Higher reciprocity laws and rational points

Jean-Louis Colliot-Thélène (CNRS et Université Paris-Sud) Joint work with R. Parimala et V. Suresh Conference on Algebraic Geometry Amsterdam, 8th-12th July, 2013

The classical set-up

K number field, Ω the set of place of K, K_v completion of K at the place v

Br $K_v \hookrightarrow \mathbb{Q}/\mathbb{Z}$, isomorphism if v finite place

The reciprocity law in class field theory There is a *complex*

$$0 \to \mathrm{Br} \ K \to \oplus_{v \in \Omega} \mathrm{Br} \ K_v \to \mathbb{Q}/\mathbb{Z} \to 0$$

which as a matter of fact is an exact sequence.

G a connected linear algebraic group over K

$$\mathrm{III}^1(\mathcal{K},\mathcal{G}):=\mathrm{Ker}[\mathcal{H}^1(\mathcal{K},\mathcal{G})
ightarrow\prod_{\nu\in\Omega}\mathcal{H}^1(\mathcal{K}_{\nu},\mathcal{G})]$$

This is the set of isomorphism classess of principal homogeneous spaces (torsors) E/K under G with $E(K_v) \neq$ for all $v \in \Omega$

Theorem (Kneser, Harder, Chernousov) (i) If G is semisimple and simply connected, then $III^{1}(K, G) = 0$: the Hasse principle holds for torsors under G. (ii) If Z/K is a projective variety which is a homogeneous space of a connected linear algebraic group, the Hasse principle holds for rational points on Z.

Brauer-Manin pairing

X/K smooth, projective, geometrically connected. Let $X(\mathbb{A}_K) = \prod_{\nu} X(K_{\nu})$. Let $X(\mathbb{A}_K)^{\operatorname{Br} X}$ be the left kernel of the pairing

$$X(\mathbb{A}_{\mathcal{K}}) imes (\mathrm{Br} \; X/\mathrm{Br} \; \mathcal{K}) o \mathbb{Q}/\mathbb{Z}$$

$$(\{P_{v}\},A)\mapsto \sum_{v\in\Omega}A(P_{v})\in\mathbb{Q}/\mathbb{Z}$$

Reciprocity obstruction to the local-global principle (Manin 1970) : *The reciprocity law implies*

$$X({\mathcal K})\subset X({\mathbb A}_{{\mathcal K}})^{\operatorname{Br}\, X}\subset X({\mathbb A}_{{\mathcal K}})$$

Theorem (Sansuc, 1981) E/K torsor under G/K connected linear, $E \subset X$ a smooth compactification. Then X(K) is dense in $X(\mathbb{A}_K)^{\operatorname{Br} X}$.

Corollary (Sansuc) In each of the following cases : (i) G is an adjoint group (ii) G is absolutely almost simple (iii) The underlying variety of G is K-rational we have $III^{1}(K, G) = 0$ and weak approximation holds for G.

Indeed, under these assumtions, Br X = Br K.

Tchebotarev's theorem yields $\operatorname{III}^1(K, \mathbb{Z}/n) = 0$. However :

There exists G = T a K-torus with $\operatorname{III}^1(K, T) \neq 0$ (Hasse) There exists μ a finite Galois module with $\operatorname{III}^1(K, \mu) \neq 0$ There exists μ a finite Galois module with $\operatorname{III}^2(K, \mu) \neq 0$ There exists a semisimple K-group G with $\operatorname{III}^1(K, G) \neq 0$ (Serre)

Sansuc 1981 : The examples with T et G may be interpreted in terms of the Brauer-Manin obstruction.

Set-up for this talk

 \mathcal{X} regular connected scheme of dimension 2 K field of rational functions on \mathcal{X} R local *henselian* integral domain, k its residue field $p: \mathcal{X} \to \operatorname{Spec} R$ projective, surjective morphism

local case dimR = 2, $p : \mathcal{X} \to \operatorname{Spec} R$ birational. $0 \in \operatorname{Spec} R$ closed point, \mathcal{X}_0/k special fibre.

Example : R = k[[x, y]], \mathcal{X} blow-up of Spec R at 0.

semi-global case *R* discrete valuation ring, *F* field of fractions of *R*, generic fibrre \mathcal{X}_{η}/F smooth, projective, geometrically connected curve

Example : K = k((t))(x), $\mathcal{X} = \mathbb{P}^{1}_{k[[t]}$ or blow-up at points of the special fibre.

 Ω set of discrete, rank one, valuations on K, T_v henselization of T at v, K_v field of fractions of T_v . The valuations are centered on \mathcal{X} , for $v \in \Omega$ we have $R \subset T_v$.

Theorem (Grothendieck, Artin 1968; ...) Both in the local and in the semi-global case,

Br
$$\mathcal{K} \hookrightarrow \prod_{\mathbf{v} \in \Omega} \operatorname{Br} \mathcal{K}_{\mathbf{v}}.$$

There is no such theorem in a global situation. Let Y be a smooth projective surface over the complex field and $K = \mathbb{C}(Y)$ be its function field. Then

$$\operatorname{{\it Ker}}[\operatorname{Br}\nolimits {\it K} \hookrightarrow \prod_{v \in \Omega} \operatorname{Br}\nolimits {\it K}_v] = \operatorname{Br}\nolimits (Y),$$

and it is easy to produce examples where Br(Y) is infinite.

Let us go back once and for all to the local or semi-global situation. G a linear algebraic group over K.

$$\mathrm{III}^1(\mathsf{K},\mathsf{G}) := \mathrm{Ker}[\mathsf{H}^1(\mathsf{K},\mathsf{G}) o \prod_{\mathsf{v}\in\Omega} \mathsf{H}^1(\mathsf{K}_\mathsf{v},\mathsf{G})]$$

Question. Let G/K be a connected linear algebraic group. Do we have $\operatorname{III}^1(K, G) = 0$?

Question. Let μ/K be a finite Galois module. For i = 1, 2..., do we have $\coprod^{i}(K, \mu) = 0$?

The local case, $k = \overline{k}$

• G/K connected linear. If G is simply connecred, or adjoint, or *K*-rational, then $\operatorname{III}^1(K, G) = 0$ (CT, Gille, Parimala 2004 for G semisimple; Borovoi, Kunyavskiĭ 2004)

• $\operatorname{III}^1(K, \mathbb{Z}/2) \neq 0$ possible (Jaworski 2001)

The question $\text{III}^2(\mathcal{K},\mu) = 0$? was already mentioned in CTGiPa 2004.

The semi-global case

The work of Harbater, Hartmann and Krashen (2009-present), based on a new theory of field patching (Harbater, Hartmann 2007)

э

 \mathcal{X} regular connected scheme of dimension 2, K its field of functions R a complete DVR, t a uniformizing parameter, residue field k nearly arbitrary

 $p: \mathcal{X} \to \operatorname{Spec} R$ a projective flat morphism.

 \mathcal{X}_0/k the special fibre.

A finite set T of points $P \in \mathcal{X}_0$, including all singular points of the reduced special fibre.

 $\mathcal{X}_0 \setminus T = \bigcup_{i \in I} U_i$ with $U_i \subset \mathcal{X}_0$ Zariski open

Given an open $U \subset \mathcal{X}_0$, one defines R_U to be the completion along t of the ring of rational functions on \mathcal{X} which are defined at each point of U. This is an integral domain, one lets K_U be its fraction field.

Given a point $P \in T$, one lets K_P denote the field of fractions of the completed local ring of P on \mathcal{X} .

Theorem (Harbater, Hartmann, Krashen 2009) Let notation be as above.

Let G/K be a connected linear algebraic group. Let E be a homogeneous space of G such that for any field L containing K, the group G(L) acts transitively on E(L). If G is K-rational, i.e. if its function field is purely transcendental over K, then the following local-global principle holds :

If each $E(K_U)$ and each $E(K_P)$ is not empty, then E(K) is not empty.

The transitivity hypothesis is satisfied in the following two cases : (i) E is a principal homogeneous space (torsor) of G(ii) E/K is a projective variety. In a number of cases, one may pass from the local-global theorems with respect to the K_U 's and K_P 's to local-global theorems with respect to the completions K_v with respect to the discrete valuations of rank one on K.

э

• Local-global principle for isotropy of quadratic forms of rank at least 3 (CT-Parimala-Suresh 2009)

• Theorem (Harbater, Hartmann, Krashen 2012) Let notation be as above. Assume R is equicharacteristic. Let m > 0 be an integer invertible in R.

Then for any positive integer n > 1, the natural map

$$H^{n}(K,\mu_{m}^{\otimes n-1})
ightarrow \prod_{v\in\Omega} H^{n}(K_{v},\mu_{m}^{\otimes n-1})$$

is injective. (For n > 3, the proof uses the Bloch-Kato conjecture, now a theorem of Rost and Voevodsky.)

• G/K connected, linear, *K*-rational, *R* complete DVR, $k = \overline{k}$, then $\operatorname{III}^{1}(K, G) = 0$ (Harbater, Hartmann, Krashen 2012, via CT-Gille-Parimala 2004)

However

• $\operatorname{III}^1(K, \mathbb{Z}/2) \neq 0$ possible in the semi-global case. In other words, an element in K may be a square in each

completion K_v without being a square in K.

This is a reinterpretation (CT, Parimala, Suresh 2009) of a computation by Shuji Saito 1985.

Main theorem of the talk (CT, Parimala, Suresh, jan. 2013)

Theorem

Let $k = \mathbb{C}$. Over $K = \mathbb{C}((x))(t)$, and over $K = \mathbb{C}((x, y))$,

(a) there exists a connected, linear algebraic K-group G with ${\rm III}^1(K,G) \neq 0;$

(b) there exists a finite Galois module μ/K with $\coprod^2(K,\mu) \neq 0$.

For (a), we have examples with G a K-torus and with G a semi-simple K-group.

(Known) reduction steps

By Weil restriction of scalars, it is enough to prove $\operatorname{III}^1(K, G) \neq 0$ and $\operatorname{IIII}^2(K, \mu) \neq 0$ for K the field of functions of a suitable curve over $\mathbb{C}((t))$ and for a suitable finite extension of $\mathbb{C}((x, y))$.

It is enough to produce an example with $T \ a \ K$ -torus, indeed an example on one of the following lines generates an example on the following line (over a number field, the analogue occurs in Serre's book Cohomologie galoisienne)

- An example of a K-torus T with $\operatorname{III}^1(K,T) \neq 0$
- An example of a finite Galois module μ with $\operatorname{III}^2(K,\mu) \neq 0$
- An example of a connected semisimple group G/K with $\operatorname{III}^{1}(K, G) \neq 0$.

Which obstruction to the local-global principle ?

Local or semi-global situation, \mathcal{X} a regular surface, $n \in O_{\mathcal{X}}^{\times}$, we assume $\mathbb{Z}/n \simeq \mu_n$. **Reciprocity law** : Bloch-Ogus *complex*

$$0 \to H^{2}(K, \mathbb{Z}/n) \xrightarrow{\{\partial_{\gamma}\}} \oplus_{\gamma \in \mathcal{X}^{(1)}} H^{1}(\kappa(\gamma), \mathbb{Z}/n) \xrightarrow{\{\partial_{\gamma, \chi}\}} \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z}/n \to 0$$

The homology of this complex (under the Gersten conjecture) :

- degree 0 : Br $\mathcal{X}[n] \simeq$ Br $\mathcal{X}_0[n]$, zero if $k = \overline{k}$,
- degree 1 : subgroup of $H^3(\mathcal{X},\mathbb{Z}/n)\simeq H^3(\mathcal{X}_0,\mathbb{Z}/n)$, zero if $k=\overline{k}$,
- degree 2 : $CH_0(\mathcal{X})/n$ zero, indeed $CH_0(\mathcal{X}) = 0$

"Analogue" of the class field theory exact sequence

Reciprocity obstruction

Z/K smooth, projective, geometrically connected $\alpha \in \operatorname{Br} Z[n], \gamma \in \mathcal{X}^{(1)}$ The composite map

$$\sigma_{\alpha}: Z(K_{\gamma}) \xrightarrow{\alpha} Br K_{\gamma}[n] \xrightarrow{\partial_{\gamma}} H^{1}(\kappa(\gamma), \mathbb{Z}/n)$$

vanishes for almost all $\gamma \in \mathcal{X}^{(1)}$. The composite map

$$\rho_{\alpha}:\prod_{\gamma\in\mathcal{X}^{(1)}}Z(K_{\gamma})\xrightarrow{\sigma_{\alpha}}\oplus_{\gamma}H^{1}(\kappa(\gamma),\mathbb{Z}/n)\xrightarrow{\{\partial_{\gamma,\chi}\}}\oplus_{x\in\mathcal{X}^{(2)}}\mathbb{Z}/n$$

vanishes on the diagonal image of Z(K) in $\prod_{\gamma \in \mathcal{X}^{(1)}} Z(K_{\gamma})$.

Let

$$[\prod_{\gamma} Z(\mathcal{K}_{\gamma})]^{\operatorname{Br} Z} = \bigcap_{\alpha \in \operatorname{Br} Z} \operatorname{Ker} \rho_{\alpha}.$$

Reciprocity obstruction

$$Z({\mathcal K}) \subset [\prod_{\gamma} Z({\mathcal K}_{\gamma})]^{\operatorname{Br}\ Z} \subset \prod_{\gamma} Z({\mathcal K}_{\gamma}).$$

This is an analogue of the Brauer-Manin obstruction over number fields.

In the local and in the semi-global case, we shall produce \mathcal{X}/R , a *K*-torus *T*, a torsor *E* of *T*, a smooth *k*-compactification *Z* of *E* with $\prod_{\gamma} Z(K_{\gamma}) \neq \emptyset$ and $[\prod_{\gamma} Z(K_{\gamma})]^{\text{Br } Z} = \emptyset$, hence $Z(K) = \emptyset$.

Let $a, b, c \in K^{\times}$. Let T be the K-torus T with equation

$$(x_1^2 - ay_1^2)(x_2^2 - by_2^2)(x_3^2 - aby_3^2) = 1.$$

Let E/k be the torsor under T defined by

$$(x_1^2 - ay_1^2)(x_2^2 - by_2^2)(x_3^2 - aby_3^2) = c.$$

Let Z be a smooth K-compactification of E. Then Br $Z/Br \ K \subset \mathbb{Z}/2$, a generator being given by the class of the quaternion algebra $\alpha = (x_1^2 - ay_1^2, b)$. As $E(K_{\gamma})$ is dense in $Z(K_{\gamma})$, it is enough to evaluation α on $E(K_{\gamma})$. For $\{P_{\gamma}\} \in \prod_{\gamma} E(K_{\gamma})$, we must evaluate

$$\sum_{\mathbf{x}\in\gamma}\partial_{\gamma,\mathbf{x}}\partial_{\gamma}(\alpha(P_{\gamma}))\in \oplus_{\mathbf{x}\in\mathcal{X}^{(2)}}\mathbb{Z}/2.$$

We now assume $k = \overline{k}$. The residue fields $\kappa(\gamma)$ then have cohomological dimension 1, the fields K_{γ} are similar to "local fields".

Hensel's lemma gives a criterion for $E(K_{\gamma}) \neq \emptyset$. For each $\gamma \in \mathcal{X}^{(1)}$, the image of the composite map (evaluation of α , then residue)

$${\it E}({\it K}_{\gamma})
ightarrow {
m Br} \, {\it K}_{\gamma}
ightarrow \kappa(\gamma)^{ imes}/\kappa(\gamma)^{ imes 2}$$

is an explicit set consisting of at most 2 elements.

Proposition. Let R be a regular semilocal ring with 3 maximal ideals m_j , j = 1, 2, 3, with $m_1 = (\pi_2, \pi_3)$ etc. The elements π_i vanish on the sides of a triangle the vertices of which are the m_j 's. Set $a = \pi_2 \pi_3$, $b = \pi_3 \pi_1$, $c = \pi_1 \pi_2 \pi_3$. Let E be defined by

$$(x_1^2 - ay_1^2)(x_2^2 - by_2^2)(x_3^2 - aby_3^2) = c.$$

Then $E(K) = \emptyset$. Proof. Let R_i be the henselisation of R at π_i , let K_i be its fraction field and κ_i its residue field.

One computes the composite map

$$\prod_{i} E(K_{i}) \xrightarrow{\alpha} \oplus_{i} \operatorname{Br} K_{i}[2] \xrightarrow{\{\partial_{i}\}} \oplus_{i} \kappa_{i}^{\times} / \kappa_{i}^{\times 2} \xrightarrow{\{\partial_{i},j\}} \oplus_{j=1}^{3} \mathbb{Z}/2.$$

The image of $E(K_1)$ consists of (0,0,1) and (0,1,0)The image of $E(K_2)$ consists of (0,0,0) and (1,0,1)The image of $E(K_3)$ consists of (0,0,0) and (1,1,0)None of the vertical sums of triplets equals (0,0,0). For the other points $\gamma \in \mathcal{X}^{(1)}$, the image of $E(K_{\gamma}) \to \kappa_{\gamma}^{\times}/\kappa_{\gamma}^{\times 2}$ is equal to 1, hence does not contribute to the sums

$$\sum_{m_j \in \gamma} \partial_{\gamma, m_j} \partial_{\gamma} (\alpha(P_{\gamma})) \in \oplus_j \mathbb{Z}/2.$$

Thus (0,0,0) does not lie in the image of the composite map

$$\prod_{i} E(K_{i}) \xrightarrow{\alpha} \oplus_{i} \operatorname{Br} K_{i}[2] \xrightarrow{\{\partial_{i}\}} \oplus_{i} \kappa_{i}^{\times} / \kappa_{i}^{\times 2} \xrightarrow{\{\partial_{i,j}\}} \oplus_{j} \mathbb{Z}/2$$

Reciprocity on $\mathcal{X} = \operatorname{Spec} R$ then implies $E(K) = \emptyset$.

"Semi-global" example

Let $R = \mathbb{C}[[t]]$. Let \mathcal{X}/R be the regular proper minimal model (Kodaira, Néron) of the elliptic curve with affine equation

$$y^2 = x^3 + x^2 + t^3.$$

Its special fibre \mathcal{X}_0 consists of 3 lines L_i building up a triangle. One then chooses elements $\pi_i \in K^{\times}$ with $\operatorname{div}(\pi_i) = L_i + D_i$ in a reasonable fashion, so as to ensure that none of the D_i 's contains a vertex of the triangle and that at any point $x \in \mathcal{X}^{(2)}$ one at least of the π_i 's is invertible.

Set $a = \pi_2 \pi_3$, $b = \pi_3 \pi_1$, $c = \pi_1 \pi_2 \pi_3$. Let *E* be given by the equation

$$(x_1^2 - ay_1^2)(x_2^2 - by_2^2)(x_3^2 - aby_3^2) = c.$$

Then $E(K_v) \neq \emptyset$ for each $v \in \Omega$, but $E(K) = \emptyset$.

"Local" example

Let

$$R = \mathbb{C}[[x, y, z]]/(xyz + x^4 + y^4 + z^4)$$

and let $\mathcal{X} \to \operatorname{Spec} R$ be a minimal desingularization. Then take E/K to be given by the equation

$$(X_1^2 - yzY_1^2)(X_2^2 - xzY_2^2)(X_3^2 - xyZ_3^2) = xyz(x + y + z).$$

With some more effort, one produces a semi-global example

• $R = \mathbb{F}[[t]]$, \mathbb{F} a finite field

or

• *R* the ring of integers of a *p*-adic field and \mathcal{X} a proper regular *R*-curve, *K* its function field, and *E* a torsor of a *K*-torus of the above type.

Harari and Szamuely have very recently produced a duality theory for tori over such fields K which only involves the discrete valuation rings corresponding to the closed points of the generic fibre of $\mathcal{X} \to \operatorname{Spec}(R)$. They use the group $H^3_{nr}(K(\mathcal{X})/K, \mathbb{Q}/\mathbb{Z}(2))$ rather than the Brauer group $H^2_{nr}(K(\mathcal{X})/K, \mathbb{Q}/\mathbb{Z}(1))$. Both in the local and the semi-global case, the following problems remain open.

In the special case where the residue field k is a finite field, they were proposed as conjectures by CT, Parimala, Suresh 2009.

Problem. Let G/K be a semisimple connected K-group. If G is simply connected, is $\operatorname{III}^1(K, G) = 0$?

When the residue field k is finite, this has been shown for many types of groups (Yong Hu; R. Preeti). There is some relation with the Rost invariant and a local-global principle of K. Kato.

Problem. Does the local-global principle hold for projective homogeneous spaces of connected linear algebraic K-groupes ? For quadrics, this was proved by CT, Parimala, Suresh 2009, as a consequence of the results of Harbater, Hartmann, Krashen. In analogy with results by Sansuc and by Borovoi over global fields, one may further ask if the obstruction to the local-global principle used in our examples is the only obstruction to the local-global principle.

Here is one special case where we can prove such a result.

Theorem. Let us consider either the local or the semi-global set up $p: \mathcal{X} \to \operatorname{Spec} R$. Assume R is a k-algebra, $\operatorname{char}(k) = 0$, and $k = \overline{k}$. Let a, b, $c \in K^{\times}$. Let E be the K-variety defined by

$$(X_1^2 - aY_1^2)(X_2^2 - bY_2^2)(X_3^2 - abZ_3^2) = c$$

and let Z be a smooth K-compactification of E. Let $\alpha = (X_1^2 - aY_1^2, b) \in Br Z$. Assume that the union of the supports of the divisors of a, b and c on \mathcal{X} is a divisor with normal crossings. If there exists a family $\{P_{\gamma}\} \in \prod_{\gamma} E(K_{\gamma})$ such that the family $\{\partial_{\gamma}(\alpha(P_{\gamma}))\}$ is in the kernel of

$$\oplus_{\gamma\in\mathcal{X}^{(1)}} H^1(\kappa(\gamma),\mathbb{Z}/2) \stackrel{\{\partial_{\gamma,x}\}}{\longrightarrow} \oplus_{x\in\mathcal{X}^{(2)}} \mathbb{Z}/2,$$

then $E(K) \neq \emptyset$.

Proof (sketch) Since $k = \overline{k}$, the complex

$$0 \to \mathrm{Br} \ \mathcal{K}[2] \xrightarrow{\{\partial_{\gamma}\}} \oplus_{\gamma \in \mathcal{X}^{(1)}} \ \mathcal{H}^{1}(\kappa(\gamma), \mathbb{Z}/2) \xrightarrow{\{\partial_{\gamma, x}\}} \oplus_{x \in \mathcal{X}^{(2)}} \ \mathbb{Z}/2 \to 0$$

is exact, and $\partial_{\gamma} : \operatorname{Br} K_{\gamma}[2] \xrightarrow{\simeq} H^{1}(\kappa(\gamma), \mathbb{Z}/2)$ for each γ . There thus exists $\beta \in \operatorname{Br} K[2]$ with image $\alpha(P_{\gamma}) \in \operatorname{Br} K_{\gamma}$ for each $\gamma \in \mathcal{X}^{(1)}$. One shows that β vanishes in $\operatorname{Br} K[\sqrt{b}]$. [Idea : this is obvious for $\alpha = (X_{1}^{2} - aY_{1}^{2}, b)$, hence for all $\alpha(P_{\gamma})$.] Therefore $\beta = (b, \rho)$, with some $\rho \in K^{\times}$. This enables us to perform a *descente* : The K-variety W with equations

$$X_1^2 - aY_1^2 = \rho.(U^2 - bV^2) \neq 0$$

 $(X_1^2 - aY_1^2)(X_2^2 - bY_2^2) = c.(X_3^2 - abY_3^2) \neq 0,$

admits a K-morphism $W \to E$, and it has rational points in all K_{γ} 's.

A change of variables $(U + \sqrt{b}V)(X_2 + \sqrt{b}Y_2) = X_4 + \sqrt{b}Y_4)$ transforms this system of equations into the system

$$X_1^2 - aY_1^2 =
ho.(U^2 - bV^2)
eq 0$$

 $ho.(X_4^2 - bY_4^2) = c.(X_3^2 - abY_3^2)
eq 0,$

This is the *product* of two *K*-varieties, each of which a pointed cone over a smooth 3-dimensional quadrics over *K*, each being given by a diagonal quadratic form the coefficients of which have "normal crossings" on \mathcal{X} .

A theorem of CT-Parimala-Suresh 2009 then guarantees that these quadrics satisfy the local-global principle. They thus both have rational K-points, hence also E.

Corollary.

Let us consider either the local or the semi-global set up $p: \mathcal{X} \to \operatorname{Spec} R$. Assume R is a k-algebra, $\operatorname{char}(k) = 0$, and $k = \overline{k}$. Let a, b, $c \in K^{\times}$. Let E be the K-variety defined by

$$(X_1^2 - aY_1^2)(X_2^2 - bY_2^2)(X_3^2 - abZ_3^2) = c$$

and let Z be a smooth K-compactification of E. Assume that the union of the supports of the divisors of a, b and c on \mathcal{X} is a divisor with normal crossings.

If the diagram of components of the special fibre is a **tree**, and if $\prod_{\gamma} E(K_{\gamma}) \neq \emptyset$, then $E(K) \neq \emptyset$.

This explains why our many earlier attempts at producing semi-global examples with generic fibre a projective line failed, as also failed an attack on the equation

$$(X_1^2 - xY_1^2)(X_2^2 - (x - t)Y_2^2)(X_3^2 - (x - t^2)Y_3^2) = y$$

over the elliptic curve

$$y^2 = x(x-t)(x-t^2).$$

This curve has type I_2^* , the special fibre is a tree with 7 components, a chaine of three lines with multiplicity 2, say E, F, G, two curves of multiplicity 1 meeting E, and two curves of multiplicity 1 meeting G.

Ik heb het einde van mijn lezing bereikt, dank u

・ロト ・回ト ・ヨト ・ヨト