1 is not a sum of four squares
in R(Qd) if d ≥ 7 (Pfister, cf. [Sc, Ch. IV, Theorem 4.3]). Hence H0(Qd,H3) ∼= Z/2
and the proposition is proved. �

We also have the following
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Corollary 2.8. Let Qd be the real anisotropic quadric of dimension d, d ≥ 2.
Then the cycle map

ρ2 : CH2(Qd)/2→ H4(Qd,Z/2)

is injective.

Proof. We use the exact sequence (23). For 2 ≤ d ≤ 6, by Proposition 2.7,
H0(Qd,H3) = 0 and hence the result holds. For d ≥ 7, we have H0(Qd,H3) ∼= Z/2,
the non-trivial element being (−1)∪ (−1)∪ (−1) which is the image of the non-zero
element in H3(R) under the natural map H3(R)→ H3(Qd). This implies that the
map H3(Qd)→ H0(Qd,H3) in (23) is surjective and hence the result follows. �

§3. Unramified Witt
groups of Qd, 3 ≤ d ≤ 6.

In this section, we prove that Wnr(R(Qd)) ∼= Z/8 for 3 ≤ d ≤ 6. We continue
with the notation used in the previous sections. Associated to the d-dimensional
quadric Qd is its defining quadratic form of dimension d+2, given by (d+2).< 1 >,
which we denote by φd. Recall that the level of a field F is defined to be the least
integer n such that -1 is a sum of n squares in F . A field F is said to be non-
formally real if its level is finite. The field R(Qn) is non-formally real and has level
2ln , where 2ln ≤ n + 1 < 2ln+1 (Pfister, cf. [Sc, Ch. IV, Theorem 4.3]). Thus the
quadrics Qn can be grouped as follows:

Level of the function field Quadrics
20 = 1 Q0

21 Q1, Q2

22 Q3, · · · , Q6
...

...
2k Q2k−1, · · · · · · , Q2k+1−2

...
...

Let Bk denote the bunch of quadrics whose function fields are of level 2k. The
quadratic form φ2k+1−2, attached to the “topmost” quadric Q2k+1−2 of Bk is the
(k + 1)-fold Pfister form � 1, 1, · · · , 1� and those defining all the other quadrics
in Bk are Pfister neighbours of φ2k+1−2. By Lemma 1.2, we see that the unramified
Witt group is an invariant of the bunch Bk. We prove the following well-known
lemma, first proved by Arason [A1], and which computes the unramified Witt group
of the anisotropic conic. The proof below was outlined to us by Parimala and is
valid over any ground field k, char k 6= 2.

Lemma 3.1. Let C/k be a smooth projective anisotropic conic and k(C) be its
function field. Then any unramified quadratic form φ over k(C) comes from a
quadratic form over k. In particular, if a quadratic form φ over k becomes isotropic
over k(C), then the anisotropic part of φ⊗ k(C) is defined over k.

Proof. We shall argue by induction on the rank of the unramified quadratic form
φ, the property being clearly true if the rank is zero. If φ = φ′⊥nH over k(C),
where φ′ is the anisotropic part, H denotes the hyperbolic form < 1,−1 > (defined



UNRAMIFIED WITT GROUPS OF REAL ANISOTROPIC QUADRICS 15

over k) and n is positive, then φ′ is unramified of rank smaller than φ, hence the
result follows from the induction hypothesis. We may therefore assume that φ is
anisotropic.

For every closed point x ∈ C, we have ∂x(φ) = 0, where ∂x is the second residue
homomorphism (cf. §1) corresponding to the point x. This implies (cf. [Sc, Ch. VI,
§2]) that given any closed point x ∈ C, there exists a regular quadratic space Ex over
the discrete valuation ring OC,x, whose image under the natural map OC,x ↪→ k(C)
coincides with φ. By an easy patching theorem (valid over any integral Dedekind
scheme) we get an anisotropic quadratic bundle E on C such that the restriction of
E at a closed point x ∈ C is Ex and E ⊗ k(C) ∼= φ.

Given such a bundle E , since E ∼= E∗, the degree of the bundle E denoted deg E ,
which is the degree of the determinant bundle of E , is zero. Hence by the Riemann-
Roch theorem, we have

h0(E) ≥ deg E + (rk E)(1− g(C)) ≥ 1,

where h0(E) is the dimension of the k-vector space of global sections of E , rk is the
rank and g(C) is the genus of C which is zero. This implies that the bundle E has
a non-trivial global section, say s. The bilinear structure gives a homomorphism

bφ : Γ(C, E)× Γ(C, E)→ Γ(C,OC)

where for a sheaf G on C, Γ(C,G) is the k-vector space of global sections of G
and OC is the structure sheaf. Since C is smooth, projective, and geometrically
integral, the space Γ(C,OC) is isomorphic to k. Hence the evaluation of the section
gives a splitting E ∼=< a > ⊥E ′ as bilinear spaces, with 0 6= a = bφ(s, s) ∈ k since
E ⊗ k(C) is anisotropic. By the induction hypothesis, E ′⊗ k(C) comes from k, and
the lemma is proved. �

Remark. Let K/k be a field extension. If given any anisotropic quadratic form q
over k, the anisotropic part of qK = q⊗K comes from a quadratic form defined over
k, the field K is called an excellent extension of k. The excellence of the function
field of an anisotropic conic over k has been proved by various people. We refer to
[VG] and the references cited there for a more extensive treatment of this property.

Corollary 3.2. (Parimala [P]) Let Qd be the real anisotropic quadric over R,
d = 1, 2. Then we have Wnr(R(Qd)) ∼= Z/4, with the form < 1 > as the generator.

Proof. By the remark at the beginning of this section, it suffices to prove the result
for the conic Q1. By the above lemma, the elements of Wnr(R(Q1)) are defined
over R, i.e. the natural map W (R) → Wnr(R(Q1)) is surjective. But W (R) ∼= Z
with the form < 1 > as the generator. The form 4 < 1 >=� 1, 1� is isotropic and
hence hyperbolic, since -1 is a sum of two squares in R(Q1). But 2 < 1 >=< 1, 1 >
is not zero in W (R(Q1)) since -1 is not a square in R(Q1). Hence Wnr(Q1) ∼= Z/4.
The result for Q2 follows from Lemma 1.2. �

We now prove the main theorem.

Theorem 3.3. Let Qd be the d-dimensional real anisotropic quadric, 3 ≤ d ≤ 6.
Then Wnr(R(Qd)) ∼= Z/8, the form < 1 > being the generator.

Proof. By the remarks at the beginning of this section, it suffices to prove the
theorem for the three dimensional anisotropic quadric Q3, since the quadrics Qd
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with 3 ≤ d ≤ 6 are all in B2. By Proposition 1.1, there is an exact sequence of
groups

0→W (R(Q3))� 1, 1�→W (R(Q3))→W (R(Q3 ×Q2))
q
W (R(Q3)(Q2)).(30)

We remark that the kernel W (R(Q3))� 1, 1� is a 2-torsion group, since the level
of R(Q3) is 4 and hence 2.� 1, 1 �=� 1, 1, 1 � is hyperbolic. Restricting the
above exact sequence to the unramified subgroups, we get an exact sequence
(31)

0→ [W (R(Q3))� 1, 1�] ∩Wnr(R(Q3))→Wnr(R(Q3))→Wnr(R(Q3 ×Q2)).

But R(Q3 × Q2) = R(Q3)(Q2) = R(Q2)(Q3) is a purely transcendental extension
of R(Q2) and hence Wnr(R(Q3 × Q2)) ∼= Wnr(R(Q2)) ∼= Z/4 < 1 >, by Corollary
3.2. We claim that [W (R(Q3)) � 1, 1 �] ∩Wnr(R(Q3)) ∼= Z/2 � 1, 1 � . But
I(R(Q3)) ⊆W (R(Q3)) and the quotient W (R(Q3))/I(R(Q3)) ∼= Z/2, with the non-
trivial element being the class of the form < 1 >. Therefore to prove the claim, it
suffices to prove that the group

[I(R(Q3))� 1, 1�] ∩Wnr(R(Q3)) = 0.

But this group is a subgroup of the group I3
nr(R(Q3)). Further, I4(R(Q3)) = 0,

this observation being a consequence of the general result (cf. [AEJ]) that if F
is a field of transcendence degree m over R, then Im+1(F ) is torsion-free. In our
situation, since R(Q3) is non-formally real, the group W (R(Q3)) is torsion [Sc, Ch.
II, Theorem 7.1]. Also, as mentioned in §1, the maps en : In(F )/In+1(F )→ Hn(F )
are well-defined isomorphisms for n = 2, 3. Thus from these remarks and (3) of §1,
we see that there is an injection I3

nr(R(Q3)) ↪→ H3
nr(R(Q3)). But the unramified

cohomology group H3
nr(R(Q3)) = H0(Q3,H3) = 0 by Proposition 2.5. The element

� 1, 1� is not zero in W (R(Q3)), since -1 is a sum of no less than four squares in
R(Q3). Thus, the exact sequence (31) reads as

0→ Z/2� 1, 1�→Wnr(R(Q3))→Z/4 < 1 >
< 1 > 7→ < 1 >

But the form < 1 >∈Wnr(R(Q3)) is an element of order 8 since the level of R(Q3)
is 4, and hence the above sequence is short exact, non-split and Wnr(R(Q3)) ∼= Z/8
as was to be proved. �

Finally, we note the following Corollary to Theorem 3.3. Given a finitely gener-
ated field extension K/k, an element f ∈ K∗ is said to be unramified if the form
< f > belongs to Wnr(K/k). Let Qd be the real anisotropic quadric of dimension
d, 3 ≤ d ≤ 6 and R(Qd) be its function field. Since the level of R(Qd) is 4, the form
< 1, 1, 1, 1, 1 > is isotropic and hence universal, i.e. it represents every element in
R(Qd)

∗. This implies that any element f ∈ R(Qd)
∗ is a sum of five squares. If

further f is unramified, then we have the following

Corollary 3.4. Let f ∈ R(Qd), 3 ≤ d ≤ 6 be unramified. Then f can be rep-
resented as a sum of four squares in R(Qd). Also, -1 is unramifed and cannot be
represented by less than four squares.
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Proof. If f is unramified then the form � 1, 1,−f �∈ I3(R(Qd)) is actually an
element of I3

nr(R(Qd)). The homomorphism e3 maps I3
nr(R(Qd)) into H0(Qd,Hd)

and the latter group is zero by Proposition 2.7. Thus e3(� 1, 1,−f �) is zero. But
the homomorphism e3 is injective on Pfister forms [A2, Proposition 2]. Hence the
form� 1, 1,−f � is hyperbolic and f can be represented as a sum of four squares.
Further, the element -1, which is clearly unramified, is a sum of no less than four
squares in R(Qd). Thus the corollary is proved. �
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