## Higher reciprocity laws and rational points

$$
\begin{aligned}
& \text { Jean-Louis Colliot-Thélène } \\
& \text { (CNRS et Université Paris-Sud) }
\end{aligned}
$$

Joint work with R. Parimala et V. Suresh
Conference on Algebraic Geometry
Amsterdam, 8th-12th July, 2013

## The classical set-up

$K$ number field, $\Omega$ the set of place of $K, K_{v}$ completion of $K$ at the place $v$
$\operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$, isomorphism if $v$ finite place
The reciprocity law in class field theory
There is a complex

$$
0 \rightarrow \operatorname{Br} K \rightarrow \oplus_{v \in \Omega} \operatorname{Br} K_{v} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

which as a matter of fact is an exact sequence.

G a connected linear algebraic group over $K$

$$
\amalg^{1}(K, G):=\operatorname{Ker}\left[H^{1}(K, G) \rightarrow \prod_{v \in \Omega} H^{1}\left(K_{v}, G\right)\right]
$$

This is the set of isomorphism classess of principal homogeneous spaces (torsors) $E / K$ under $G$ with $E\left(K_{v}\right) \neq$ for all $v \in \Omega$

Theorem (Kneser, Harder, Chernousov)
(i) If $G$ is semisimple and simply connected, then $\amalg^{1}(K, G)=0$ : the Hasse principle holds for torsors under G.
(ii) If $Z / K$ is a projective variety which is a homogeneous space of a connected linear algebraic group, the Hasse principle holds for rational points on $Z$.

## Brauer-Manin pairing

$X / K$ smooth, projective, geometrically connected. Let $X\left(\mathbb{A}_{K}\right)=\prod_{v} X\left(K_{v}\right)$. Let $X\left(\mathbb{A}_{K}\right)^{\operatorname{Br} X}$ be the left kernel of the pairing

$$
\begin{aligned}
& X\left(\mathbb{A}_{K}\right) \times(\operatorname{Br} X / \operatorname{Br} K) \rightarrow \mathbb{Q} / \mathbb{Z} \\
& \left(\left\{P_{v}\right\}, A\right) \mapsto \sum_{v \in \Omega} A\left(P_{v}\right) \in \mathbb{Q} / \mathbb{Z}
\end{aligned}
$$

Reciprocity obstruction to the local-global principle (Manin 1970) :
The reciprocity law implies

$$
X(K) \subset X\left(\mathbb{A}_{K}\right)^{\operatorname{Br} X} \subset X\left(\mathbb{A}_{K}\right)
$$

Theorem (Sansuc, 1981)
$E / K$ torsor under $G / K$ connected linear, $E \subset X$ a smooth compactification. Then $X(K)$ is dense in $X\left(\mathbb{A}_{K}\right)^{\mathrm{Br} X}$.

Corollary (Sansuc) In each of the following cases:
(i) $G$ is an adjoint group
(ii) $G$ is absolutely almost simple
(iii) The underlying variety of $G$ is $K$-rational we have $\amalg^{1}(K, G)=0$ and weak approximation holds for $G$.

Indeed, under these assumtions, $\operatorname{Br} X=\mathrm{Br} K$.

Tchebotarev's theorem yields $\Pi^{1}(K, \mathbb{Z} / n)=0$. However :
There exists $G=T$ a $K$-torus with $\Pi^{1}(K, T) \neq 0$ (Hasse)
There exists $\mu$ a finite Galois module with $\Pi^{1}(K, \mu) \neq 0$ There exists $\mu$ a finite Galois module with $\amalg^{2}(K, \mu) \neq 0$ There exists a semisimple $K$-group $G$ with $\amalg^{1}(K, G) \neq 0$ (Serre)

Sansuc 1981: The examples with $T$ et $G$ may be interpreted in terms of the Brauer-Manin obstruction.

## Set-up for this talk

$\mathcal{X}$ regular connected scheme of dimension 2
$K$ field of rational functions on $\mathcal{X}$
$R$ local henselian integral domain, $k$ its residue field $p: \mathcal{X} \rightarrow \operatorname{Spec} R$ projective, surjective morphism
local case $\operatorname{dim} R=2, p: \mathcal{X} \rightarrow \operatorname{Spec} R$ birational. $0 \in \operatorname{Spec} R$ closed point, $\mathcal{X}_{0} / k$ special fibre.
Example : $R=k[[x, y]], \mathcal{X}$ blow-up of $\operatorname{Spec} R$ at 0 .
semi-global case $R$ discrete valuation ring, $F$ field of fractions of $R$, generic fibrre $\mathcal{X}_{\eta} / F$ smooth, projective, geometrically connected curve
Example : $K=k((t))(x), \mathcal{X}=\mathbb{P}_{k[[t]}^{1}$ or blow-up at points of the special fibre.
$\Omega$ set of discrete, rank one, valuations on $K, T_{v}$ henselization of $T$ at $v, K_{v}$ field of fractions of $T_{v}$. The valuations are centered on $\mathcal{X}$, for $v \in \Omega$ we have $R \subset T_{v}$.

Theorem (Grothendieck, Artin 1968; ...) Both in the local and in the semi-global case,

$$
\operatorname{Br} K \hookrightarrow \prod_{v \in \Omega} \operatorname{Br} K_{v}
$$

There is no such theorem in a global situation. Let $Y$ be a smooth projective surface over the complex field and $K=\mathbb{C}(Y)$ be its function field. Then

$$
\operatorname{Ker}\left[\operatorname{Br} K \hookrightarrow \prod_{v \in \Omega} \operatorname{Br} K_{v}\right]=\operatorname{Br}(Y)
$$

and it is easy to produce examples where $\operatorname{Br}(Y)$ is infinite.

Let us go back once and for all to the local or semi-global situation.
$G$ a linear algebraic group over $K$.

$$
Ш^{1}(K, G):=\operatorname{Ker}\left[H^{1}(K, G) \rightarrow \prod_{v \in \Omega} H^{1}\left(K_{v}, G\right)\right]
$$

Question. Let $G / K$ be a connected linear algebraic group. Do we have $\Pi^{1}(K, G)=0$ ?
Question. Let $\mu / K$ be a finite Galois module. For $i=1,2 \ldots$, do we have $\amalg^{i}(K, \mu)=0$ ?

The local case, $k=\bar{k}$

- $G / K$ connected linear. If $G$ is simply connecred, or adjoint, or $K$-rational, then $W^{1}(K, G)=0(C T$, Gille, Parimala 2004 for $G$ semisimple; Borovoi, Kunyavskiĭ 2004)
- $Ш^{1}(K, \mathbb{Z} / 2) \neq 0$ possible (Jaworski 2001)

The question $\amalg^{2}(K, \mu)=0$ ? was already mentioned in CTGiPa 2004.

## The semi-global case

The work of Harbater, Hartmann and Krashen (2009-present), based on a new theory of field patching (Harbater, Hartmann 2007)
$\mathcal{X}$ regular connected scheme of dimension $2, K$ its field of functions $R$ a complete DVR, $t$ a uniformizing parameter, residue field $k$ nearly arbitrary
$p: \mathcal{X} \rightarrow \operatorname{Spec} R$ a projective flat morphism.
$\mathcal{X}_{0} / k$ the special fibre.
A finite set $T$ of points $P \in \mathcal{X}_{0}$, including all singular points of the reduced special fibre.
$\mathcal{X}_{0} \backslash T=\cup_{i \in I} U_{i}$ with $U_{i} \subset \mathcal{X}_{0}$ Zariski open
Given an open $U \subset \mathcal{X}_{0}$, one defines $R_{U}$ to be the completion along $t$ of the ring of rational functions on $\mathcal{X}$ which are defined at each point of $U$. This is an integral domain, one lets $K_{U}$ be its fraction field.
Given a point $P \in T$, one lets $K_{P}$ denote the field of fractions of the completed local ring of $P$ on $\mathcal{X}$.

Theorem (Harbater, Hartmann, Krashen 2009)
Let notation be as above.
Let $G / K$ be a connected linear algebraic group. Let $E$ be a homogeneous space of $G$ such that for any field $L$ containing $K$, the group $G(L)$ acts transitively on $E(L)$.
If $G$ is $K$-rational, i.e. if its function field is purely transcendental over $K$, then the following local-global principle holds : If each $E\left(K_{U}\right)$ and each $E\left(K_{P}\right)$ is not empty, then $E(K)$ is not empty.

The transitivity hypothesis is satisfied in the following two cases:
(i) $E$ is a principal homogeneous space (torsor) of $G$
(ii) $E / K$ is a projective variety.

In a number of cases, one may pass from the local-global theorems with respect to the $K_{U}$ 's and $K_{P}$ 's to local-global theorems with respect to the completions $K_{v}$ with respect to the discrete valuations of rank one on $K$.

- Local-global principle for isotropy of quadratic forms of rank at least 3 (CT-Parimala-Suresh 2009)
- Theorem (Harbater, Hartmann, Krashen 2012)

Let notation be as above. Assume $R$ is equicharacteristic. Let $m>0$ be an integer invertible in $R$.
Then for any positive integer $n>1$, the natural map

$$
H^{n}\left(K, \mu_{m}^{\otimes n-1}\right) \rightarrow \prod_{v \in \Omega} H^{n}\left(K_{v}, \mu_{m}^{\otimes n-1}\right)
$$

is injective. (For $n>3$, the proof uses the Bloch-Kato conjecture, now a theorem of Rost and Voevodsky.)

- $G / K$ connected, linear, $K$-rational, $R$ complete DVR, $k=\bar{k}$, then $\amalg^{1}(K, G)=0$ (Harbater, Hartmann, Krashen 2012, via CT-Gille-Parimala 2004)

However

- $\Pi^{1}(K, \mathbb{Z} / 2) \neq 0$ possible in the semi-global case. In other words, an element in $K$ may be a square in each completion $K_{v}$ without being a square in $K$.
This is a reinterpretation (CT, Parimala, Suresh 2009) of a computation by Shuji Saito 1985.

Main theorem of the talk (CT, Parimala, Suresh, jan. 2013)
Theorem
Let $k=\mathbb{C}$. Over $K=\mathbb{C}((x))(t)$, and over $K=\mathbb{C}((x, y))$,
(a) there exists a connected, linear algebraic $K$-group $G$ with $\amalg^{1}(K, G) \neq 0$;
(b) there exists a finite Galois module $\mu / K$ with $\amalg^{2}(K, \mu) \neq 0$.

For (a), we have examples with $G$ a $K$-torus and with $G$ a semi-simple $K$-group.

## (Known) reduction steps

By Weil restriction of scalars, it is enough to prove $\amalg^{1}(K, G) \neq 0$ and $\Pi^{2}(K, \mu) \neq 0$ for $K$ the field of functions of a suitable curve over $\mathbb{C}((t))$ and for a suitable finite extension of $\mathbb{C}((x, y))$.

It is enough to produce an example with $T$ a $K$-torus, indeed an example on one of the following lines generates an example on the following line (over a number field, the analogue occurs in Serre's book Cohomologie galoisienne)

- An example of a $K$-torus $T$ with $\Pi^{1}(K, T) \neq 0$
- An example of a finite Galois module $\mu$ with $\Pi^{2}(K, \mu) \neq 0$
- An example of a connected semisimple group $G / K$ with $\Psi^{1}(K, G) \neq 0$.


## Which obstruction to the local-global principle ?

Local or semi-global situation, $\mathcal{X}$ a regular surface, $n \in O_{\mathcal{X}}^{\times}$, we assume $\mathbb{Z} / n \simeq \mu_{n}$.
Reciprocity law: Bloch-Ogus complex
$0 \rightarrow H^{2}(K, \mathbb{Z} / n) \xrightarrow{\left\{\partial_{\gamma}\right\}} \oplus_{\gamma \in \mathcal{X}^{(1)}} H^{1}(\kappa(\gamma), \mathbb{Z} / n) \xrightarrow{\left\{\partial_{\gamma, \times}\right\}} \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z} / n \rightarrow 0$
The homology of this complex (under the Gersten conjecture) :

- degree $0: \operatorname{Br} \mathcal{X}[n] \simeq \operatorname{Br} \mathcal{X}_{0}[n]$, zero if $k=\bar{k}$,
- degree 1 : subgroup of $H^{3}(\mathcal{X}, \mathbb{Z} / n) \simeq H^{3}(\mathcal{X}, \mathbb{Z} / n)$, zero if $k=\bar{k}$,
- degree $2: \mathrm{CH}_{0}(\mathcal{X}) / n$ zero, indeed $\mathrm{CH}_{0}(\mathcal{X})=0$
"Analogue" of the class field theory exact sequence


## Reciprocity obstruction

$Z / K$ smooth, projective, geometrically connected
$\alpha \in \operatorname{Br} Z[n], \gamma \in \mathcal{X}^{(1)}$
The composite map

$$
\sigma_{\alpha}: Z\left(K_{\gamma}\right) \xrightarrow{\alpha} \operatorname{Br} K_{\gamma}[n] \xrightarrow{\partial_{\gamma}} H^{1}(\kappa(\gamma), \mathbb{Z} / n)
$$

vanishes for almost all $\gamma \in \mathcal{X}^{(1)}$.
The composite map

$$
\rho_{\alpha}: \prod_{\gamma \in \mathcal{X}^{(1)}} Z\left(K_{\gamma}\right) \xrightarrow{\sigma_{\alpha}} \oplus_{\gamma} H^{1}(\kappa(\gamma), \mathbb{Z} / n) \xrightarrow{\left\{\partial_{\gamma, x}\right\}} \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z} / n
$$

vanishes on the diagonal image of $Z(K)$ in $\prod_{\gamma \in \mathcal{X}^{(1)}} Z\left(K_{\gamma}\right)$.

Let

$$
\left[\prod_{\gamma} Z\left(K_{\gamma}\right)\right]^{\operatorname{Br} Z}=\bigcap_{\alpha \in \operatorname{Br} Z} \operatorname{Ker} \rho_{\alpha}
$$

Reciprocity obstruction

$$
Z(K) \subset\left[\prod_{\gamma} Z\left(K_{\gamma}\right)\right]^{\operatorname{Br} Z} \subset \prod_{\gamma} Z\left(K_{\gamma}\right)
$$

This is an analogue of the Brauer-Manin obstruction over number fields.

In the local and in the semi-global case, we shall produce $\mathcal{X} / R$, a $K$-torus $T$, a torsor $E$ of $T$, a smooth $k$-compactification $Z$ of $E$ with $\prod_{\gamma} Z\left(K_{\gamma}\right) \neq \emptyset$ and $\left[\prod_{\gamma} Z\left(K_{\gamma}\right)\right]^{\operatorname{Br} Z}=\emptyset$, hence $Z(K)=\emptyset$.

Let $a, b, c \in K^{\times}$.
Let $T$ be the $K$-torus $T$ with equation

$$
\left(x_{1}^{2}-a y_{1}^{2}\right)\left(x_{2}^{2}-b y_{2}^{2}\right)\left(x_{3}^{2}-a b y_{3}^{2}\right)=1 .
$$

Let $E / k$ be the torsor under $T$ defined by

$$
\left(x_{1}^{2}-a y_{1}^{2}\right)\left(x_{2}^{2}-b y_{2}^{2}\right)\left(x_{3}^{2}-a b y_{3}^{2}\right)=c .
$$

Let $Z$ be a smooth $K$-compactification of $E$. Then
$\operatorname{Br} Z / \operatorname{Br} K \subset \mathbb{Z} / 2$, a generator being given by the class of the quaternion algebra $\alpha=\left(x_{1}^{2}-a y_{1}^{2}, b\right)$. As $E\left(K_{\gamma}\right)$ is dense in $Z\left(K_{\gamma}\right)$, it is enough to evaluation $\alpha$ on $E\left(K_{\gamma}\right)$.

For $\left\{P_{\gamma}\right\} \in \prod_{\gamma} E\left(K_{\gamma}\right)$, we must evaluate

$$
\sum_{x \in \gamma} \partial_{\gamma, x} \partial_{\gamma}\left(\alpha\left(P_{\gamma}\right)\right) \in \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z} / 2
$$

We now assume $k=\bar{k}$. The residue fields $\kappa(\gamma)$ then have cohomological dimension 1, the fields $K_{\gamma}$ are similar to "local fields".
Hensel's lemma gives a criterion for $E\left(K_{\gamma}\right) \neq \emptyset$. For each $\gamma \in \mathcal{X}^{(1)}$, the image of the composite map (evaluation of $\alpha$, then residue)

$$
E\left(K_{\gamma}\right) \rightarrow \operatorname{Br} K_{\gamma} \rightarrow \kappa(\gamma)^{\times} / \kappa(\gamma)^{\times 2}
$$

is an explicit set consisting of at most 2 elements.

Proposition. Let $R$ be a regular semilocal ring with 3 maximal ideals $m_{j}, j=1,2,3$, with $m_{1}=\left(\pi_{2}, \pi_{3}\right)$ etc. The elements $\pi_{i}$ vanish on the sides of a triangle the vertices of which are the $m_{j}$ 's. Set $a=\pi_{2} \pi_{3}, b=\pi_{3} \pi_{1}, c=\pi_{1} \pi_{2} \pi_{3}$. Let $E$ be defined by

$$
\left(x_{1}^{2}-a y_{1}^{2}\right)\left(x_{2}^{2}-b y_{2}^{2}\right)\left(x_{3}^{2}-a b y_{3}^{2}\right)=c .
$$

Then $E(K)=\emptyset$.
Proof. Let $R_{i}$ be the henselisation of $R$ at $\pi_{i}$, let $K_{i}$ be its fraction field and $\kappa_{i}$ its residue field.
One computes the composite map

$$
\prod E\left(K_{i}\right) \xrightarrow{\alpha} \oplus_{i} \operatorname{Br} K_{i}[2] \xrightarrow{\left\{\partial_{i}\right\}} \oplus_{i} \kappa_{i}^{\times} / \kappa_{i}^{\times 2} \xrightarrow{\left\{\partial_{i, j}\right\}} \oplus_{j=1}^{3} \mathbb{Z} / 2
$$

The image of $E\left(K_{1}\right)$ consists of $(0,0,1)$ and $(0,1,0)$
The image of $E\left(K_{2}\right)$ consists of $(0,0,0)$ and $(1,0,1)$
The image of $E\left(K_{3}\right)$ consists of $(0,0,0)$ and $(1,1,0)$
None of the vertical sums of triplets equals $(0,0,0)$.
For the other points $\gamma \in \mathcal{X}^{(1)}$, the image of $E\left(K_{\gamma}\right) \rightarrow \kappa_{\gamma}^{\times} / \kappa_{\gamma}^{\times 2}$ is equal to 1 , hence does not contribute to the sums

$$
\sum_{m_{j} \in \gamma} \partial_{\gamma, m_{j}} \partial_{\gamma}\left(\alpha\left(P_{\gamma}\right)\right) \in \oplus_{j} \mathbb{Z} / 2
$$

Thus $(0,0,0)$ does not lie in the image of the composite map

$$
\prod_{i} E\left(K_{i}\right) \xrightarrow{\alpha} \oplus_{i} \operatorname{Br} K_{i}[2] \xrightarrow{\left\{\partial_{i}\right\}} \oplus_{i} \kappa_{i}^{\times} / \kappa_{i}^{\times 2} \xrightarrow{\left\{\partial_{i, j}\right\}} \oplus_{j} \mathbb{Z} / 2
$$

Reciprocity on $\mathcal{X}=\operatorname{Spec} R$ then implies $E(K)=\emptyset$.

## "Semi-global" example

Let $R=\mathbb{C}[[t]]$. Let $\mathcal{X} / R$ be the regular proper minimal model (Kodaira, Néron) of the elliptic curve with affine equation

$$
y^{2}=x^{3}+x^{2}+t^{3}
$$

Its special fibre $\mathcal{X}_{0}$ consists of 3 lines $L_{i}$ building up a triangle. One then chooses elements $\pi_{i} \in K^{\times}$with $\operatorname{div}\left(\pi_{i}\right)=L_{i}+D_{i}$ in a reasonable fashion, so as to ensure that none of the $D_{i}$ 's contains a vertex of the triangle and that at any point $x \in \mathcal{X}^{(2)}$ one at least of the $\pi_{i}$ 's is invertible.
Set $a=\pi_{2} \pi_{3}, b=\pi_{3} \pi_{1}, c=\pi_{1} \pi_{2} \pi_{3}$. Let $E$ be given by the equation

$$
\left(x_{1}^{2}-a y_{1}^{2}\right)\left(x_{2}^{2}-b y_{2}^{2}\right)\left(x_{3}^{2}-a b y_{3}^{2}\right)=c .
$$

Then $E\left(K_{v}\right) \neq \emptyset$ for each $v \in \Omega$, but $E(K)=\emptyset$.
"Local" example
Let

$$
R=\mathbb{C}[[x, y, z]] /\left(x y z+x^{4}+y^{4}+z^{4}\right)
$$

and let $\mathcal{X} \rightarrow$ Spec $R$ be a minimal desingularization.
Then take $E / K$ to be given by the equation

$$
\left(X_{1}^{2}-y z Y_{1}^{2}\right)\left(X_{2}^{2}-x z Y_{2}^{2}\right)\left(X_{3}^{2}-x y Z_{3}^{2}\right)=x y z(x+y+z)
$$

With some more effort, one produces a semi-global example

- $R=\mathbb{F}[[t]], \mathbb{F}$ a finite field
or
- $R$ the ring of integers of a $p$-adic field
and $\mathcal{X}$ a proper regular $R$-curve, $K$ its function field, and $E$ a torsor of a $K$-torus of the above type.

Harari and Szamuely have very recently produced a duality theory for tori over such fields $K$ which only involves the discrete valuation rings corresponding to the closed points of the generic fibre of $\mathcal{X} \rightarrow \operatorname{Spec}(R)$. They use the group $H_{n r}^{3}(K(\mathcal{X}) / K, \mathbb{Q} / \mathbb{Z}(2))$ rather than the Brauer group $H_{n r}^{2}(K(\mathcal{X}) / K, \mathbb{Q} / \mathbb{Z}(1))$.

Both in the local and the semi-global case, the following problems remain open.
In the special case where the residue field $k$ is a finite field, they were proposed as conjectures by CT, Parimala, Suresh 2009.

Problem. Let $G / K$ be a semisimple connected $K$-group. If $G$ is simply connected, is $\amalg^{1}(K, G)=0$ ?
When the residue field $k$ is finite, this has been shown for many types of groups (Yong Hu ; R. Preeti). There is some relation with the Rost invariant and a local-global principle of K. Kato.

Problem. Does the local-global principle hold for projective homogeneous spaces of connected linear algebraic K-groupes ? For quadrics, this was proved by CT, Parimala, Suresh 2009, as a consequence of the results of Harbater, Hartmann, Krashen.

In analogy with results by Sansuc and by Borovoi over global fields, one may further ask if the obstruction to the local-global principle used in our examples is the only obstruction to the local-global principle.

Here is one special case where we can prove such a result.

Theorem. Let us consider either the local or the semi-global set up $p: \mathcal{X} \rightarrow \operatorname{Spec} R$. Assume $R$ is a $k$-algebra, $\operatorname{char}(k)=0$, and $k=\bar{k}$. Let $a, b, c \in K^{\times}$. Let $E$ be the $K$-variety defined by

$$
\left(X_{1}^{2}-a Y_{1}^{2}\right)\left(X_{2}^{2}-b Y_{2}^{2}\right)\left(X_{3}^{2}-a b Z_{3}^{2}\right)=c
$$

and let $Z$ be a smooth $K$-compactification of $E$. Let $\alpha=\left(X_{1}^{2}-a Y_{1}^{2}, b\right) \in \operatorname{Br} Z$. Assume that the union of the supports of the divisors of $a, b$ and $c$ on $\mathcal{X}$ is a divisor with normal crossings. If there exists a family $\left\{P_{\gamma}\right\} \in \prod_{\gamma} E\left(K_{\gamma}\right)$ such that the family $\left\{\partial_{\gamma}\left(\alpha\left(P_{\gamma}\right)\right)\right\}$ is in the kernel of

$$
\oplus_{\gamma \in \mathcal{X}^{(1)}} H^{1}(\kappa(\gamma), \mathbb{Z} / 2) \xrightarrow{\left\{\partial_{\gamma, \times}\right\}} \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z} / 2,
$$

then $E(K) \neq \emptyset$.

## Proof (sketch)

Since $k=\bar{k}$, the complex

$$
0 \rightarrow \operatorname{Br} K[2] \xrightarrow{\left\{\partial_{\gamma}\right\}} \oplus_{\gamma \in \mathcal{X}^{(1)}} H^{1}(\kappa(\gamma), \mathbb{Z} / 2) \xrightarrow{\left\{\partial_{\gamma, \times}\right\}} \oplus_{x \in \mathcal{X}^{(2)}} \mathbb{Z} / 2 \rightarrow 0
$$

is exact, and $\partial_{\gamma}: \operatorname{Br} K_{\gamma}[2] \xrightarrow{\simeq} H^{1}(\kappa(\gamma), \mathbb{Z} / 2)$ for each $\gamma$. There thus exists $\beta \in \operatorname{Br} K[2]$ with image $\alpha\left(P_{\gamma}\right) \in \operatorname{Br} K_{\gamma}$ for each $\gamma \in \mathcal{X}^{(1)}$. One shows that $\beta$ vanishes in $\operatorname{Br} K[\sqrt{b}]$. [Idea : this is obvious for $\alpha=\left(X_{1}^{2}-a Y_{1}^{2}, b\right)$, hence for all $\alpha\left(P_{\gamma}\right)$.]
Therefore $\beta=(b, \rho)$, with some $\rho \in K^{\times}$.

This enables us to perform a descente :
The $K$-variety $W$ with equations

$$
\begin{gathered}
X_{1}^{2}-a Y_{1}^{2}=\rho \cdot\left(U^{2}-b V^{2}\right) \neq 0 \\
\left(X_{1}^{2}-a Y_{1}^{2}\right)\left(X_{2}^{2}-b Y_{2}^{2}\right)=c \cdot\left(X_{3}^{2}-a b Y_{3}^{2}\right) \neq 0
\end{gathered}
$$

admits a $K$-morphism $W \rightarrow E$, and it has rational points in all $K_{\gamma}$ 's.
A change of variables $\left.(U+\sqrt{b} V)\left(X_{2}+\sqrt{b} Y_{2}\right)=X_{4}+\sqrt{b} Y_{4}\right)$ transforms this system of equations into the system

$$
\begin{gathered}
X_{1}^{2}-a Y_{1}^{2}=\rho \cdot\left(U^{2}-b V^{2}\right) \neq 0 \\
\rho \cdot\left(X_{4}^{2}-b Y_{4}^{2}\right)=c \cdot\left(X_{3}^{2}-a b Y_{3}^{2}\right) \neq 0
\end{gathered}
$$

This is the product of two $K$-varieties, each of which a pointed cone over a smooth 3 -dimensional quadrics over $K$, each being given by a diagonal quadratic form the coefficients of which have "normal crossings" on $\mathcal{X}$.
A theorem of CT-Parimala-Suresh 2009 then guarantees that these quadrics satisfy the local-global principle. They thus both have rational $K$-points, hence also $E$.

Corollary.
Let us consider either the local or the semi-global set up $p: \mathcal{X} \rightarrow \operatorname{Spec} R$. Assume $R$ is a $k$-algebra, $\operatorname{char}(k)=0$, and $k=\bar{k}$. Let $a, b, c \in K^{\times}$. Let $E$ be the $K$-variety defined by

$$
\left(X_{1}^{2}-a Y_{1}^{2}\right)\left(X_{2}^{2}-b Y_{2}^{2}\right)\left(X_{3}^{2}-a b Z_{3}^{2}\right)=c
$$

and let $Z$ be a smooth $K$-compactification of $E$. Assume that the union of the supports of the divisors of $a, b$ and $c$ on $\mathcal{X}$ is a divisor with normal crossings.
If the diagram of components of the special fibre is a tree, and if $\prod_{\gamma} E\left(K_{\gamma}\right) \neq \emptyset$, then $E(K) \neq \emptyset$.

This explains why our many earlier attempts at producing semi-global examples with generic fibre a projective line failed, as also failed an attack on the equation

$$
\left(X_{1}^{2}-x Y_{1}^{2}\right)\left(X_{2}^{2}-(x-t) Y_{2}^{2}\right)\left(X_{3}^{2}-\left(x-t^{2}\right) \cdot Y_{3}^{2}\right)=y
$$

over the elliptic curve

$$
y^{2}=x(x-t)\left(x-t^{2}\right)
$$

This curve has type $I_{2}^{*}$, the special fibre is a tree with 7 components, a chaine of three lines with multiplicity 2 , say
$E, F, G$, two curves of multiplicity 1 meeting $E$, and two curves of multiplicity 1 meeting $G$.

Ik heb het einde van mijn lezing bereikt, dank u

