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Abstract. We prove the universal triviality of the third unramified cohomology
group of a very general complex cubic fourfold containing a plane. The proof
uses results on the unramified cohomology of quadrics due to Kahn, Rost, and
Sujatha.

Introduction

Let X be a smooth cubic fourfold, i.e., a smooth cubic hypersurface in P5. A well
known problem in algebraic geometry concerns the rationality of X over C.

Expectation. The very general cubic fourfold over C is irrational.

Here, “very general” is usually taken to mean “in the complement of a countable
union of Zariski closed subsets” in the moduli space of cubic fourfolds. At present,
however, not a single cubic fourfold is provably irrational, though many families of
rational cubic fourfolds are known.

If X contains a plane P (i.e., a linear two dimensional subvariety of P5), then X

is birational to the total space of a quadric surface bundle X̃ → P2 by projecting
from P . Its discriminant divisor D ⊂ P2 is a sextic curve. The rationality of a cubic
fourfold containing a plane over C is also a well known problem.

Expectation. The very general cubic fourfold containing a plane over C is irra-
tional.

Assuming that the discriminant divisor D is smooth, the discriminant double
cover S → P2 branched along D is then a K3 surface of degree 2 and the even Clifford

algebra of the quadric fibration X̃ → P2 gives rise to a Brauer class β ∈ Br(S), called
the Clifford invariant of X. This invariant does not depend on the choice of P (if β
is not zero, the plane P is actually the unique plane contained in X). By classical
results in the theory of quadratic forms (e.g., [40, Thm. 6.3]), β is trivial if and only

if the quadric surface bundle X̃ → P2 has a rational section. Thus if β is trivial
then X is rational (see [34, Thm. 3.1]), though it may happen that X is rational
even when β is not trivial (see [4, Thm. 11]).

Some families of rational cubic fourfolds have been described by Fano [29], Tregub
[51], [52], and Beauville–Donagi [8]. In particular, pfaffian cubic fourfolds, defined
by pfaffians of skew-symmetric 6× 6 matrices of linear forms, are rational. Hassett
[33] describes, via lattice theory, Noether–Lefschetz divisors Cd in the moduli space
C of cubic fourfolds. In particular, C14 is the closure of the locus of pfaffian cubic
fourfolds and C8 is the locus of cubic fourfolds containing a plane. Hassett [34]
identifies countably many divisors of C8—the union of which is Zariski dense in
C8—consisting of rational cubic fourfolds with trivial Clifford invariant.
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A natural class of birational invariants arises from unramified cohomology groups.
The unramified cohomology of a rational variety is trivial (i.e., reduces to the co-
homology of the ground field), cf. [18, Thm. 1.5] and [17, §2 and Thm. 4.1.5]. Such
invariants have been known to provide useful obstructions to rationality.

For a smooth cubic fourfold X over C, the unramified cohomology groups

H i
nr(X/C,Q/Z(i− 1))

vanish for 0 ≤ i ≤ 3, see Theorem 2.4. The case i = 1 follows from the Kummer
sequence (see Theorem 2.4). For i = 2, one appeals to the Leray spectral sequence
and a version of the Lefschetz hyperplane theorem due to M. Noether, as in [45,
Thm. A.1]. For i = 3, the proof relies on the integral Hodge conjecture for cycles of
codimension 2 on smooth cubic fourfolds, a result proved by Voisin [56, Thm. 18]
building on [44] and [58].

Something stronger is known when i ≤ 2, namely that for any field extension F/C,
the natural map H i(F,Q/Z(i − 1)) → H i

nr(XF /F,Q/Z(i − 1)) is an isomorphism,
see Theorem 2.4. In this case, we say that the unramified cohomology is universally
trivial. The universal behavior of an unramified cohomology group can lead to a
finer obstruction to rationality. While we do not know if the unramified cohomology
of an arbitrary smooth cubic fourfold over C is universally trivial in degree 3, our
main result is the following.

Theorem 1. Let X ⊂ P5 be a very general cubic fourfold containing a plane over C.
Then H3

nr(X/C,Q/Z(2)) is universally trivial, i.e., the natural map H3(F,Q/Z(2))→
H3

nr(XF /F,Q/Z(2)) is an isomorphism for every field extension F/C.

Here, “very general” means that the quadric surface bundle X̃ → P2 attached
to the plane P ⊂ X has simple degeneration (see Proposition 4.1) and that the
associated K3 surface r : S → P2 of degree 2 satisfies r∗ : Pic(P2) → Pic(S) is an
isomorphism. A very general cubic fourfold containing a plane has nontrivial Clifford
invariant. Theorem 1 implies the corresponding statement with µ⊗2

2 coefficients as
well (see Corollary 5.6).

This article is organized as follows. In §1, we expand on the notion of universal
triviality and, more generally, universal torsion by a positive integer, of the Chow
group A0(X) of zero-cycles of degree zero on a smooth proper variety X. We state
an extension of a theorem of Merkurjev [43, Thm. 2.11] on the relationship between
universal torsion properties of A0(X) and analogous properties for unramified co-
homology groups and, more generally, unramified classes in cycle modules. We also
recall that rationally connected varieties, and among them Fano varieties, satisfy
such a universal torsion property for A0(X).

In §2, we discuss the specific case of cubic hypersurfaces X ⊂ Pn+1 for n ≥ 2.
Already in this case, the universal triviality is an open question. We register a
folklore proof that A0(X) is killed by 18, and by 2 as soon as X contains a k-line.
In particular, for any smooth cubic hypersurface X ⊂ Pn+1 over C, with n ≥ 2,
and any field extension F/C, the group A0(XF ) is 2-torsion, which also follows from
the existence of a unirational parameterization of X of degree 2. The only possible
interesting unramified cohomology groups are thus those with coefficients Z/2Z.
We recall the known results on these groups. Our main result, Theorem 1, then
appears as one step beyond what was known, but still leaving open the question of
the universal triviality of A0(X).
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In §3, we recall some results on the unramified cohomology groups of quadrics
in degrees at most 3. The most important is due to Kahn, Rost, and Sujatha (see
Theorem 3.3), who build upon earlier work of Merkurjev, Suslin, and Rost.

In §4, we discuss the fibration into 2-dimensional quadrics over the projective
plane, as well as its corresponding even Clifford algebra, associated to a smooth
cubic fourfold containing a given plane.

In §5, we use the results of the previous two sections to prove Theorem 1. The
“very general” hypothesis allows us to construct well-behaved parameters at the
local rings of curves on P2 that split in S (see Lemma 5.3).
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“Brauer groups and obstruction problems: moduli spaces and arithmetic” held Feb-
ruary 25 to March 1, 2013, in Palo Alto, California. This work emerges from a
problem session group formed during the workshop, and involved the participation
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a partiellement bénéficié d’une aide de l’Agence Nationale de la Recherche portant la
référence ANR-12-BL01-0005. The third author is partially supported by National
Science Foundation grant DMS-1001872.

1. Unramified cohomology and Chow group of 0-cycles

1.1. Unramified elements. A general framework for the notion of “unramified
element” is established in [17, §2]. Let k be a field and denote by Localk the category
of local k-algebras together with local k-algebra homomorphisms. Let Ab be the
category of abelian groups and let M : Localk → Ab be a functor. For any field K/k
the group of unramified elements of M in K/k is the intersection

Mnr(K/k) =
⋂

k⊂O⊂K
im
(
M(O)→M(K)

)
over all rank 1 discrete valuations rings k ⊂ O ⊂ K with Frac(O) = K.

There is a natural map M(k)→Mnr(K/k) and we say that the group of unram-
ified elements Mnr(K/k) is trivial if this map is surjective.

For X an integral scheme of finite type over a field k, in this paper we write
Mnr(X/k) := Mnr(k(X)/k). By this definition, the group Mnr(X/k) is a k-birational
invariant of integral schemes of finite type over k. We will be mostly concerned with

the functor M = H i
ét(−, µ) with coefficients µ either µ

⊗(i−1)
2 (under the assumption

char(k) 6= 2) or

Q/Z(i− 1) := lim−→µ⊗(i−1)
m ,

the limit being taken over all integers m coprime to the characteristic of k. In this
case, Mnr(X/k) is called the unramified cohomology group H i

nr(X,µ) of X with
coefficients in µ.

Theorem 1.1. Let k be a field of characteristic different from a prime p. The
natural map

H i(F, µ⊗(i−1)
p )→ H i(F,Q/Z(i− 1))

is injective.
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This is a well known consequence of the norm residue isomorphism theorem (pre-
viously known as the Bloch–Kato conjecture) in degree i − 1. We use this only
for i = 3, in which case it is a consequence of the Merkurjev–Suslin theorem. For
i = 3, p = 2, this is a theorem of Merkurjev.

If F/k is a field extension, we write XF = X ×k F . If X is geometrically integral
over k, we say that Mnr(X/k) is universally trivial if Mnr(XF /F ) is trivial for every
field extension F/k.

Proposition 1.2 ([17, §2 and Thm. 4.1.5]). Let M : Localk → Ab be a functor
satisfying the following conditions:

• If O is a discrete valuation ring containing k, with fraction field K and residue
field κ, then ker

(
M(O)→M(K)

)
⊂ ker

(
M(O)→M(κ)

)
.

• If A is a regular local ring of dimension 2 containing k, with fraction field K,
then im

(
M(A)→M(K)

)
=
⋂

ht(p)=1 im
(
M(Ap)→M(K)

)
.

• The group Mnr(A1
k/k) is universally trivial.

Then Mnr(Pnk/k) is universally trivial.

The functorH i
ét(−, µ) satisfies the conditions of Proposition 1.2 (cf. [17, Thm. 4.1.5]),

hence if X is a k-rational variety, then H i
nr(X/k, µ) is universally trivial.

Denote by Ab• the category of graded abelian groups. An important class of
functors M : Localk → Ab• arise from the cycle-modules of Rost [48, Rem. 5.2]. In
particular, unramified cohomology arises from a cycle-module. A cycle module M
comes equipped with residue maps of graded degree −1

M i(k(X))
∂−→

⊕
x∈X(1)

M i−1(k(x))

for any integral k-variety X. If X is smooth and proper, then the kernel is M i
nr(X/k).

1.2. Chow groups of 0-cycles. Denote by CHd(X) the Chow group of d-cycles
on a smooth variety X over a field k up to rational equivalence. If X is proper
over k, then there is a well-defined degree map CH0(X) → Z, and we denote by
A0(X) its kernel, called the Chow group of 0-cycles of degree 0. The group A0(X)
is a k-birational invariant of smooth, proper, integral varieties over a field k, see
[21, Prop. 6.3] requiring resolution of singularities and [30, Ex. 16.1.11] in general.
The computation of the Chow groups of projective space goes back to Severi. For
0-cycles, one easily sees A0(Pnk) = 0.

For X a proper k-variety, we say that A0(X) is universally trivial if A0(XF ) = 0
for every field extension F/k. To check triviality of A0(XF ) over every field extension
F/k seems like quite a burden. However, usually it suffices to check it over the
function field by the following well known lemma.

Lemma 1.3. Let X be a geometrically irreducible smooth proper variety over a field
k. Assume that X has a 0-cycle of degree 1. The group A0(X) is universally trivial
if and only if A0(Xk(X)) = 0.

Proof. If A0(X) is universally trivial then A0(Xk(X)) = 0 by definition. Let us
prove the converse. Write d = dim(X). Let ξ ∈ Xk(X) be the k(X)-rational point
which is the image of the “diagonal morphism” Spec k(X)→ X ×k Spec k(X). Let
P be a fixed 0-cycle of degree 1 on X. By hypothesis, we have ξ = Pk(X) in
CH0(Xk(X)). The closures of Pk(X) and ξ in X ×k X are P ×k X and the diagonal
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∆X , respectively. By the closure in X×kX of a 0-cycle on Xk(X), we mean the sum,
taken with multiplicity, of the closures of each closed point in the support of the 0-
cycle on Xk(X). Hence the class of ∆X−P ×kX is in the kernel of the contravariant

map CHd(X ×k X) → CHd(Xk(X)). Since CHd(Xk(X)) is the inductive limit of

CHd(X ×k U) over all dense open subvarieties U of X, we have that ∆X − P ×k X
vanishes in some CHd(X ×k U). We thus have a decomposition of the diagonal

(1) ∆X = P ×k X + Z

in CHd(X ×k X), where Z is a cycle with support in X × V for some proper closed
subvariety V ⊂ X.

Now, each d-cycle T on X×kX induces a homomorphism T∗ : CH0(X)→ CH0(X)
defined by T∗(z) = (p1)∗(T.p

∗
2z), where pi : X ×k X → X are the two projections.

The map T 7→ T∗ is itself a homomorphism

CHd(X ×k X) = CHd(X ×k X)→ HomZ(CH0(X),CH0(X))

by [30, Cor. 16.1.2]. We note that (∆X)∗ is the identity map and (P ×k X)∗(z) =
deg(z)P . By the easy moving lemma for 0-cycles on a smooth variety (cf. [19,
p. 599]), for a proper closed subvariety V ⊂ X, every 0-cycle on X is rationally
equivalent to one with support away from V . This implies that Z∗ = 0 for any
d-cycle with support on X ×k V for a proper closed subvariety V ⊂ X. Thus if
A0(Xk(X)) = 0, then by the decomposition of the diagonal (1), we see that the
identity map restricted to A0(X) is zero.

For any field extension F/k, we have the base-change ∆XF = PF ×F XF + ZF
of the decomposition of the diagonal (1), hence the same argument as above shows
that A0(XF ) = 0. We conclude that A0(X) is universally trivial. �

Let M be a cycle module and let X be a smooth, proper, geometrically connected
variety over the field k. Let N be a positive integer. We say that Mnr(X/k) is
universally N -torsion if the cokernel of the natural map M(F ) → Mnr(XF /F ) is
killed by N for every field extension F/k. We say that A0(X) is universally N -
torsion if A0(XF ) is killed by N for every field extension F/k.

The index i(X) of a variety X is the smallest positive degree of a 0-cycle.

Theorem 1.4. Let X be a smooth proper geometrically connected variety over a
field k. Let N > 0 be an integer. If the Chow group A0(X) of 0-cycles of degree 0 is
universally N -torsion then for every cycle module M over k, the group Mnr(X/k)
is universally i(X)N -torsion.

Proof. This is a direct consequence of Lemma 1.3 and [37, Prop. RC.8]. �

The case N = 1 is a generalization of a theorem of Merkurjev [43, Thm. 2.11], who
also establishes a converse statement. For any N > 0, one may extend Merkurjev’s
method to prove a weak converse: if Mnr(X/k) is universally N -torsion for every
cycle module M then A0(X) is also universally N -torsion.

We point out that the appearance of the index of X, in the statement of Theo-
rem 1.4, is necessary. For any quadric X over any field k of characteristic 6= 2, we
have that A0(X) is universally trivial (see [50]). However, if X is the 4-dimensional
quadric associated to an anisotropic Albert form X over a field k of characteristic
6= 2, then coker

(
H3(F,Q/Z(2)) → H3

nr(X/k,Q/Z(2))
) ∼= Z/2Z by [36, Thm. 5].
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Hence A0(X) is universally trivial, while there are nontrivial unramified elements of
some cycle module over X. Note that the index of an anisotropic quadric is 2.

The following lemmas will be used in the next section.

Lemma 1.5. Let X be a proper variety over a field k with X(k) 6= ∅. Let N > 0
be an integer. If for every finite extension K/k and any two K-points P,Q ∈ X(K)
the class of the 0-cycle P −Q is N -torsion in A0(XK), then A0(X) is N -torsion.

Proof. Fixing P ∈ X(k), any element of A0(X) can be written as a linear combina-
tion of 0-cycles of degree 0 of the form Z − deg(Z)P , where Z is a closed point of
X. Let K be the residue field of Z. Consider the morphism f : XK → X. Since
K ⊗k K has K as a direct factor, there is a corresponding K-rational point ζ of
XK lying over Z, such that f∗ζ = P . By hypothesis ζ − PK is N -torsion, hence
f∗(ζ − PK) = Z − deg(Z)P is N -torsion. �

Lemma 1.6. Let k be an algebraically closed field and K/k a field extension. Let X
be a smooth projective connected variety over k. Then the natural map CH0(X)→
CH0(XK) is injective.

Proof. Let z be a 0-cycle on X that becomes rationally equivalent to zero on XK .
Then there exists a subextension L of K/k that is finitely generated over k, such
that z becomes rationally equivalent to zero on XL. In fact, we can spread out
the rational equivalence to a finitely generated k-algebra A. Since k is algebraically
closed, there are many k-points on SpecA, at which we can specialize the rational
equivalence. �

Lemma 1.7. Let X be a smooth proper connected variety over an algebraically
closed field k of infinite transcendence degree over its prime field. If A0(X) = 0
then there exists an integer N > 0 such that A0(X) is universally N -torsion.

Proof. The variety X is defined over an algebraically closed subfield L ⊂ k, with
L algebraic over a field finitely generated over its prime field. That is, there exists
a variety X0 over L with X ∼= X0 ×L k. Let η be the generic point of X0. Let P
be an L-point of X0. One may embed the function field F = L(X0) into k, by the
transcendence degree hypothesis on k. Let K be the algebraic closure of F inside k.
By Lemma 1.6 and the hypothesis that A0(X) = 0, we have that A0(X0×L F ) = 0.
This implies that there is a finite extension E/F of fields such that ηE − PE = 0
in A0(X0 ⊗L E). Taking the corestriction to F , one finds that N(ηF − PF ) = 0 in
A0(X0 ×L F ), hence in A0(X) as well. Arguing as in the proof of Lemma 1.3, we
conclude that A0(X) is universally N -torsion. �

1.3. Connections with complex geometry. The universal torsion of A0(X) puts
strong restrictions on the variety X. For example, the following result is well known.

Proposition 1.8. Let X be a smooth proper geometrically irreducible variety over
a field k of characteristic zero. If A0(X) is universally N -torsion for some positive
integer N then, H0(X,Ωi

X) = 0 and H i(X,OX) = 0 for all i ≥ 1.

Proof. Over a complex surface, the result goes back to Bloch [9, App. Lec. 1],
by exploiting a decomposition of the diagonal and the action of cycles on various
cohomology theories. Aspects of this argument were developed in [12]. A proof over
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the complex numbers can be found in [55, Cor. 10.18, §10.2.2]. Over a general field
of characteristic zero, the argument is sketched in [28, p. 187]. �

Over C, the universal triviality of A0(X) does not imply H0(X,ω⊗nX ) = 0 for
all n > 1. Otherwise, a surface over C with A0(X) = 0 would additionally satisfy
P2(X) = h0(X,ω⊗2

X ) = 0, hence would be rational by Castelnovo’s criterion.
It is however well known that there exist nonrational complex surfaces X, with

pg(X) = q(X) = 0 and for which A0(X) = 0. Enriques surfaces were the first
examples, extensively studied in [26], [27, p. 294] with some examples considered
earlier in [47], see also [15]. For more examples, see [10]. We remark that for an
Enriques surface X, we have that H1

nr(X/C,Z/2Z) = H1
ét(X,Z/2Z) = Z/2Z. Hence

by Theorem 1.4, we see that A0(X) is not universally trivial.

The following result was stated without detailed proof as the last remark of [12].
As we show, it is an immediate consequence of a result in [22]. A more geometric
proof was recently shown to us by C. Voisin.

Proposition 1.9. Let X be a smooth proper connected surface over C. Suppose
that all groups H i

Betti(X(C),Z) are torsionfree and that A0(X) = 0. Then A0(X) is
universally trivial.

Proof. By Lemma 1.7, we have that A0(X) is universally N -torsion. Hence by
Lemma 1.8, we have that H i(X,OX) = 0 for all i ≥ 1. Hence pg(X) = q(X) = 0,
and thus b3(X) = b1(X) = 2q(X) = 0. The torsion-free hypothesis on cohomology
finally allows us conclude, from [22, Thm. 3.10(d)], that A0(XF ) = 0 for any field
extension F/C. �

Corollary 1.10. Let X be a smooth proper connected surface over C. Suppose that
the Néron-Severi group NS(X) of X is torsionfree and that A0(X) = 0. Then A0(X)
is universally trivial.

Proof. The group H1
Betti(X(C),Z) is clearly torsionfree. For any smooth proper

connected variety X over C of dimension d there is an isomorphism NS(X)tors '
H2

Betti(X(C),Z)tors, and the finite groupsH2
Betti(X(C),Z)tors andH2d−1

Betti (X(C),Z)tors
are dual to each other. The hypotheses thus imply that for the surface X, all groups
H i

Betti(X(C),Z) are torsionfree, and we apply Proposition 1.9. �

The first surfaces S of general type with pg(S) = q(S) = 0 were constructed in
[14] and [31]. Simply connected surfaces X of general type for which pg(X) = 0
were constructed by Barlow [6], who also proved that A0(X) = 0 for some of them.
See also the recent paper [53]. For such surfaces, Pic(X) = NS(X) has no torsion,
thus Corollary 1.10 applies. The group A0(X) is universally trivial, but the surfaces
are far from being rational, since they are of general type.

A smooth projective variety X over a field k is called rationally chain connected
if for every algebraically closed field extension K/k, any two K-points of X can be
connected by a chain of rational curves. Smooth, geometrically unirational varieties
are rationally connected. It is a theorem of Campana [13] and Kollár–Miyaoka–
Mori [41] that any smooth projective Fano variety is rationally chain connected. If
X is rationally chain connected, then A0(XK) = 0 for any algebraically closed field
extension K/k. While a standard argument then proves that A0(XF ) is torsion for
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every field extension F/k, the following more precise result, in the spirit of Lemma
1.7 above, is known.

Proposition 1.11 ([19, Prop. 11]). Let X be a smooth, projective, rationally chain
connected variety over a field k. Then there exists an integer N > 0 such that A0(X)
is universally N -torsion.

There exist rationally connected varieties X over an algebraically closed field of
characteristic zero with A0(X) not universally trivial. Indeed, let X be a unirational
threefold with H2

nr(X,Q/Z(1)) ∼= Br(X) 6= 0, see e.g., [2]. Then by Theorem 1.4,
A0(X) is not universally trivial.

We do not know whether there exist smooth Fano varieties over an algebraically
closed field of characteristic zero with A0(X) not universally trivial.

2. Chow groups of 0-cycles on cubic hypersurfaces

Now we will discuss the situation for cubic hypersurfaces X ⊂ Pn+1 with n ≥ 2.
Quite a few years ago, one of us learned the following argument from the Dean of
Trinity College, Cambridge.

Proposition 2.1. Let X ⊂ Pn+1
k , with n ≥ 2, be an arbitrary cubic hypersurface

over an arbitrary field k. Then A0(X) is 18-torsion. If X(k) 6= ∅ then A0(X) is
6-torsion. If X contains a k-line, then A0(X) is 2-torsion.

Proof. Assuming the assertion in the case X(k) 6= ∅, we can deduce the general case
from a norm argument, noting that X acquires a rational point after an extension
of degree 3. So we assume that X(k) 6= ∅. By Lemma 1.5, to prove the general
statement over an arbitrary field k, it suffices to prove that for any distinct points
P,Q ∈ X(k), the class of the 0-cycle P − Q is 6-torsion, and that it is 2-torsion
if X contains a k-line. Choose a P3

k ⊂ Pn+1
k containing P and Q. If X contains a

k-line L, take such a P3
k which contains the line L. Then X ∩ P3

k is either P3
k or is a

cubic surface in P3
k. In the first case, P is rationally equivalent to Q on P3

k, hence on
X. Thus we can assume, for the rest of the proof, that X ⊂ P3

k is a cubic surface,
possibly singular. We will sketch a route to prove the result, leaving the minute
details to the reader.

We first show that if the cubic surface X contains a k-line L, then for any two
distinct points P,Q ∈ X(k), we have 2(P −Q) = 0 ∈ A0(X). It is enough to prove
this when Q is a k-point on L. If P also lies on L, then P −Q = 0. If P does not lie
on L, let Π be the plane spanned by P and L. If it is contained in X, then clearly
P −Q = 0. If not, then it cuts out on X a cubic curve C, one component of which
is the line L, the other component is a conic. At this juncture, we leave it to the
reader to consider the various possible cases and show that 2(P − Q) is rationally
equivalent to zero on C, hence on X. The coefficient 2 is the degree of intersection
of the conic with the line.

We may now assume that the cubic surface X does not contain a k-line. If P and
Q were both singular, then the line through P and Q would intersect the surface
with multiplicity at least 4, hence would be contained in X, which is excluded. We
may thus assume that P is a regular k-point. First assume that Q is singular. Let
Π be a plane which contains P and Q. It is not contained in X. Its trace on X is
a cubic curve C in the plane Π, such that C is singular at Q. A discussion of cases
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then shows that 6(Q− P ) = 0 on C, hence on X (the occurence of 6 rather than 2,
comes from allowing nonperfect fields in characteristic 3). Now suppose that both
P and Q are regular, hence smooth, k-points. Let TP ⊂ P3

k be the tangent plane to
X at P , and TQ ⊂ P3

k the tangent plane to X at Q. Since X contains no k-line, the
tangent planes are distinct. Let L = TP ∩ TQ be their intersection. This line is not
contained in X, which it intersects in a zero-cycle z of degree 3 over k. The trace of
X on the plane TP is a cubic curve CP which is singular at P and contains the 0-cycle
z. We leave it to the reader to check that 6P − 2z = 0 ∈ A0(CP ), hence in A0(X).
Similarly, 6Q− 2z = 0 ∈ A0(CQ), hence in A0(X). Thus 6(P −Q) = 0 ∈ A0(X) in
all cases. �

For smooth cubic hypersurfaces, the last part of Proposition 2.1 is a consequence
of the fact that a cubic hypersurface containing a line has unirational parameteriza-
tions of degree 2. This fact that was likely known to M. Noether (cf. [16, App. B]).

Theorem 2.2. Let X ⊂ Pn+1
k , with n ≥ 2, be a smooth cubic hypersurface contain-

ing a k-line L. Then X has a unirational parameterization of degree 2.

Proof. Denote by W the variety of pairs (p, l) where p ∈ L and l is a line in Pn+1
k

tangent to X at p. Then the projection W → L is a Zariski locally trivial Pn−1-
bundle. A general such line l intersects X in one further point, defining a rational
map g : W → X. This map is two-to-one. Indeed, as before, for a general point
p ∈ X, the plane through p and L meets X in the union of L and a smooth conic.
Generally, that conic meets L in two points. The lines through p, and tangent to
X, are exactly those connecting p to these two points of intersection.

We can give another argument, following [32, §2.1]. Projecting from L displays X
as birational to the total space of a conic bundle Y → Pn−1

k , where Y is the blow-up

of X in L. Each point P in the base Pn−1
k corresponds to a plane containing L, and

intersecting X with this plane is the union of L and a conic CP ; this conic is the fiber
above P in the conic bundle. Let M be the incidence variety of pairs (P, p) where
P ∈ Pn−1

k and p ∈ L, such that p ∈ CP . Then the projection M → Pn−1
k has degree

2, the fiber over each P is exactly the two points of intersection of L and CP . The
other projection M → L displays M as the total space of a Zariski locally trivial
Pn−2-bundle, hence M is rational. Then consider the base change of Y → Pn−1

k by

M → Pn−1
k . The resulting conic bundle M ×Pn−1

k
Y →M has a tautological rational

section. Thus M ×Pn−1
k

Y is rational (being a conic bundle over M with a rational

section) and the projection to Y has degree 2. �

Over an algebraically closed field, any cubic hypersurface X ⊂ Pn+1, with n ≥ 2,
contains a line. Indeed, by taking hyperplane sections, one is reduced to the well
known fact that any cubic surface X ⊂ P3 contains a line over an algebraically
closed field, see [46, Prop. 7.2] for instance. Proposition 2.1 and Theorem 1.4 then
yield the following corollary.

Corollary 2.3. Let X ⊂ Pn+1
k , with n ≥ 2, be a smooth cubic hypersurface over

a field k. If X contains a k-line (e.g., if k is an algebraically closed field) then
A0(X) is universally 2-torsion and thus for every cycle module M over k, the group
Mnr(X/k) is universally 2-torsion.

Hassett and Tschinkel [35, §7.5] prove that the cubic fourfolds over C with a
unirational parameterization of odd degree are Zariski dense in the moduli space.
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In particular, they prove that on a Zariski dense subset of the Noether–Lefschetz
divisor Cd, with d = 2(m2 +m+ 1) for m ≥ 1, the cubic fourfolds have a unirational
parameterization of degree m2 +m+1. The countable union of these loci is dense in
the moduli space. Together with Corollary 2.3, this implies that such cubic fourfolds
X have universally trivial A0(X), and thus for every cycle module M over C, the
group Mnr(X/k) is universally trivial.

Corollary 2.3 leaves the following questions open. Let X ⊂ Pn+1, with n ≥ 2, be
a smooth cubic hypersurface over C.

a) Is the group A0(X) universally trivial?

b) For any integer i ≥ 1, are the unramified cohomology groupsH i
nr(X/C, µ

⊗(i−1)
2 )

universally trivial?

The following theorem gathers previously known results.

Theorem 2.4. Let X ⊂ Pn+1
k be a smooth cubic hypersurface over a field k of

characteristic zero. Then H i
nr(X/k,Q/Z(1)) is universally trivial for all n ≥ 3 and

0 ≤ i ≤ 2. If k = C, then H3
nr(X/k,Q/Z(2)) is trivial for all 3 ≤ n ≤ 4.

Proof. Let F/k be any field extension. For any complete intersection Y ⊂ Pn+1
F of

dimension ≥ 3 over F , the restriction map on Picard groups Pic(Pn+1
F ) → Pic(Y )

is an isomorphism and the natural map on Brauer groups Br(F ) → Br(Y ) is an
isomorphism, see [45, Thm. A.1]. By purity, for any smooth variety Y over F ,
we have that H1

nr(Y/F,Q/Z(1)) = H1
ét(Y,Q/Z(1)) and that H2

nr(Y/F,Q/Z(1)) =
Br(Y ), see [23, Cor. 3.2, Prop. 4.1] and [11]. From the Kummer sequence for a
projective and geometrically connected variety X over F , we get an exact sequence

1→ F×/F×n → H1
ét(X,µn)→ Pic(X)[n]→ 0

which yields an exact sequence

0→ H1(F,Q/Z(1))→ H1
ét(X,Q/Z(1))→ Pic(X)tors → 0.

upon taking direct limits.
When X ⊂ Pn+1

k is a smooth cubic hypersurface, the above considerations imply

that H i
nr(X/k,Q/Z(1)) is universally trivial for i = 1, 2. Also H0

nr(X/k,Q/Z(1)) is
universally trivial since X is geometrically irreducible.

Now assume k = C. If n = 3, then X contains a line hence is birational to a
conic fibration over P2, as in the proof of Theorem 2.2. For a conic bundle Y over a
complex surface, one has H3

nr(Y/C,Q/Z(2)) = 0 (cf. [20, Cor. 3.1(a)]). If n = 4 and
X contains a plane, then X is birational to a fibration Y → P2 in 2-dimensional
quadrics, and once again [20, Cor. 3.1(a)] yields H3

nr(X/C,Q/Z(2)) = 0.
For n ≥ 2 arbitrary, X is unirational hence rationally chain connected. Then [25,

Thm. 1.1] implies that the integral Hodge conjecture for codimension 2 cycles on X
is equivalent to the vanishing of H3

nr(X/C,Q/Z(2)).
For smooth cubic threefolds, the integral Hodge conjecture holds for codimen-

sion 2 cycles, as H4(X,Z) is generated by a line. This yields another proof of
H3

nr(X/C,Q/Z(2)) = 0 in the case n = 3.
For smooth cubic fourfolds, the integral Hodge conjecture for codimension 2 cy-

cles is a result of Voisin [56, Thm. 18], building on [44] and [58]. We thus get
H3

nr(X/C,Q/Z(2)) = 0 for an arbitrary smooth cubic hypersurface X ⊂ P5. �

Our main result, Theorem 1, is a first step beyond the mentioned results.
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3. Unramified cohomology of quadrics

Let Q be a smooth quadric over a field k of characteristic 6= 2 defined by the
vanishing of a quadratic form q. We note that the dimension of Q (as a k-variety) is
2 less than the dimension of q (as a quadratic form). When Q has even dimension,
one defines the discriminant d(Q) ∈ H1(k, µ2) of Q to be the (signed) discriminant
of q. If Q has even dimension and trivial discriminant or has odd dimension, then
define the Clifford invariant c(Q) ∈ Br(k) of Q to be the Clifford invariant of q,
i.e., the Brauer class of the Clifford algebra C(q) or the even Clifford algebra C0(q),
respectively. We point out when q has even rank and trivial discriminant, then a
choice of splitting of the center induces a decomposition C0(q) ∼= C+

0 (q) × C−0 (q),
with C(q), C+

0 (q), and C−0 (q) all Brauer equivalent central simple k-algebras. Under
the given constraints on dimension and discriminant, these invariants only depend
on the similarity class of q, and thus yield well-defined invariants of Q.

The following two results are well known (cf. [1, §5, p. 485]; see also the proof of
[24, Théorème 2.5]), though we could not find the second stated in the literature.

Theorem 3.1. Let k be a field of characteristic 6= 2. Let Q be a smooth quadric
surface over k. Then

ker
(
Br(k)→ Br(k(Q))

)
=

{
0 if d(Q) is nontrivial

Z/2Z · c(Q) if d(Q) is trivial

where c(Q) is the Clifford invariant of Q.

Proposition 3.2. Let k be a field of characteristic 6= 2. Let Q be a quadric surface
cone over k, the base of which is a smooth conic Q0. Then

ker
(
Br(k)→ Br(k(Q))

)
= Z/2Z · c(Q0)

where c(Q0) is the Clifford invariant of Q0.

Proof. In this case k(Q) ∼= k(Q0 ×k P1
k), hence ker

(
Br(k) → Br(k(Q))

)
equals

ker
(
Br(k) → Br(k(Q0))

)
. Thus the proposition follows from the case of smooth

conics, a result going back to Witt [57, Satz p. 465]. �

Finally, the deepest result we will need is the following one concerning the degree
three unramified cohomology of a quadric.

Theorem 3.3 (Kahn–Rost–Sujatha [36, Thm. 5]). Let k be a field of characteristic
6= 2. Let Q be a smooth quadric surface over k. Then the natural map

H3(k,Q/Z(2))→ H3
nr(Q/k,Q/Z(2))

is surjective.

The following is an amplification of one the main results of Arason’s thesis.

Theorem 3.4. Let k be a field of characteristic 6= 2. Let Q be a smooth quadric
surface over k defined by a nondegenerate quadratic form q of rank 4. Then the
kernel of the map H3(k,Q/Z(2)) → H3(k(Q),Q/Z(2)) coincides with the kernel of
the map H3(k, µ⊗2

2 )→ H3(k(Q), µ⊗2
2 ), and it is equal to the set of symbols

{(a, b, c) : q is similar to a subform of �−a,−b,−c�}.
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Proof. By a standard norm argument, the kernel ofH3(k,Q/Z(2))→ H3(k(Q),Q/Z(2))
is 2-torsion. By Merkurjev’s theorem (see Theorem 1.1), the two kernels in the The-
orem thus coincide. The precise description of the kernel with coefficients Z/2Z is
Arason’s [1, Satz 5.6]. �

However, for our purposes, we will only need to know that certain special symbols
are contained in this kernel. We can give a direct proof of this fact.

Lemma 3.5. Let k be a field of characteristic 6= 2. If <1,−a,−b, abd> is isotropic
over k, then for w any norm from k(

√
d)/k, the symbol (a, b, w) ∈ H3(k, µ⊗2

2 ) is
trivial.

Proof. Put l = k(
√
d). As < 1,−a,−b, abd > is isotropic, there exist x, y, u, v ∈ k

such that x2 − ay2 = b(u2 − adv2) 6= 0. The class (a, x2 − ay2) is trivial, hence

(a, b, w) = (a, (x2 − ay2)/(u2 − adv2), w) = (a, u2 − adv2, w).

Let w = Nl/k(w
′). By the projection formula, we have that

(a, b, w) = coresk(
√
d)/k(a, u

2 − adv2, w′)

which is trivial since (a, u2 − adv2) = (a, u2 − a(
√
dv)2) ∈ H2(l, µ⊗2

2 ) is trivial. �

4. Cubic fourfolds containing a plane and Clifford algebras

Let X be a smooth cubic fourfold over a field k. Suppose X ⊂ P5
k = P(V ) contains

a plane P = P(W ), where W ⊂ V is a dimension 3 linear subspace of V . Let X̃ be

the blow-up of X along P and π : X̃ → P(V/W ) the projection from P . We will
write P2

k = P(V/W ). Then the blow-up of P5
k along P is isomorphic to the total

space of the projective bundle p : P(E ) → P2
k, where E = (W ⊗ OP2

k
) ⊕ OP2

k
(−1),

and in which π : X̃ → P2
k embeds as a quadric surface bundle.

Now choose homogeneous coordinates (x0 : x1 : x2 : y0 : y1 : y2) on P5
k. Since

Autk(P5) acts transitively on the set of planes in P5
k, without loss of generality, we

can assume that P = {x0 = x1 = x2 = 0}. Write the equation of X as∑
0≤m≤n≤2

amnymyn +
∑

0≤p≤2

bpyp + c = 0

for homogeneous linear polynomials amn, quadratic polynomials bp, and a cubic
polynomial c in k[x0, x1, x2]. Then we define a quadratic form q : E → OP2

k
(1) over

P2
k by

(2) q(y0, y1, y2, z) =
∑

0≤m≤n≤2

amnymyn +
∑

0≤p≤2

bpypz + cz2

on local sections yi of OP2
k

and z of OP2
k
(−1). Of course, given X, the quadratic

form q is only well-defined up to multiplication by an element of Γ(X,Gm) = k×.

The quadric fibration associated to (E , q,OP2
k
(1)) is precisely π : X̃ → P2

k. The

associated bilinear form bq : E → E ∨ ⊗ OP2
k
(1) has Gram matrix

(3)


2a00 a01 a02 b0
a01 2a11 a12 b1
a02 a12 2a22 b2
b0 b1 b2 2c
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whose determinant ∆ is a homogeneous sextic polynomial defining the discriminant
divisor D ⊂ P2

k.

Proposition 4.1. Let X be a smooth cubic fourfold containing a plane P over a

field k of characteristic 6= 2. Denote by π : X̃ → P2
k the associated quadric surface

bundle, D ⊂ P2
k the discriminant divisor, and U = P2

k rD. Then the following are
equivalent:

a) The divisor D is smooth over k.
b) The fibers of q are nondegenerate over points of U and have a radical of

dimension 1 over points of D.
c) The fibers of π are smooth quadric surfaces over points of U and are quadric

surface cones with isolated singularity over points of D.
d) There is no other plane in X ×k k meeting P ×k k.

In this case, we say that π has simple degeneration.

Proof. The equivalence between a and b is proved in [7, I Prop. 1.2(iii)] over an
algebraically closed field and [3, Prop. 1.6] in general. The equivalence of b and c
follows from the fact that the singular locus of a quadric is the projectivization of its
radical. The statement that d implies a appears without proof in [54, §1 Lemme 2],
and holds over a general field. Finally, another plane intersecting P nontrivially
will give rise, in the projection, to a singular line or plane in a fiber of the quadric
fibration, contradicting c. �

Let C0 be the even Clifford algebra associated to (E , q,OP2
k
(1)), cf. [3, frm[o]–.5].

It is a locally free OP2
k
-algebra of rank 8 whose center Z is a locally free quadratic

OP2
k
-algebra (cf. [38, IV Prop. 4.8.3]). The discriminant cover r : S = Spec Z → P2

is a finite flat double cover branched along the sextic D ⊂ P2
k.

Assuming simple degeneration, then S is a smooth K3 surface of degree 2 over
k. We say that a cubic fourfold X containing a given plane P is very general if the
quadric surface bundle associated to P has simple degeneration and the associated
K3 surface S satisfies r∗ : Pic(P2

k)→ Pic(S) is an isomorphism. If the ground field k
is algebraically closed, then for any overfield F of k, by rigidity of the Néron–Severi
group, this implies that r∗ : Pic(P2

F )→ Pic(SF ) is an isomorphism. We note that in
the moduli space C8 of smooth cubic fourfolds containing a plane over C, the locus
of very general ones (in our definition) is the complement of countably many closed
subvarieties (see [33, Thm. 1.0.1]). Thus this notion of very general agrees with the
usual notion in algebraic geometry.

A cubic fourfold X containing a plane P over C is very general if and only if the
Chow group CH2(X) of cycles of codimension 2 is spanned by the classes of P and of
a fiber Z of the quadric fibration (see [54, §1 Prop. 2] and its proof). A very general
cubic fourfold X containing a plane has nontrivial Clifford invariant. Indeed, the
Zariski closure of a rational section of the quadric fibration would provide a cycle
of dimension 2 having one point of intersection with a general fiber Z. Such a cycle
cannot be rationally equivalent to any linear combination of P and Z, since both
P and Z have even intersection with Z. Hence X cannot be very general (see [34,
Thm. 3.1]).

Still assuming simple degeneration, the even Clifford algebra C0, considered over
its center, defines an Azumaya quaternion algebra B0 over S (cf. [42, Prop. 3.13]
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and [5, Prop. 1.13]). We refer to the Brauer class βX,P ∈ Br(S) of B0 as the Clifford
invariant of the pair (X,P ).

Lemma 4.2. Let X be a smooth cubic fourfold containing a plane P over a field
k of characteristic 6= 2. Assume that the quadric surface bundle associated to P
has simple degeneration. Let S be the associated K3 surface of degree 2. If X

contains another plane P ′ (necessarily skew to P ), then the fibration π : X̃ → P2
k

has a rational section. In this case, the generic fiber of π is an isotropic quadric over
k(P2), hence is a k(P2)-rational variety. In particular, the k-variety X is k-rational.
Moreover, βX,P = 0 ∈ Br(S).

Proof. Recall how the fibration π : X̃ → P2
k is constructed. One fixes an arbitrary

plane Q ⊂ P5
k which does not meet P . The morphism π is induced by the morphism

$ : X \P → Q sending a point x of X not on P to the unique point of intersection
of the linear space spanned by P and x with the linear space Q.

Let P ′ be another plane in X. By Proposition 4.1, P ′ must be skew to P . Take
the plane Q to be P ′. On points of P ′ ⊂ X the map $ : X \P ′ → P ′ is the identity.
Thus π has a rational section, the generic fiber is an isotropic quadric, hence rational
over k(P2), and the even Clifford invariant of this quadric is trivial. �

In view of this lemma, when given a smooth cubic fourfold containing a plane P
whose associated quadric fibration has simple degeneration, we shall abuse notation
and write βX ∈ Br(S) instead of βX,P ∈ Br(S).

The generic fiber of (E , q,OP2
k
(1)) is a quadratic form of rank 4 over k(P2) with

values in a k(P2)-vector space of dimension 1. Choosing a generator l of OP2
k
(1)

over k(P2), we arrive at a usual quadratic form (E, q) with discriminant extension
k(S)/k(P2). The generic fiber of βX is then in the image of the restriction map
Br(k(P2)) → Br(k(S)) by the fundamental relations for the even Clifford algebra
(cf. [39, Thm. 9.12]). Explicitly, the full Clifford algebra C(E, q) is central simple
over k(P2) and its restriction to k(S) is Brauer equivalent to the even Clifford algebra
C0(E, q), hence with the generic fiber of βX . We note that C(E, q) depends on the
choice of l, while C0(E, q) does not. We now construct a particular Brauer class
on k(P2) restricting to βX on k(S). This will play a crucial rôle in the proof of
Theorem 1.

Proposition 4.3. Let X be a smooth cubic fourfold containing a plane P over a
field k of characteristic 6= 2 . Assume that the associated quadric surface bundle
has simple degeneration along a divisor D ⊂ P2

k and let S be the associated K3
surface of degree 2. Given a choice of homogeneous coordinates on P5

k, there exists
a line L ⊂ P2

k and a quaternion algebra α over k(P2) whose restriction to k(S) is
isomorphic to the generic fiber of the Clifford invariant βX , and such that α has
ramification only at the generic points of D and L.

Proof. For a choice of homogeneous coordinates on P5
k, let L ⊂ P2

k be the line whose
equation is a00 from (2). The smoothness of X implies that a00 is nonzero. Then
on A2

k = P2
k r L, the choice of a00 determines a trivialization ψ : O(1)|A2

k
→ OA2

k
,

with respect to which the quadratic form q′ = ψ ◦ q|A2
k

: E |A2
k
→ OA2

k
(given by

the dehomogenization of equation (2) associated to ψ) represents 1. Letting V =
P2
k r (D∪L) ⊂ A2

k, we have that (E |V , q′|V ,OV ) is a regular quadratic form of rank
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4 on V . In this case, we have the full Clifford algebra C = C (E |V , q′|V ,OV ) at our
disposal, which is an Azumaya algebra of degree 4 on V .

Let us prove that C |k(P2) is Brauer equivalent to a symbol. Since q′|k(P2) represents
1, we have a diagonalization

q′|k(P2) =<1, a, b, abd>

where d ∈ k(P2)×/k(P2)×2 is the discriminant. Then in Br(k(P2)) we have

[C |k(P2)] = (a, b) + (a, abd) + (b, abd) + (−1,−d) = (−ab,−ad)

by the formula [49, Ch. 2, Def. 12.7,Ch. 9, Rem. 2.12] relating the Clifford invariant
to the 2nd Hasse–Witt invariant.

Letting α = (−ab,−ad) ∈ Br(k(P2)), we see that α coincides with [C |k(P2)] in

Br(k(P2)), hence is unramified at all codimension 1 points of V , i.e., α is ramified
at most at the generic points of D and L.

The even Clifford algebra is a similarity class invariant, hence we have an an iso-
morphism C0(E |V , q′|V ,OV ) ∼= C0(E |V , q|V ,O(1)|V ) over V , hence over the inverse
image of V in S.

Finally, we have C |k(S)
∼= M2

(
B0|k(S)

)
, hence α restricted to k(S) is Brauer

equivalent to the generic fiber of the Clifford invariant βX ∈ Br(S). �

5. Proof of the main result

Let us recall the statement.

Theorem 5.1. Let X ⊂ P5 be a very general cubic fourfold containing a plane
P ⊂ P5 over C. Then H3

nr(X/C,Q/Z(2)) is universally trivial.

Let k be a field of characteristic 6= 2. Let X ⊂ P5
k be a smooth cubic fourfold

containing a plane over k. Let π : X̃ → P2
k be the associated quadric surface bundle.

We assume that π has simple degeneration along a smooth divisor D ⊂ P2
k, see

Proposition 4.1. Denote by Q the generic fiber of π; it is a smooth quadric surface
over k(P2). For any field extension F/k, we will need to refer to the following
commutative diagram of Bloch–Ogus complexes

0 // H3(F,Q/Z(2)) //

��

H3(F (P2),Q/Z(2))
{∂γ} //

����

⊕
H2(F (γ),Q/Z(1))

��

0 // H3
nr(X/F,Q/Z(2)) // H3

nr(QF /F (P2),Q/Z(2)) //
⊕

H2(F (Qγ),Q/Z(1))

(4)

where the sums are taken over all points γ of codimension 1 of P2
F . The top row is

the exact sequence defining the unramified cohomology of P2
F (which is constant, by

Proposition 1.2) via the residue maps ∂γ . The bottom row is the complex arising

from taking residues on F (Q) at points of codimension 1 of X̃ whose image in P2
F is

of codimension 1 on P2
F (recall that H3

nr(QF /F (P2),Q/Z(2)) consists of classes over
F (Q) which have trivial residues at all rank 1 discrete valuations trivial on F (P2)).

Here, Qγ denotes the generic fiber of the restricted quadric fibration π|C : X̃C →
C, where C ⊂ P2

F is a projective integral curve with generic point γ. Under the
simple degeneration hypothesis, each Qγ is an integral quadric surface. The bottom
complex is also exact. This is obvious except at the term H3

nr(QF /F (P2),Q/Z(2)),
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though we shall not use the exactness at that point. The vertical maps in the
diagram are the natural ones.

Let ψ ∈ H3
nr(XF /F,Q/Z(2)) ⊂ H3

nr(QF /F (P2),Q/Z(2)). By Theorem 3.3, this
is the image of an element ξ ∈ H3(F (P2),Q/Z(2)). By the commutativity of the
right-hand square, and since the bottom row of diagram (4) is a complex, for each
γ of codimension 1 in P2

F we know that

(5) ∂γ(ξ) ∈ ker
(
H2(F (γ),Q/Z(1))→ H2(F (Qγ),Q/Z(1))

)
.

We recall that if F is any field, then H2(F,Q/Z(1)) is isomorphic to the prime-to-p
part of the Brauer group Br(F ), where p is the characteristic of F . With the notation
of §4, where the line L is defined by a00 = 0, let d = ∆/a6

00. Then div(d) = D− 6L,
and the class of d in k(P2)/k(P2)×2 is the discriminant of the quadric Q.

Definition 5.2. Fix L as above. Let F/k be a field extension and ξ a class in
H3(F (P2),Q/Z(2)). We call an integral curve C ⊂ P2

F with generic point γ a bad
curve (for ξ) if C is different from DF and LF and if ∂γ(ξ) 6= 0 in H2(F (γ),Q/Z(1)).

There are finitely many bad curves for each given ξ ∈ H3(F (P2),Q/Z(2)). Let

α ∈ H2(k(P2), µ2) be the class of a quaternion algebra attached to π : X̃ → P2
k and

the choice of a line L, as in Proposition 4.3. Theorem 3.1 and Proposition 3.2 imply
that the following statements hold concerning bad curves:

a) The class d|γ ∈ H1(F (γ), µ2) is trivial.
b) The class α|γ ∈ H2(F (γ), µ2) is nontrivial and coincides with c(Q)|γ ∈

Br(F (γ)).
c) The class ∂γ(ξ) ∈ H2(F (γ),Q/Z(1)) also coincides with c(Q)|γ ∈ Br(F (γ)).

For curves C split by the discriminant extension (e.g., for bad curves), we will
construct special rational functions that are parameters along C and are norms from
the discriminant extension. This is where the very general hypothesis will be used.

Lemma 5.3. Let k be a field of characteristic 6= 2. Let r : S → P2
k be a finite

flat morphism of degree 2 branched over a smooth sextic curve D. Assume that
r∗ : Pic(P2

k)→ Pic(S) is an isomorphism. Choose a line L ⊂ P2
k and a function d ∈

k(P2) with divisor D− 6L that satisfies k(S) = k(P2)(
√
d). If C ⊂ P2

k is an integral
curve (with generic point γ) different from D and L such that d|γ ∈ H1(k(γ), µ2) is
trivial, then there exists a function fγ ∈ k(P2) whose divisor is C − 2nL for some
positive integer n, and which is a norm from k(S)/k(P2).

Proof. Under our hypothesis, Pic(S) = CH1(S) = ZH, where H = r∗L by flat pull-
back. As a consequence, the action of Aut(S/P2) on Pic(S) = CH1(S) is trivial.

If the class of d is a square in k(γ), then f−1C splits as C1 ∪ C2, with C1 and
C2 both having class nH for some positive integer n. Hence C1 − nH = div(gγ) for
some gγ ∈ k(S). However, by proper push-forward, r∗(C1 − nH) = C − 2nL, hence
C − 2nL = div(Nk(S)/k(P2)(gγ)). Set fγ = Nk(S)/k(P2)(gγ). �

Remark 5.4. From the proof of Lemma 5.3, one sees that every bad curve C has
even degree. Using some further intersection theory, one can even prove that any
such curve has degree 6, though we shall not need this.

Now assume that k = C. Let α ∈ Br(C(P2)) be the class of the full Clifford
algebra (E , q,O(1)) over P2 r (D ∪L), as in Proposition 4.3. Then α is unramified,
except possibly at the generic points of D and L.
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Now assume that X is very general. Fix a field F/C. For each bad curve C
over F , we will choose a parameter fγ ∈ F (P2) at the generic point γ of C as in
Lemma 5.3, which we may apply since r∗ : Pic(P2

F ) → Pic(SF ) is an isomorphism
by the rigidity of the Néron–Severi group. Denote by

f =
∏

fγ ,

where the product is taken over all bad curves.
Let us continue with the proof of Theorem 1. Recall that we have lifted ψ ∈

H3
nr(XF /F,Q/Z(2)) to an element ξ ∈ H3(F (P2),Q/Z(2)). We now compute the

residues of ξ along codimension one points of P2
F , where we need only worry about

the generic points of D, any bad curves C, and L.
Let us first consider the generic point η of D. The hypothesis that X is very

general implies simple degeneration, hence that the F (η)-quadric Qη is a quadric
cone over a smooth F (η)-conic. The conic is split by Tsen’s theorem since it is the
base change of a smooth C(η)-conic. Hence Proposition 3.2, and the commutativity
of the right hand square of diagram (4), implies that ξ is unramified at η.

Now, we will compare ξ with the class α∪(f), whose ramification we control. Re-
lying on Theorem 1.1, we are implicitly considering an inclusion H3(F (P2), µ⊗2

2 ) ⊂
H3(F (P2),Q/Z(2)). By construction, the function f is a norm from the extension

F (P2)(
√
d)/F (P2), i.e., is of the form f = g2 − dh2 for some g, h ∈ F (P2). Also, f

has its zeros and poles only along the bad curves and L, hence in particular, f is a
unit at the generic point η of D.

The extension F (P2)(
√
d)/F (P2) is totally ramified at η. In particular, any unit

in the local ring at η which is a norm from F (P2)(
√
d) reduces to a square in the

residue field F (η). Thus f lifts to a square in the completion F̂ (P2)η.

Now we consider the residues of α ∪ (f) ∈ H3(F (P2), µ⊗2
2 ) along codimension

one points of P2
F . Both α ∈ H2(F (P2), µ2) and (f) ∈ H1(F (P2), µ2) are unramified

away from the generic points of D, L, and the bad curves C.

At the generic point η of D, the function f is a square in the completion F̂ (P2)η.
Thus, the residue of α ∪ (f) at η is zero. At a bad curve, α is regular and the
valuation of f is one. Thus the residue at such a curve is α|γ = c(Q)|γ .

Thus, we have that the difference ξ − α ∪ (f) ∈ H3(F (P2),Q/Z(2)) has trivial
residues away from L, hence it comes from a constant class ξ0 in the image of
H3(F,Q/Z(2))→ H3(F (P2),Q/Z(2)).

Now we show that α ∪ (f) vanishes when restricted to H3(F (Q), µ⊗2
2 ). In the

notation of the proof of Proposition 4.3, q|F (P2) =< 1, a, b, abd> becomes isotropic

over F (Q) and α = (−ab,−ad). Since f is a norm from F (P2)(
√
d), Lemma 3.5

implies that (a, b, f) is trivial in H3(F (Q), µ⊗2
2 ). Further, since f is a norm from

F (P2)(
√
d), we have (d, f) = 0.

But then

α ∪ (f) = (ab, ad, f) = (a, b, f) + (a, a, f) + (ab, d, f)

is trivial in H3(F (Q), µ⊗2
2 ) as well. Thus ψ ∈ H3

nr(XF /F,Q/Z(2)) is the image of
the constant class ξ0 ∈ H3(F,Q/Z(2)).

Remark 5.5. We can give a different argument, using Arason’s result (see Theo-
rem 3.4), for the vanishing of α ∪ (f) in H3(F (Q), µ⊗2

2 ). As in the notation of the
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proof of Proposition 4.3, we write qk(P2) = <1, a, b, abd> and α = (−ab,−ad). The
3-Pfister form associated to α ∪ (f) decomposes as

�−ab,−ad, f � = <1, ab, ad, bd>⊥ −f <1, ab, ad, bd>

Since f is a norm from F (P2)(
√
d) we have that d is a norm from F (P2)(

√
f). Thus

d is a similarity factor of the norm form of F (P2)(
√
f)/F (P2), i.e., we have an

isometry <1,−f >∼=<d,−df >. Hence the 3-Pfister form

�−ab,−ad, f � = <1, ab, ad, bd>⊥ −f <1, ab, ad, bd>

= <ab, ad, bd>⊥<1,−f >⊥ −f <ab, bd, ad>
= <ab, ad, bd>⊥<d,−df >⊥ −f <ab, bd, ad>
= <d, ab, ad, bd>⊥ −f <d, ab, bd, ad>

contains the form < d, ad, bd, ab > = d < 1, a, b, abd >. Thus by Theorem 3.3, we
have that α ∪ (f) is trivial in H3

nr(QF /F (P2),Q/Z(2)).

Corollary 5.6. Let X ⊂ P5 be a very general cubic fourfold containing a plane
P ⊂ P5 over C. Then H3

nr(X/C, µ⊗2
2 ) is universally trivial.

Proof. In the following commutative diagram

H3(F, µ⊗2
2 )

��

// H3
nr(XF /F, µ

⊗2
2 )

��
H3(F,Q/Z(2)) // H3

nr(XF /F,Q/Z(2))

the horizontal maps are injective since we may specialize to an F -rational point. The
vertical maps are injective by Theorem 1.1. By Theorem 5.1, any ψ ∈ H3

nr(XF /F, µ
⊗2
2 ) ⊂

H3
nr(XF /F,Q/Z(2)) is the image of a constant class ξ0 ∈ H3(F,Q/Z(2)), which by

the diagram is 2-torsion, hence comes from an element in H3(F, µ⊗2
2 ). Since the

right hand side vertical map is injective, the proof is complete. �
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