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ABSTRACT. According to a conjecture of Kato (1986), the classical reciprocity sequence for the Brauer

group of a function field in one variable over a finite field F should have analogues for higher dimensional

function fields. A more precise form of the conjecture is that on smooth projective varieties of dimension d

over F , the homology of a certain Bloch-Ogus complex of length d + 1 should be trivial except in the last

term, where it should be Q/Z. For surfaces, the conjecture was established some years ago. In the present

paper, I prove that for varieties of arbitrary dimension, the complex has the expected homology in its last

four terms, thus settling the case of threefolds (attention is restricted to torsion prime to the characteristic).

Introduction.

Let X be a smooth, geometrically irreducible variety over a perfect field k, let n be a
positive integer prime to p = char(k). For any integer i ∈ N and j ∈ Z, there is a natural
complex of étale (= Galois) cohomology groups :

(Ci,j
n ) 0 → Hi(k(X), µ⊗j

n ) →
⊕

x∈X(1)

Hi−1(k(x), µ⊗j−1
n ) →

⊕
x∈X(2)

Hi−2(k(x), µ⊗j−2
n ) · · ·

Here X(t) denotes the set of points of the scheme X with codimension t, the field k(x)
is the residue field at such a point, k(X) is the function field of X and µ⊗j

n is the étale
sheaf defined by the group µn of n-th roots of 1, twisted j times. This complex, already
considered by Grothendieck ([Gr], p. 165), is discussed at length in the seminal paper of
Bloch and Ogus [B/O] ; a more explicit construction of it is given by Kato in [K,§ 1].

In [K], Kato put forward the conjecture : if X is a smooth, projective, geometrically
integral variety over a finite field F , d = dim(X), i = d+1 and j = d, the complex (Cd+1,d

n ),
henceforth denoted (Cn) :



0 →Hd+1(F (X), µ⊗d
n ) →

⊕
x∈X(1)

Hd(F (x), µ⊗d−1
n ) →(Cn)

⊕
x∈X(2)

Hd−1(F (x), µ⊗d−2
n ) → · · · →

⊕
x∈X(d)

H1(F (x),Z/n) → 0

is exact except at the last place, where its homology is Z/n ([K], Conjecture (0.3), p. 144).
As a matter of fact, taking norms down to H1(F,Z/n) yields a map⊕

x∈X(d)

H1(F (x),Z/n) → H1(F,Z/n).

Since X is projective, a suitable reciprocity statement, which is true over any base field,
ensures that the composite map⊕

x∈X(d−1)

H2(F (x), µn) →
⊕

x∈X(d)

H1(F (x),Z/n) → H1(F,Z/n)

is zero. Because F is finite, we may identify H1(F,Z/n) ' Z/n. We thus have :

CONJECTURE 1 (Kato). — For a smooth, projective, geometrically irreducible variety
X over a finite field F , the natural complex :

Hd+1(F (X), µ⊗d
n ) →

⊕
x∈X(1)

Hd(F (x), µ⊗d−1
n ) → · · ·(Cn)

(degree 0) (degree 1)

· · · →
⊕

x∈X(d)

H1(F (x),Z/n) → Z/n

(degree d) (degree d + 1)

(extended by zero on both sides) is exact.

By letting n vary among the powers lm of a fixed prime number l and by going over
to the limit as m tends to infinity, the previous conjecture leads to :

CONJECTURE 2 (Kato). — For a smooth, projective, geometrically irreducible variety
X over a finite field F , the natural complex :

Hd+1(F (X),Ql/Zl(d)) →
⊕

x∈X(1)

Hd(F (x),Ql/Zl(d− 1)) → · · ·(C)

(degree 0) (degree 1)

· · · →
⊕

x∈X(d)

H1(F (x),Ql/Zl) → Ql/Zl

(degree d) (degree d + 1)

(extended by zero on both sides) is exact.



Use of the de Rham-Witt complex allows Kato to formulate analogous conjectures with
p-primary torsion coefficients. Kato also states analogous conjectures for function fields of
regular proper schemes over Z, but we shall not be concerned with these in this paper.

When dim(X) = 1, i.e. X is a curve, the conjecture boils down to the classical
exact sequence for the Brauer group ([Gr],§ 2 ; this sequence itself is the function theoretic
analogue of Hasse’s exact sequence for the Brauer group of a number field) :

0 → Br(F (X)) →
⊕

x∈X(1)

Q/Z → Q/Z → 0.

In the case dim(X) = 2, these conjectures were proved some years ago by Sansuc, Soulé
and the author ([CT/S/S, p. 790], exactness on the left term, for the prime-to-p part) and
by Kato ([K, p. 176/177]).

In this note, I prove part of Kato’s conjectures for higher dimensional varieties.(1)

THEOREM A. — Let X be a smooth, projective, geometrically irreducible variety of
dimension d over a finite field F . Then the complex (C) of Conjecture 2 is exact in degrees
≥ d− 3. In particular Conjecture 2 holds when d = dim(X) ≤ 3.

THEOREM B. — Let X be a smooth, projective, geometrically irreducible variety of
dimension d over a finite field F . Then the complex (Cn) of Conjecture 1 is exact in degrees
≥ d− 2. If dim(X) = 3, and n is a power of 2, then Conjecture 1 holds.

(In the case dim(X) = 3, Conjecture 1 would hold for n arbitrary if a certain well-
known conjecture on the cohomology of fields held.)

The proof of Theorem A in degree ≥ d − 2 and of Theorem B in degree ≥ d − 1
is a straightforward extension of Kato’s proof ([K]) of the 2-dimensional case. To obtain
Theorem A in degree d−3, which is the main contribution of this paper (§ 4, Theorem 4.2),
I first prove (§ 3, Theorem 3.5) that for a smooth projective variety X over a finite field, the
group Hd−1(X,Kd)⊗Q/Z vanishes (as a matter of fact, it is generally conjectured that on
such a variety the group Hd−1(X,Kd) is torsion, possibly of finite exponent). The proof,
which is not entirely straightforward, uses the technique of Lefschetz pencils and the known
results on Hd−1(X,Kd) when d = 2, as well as results of Kato and Saito. Theorem A then
follows from an analysis of the local to global spectral sequence in étale cohomology, together
with various vanishing properties deduced from Deligne’s result on the Weil conjectures.
That one may go back and forth between the above K-theoretical result and some results
in étale cohomology must naturally be traced back to the Merkur’ev-Suslin theorem. From
a standard conjecture on the Galois cohomology of fields (§ 2) one could deduce Conjecture
1 from Conjecture 2. The known cases of that conjecture enable us to deduce Theorem B
from Theorem A (§ 2 and end of § 4)

When X is a threefold, Shuji Saito has an independent and earlier proof of the exactness
of the complex (C) in degree 0 ([Sa]). He actually proves an injectivity result for a surface
defined over the completion of a global field F (C) at a point P of a curve C (with reasonable
bad reduction at P ) and he uses recent results of Jannsen ([J1], [J2]) to go from this local

(1) Using logarithmic de Rham-Witt cohomology, Suwa [Sw] has recently extended my
proof to cover the p-part of Kato’s conjectures (in the same range).



result (at each point P of C) to the global result H0(C) = 0. My proof avoids this local
detour.

ACKNOWLEDGEMENTS. The present paper builds upon earlier works of Bloch, Kato/Saito, Kato, and

earlier joint work with Sansuc/Soulé and with Raskind. Although I do not use Jannsen’s or Saito’s recent

results, I would like to acknowledge much inspiration from their work.

§ 0. Notation and preliminaries.

Given an abelian group A and a positive integer n, we denote by A/n the quotient A/nA
and by nA the group of elements of A killed by n. By Ators we denote the torsion subgroup
of A.

Let X be an algebraic variety over a field k. Given a point x of the scheme X, we shall
denote by k(x) the residue field at x.

By µ⊗j
n (n prime to char(k)) we denote the étale sheaf on X defined by the group µn

of n-th roots of 1, twisted j times. Cohomology with values in µ⊗j
n will always be étale

cohomology (Galois cohomology when X is the spectrum of a field).
For any nonnegative integer i we denote by CHi(X) the Chow group of codimension

i cycles on X modulo rational equivalence.
By Hi(µ⊗j

n ) we denote the Zariski sheaf on X associated to the Zariski presheaf
U 7→ Hi

ét(U, µ⊗j
n ). Cohomology with values in a sheaf Hi(µ⊗j

n ) will always be Zariski
cohomology.

Let Ki(R) be the i-th Quillen K-group of a commutative ring R. By Ki we denote the
Zariski sheaf on X associated to the Zariski presheaf U 7→ Ki(H0(U,OX)). Cohomology
with values in a sheaf Ki will always be Zariski cohomology.

Using dévissage, one obtains the Gersten-Quillen complex :

(0.1) 0 →
⊕

x∈X(0)

Kik(x) → · · · →
⊕

x∈X(i−j)

Kjk(x) → · · · →
⊕

x∈X(i)

Z → 0 .

For X smooth over a perfect field k, Quillen proved that this complex is the complex of
global sections of a flasque resolution of the sheaf Ki (Gersten’s conjecture).

Similarly, under the same assumption on X, Bloch and Ogus [B/O] proved that the
complex (Ci,j

n ) is the complex of global sections of a flasque resolution of the sheaf Hi(µ⊗j
n ).

These resolutions give rise to isomorphisms

(0.2) Hi(X,Ki) ' CHi(X)

(0.3) Hi(X,Hi(µ⊗i
n )) ' CHi(X)/n .

A basic idea of Spencer Bloch, combined with the Merkur’ev-Suslin result ([M/S1]),
leads from these resolutions to a natural exact sequence :

(0.4) 0 → Hi−1(X,Ki)/n → Hi−1(X,Hi(µ⊗i
n )) → nCHi(X) → 0 .

For this, we refer to [CT/S/S § 1] and [CT § 3].



Another key ingredient in our proofs will be the local to global spectral sequence

(0.5) Epq
2 = Hp

Zar(X,Hq(µ⊗j
n )) =⇒ Hn

ét(X, µ⊗j
n )

whose non-zero terms satisfy 0 ≤ p ≤ d = dim(X) (trivial) and p ≤ q, the latter inequality
being a consequence of the work of Bloch and Ogus.

We thus have maps

αi : Hi−1(X,Hi(µ⊗j
n )) → H2i−1

ét (X, µ⊗i
n )

and a diagram :

(0.6)

0 → Hi−1(X,Ki)/n → Hi−1(X,Hi(µ⊗i
n )) → nCHi(X) → 0y αi

H2i−1
ét (X, µ⊗i

n ) .

This diagram may be completed in the following manner. For any positive integer m,
invertible in k, on the smooth variety X, we have Grothendieck’s cycle map

ρ : CHi(X) → H2i
ét (X, µ⊗i

m )

which Deligne describes in [SGA 4 1/2]. For later use, let us note that the induced map

CHi(X)/m → H2i
ét (X, µ⊗i

m ),

i.e. :
Hi(X,Hi(µ⊗i

m )) → H2i
ét (X, µ⊗i

m )

is precisely the map coming from the local to global spectral sequence ([B/O], (7.2)).
From the exact sequence of étale sheaves on X :

1 → µ⊗i
m → µ⊗i

nm → µ⊗i
n → 1

we deduce a boundary map :

β : H2i−1
ét (X, µ⊗i

n ) → H2i
ét (X, µ⊗i

m ).

In [CT/S/S, Prop.1, p. 766] we checked that the following diagram commutes (up to sign) :

(0.7)

0 −→ Hi−1(X,Ki)/n −→ Hi−1(X,Hi(µ⊗i
n )) −→ nCHi(X) → 0y αi

y ρ

H2i−1
ét (X, µ⊗i

n )
β−→ H2i

ét (X, µ⊗i
m ) .



Letting n and m run through powers of a prime l 6= char(k), and going over to the
direct limit in n and the inverse limit in m, we get the following diagram, commutative up
to sign :

(0.8)

0 −→ Hi−1(X,Ki)⊗Ql/Zl −→ Hi−1(X,Hi(Ql/Zl(i))) −→ CHi(X)l−tors → 0y αi

y ρ

H2i−1
ét (X,Ql/Zl(i))

β−→ H2i
ét (X,Zl(i))l−tors .

§ 1. Homology of the complex (C) in degrees at least d− 2.

Let X be a smooth, projective, geometrically integral variety over a finite field F of
characteristic p. Let d = dim(X). Let n be a positive integer and assume that p does
not divide n.

LEMMA 1.1. — The local to global spectral sequence

Epq
2 = Hp(X,Hq(µ⊗j

n )) =⇒ Hn
ét(X, µ⊗j

n )

is concentrated in the range 0 ≤ p ≤ d, p ≤ q, and q ≤ d + 1.

Proof : As already mentioned, the vanishing of Epq
2 for p > d is trivial for dimension

reasons, and is due to Bloch and Ogus for p ≤ q. Let us prove the vanishing for q ≥ d + 2.
As a matter of fact, the sheaves Hq(µ⊗j

n ) themselves are zero for q ≥ d + 2, since for U
affine over F , we already have Hq(U, µ⊗j

n ) = 0. Indeed, since the cohomological dimension
cd(F ) equals 1, the Hochschild-Serre spectral sequence (G = Gal(F/F ))

Epq
2 = Hp(G, Hq

ét(U ×F F , µ⊗j
n )) =⇒ Hn

ét(U, µ⊗j
n ),

yields short exact sequences

0 → H1(G, Hq−1
ét (U ×F F , µ⊗j

n )) → Hq(U, µ⊗j
n ) → (Hq

ét(U ×F F , µ⊗j
n ))G → 0 .

But over an algebraically closed field, the étale cohomological dimension of an affine variety
is at most its (Zariski) dimension, hence all groups in this sequence are zero for q ≥ d+2.

PROPOSITION 1.2. — There are natural isomorphisms

Hd(X,Hd+1(µ⊗d
n )) ' Z/n

Hd(X,Kd+1)/n ' Hd(X,Hd+1(µ⊗d+1
n )) ' F ∗/F ∗n.



Proof : From the previous lemma and the local to global spectral sequence we deduce

Hd(X,Hd+1(µ⊗j
n )) ' H2d+1

ét (X, µ⊗j
n ).

The Hochschild-Serre spectral sequence, the fact that cd(F ) = 1 and Poincaré duality for
X ×F F (i.e. H2d(X ×F F , µ⊗d

n )) ' Z/n) yield

H2d+1
ét (X, µ⊗j

n ) ' H1(G, H2d
ét (X ×F F , µ⊗j

n )) ' H1(G, µ⊗j−d
n )

hence Hd(X,Hd+1(µ⊗d
n )) ' H1(G,Z/n) and Hd(X,Hd+1(µ⊗d+1

n )) ' H1(G, µn) '
F ∗/F ∗n. As for the isomorphism

Hd(X,Kd+1)/n ' Hd(X,Hd+1(µ⊗d+1
n )),

it follows trivially from exact sequence (0.4) applied to i = d + 1.

This proposition establishes the degree d and d + 1 part of Theorem B and, by going
over to direct limits, the degree d and d + 1 part of Theorem A.

Let us now study the line p + q = 2d in the local to global spectral sequence, which
will require less trivial arguments. Lemma 1.1 and that spectral sequence give rise to an
exact sequence

H2d+1
ét (X, µ⊗d

n ) → Hd−2(X,Hd+1(µ⊗d
n )) → Hd(X,Hd(µ⊗d

n )) →

H2d
ét (X, µ⊗d

n ) → Hd−1(X,Hd+1(µ⊗d
n )) → 0 .

The arrow Hd(X,Hd(µ⊗d
n )) → H2d

ét (X, µ⊗d
n ) is the cycle map

CHd(X)/n → H2d
ét (X, µ⊗d

n ).

Combining Poincaré duality over F and arithmetic duality for Galois cohomology of F (cf.
[CT/S/S] Lemme 5 p. 790) yields an isomorphism

H2d
ét (X, µ⊗d

n ) ' Hom(H1
ét(X,Z/n),Z/n) ' πab

1 (X)/n ,

and the main theorem of unramified class field theory for smooth projective varieties over
a finite field precisely says that the composite map

CHd(X)/n → πab
1 (X)/n

is an isomorphism ([K/S1] Theorem 1, [CT/S/S] Théorème 5 p. 792, [CT/R2]). We thus
conclude :

Hd−1(X,Hd+1(µ⊗d
n )) = 0

and by going over to the direct limit of powers of a fixed prime l :

Hd−1(X,Hd+1(Ql/Zl(d))) = 0

which proves the degree d− 1 part of Theorems A and B.



We also deduce that the differential

Hd−2(X,Hd+1(µ⊗d
n )) → Hd(X,Hd(µ⊗d

n ))

is zero, and that the map

H2d−1
ét (X, µ⊗d

n ) → Hd−2(X,Hd+1(µ⊗d
n ))

coming from the spectral sequence is surjective. Going over to the direct limit of powers of
a fixed prime l, we find that the map

H2d−1
ét (X,Ql/Zl(d)) → Hd−2(X,Hd+1(Ql/Zl(d)))

is also surjective. Deligne’s theorem on the Weil conjectures implies that the group
H2d−1

ét (X,Ql/Zl(d)) is finite ([CT/S/S], Théorème 2, p. 780). We thus conclude that the
group Hd−2(X,Hd+1(Ql/Zl(d))) is finite.

Now the vanishing of Hd−1(X,Hd+1(µ⊗d
n )) (above) and Lemma 2.2 a) below (in the

trivial case i = d − 2) imply that Hd−2(X,Hd+1(Ql/Zl(d))) is divisible. Being divisible
and finite, this group is zero, thus completing the proof of Theorem A in degrees ≥ d− 2.
The proof of Theorem B in degree (d− 2) is postponed to the end of § 4.

§ 2. Going back and forth between finite and infinite coefficients.

Let L be a field, and let n and m be positive integers. Assume that char(L) does not divide
n. A well-known conjecture, attributed to Milnor and Kato, claims that the Galois symbol
from Milnor K-theory to Galois cohomology

KM
m (L)/n → Hm(L, µ⊗m

n )

is an isomorphism. This would imply the

COHOMOLOGICAL CONJECTURE. — For any positive integers r and s prime to char(L),
the map

Hm+1(L, µ⊗m
r ) → Hm+1(L, µ⊗m

rs )

induced by the inclusion µ⊗m
r → µ⊗m

rs is an injection. Equivalently, for l prime different
from char(L), the natural map :

Hm+1(L, µ⊗m
ln ) → Hm+1(L,Ql/Zl(m))

is an injection.

This conjecture is known for m = 0 (obvious), m = 1 (Kummer theory) and m = 2
(Merkur’ev-Suslin [M/S1]). It is also known when m = 3 and n is a power of 2 (Merkur’ev-
Suslin [M/S2], Rost).

If we grant this conjecture for a minute, for any function field L of transcendence
degree t over a finite field F , and any power ln of a prime l 6= char(F ), the exact sequence
of Galois modules

0 → µ⊗t
ln → Ql/Zl(t)

ln−→ Ql/Zl(t) → 0



would give rise to exact sequences of Galois cohomology :

0 → Ht+1(L, µ⊗t
ln ) → Ht+1(L,Ql/Zl(t))

ln−→ Ht+1(L,Ql/Zl(t)) → 0

(note that Ht+2(F, µ⊗d
ln ) = 0 since cd(L) ≤ t + 1).

If now X is a smooth d-dimensional variety over a finite field F and we apply this
argument to the function fields of all irreducible subvarieties of X, we find that the
complexes appearing in Conjectures 1 and 2 would fit into an exact sequence :

0 → Cln → C ln−→ C → 0 .

These complexes Cln and C are none other than the global sections of the Bloch-Ogus
flasque resolutions of the sheaves Hd+1(µ⊗d

ln ) and Hd+1(Ql/Zl(d)). Thus we would get a
long exact sequence

Hi(X,Hd+1(µ⊗d
ln )) → Hi(X,Hd+1(Ql/Zl(d))) ln−→ Hi(X,Hd+1(Ql/Zl(d))) →

Hi+1(X,Hd+1(µ⊗d
ln )) → Hi+1(X,Hd+1(Ql/Zl(d))) → · · ·

hence :

LEMMA 2.1. — Let X be a smooth d-dimensional variety over a finite field F and let i
be an integer, i ≥ −1. If the cohomological conjecture is true, then :

a) The vanishing of Hi+1(X,Hd+1(µ⊗d
ln )) for some positive integer n implies that

Hi(X,Hd+1(Ql/Zl(d))) is a divisible group.
b) If Hi+1(X,Hd+1(Ql/Zl(d))) = 0 and Hi(X,Hd+1(Ql/Zl(d))) is a divisible

group, then Hi+1(X,Hd+1(µ⊗d
ln )) = 0.

Actually writing the complexes and chasing through them reveals :

LEMMA 2.2. — Let X be a smooth d-dimensional variety over a finite field F and let i
be an integer, i ≥ −1.

a) If the cohomological conjecture holds for Hd−i−1(F (Y ), µ⊗d−i−2
ln ) and Y an

integral variety over F of dimension d − i − 1, and if Hi+1(X,Hd+1(µ⊗d
ln )) vanishes for

some n, then Hi(X,Hd+1(Ql/Zl(d))) is divisible.
b) If the cohomological conjecture holds for Hd−i(F (Y ), µ⊗d−i−1

ln ) and Y an
integral variety over F of dimension d − i, if Hi+1(X,Hd+1(Ql/Zl(d))) = 0 and
Hi(X,Hd+1(Ql/Zl(d))) is divisible, then Hi+1(X,Hd+1(µ⊗d

ln )) = 0 for any positive integer
n.

Note that by the results of Merkur’ev-Suslin and Rost, the assumption on the
cohomological conjecture in Lemma 2.2 a) is satisfied if i ≥ d− 4, and it is also satisfied if
l = 2 and i ≥ d− 5 (the case i = d− 2, used in the preceding proof, is trivial and i = d− 3
only uses Kummer theory). The assumption on the cohomological conjecture in Lemma
2.2 b) is satisfied if i ≥ d− 3 (the case i = d− 3 uses the Merkur’ev-Suslin result) and also
if i = d− 4 and l = 2.



Remark : Of course, we could have tried to use the cohomology of the sequence

0 → Hd+1(µ⊗d
ln ) → Hd+1(Ql/Zl(d)) ln−→ Hd+1(Ql/Zl(d)) → 0 ,

but a direct proof of the exactness of this sequence would require knowledge of the
cohomological conjecture for m = d. Replacing the sheaves in the above sequence by
their flasque resolutions enable us to build upon the low degree cases of the conjecture.

§ 3. On the structure of Hd−1(X,Kd).

In the next section, I shall prove that the homology of the complex (C) vanishes in degree
d−3. The key will be the vanishing of the group Hd−1(X,Kd)⊗Q/Z, which will be proved
in the present section.

We shall start by studying the general situation :

(3.1) X is a smooth, projective, geometrically integral variety of dimension d ≥ 2 over
a finite field F . We are given a smooth, projective, geometrically integral curve C over F ,
and a proper, dominant F -morphism f : X → C whose generic fibre Xη is smooth and
geometrically integral over the generic point η = Spec(F (C)) of C.

Comparison of the Quillen resolution of the sheaf Kd on X and on the generic fibre Xη

yields a long exact sequence (cf. [Sh], Theorem 2.1)

⊕
P∈C(1)

Hd−1
XP

(X,Kd) → Hd−1(X,Kd) → Hd−1(Xη,Kd) →(3.2)

⊕
P∈C(1)

Hd
XP

(X,Kd) → Hd(X,Kd) → 0 .

Here Hi
XP

(X,Kd) is just a notation for the homology in dimension i of the subcomplex of
the Gersten complex of Kd supported on XP . If XP is smooth over the residue field k(P ),
then the Gersten conjecture, as proved by Quillen, yields :

Hi
XP

(X,Kd) = Hi−1(XP ,Kd−1).

For any point P of C(1), the group Hd
XP

(X,Kd) coincides with the Chow group CH0(XP ).
The projection XP → Spec(F (P )) induces a degree map CH0(XP ) → Z. Similarly, we
have the degree map Hd(X,Kd) ' CH0(X) → Z.

Let A0(XP ) = Ker[CH0(XP ) → Z]. Each of the groups A0(X) and A0(XP ) is a finite
group. Indeed, it is a theorem of Kato and Saito (also in the singular case) that for any
connected proper, possibly singular, variety Z over a finite field, the group A0(Z) is finite
([K/S2], Theorem 6.1). (In proving Theorem 3.5 below, we shall only need the case where
XP is projective and has at worst an isolated quadratic singularity. In that case, the result
immediately follows from the smooth case ([K/S1], [CT/S/S]).)

We have the reciprocity map Hd−1(Xη,Kd) → F (C)∗, induced by the norm maps from
the residue field at a closed point down to the ground field. One checks that the diagram



of complexes

(3.3)

Hd−1(Xη,Kd) →
⊕

P∈C(1) Hd
XP

(X,Kd) → Hd(X,Kd)

↓ ↓ ↓

F (C)∗ div−→
⊕

P∈C(1) Z
Σ−→ Z

commutes (the map Σ sends the element (nP )P∈C(1) to the sum
∑

P nP [F (P ) : F ].)

Now the kernel of the map F (C)∗ div−→
⊕

P∈C(1) Z is the finite group F ∗, and the middle
homology of the lower complex is equal to the group of F -rational points of the jacobian of
C, hence is finite.

Let us define :
V (Xη) = Ker[Hd−1(Xη,Kd) → F (C)∗] .

There is an induced map :
V (Xη) →

⊕
P∈C(1)

A0(XP )

with finite cokernel.
Putting all the quoted finiteness and compatibility results together, one finds that

sequence (3.2) and diagram (3.3) induce exact sequences

(3.4) 0 → G → V (Xη) →
⊕

P∈C(1)

A0(XP ) → K → 0 ,

where K is a finite group, and

(3.5)
⊕

P∈C(1)

Hd−1
XP

(X,Kd) → Hd−1(X,Kd) → G1 → 0

where

(3.6) G is a subgroup of finite index in G1 .

Although we are ultimately going to prove Hd−1(X,Kd) ⊗Q/Z = 0, for the purpose
of the following proof, it will be convenient to consider a more refined property of abelian
groups, and to give it a name.

LEMMA–DEFINITION 3.1. — 1) The following properties of an abelian group A are
equivalent :

(a) The quotient of A by its maximal divisible subgroup is a torsion group ;
(b) A is the direct sum of its maximal divisible subgroup and a torsion group ;
(c) A is the direct sum of a divisible group and a torsion group.

Such a group will be called torsion-by-divisible.
2) Any quotient of a torsion-by-divisible group is torsion-by-divisible.
3) Any subgroup of finite index in a torsion-by-divisible group is torsion-by-divisible.
4) Any extension of a torsion group by a torsion-by-divisible group is torsion-by-

divisible.
5) Any torsion-by-divisible group A satisfies A⊗Q/Z = 0.



PROPOSITION 3.2. — Let X be a smooth, projective, geometrically integral surface X/F
equipped with a morphism f : X → C as in (3.1). Then, with notation as above :

(i) The group V (Xη) is torsion-by-divisible. In particular, V (Xη)⊗Q/Z = 0.
(ii) The map V (Xη)tors →

⊕
P∈C(1) A0(XP ) has finite cokernel.

Proof : Gros and Suwa have proved that H1(X,K2) is the direct sum of a uniquely
divisible group (conjecturally zero) and an explicit finite group ([G/S], Thm. 4.19). The
proof of their result relies on Lemme 1.15 of [G/S], whose proof is incorrect as it stands,
but whose statement is correct when the ground field is finite – one only needs to adapt
the proofs of Thm. 1.8 and Thm. 2.2 in [CT/R1].

In particular H1(X,K2) is torsion-by-divisible. This result is a refined version of earlier
work (Panin [P] ; [CT/R 1986]) which had already proved H1(X,K2) ⊗Q/Z = 0. These
various works in turn build upon basic results of Merkur’ev-Suslin [M/S1] and Suslin [S].

With notation as above, from (3.5) we deduce that G1 is torsion-by-divisible ; then
from (3.6) we deduce that G is torsion-by-divisible ; finally, from (3.4) and from the fact
that

⊕
P∈C(1) A0(XP ) is a torsion group, we conclude that V (Xη) is torsion-by-divisible.

Since each A0(XP ) is a finite group, any divisible subgroup of V (Xη) is mapped to
zero in each A0(XP ), hence also in

⊕
P∈C(1) A0(XP ), and since V (Xη) is the direct sum

of a divisible group and a torsion group, and the group K in (3.4) is finite, statement (ii)
follows.

PROPOSITION 3.3. — Let F be a finite field, C a geometrically integral curve over F .
Let Z/F (C) be a smooth, projective, geometrically integral variety over the function field
F (C). Then the group V (Z) is torsion-by-divisible. In particular V (Z)⊗Q/Z = 0.

Proof : Let us first assume that Z is a curve. Then one may extend the map
Z → Spec(F (C)) to a morphism f : X → C as above ([Ab]), and the result has just
been proved. One may reduce the higher dimensional case to the case of curves – as was
done once in a local context by Salberger (unpublished). Let k = F (C). Let α ∈ V (Z) be
represented by a finite sum

∑
M fM , where fM belongs to k(M)∗ (multiplicative group of

the residue field k(M) at M), and∏
M

Nk(M)/k(fM ) = 1 ∈ k∗ .

Let L/k be a finite normal (not necessarily separable) field extension of k over which
all the closed points M with fM 6= 1 become rational.

Restriction from k to L defines a map i : V (Z) → V (ZL), and taking norms from L
to k defines a map N : V (ZL) → V (Z). The composite map N ◦ i is multiplication by the
degree m = [L : k]. Under the map i, the class of the sum

∑
M fM goes to the class of a

sum
∑

N fN where all closed points N ∈ ZL with fN 6= 1 are L-rational. Now by a suitable
variant of the Bertini theorem ([A/K] ; actually, one would have been content with L/k
purely inseparable), one may find a smooth, projective, geometrically integral curve Y over
L, lying inside ZL and going through the finitely many rational points N with non-trivial
fN . Thus αL comes from a class in V (Y ). Considering the composite map :

V (Y ) → V (ZL) N−→ V (Z),



we find that mα lies in the image of V (Y ). Since V (Y ) is torsion-by-divisible, there is a
positive integer n > 0 such that nmα lies in the image of the maximal divisible subgroup
of V (Y ), hence in the maximal divisible subgroup of V (Z). The quotient of V (Z) by its
maximal divisible subgroup is thus a torsion group, as was to be proved.

REMARK 3.3.1. — Related results have been proved by W. Raskind ([R]). For X/C
as in proposition 3.2 above, his paper and the above discussion establish a link between
the conjecture that Hd−1(X,Kd) is a torsion group and Bloch’s conjecture that V (Xη) is
a torsion group. At least when X is a surface, I wonder whether the maximal divisible
subgroup of V (Xη) can contain torsion elements.

PROPOSITION 3.4. — Let X be a smooth, projective, geometrically integral variety and
assume given a fibration f : X → C as in (3.1). Then the cokernel of the map

V (Xη)tors →
⊕

P∈C(1)

A0(XP )

is finite, and the group
G = Ker[V (Xη) →

⊕
P∈C(1)

A0(XP )]

is torsion-by-divisible.

Proof : The map V (Xη) →
⊕

P∈C(1) A0(XP ) has finite cokernel, and we have just seen
that V (Xη) is the direct sum of its maximal divisible subgroup and a torsion group. The
divisible group goes to 0 in each of the finite groups A0(XP ), hence the first statement.
Also, the maximal divisible subgroup Gdiv of G coincides with that of V (Xη), and G/Gdiv

is a torsion group, hence the second statement.

We may finally prove :

THEOREM 3.5. — Let X/F be a smooth, projective, geometrically integral variety of
dimension d over a finite field F . Then Hd−1(X,Kd)⊗Q/Z = 0.

Proof : We shall prove the result by induction on the dimension of X. We already
know it for dim(X) ≤ 2 (see the proof of Theorem 3.2). Assume dim(X) = d ≥ 3, and
assume that the result has been proved for varieties of dimension at most d− 1.

To prove the result, we may allow finite field extensions. Indeed, if K/F is a finite field
extension, the composite map

Hd−1(X,Kd) → Hd−1(XK ,Kd)
NK/F−−−→ Hd−1(X,Kd)

of the restriction from F to K and the norm is multiplication by the degree [K : F ]. Thus
if Hd−1(XK ,Kd) ⊗ Q/Z = 0, then the divisible group Hd−1(X,Kd) ⊗ Q/Z is killed by
[K : F ], hence is zero.

Recall ([SGA7 II], exp. XVII) that a map

f : X → C



as in (3.1) is called a Lefschetz pencil if each of the finitely many singular fibres XP /F (P )
is a (d− 1)-dimensional, projective, geometrically integral variety with an isolated rational
singularity MP ∈ XP (F (P )) ⊂ X(F (P )). One may resolve the singularity of XP by a
single blow-up ZP → XP , and the inverse image of MP is a smooth projective quadric over
F (P ) of dimension d− 2.

Allowing for a finite extension of the ground field, the theory of Lefschetz pencils
([SGA7 II], loc. cit.) shows that one may blow up a smooth closed subvariety Z of
codimension 2 in the smooth projective variety X to produce a variety X ′ which is equipped
with a Lefschetz pencil f : X ′ → C (where C is the projective line over F ).

Let Z ⊂ X be a smooth subvariety of pure codimension 2 in X and let X ′ be the blow-
up of X along Z. The proper map r : X ′ → X induces a map r∗ on Gersten complexes.
Analyzing this map in the last two terms of the complexes, one shows that there is an exact
sequence :

Hd−2(Z,Kd−1) −→ Hd−1(X ′,Kd) −→ Hd−1(X,Kd) −→ 0.

The proof, which is rather simple except for the writing down of a huge diagram, involves
the following two facts. Firstly, above any point M of Z, the fibre r−1(M) is the projective
line over the residue field k(M). Secondly, for the projective line P1

K over a field K, the
homology of the Gersten complex

K2K(P1) −→
⊕

M∈P
1(1)
K

K(M)∗

on the right hand side is none other than K∗, the maps K(M)∗ → K∗ being the obvious
norm maps (identity when M is a K-rational point).

(The formula for the K-cohomology of a blow-up does not seem to be in the literature ;
the above special result is enough for our purposes.)

The group Hd−2(Z,Kd−1) is a quotient of the direct sum ⊕F (M)∗, where M runs over
all closed points of Z. Since F (M)∗ ⊗Q/Z = 0, the field F (M) being finite, we certainly
have Hd−2(Z,Kd−1)⊗Q/Z = 0, hence Hd−1(X ′,Kd)⊗Q/Z ' Hd−1(X,Kd)⊗Q/Z.

We are thus reduced to the case where X is equipped with an F -morphism f : X → C
to a smooth, projective, geometrically integral curve C/F which is a Lefschetz pencil.

Let us show that each group Hd−1
XP

(X,Kd) in sequence (3.5) satisfies

(3.7) Hd−1
XP

(X,Kd)⊗Q/Z = 0 .

If XP is smooth, then, as has been mentioned above, Hd−1
XP

(X,Kd) = Hd−2(XP ,Kd−1) and
(3.7) holds by the induction assumption. If XP is not smooth, let ZP → XP be the blow-up
of XP at its singular point, and let E/F (P ) be the exceptional divisor.



The projection ZP → XP induces a diagram of complexes :

0 0
↑ ↑⊕

x∈XP (2)
K2F (x) →

⊕
x∈XP (1)

F (x)∗ →
⊕

x∈XP (0)
Z

↑ ↑ ↑⊕
x∈ZP (2)

K2F (x) →
⊕

x∈ZP (1)
F (x)∗ →

⊕
x∈ZP (0)

Z

↑ ↑⊕
x∈E(1)

F (x)∗ →
⊕0

x∈E(0)
Z → A0(E) → 0

↑ ↑
0 0.

In this diagram, indices between parentheses denote the dimension of the points under
consideration. The group

⊕0
x∈E(0)

Z is the group of zero-cycles of degree zero on E, and
A0(E) is the quotient of this group by rational equivalence.

The vertical columns of the diagram are exact, and the bottom line is also exact. The
middle homology of the top horizontal complex is Hd−1

XP
(X,Kd) and the middle homology

of the middle horizontal complex is Hd−2(ZP ,Kd−1). The variety E is a smooth quadric of
dimension d − 2 ≥ 1, hence satisfies A0(E) = 0 (this is a general result on quadrics, valid
over any ground field ; however in the case under consideration, since any quadric over a
finite field has a rational point, the smooth quadric E is birational over its ground field
to projective space and the result follows from the birational invariance of the group A0

on smooth projective varieties, together with the well-known vanishing of that group on
projective space). A simple diagram chase now reveals that the map

Hd−2(ZP ,Kd−1) → Hd−1
XP

(X,Kd)

is surjective. This result and the induction assumption applied to ZP imply (3.7) for XP .
In the short exact sequence

(3.5)
⊕

P∈C(1)

Hd−1
XP

(X,Kd) → Hd−1(X,Kd) → G1 → 0 ,

the group G1 is an extension of a finite group by the torsion-by-divisible group G ((3.6) and
Prop. 3.4). In particular G1, just as G, is the direct sum of its maximal divisible subgroup
and a torsion group, and G1⊗Q/Z = 0. Tensoring (3.5) by Q/Z and using (3.7), we find :

Hd−1(X,Kd)⊗Q/Z = 0.

REMARK 3.5.1. — The proof actually shows that Hd−1(X,Kd) is obtained by successive
extensions of torsion-by-divisible groups. But it does not say whether Hd−1(X,Kd) itself
is torsion-by-divisible.



REMARK 3.5.2. — A consequence of the theory of characteristic classes for higher
K-theory and of the Riemann-Roch theorem (Gillet, Shekhtman) is that for any smooth
variety X over a perfect field F , the Brown-Gersten-Quillen spectral sequence degenerates
up to torsion on the K1 (and K0) line. More precisely, letting d = dim(X) :

Hi(X,Ki+1)⊗ Z[1/d!] ' GriK1(X)⊗ Z[1/d!] .

Here GriK1(X) = F i(X)/F i+1(X), where F i(X) denotes the filtration on K1(X) coming
from the spectral sequence.

An old conjecture due to Parshin (see [J3] 12.2) claims that for any smooth projective
variety X over a finite field F , the higher K-groups Ki(X), i ≥ 1, are torsion groups
(and even finite groups). That result for K1(X) would therefore imply that all groups
Hi(X,Ki+1) are torsion (and of finite exponent if finiteness for K1(X) is assumed). For
some interesting cases where this is known, see Soulé [So] (see also [G/S], 4.29).

Since H0(X,K1) ⊗ Q/Z = 0 (trivial), H1(X,K2) ⊗ Q/Z = 0 ([P], [CT/R2], ([G/S])
and Hd(X,Kd+1) ⊗ Q/Z = 0 (Proposition 1.2), Theorem 3.5 implies at any rate that
K1(X)⊗Q/Z = 0 for dim(X) ≤ 3.

§ 4. Homology of the complex (C) in degree (d− 3).

Let us now look at the lines p+ q = 2d− 1 and p+ q = 2d− 2 in the local to global spectral
sequence. These lines give rise to an exact sequence

H2d−2
ét (X, µ⊗d

ln ) → Hd−3(X,Hd+1(µ⊗d
ln )) → Hd−1(X,Hd(µ⊗d

ln )) → H2d−1
ét (X, µ⊗d

ln )

hence to a similar exact sequence at the level of Ql/Zl(d) :

H2d−2
ét (X,Ql/Zl(d)) → Hd−3(X,Hd+1(Ql/Zl(d))) →

Hd+1(X,Hd(Ql/Zl(d))) → H2d−1
ét (X,Ql/Zl(d)) .

It is a consequence of Deligne’s proof of the Weil conjectures (see [CT/S/S], Thm. 2)
that the groups H2d−2

ét (X,Ql/Zl(d)) and H2d−1
ét (X,Ql/Zl(d)) are finite. Thus the group

Hd−3(X,Hd+1(Ql/Zl(d))) is finite if and only if the group Hd−1(X,Hd(Ql/Zl(d))) is finite.
On the other hand, we have the diagram (0.8), which commutes up to sign :

0 → Hd−1(X,Kd)⊗Ql/Zl → Hd−1(X,Hd(Ql/Zl(d))) → CHd(X)l−tors → 0
↓ ↓

H2d−1
ét (X,Ql/Zl(d))

β−→ H2d
ét (X,Zl(d))l−tors .

In this diagram, the lower horizontal arrow is an isomorphism of finite groups, and the
right vertical map is an isomorphism by unramified class field theory (see [CT/S/S], § 2).



THEOREM 4.1. — Let X be a smooth, projective, geometrically integral variety over a
finite field F , dim(X) = d, and let l 6= char(F ). Then the following properties hold :

a) Hd−1(X,Kd)⊗Ql/Zl is zero.
b) Hd−1(X,Hd(Ql/Zl(d))) is finite.
c) The map Hd−1(X,Hd(Ql/Zl(d))) → CHd(X)l−tors is an isomorphism.
d) The map Hd−1(X,Hd(Ql/Zl(d))) → H2d−1

ét (X,Ql/Zl(d)) is an isomorphism.
e) The differential Hd−3(X,Hd+1(Ql/Zl(d)))) → Hd−1(X,Hd(Ql/Zl(d))) van-

ishes.
f) The map H2d−2

ét (X,Ql/Zl(d)) → Hd−3(X,Hd+1(Ql/Zl(d))) is surjective.
g) The group Hd−3(X,Hd+1(Ql/Zl(d))) is finite.

Proof : Note that the divisible group Hd−1(X,Kd) ⊗ Ql/Zl is zero if and only if it
is finite. The following implications are easily deduced from the shape of the Bloch-Ogus
spectral sequence and from the results recalled above :

a) ⇐⇒ b) and a) ⇐⇒ c) ⇐⇒ d) =⇒ e) =⇒ f) ⇐⇒ g) =⇒ b).

Now Hd−1(X,Kd)⊗Ql/Zl = 0 by Theorem 3.5 above, hence all properties actually hold.

REMARK 4.1.1. — As already mentioned, when d = dim(X) = 3, Saito [Sa] has an
independent proof that H0(X,H4(Ql/Zl(3))) = 0. In that case one may thus reverse the
argument and starting from Saito’s result deduce the other properties stated in Theorem
4.1, in particular H2(X,K3)⊗Ql/Zl = 0 for X a threefold and l 6= char(F ).

THEOREM 4.2. — The homology of the complex (C) in degree d − 3 is zero. In other
words, Hd−3(X,Hd+1(Ql/Zl(d))) = 0.

Proof : We shall prove this by induction on d = dim(X), starting with d = 2 where
the statement is clear. So let us assume d = dim(X) ≥ 3 and assume that the theorem has
been proved (over an arbitrary finite field) for all smooth projective varieties of dimension
strictly less that d. Assume that we can find a smooth, projective, geometrically integral
hyperplane section Y ⊂ X (dim(Y ) = d− 1) defined over F , and let U be the complement
of X. Note that U is an affine variety.

LEMMA 4.2.1. — Let U be as above. Let i ∈ N and j ∈ Z be integers. Then the groups
Hi

ét(U,Ql/Zl(j)) vanish for i ≥ d + 2, and they vanish for i = d + 1 and d 6= 2j, 2j − 1. In
particular the group H2d−2

ét (U,Ql/Zl(d)) vanishes for d ≥ 3.(2)

Proof : Let n be a positive integer and let j be an arbitrary integer. Since U = U ×F F
is affine, Hq

ét(U, µ⊗j
ln ) = 0 for q ≥ d + 1. Thus the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(Gal(F/F ),Hq

ét(U, µ⊗j
ln )) =⇒ Hn(U, µ⊗j

ln )

(2) I had initially formulated a weaker version of Lemma 4.2.1. The present version was
suggested by N. Suwa. Once it is established, it enables one to give a uniform proof of
Theorem 4.2 in the cases d = 3 and d > 3.



is concentrated in the range 0 ≤ p ≤ 1 (since cd(F )=1) and q ≤ d.
Hence Hi(U, µ⊗j

ln ) = 0 for i ≥ d + 2 (see the proof of Lemma 1.1), hence also
Hi

ét(U,Ql/Zl(j)) = 0 for i ≥ d + 2. This gives the first part of the lemma.
The case i = d + 1 is more subtle. From the shape of the spectral sequence we have

isomorphisms
Hd+1

ét (U, µ⊗j
ln ) ' H1(F,Hd

ét(U, µ⊗j
ln ))

hence also
Hd+1

ét (U,Ql/Zl(j)) ' H1(F,Hd
ét(U,Ql/Zl(j))).

From the exact sequence of sheaves on U

0 → µ⊗d
l → Ql/Zl(d) ×l−→ Ql/Zl(d) → 0

and the vanishing of Hd+1
ét (U, µ⊗j

l ) we deduce that Hd
ét(U,Ql/Zl(j)) is a divisible group.

Standard arguments ([CT/S/S] p. 774) then show that this group is a quotient of
Hd

ét(U,Ql(j)). On the other hand, the localisation sequence for étale cohomology, combined
with the purity theorem for the smooth closed subvariety Y of X, yields an exact sequence

Hd
ét(X,Ql(j)) → Hd

ét(U,Ql(j)) → Hd−1
ét (Y ,Ql(j − 1)).

Let ϕ be the Frobenius endomorphism. Since X and Y are smooth and projective, Deligne’s
theorem implies that ϕ − 1 is invertible on Hd

ét(X,Ql(j)) if d 6= 2j, and it is invertible
on Hd−1

ét (Y ,Ql(j)) if d − 1 6= 2(j − 1). From the above exact sequence we find that
if d 6= 2j − 1, 2j then ϕ − 1 is invertible on Hd

ét(U,Ql(j)). Thus for d 6= 2j − 1, 2j
the map ϕ − 1 induces a surjection on the quotient Hd

ét(U,Ql/Zl(j)), and the group
H1(F,Hd

ét(U,Ql/Zl(j))) vanishes, since it is none other than the group of coinvariants
of the module Hd

ét(U,Ql/Zl(j)) under the action of Gal(F/F ).

Let us now complete the proof of Theorem 4.2. Taking the localisation sequence of the
sheaf Hd+1(Ql/Zl(d)) for the inclusion Y ⊂ X yields an exact sequence

Hd−3
Y (X,Hd+1(Ql/Zl(d))) → Hd−3(X,Hd+1(Ql/Zl(d))) → Hd−3(U,Hd+1(Ql/Zl(d))).

Replacing Hd+1(Ql/Zl(d)) by its Bloch-Ogus resolution by flasque sheaves, and using

Hi
Y (X,Hd+1(Ql/Zl(d))) ' Hi−1(Y,Hd(Ql/Zl(d− 1)))

which immediately follows from the structure of that resolution together with the Bloch-
Ogus result applied to the smooth variety Y , we obtain the exact sequence

Hd−4(Y,Hd(Ql/Zl(d− 1))) → Hd−3(X,Hd+1(Ql/Zl(d))) → Hd−3(U,Hd+1(Ql/Zl(d))).

This exact sequence fits into the commutative diagram

Hd−4(Y,Hd(Ql/Zl(d− 1)))
↓

H2d−2
ét (X,Ql/Zl(d)) → Hd−3(X,Hd+1(Ql/Zl(d)))

↓ ↓
H2d−2

ét (U,Ql/Zl(d)) → Hd−3(U,Hd+1(Ql/Zl(d)))),



where the middle commutative square is obtained by functoriality of the local to global
spectral sequence.

By the induction assumption applied to Y , we have Hd−4(Y,Hd(Ql/Zl(d − 1))) = 0.
According to Lemma 4.2.1, H2d−2

ét (U,Ql/Zl(d)) = 0. Thus the above commutative diagram
reduces to

H2d−2
ét (X,Ql/Zl(d)) → Hd−3(X,Hd+1(Ql/Zl(d)))

↓ ↓
0 −−−−−→ Hd−3(U,Hd+1(Ql/Zl(d))).

In this diagram the right vertical arrow is one-to-one, as we have just seen, and the top
map is surjective by Theorem 4.1. We thus conclude Hd−3(X,Hd+1(Ql/Zl(d))) = 0.

We have postulated the existence of a good section Y of X. A priori, it is only over
an infinite perfect field that such a section can be found (e.g. [A/K]). So we resort to the
old trick (cf. [CT/S/S] p. 788) of finding two finite extensions F1/F and F2/F of coprime
degrees over which we may find such good sections Y1 ⊂ X ×F F1 and Y2 ⊂ X ×F F2. The
above argument shows that each of the groups Hd−3(X ×F Fi,Hd+1(Ql/Zl(d))) (i = 1, 2)
is zero, and a transfer argument then shows that Hd−3(X,Hd+1(Ql/Zl(d))) is killed by
each degree [Fi : F ], hence is zero.

We have now completed the proof of Theorem A. Let us complete that of Theorem B.
We have Hd−3(X,Hd+1(Ql/Zl(d))) = 0 (above), Hd−2(X,Hd+1(Ql/Zl(d))) = 0 (§ 2). We
may therefore apply Lemma 2.2 b) for i = d− 3 (here we use the cohomological conjecture
for H3(L, µ⊗2

ln ), which we may according to Merkur’ev-Suslin), and thus obtain

Hd−2(X,Hd+1(µ⊗d
ln )) = 0 ,

i.e. Theorem B in degree d− 2.
Finally, if d = dim(X) = 3, we have Hd−3(X,Hd+1(Ql/Zl(d))) = 0 (above) and

Hd−4(X,Hd+1(Ql/Zl(d))) = 0 for the trivial reason d− 4 < 0. If l = 2, the cohomological
conjecture for H4(L, µ⊗3

ln ) is known (Merkur’ev-Suslin [M/S2], Rost). By a direct argument
(a simple case of Lemma 2.2 b)), we conclude H0(X,H4(µ⊗3

2n )) = 0.
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[SGA4 1/2] Cohomologie étale, éd. P. Deligne, Springer L.N.M. 569 (1977).
[SGA7 II] P. DELIGNE et N. KATZ. — Groupes de monodromie en géométrie algébrique, Springer
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