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The classical set-up

K number field, Ω the set of place of K , Kv completion of K at
the place v

Br Kv ↪→ Q/Z, isomorphism if v finite place

The reciprocity law in class field theory
There is a complex

0→ Br K → ⊕v∈ΩBr Kv → Q/Z→ 0

which as a matter of fact is an exact sequence.



G a connected linear algebraic group over K

X1(K ,G ) := Ker[H1(K ,G )→
∏
v∈Ω

H1(Kv ,G )]

This is the set of isomorphism classess of principal homogeneous
spaces (torsors) E/K under G with E (Kv ) 6= for all v ∈ Ω

Theorem (Kneser, Harder, Chernousov)
(i) If G is semisimple and simply connected, then X1(K ,G ) = 0 :
the Hasse principle holds for torsors under G .
(ii) If Z/K is a projective variety which is a homogeneous space of
a connected linear algebraic group, the Hasse principle holds for
rational points on Z.



Brauer-Manin pairing

X/K smooth, projective, geometrically connected. Let
X (AK ) =

∏
v X (Kv ). Let X (AK )Br X be the left kernel of the

pairing
X (AK )× (Br X/Br K )→ Q/Z

({Pv},A) 7→
∑
v∈Ω

A(Pv ) ∈ Q/Z

Reciprocity obstruction to the local-global principle (Manin 1970) :
The reciprocity law implies

X (K ) ⊂ X (AK )Br X ⊂ X (AK )



Theorem (Sansuc, 1981)
E/K torsor under G/K connected linear, E ⊂ X a smooth
compactification. Then X (K ) is dense in X (AK )Br X .

Corollary (Sansuc) In each of the following cases :
(i) G is an adjoint group
(ii) G is absolutely almost simple
(iii) The underlying variety of G is K -rational
we have X1(K ,G ) = 0 and weak approximation holds for G .

Indeed, under these assumtions, Br X = Br K .



Tchebotarev’s theorem yields X1(K ,Z/n) = 0. However :

There exists G = T a K -torus with X1(K ,T ) 6= 0 (Hasse)
There exists µ a finite Galois module with X1(K , µ) 6= 0
There exists µ a finite Galois module with X2(K , µ) 6= 0
There exists a semisimple K -group G with X1(K ,G ) 6= 0 (Serre)

Sansuc 1981 : The examples with T et G may be interpreted in
terms of the Brauer-Manin obstruction.



Set-up for this talk

X regular connected scheme of dimension 2
K field of rational functions on X
R local henselian integral domain, k its residue field
p : X → SpecR projective, surjective morphism

local case dimR = 2, p : X → SpecR birational. 0 ∈ SpecR
closed point, X0/k special fibre.
Example : R = k[[x , y ]], X blow-up of SpecR at 0.

semi-global case R discrete valuation ring, F field of fractions of
R, generic fibrre Xη/F smooth, projective, geometrically connected
curve
Example : K = k((t))(x), X = P1

k[[t] or blow-up at points of the
special fibre.



Ω set of discrete, rank one, valuations on K , Tv henselization of T
at v , Kv field of fractions of Tv . The valuations are centered on
X , for v ∈ Ω we have R ⊂ Tv .

Theorem (Grothendieck, Artin 1968; ...) Both in the local and in
the semi-global case,

Br K ↪→
∏
v∈Ω

Br Kv .

There is no such theorem in a global situation. Let Y be a smooth
projective surface over the complex field and K = C(Y ) be its
function field. Then

Ker [Br K ↪→
∏
v∈Ω

Br Kv ] = Br (Y ),

and it is easy to produce examples where Br (Y ) is infinite.



Let us go back once and for all to the local or semi-global situation.

G a linear algebraic group over K .

X1(K ,G ) := Ker[H1(K ,G )→
∏
v∈Ω

H1(Kv ,G )]

Question. Let G/K be a connected linear algebraic group. Do we
have X1(K ,G ) = 0 ?

Question. Let µ/K be a finite Galois module. For i = 1, 2..., do we
have Xi (K , µ) = 0 ?



The local case, k = k

• G/K connected linear. If G is simply connecred, or adjoint, or
K -rational, then X1(K ,G ) = 0 (CT, Gille, Parimala 2004 for G
semisimple; Borovoi, Kunyavskĭı 2004)

•X1(K ,Z/2) 6= 0 possible (Jaworski 2001)

The question X2(K , µ) = 0 ? was already mentioned in CTGiPa
2004.



The semi-global case

The work of Harbater, Hartmann and Krashen (2009-present),
based on a new theory of field patching (Harbater, Hartmann 2007)



X regular connected scheme of dimension 2, K its field of functions
R a complete DVR, t a uniformizing parameter, residue field k
nearly arbitrary
p : X → SpecR a projective flat morphism.
X0/k the special fibre.
A finite set T of points P ∈ X0, including all singular points of the
reduced special fibre.
X0 \ T = ∪i∈IUi with Ui ⊂ X0 Zariski open
Given an open U ⊂ X0, one defines RU to be the completion along
t of the ring of rational functions on X which are defined at each
point of U. This is an integral domain, one lets KU be its fraction
field.
Given a point P ∈ T , one lets KP denote the field of fractions of
the completed local ring of P on X .



Theorem (Harbater, Hartmann, Krashen 2009)
Let notation be as above.
Let G/K be a connected linear algebraic group. Let E be a
homogeneous space of G such that for any field L containing K,
the group G (L) acts transitively on E (L).
If G is K -rational, i.e. if its function field is purely transcendental
over K , then the following local-global principle holds :
If each E (KU) and each E (KP) is not empty, then E (K ) is not
empty.

The transitivity hypothesis is satisfied in the following two cases :
(i) E is a principal homogeneous space (torsor) of G
(ii) E/K is a projective variety.



In a number of cases, one may pass from the local-global theorems
with respect to the KU ’s and KP ’s to local-global theorems with
respect to the completions Kv with respect to the discrete
valuations of rank one on K .



• Local-global principle for isotropy of quadratic forms of rank at
least 3 (CT-Parimala-Suresh 2009)

• Theorem (Harbater, Hartmann, Krashen 2012)
Let notation be as above. Assume R is equicharacteristic. Let
m > 0 be an integer invertible in R.
Then for any positive integer n > 1, the natural map

Hn(K , µ⊗n−1
m )→

∏
v∈Ω

Hn(Kv , µ
⊗n−1
m )

is injective. (For n > 3, the proof uses the Bloch-Kato conjecture,
now a theorem of Rost and Voevodsky.)

• G/K connected, linear, K -rational, R complete DVR, k = k ,
then X1(K ,G ) = 0 (Harbater, Hartmann, Krashen 2012, via
CT-Gille-Parimala 2004)



However
•X1(K ,Z/2) 6= 0 possible in the semi-global case.
In other words, an element in K may be a square in each
completion Kv without being a square in K .

This is a reinterpretation (CT, Parimala, Suresh 2009) of a
computation by Shuji Saito 1985.



Main theorem of the talk (CT, Parimala, Suresh, jan. 2013)

Theorem
Let k = C. Over K = C((x))(t), and over K = C((x , y)),

(a) there exists a connected, linear algebraic K -group G with
X1(K ,G ) 6= 0;

(b) there exists a finite Galois module µ/K with X2(K , µ) 6= 0.

For (a), we have examples with G a K -torus and with G a
semi-simple K -group.



(Known) reduction steps

By Weil restriction of scalars, it is enough to prove X1(K ,G ) 6= 0
and X2(K , µ) 6= 0 for K the field of functions of a suitable curve
over C((t)) and for a suitable finite extension of C((x , y)).

It is enough to produce an example with T a K -torus, indeed an
example on one of the following lines generates an example on the
following line (over a number field, the analogue occurs in Serre’s
book Cohomologie galoisienne)

• An example of a K -torus T with X1(K ,T ) 6= 0
• An example of a finite Galois module µ with X2(K , µ) 6= 0
• An example of a connected semisimple group G/K with
X1(K ,G ) 6= 0.



Which obstruction to the local-global principle ?

Local or semi-global situation, X a regular surface, n ∈ O×X , we
assume Z/n ' µn.
Reciprocity law : Bloch-Ogus complex

0→ H2(K ,Z/n)
{∂γ}−→⊕γ∈X (1) H1(κ(γ),Z/n)

{∂γ,x}−→ ⊕x∈X (2) Z/n→ 0

The homology of this complex (under the Gersten conjecture) :
• degree 0 : Br X [n] ' Br X0[n], zero if k = k ,
• degree 1 : subgroup of H3(X ,Z/n) ' H3(X0,Z/n), zero if
k = k,
• degree 2 : CH0(X )/n zero, indeed CH0(X ) = 0

“Analogue” of the class field theory exact sequence



Reciprocity obstruction

Z/K smooth, projective, geometrically connected
α ∈ Br Z [n], γ ∈ X (1)

The composite map

σα : Z (Kγ)
α−→Br Kγ [n]

∂γ−→H1(κ(γ),Z/n)

vanishes for almost all γ ∈ X (1).
The composite map

ρα :
∏

γ∈X (1)

Z (Kγ)
σα−→⊕γ H1(κ(γ),Z/n)

{∂γ,x}−→ ⊕x∈X (2) Z/n

vanishes on the diagonal image of Z (K ) in
∏
γ∈X (1) Z (Kγ).



Let
[
∏
γ

Z (Kγ)]Br Z =
⋂

α∈Br Z

Kerρα.

Reciprocity obstruction

Z (K ) ⊂ [
∏
γ

Z (Kγ)]Br Z ⊂
∏
γ

Z (Kγ).

This is an analogue of the Brauer-Manin obstruction over number
fields.

In the local and in the semi-global case, we shall produce X/R, a
K -torus T , a torsor E of T , a smooth k-compactification Z of E
with

∏
γ Z (Kγ) 6= ∅ and [

∏
γ Z (Kγ)]Br Z = ∅, hence Z (K ) = ∅.



Let a, b, c ∈ K×.
Let T be the K -torus T with equation

(x2
1 − ay 2

1 )(x2
2 − by 2

2 )(x2
3 − aby 2

3 ) = 1.

Let E/k be the torsor under T defined by

(x2
1 − ay 2

1 )(x2
2 − by 2

2 )(x2
3 − aby 2

3 ) = c .

Let Z be a smooth K -compactification of E . Then
Br Z/Br K ⊂ Z/2, a generator being given by the class of the
quaternion algebra α = (x2

1 − ay 2
1 , b). As E (Kγ) is dense in Z (Kγ),

it is enough to evaluation α on E (Kγ).



For {Pγ} ∈
∏
γ E (Kγ), we must evaluate∑

x∈γ
∂γ,x∂γ(α(Pγ)) ∈ ⊕x∈X (2)Z/2.

We now assume k = k . The residue fields κ(γ) then have
cohomological dimension 1, the fields Kγ are similar to “local
fields”.
Hensel’s lemma gives a criterion for E (Kγ) 6= ∅. For each γ ∈ X (1),
the image of the composite map (evaluation of α, then residue)

E (Kγ)→ Br Kγ → κ(γ)×/κ(γ)×2

is an explicit set consisting of at most 2 elements.



Proposition. Let R be a regular semilocal ring with 3 maximal
ideals mj , j = 1, 2, 3, with m1 = (π2, π3) etc. The elements πi
vanish on the sides of a triangle the vertices of which are the mj ’s.
Set a = π2π3, b = π3π1, c = π1π2π3. Let E be defined by

(x2
1 − ay 2

1 )(x2
2 − by 2

2 )(x2
3 − aby 2

3 ) = c .

Then E (K ) = ∅.
Proof. Let Ri be the henselisation of R at πi , let Ki be its fraction
field and κi its residue field.
One computes the composite map∏

i

E (Ki )
α−→⊕i Br Ki [2]

{∂i}−→⊕i κ
×
i /κ

×2
i

{∂i,j}−→ ⊕3
j=1 Z/2.



The image of E (K1) consists of (0, 0, 1) and (0, 1, 0)
The image of E (K2) consists of (0, 0, 0) and (1, 0, 1)
The image of E (K3) consists of (0, 0, 0) and (1, 1, 0)
None of the vertical sums of triplets equals (0, 0, 0).
For the other points γ ∈ X (1), the image of E (Kγ)→ κ×γ /κ

×2
γ is

equal to 1, hence does not contribute to the sums∑
mj∈γ

∂γ,mj∂γ(α(Pγ)) ∈ ⊕jZ/2.

Thus (0, 0, 0) does not lie in the image of the composite map∏
i

E (Ki )
α−→⊕i Br Ki [2]

{∂i}−→⊕i κ
×
i /κ

×2
i

{∂i,j}−→ ⊕j Z/2

Reciprocity on X = SpecR then implies E (K ) = ∅.



“Semi-global” example

Let R = C[[t]]. Let X/R be the regular proper minimal model
(Kodaira, Néron) of the elliptic curve with affine equation

y 2 = x3 + x2 + t3.

Its special fibre X0 consists of 3 lines Li building up a triangle.
One then chooses elements πi ∈ K× with div(πi ) = Li + Di in a
reasonable fashion, so as to ensure that none of the Di ’s contains a
vertex of the triangle and that at any point x ∈ X (2) one at least
of the πi ’s is invertible.
Set a = π2π3, b = π3π1, c = π1π2π3. Let E be given by the
equation

(x2
1 − ay 2

1 )(x2
2 − by 2

2 )(x2
3 − aby 2

3 ) = c.

Then E (Kv ) 6= ∅ for each v ∈ Ω, but E (K ) = ∅.



“Local” example

Let
R = C[[x , y , z ]]/(xyz + x4 + y 4 + z4)

and let X → SpecR be a minimal desingularization.
Then take E/K to be given by the equation

(X 2
1 − yzY 2

1 )(X 2
2 − xzY 2

2 )(X 2
3 − xyZ 2

3 ) = xyz(x + y + z).



With some more effort, one produces a semi-global example
• R = F[[t]], F a finite field
or
• R the ring of integers of a p-adic field
and X a proper regular R-curve, K its function field, and E a
torsor of a K -torus of the above type.

Harari and Szamuely have very recently produced a duality theory
for tori over such fields K which only involves the discrete valuation
rings corresponding to the closed points of the generic fibre of
X → Spec (R). They use the group H3

nr (K (X )/K ,Q/Z(2)) rather
than the Brauer group H2

nr (K (X )/K ,Q/Z(1)).



Both in the local and the semi-global case, the following problems
remain open.
In the special case where the residue field k is a finite field, they
were proposed as conjectures by CT, Parimala, Suresh 2009.

Problem. Let G/K be a semisimple connected K-group. If G is
simply connected, is X1(K ,G ) = 0 ?

When the residue field k is finite, this has been shown for many
types of groups (Yong Hu ; R. Preeti). There is some relation with
the Rost invariant and a local-global principle of K. Kato.

Problem. Does the local-global principle hold for projective
homogeneous spaces of connected linear algebraic K-groupes ?

For quadrics, this was proved by CT, Parimala, Suresh 2009, as a
consequence of the results of Harbater, Hartmann, Krashen.



In analogy with results by Sansuc and by Borovoi over global fields,
one may further ask if the obstruction to the local-global principle
used in our examples is the only obstruction to the local-global
principle.

Here is one special case where we can prove such a result.



Theorem. Let us consider either the local or the semi-global set up
p : X → SpecR. Assume R is a k-algebra, char(k) = 0, and
k = k. Let a, b, c ∈ K×. Let E be the K -variety defined by

(X 2
1 − aY 2

1 )(X 2
2 − bY 2

2 )(X 2
3 − abZ 2

3 ) = c

and let Z be a smooth K -compactification of E . Let
α = (X 2

1 − aY 2
1 , b) ∈ Br Z . Assume that the union of the supports

of the divisors of a, b and c on X is a divisor with normal crossings.
If there exists a family {Pγ} ∈

∏
γ E (Kγ) such that the family

{∂γ(α(Pγ))} is in the kernel of

⊕γ∈X (1)H1(κ(γ),Z/2)
{∂γ,x}−→ ⊕x∈X (2) Z/2,

then E (K ) 6= ∅.



Proof (sketch)

Since k = k , the complex

0→ Br K [2]
{∂γ}−→⊕γ∈X (1) H1(κ(γ),Z/2)

{∂γ,x}−→ ⊕x∈X (2) Z/2→ 0

is exact, and ∂γ : Br Kγ [2]
'→ H1(κ(γ),Z/2) for each γ. There

thus exists β ∈ Br K [2] with image α(Pγ) ∈ Br Kγ for each
γ ∈ X (1). One shows that β vanishes in Br K [

√
b]. [Idea : this is

obvious for α = (X 2
1 − aY 2

1 , b), hence for all α(Pγ).]
Therefore β = (b, ρ), with some ρ ∈ K×.



This enables us to perform a descente :
The K -variety W with equations

X 2
1 − aY 2

1 = ρ.(U2 − bV 2) 6= 0

(X 2
1 − aY 2

1 )(X 2
2 − bY 2

2 ) = c .(X 2
3 − abY 2

3 ) 6= 0,

admits a K -morphism W → E , and it has rational points in all
Kγ ’s.
A change of variables (U +

√
bV )(X2 +

√
bY2) = X4 +

√
bY4)

transforms this system of equations into the system

X 2
1 − aY 2

1 = ρ.(U2 − bV 2) 6= 0

ρ.(X 2
4 − bY 2

4 ) = c .(X 2
3 − abY 2

3 ) 6= 0,



This is the product of two K -varieties, each of which a pointed
cone over a smooth 3-dimensional quadrics over K , each being
given by a diagonal quadratic form the coefficients of which have
“normal crossings” on X .
A theorem of CT-Parimala-Suresh 2009 then guarantees that these
quadrics satisfy the local-global principle. They thus both have
rational K -points, hence also E .



Corollary.
Let us consider either the local or the semi-global set up
p : X → SpecR. Assume R is a k-algebra, char(k) = 0, and
k = k. Let a, b, c ∈ K×. Let E be the K -variety defined by

(X 2
1 − aY 2

1 )(X 2
2 − bY 2

2 )(X 2
3 − abZ 2

3 ) = c

and let Z be a smooth K -compactification of E . Assume that the
union of the supports of the divisors of a, b and c on X is a divisor
with normal crossings.
If the diagram of components of the special fibre is a tree, and if∏
γ E (Kγ) 6= ∅, then E (K ) 6= ∅.



This explains why our many earlier attempts at producing
semi-global examples with generic fibre a projective line failed, as
also failed an attack on the equation

(X 2
1 − xY 2

1 )(X 2
2 − (x − t)Y 2

2 )(X 2
3 − (x − t2).Y 2

3 ) = y

over the elliptic curve

y 2 = x(x − t)(x − t2).

This curve has type I ∗2 , the special fibre is a tree with 7
components, a chaine of three lines with multiplicity 2, say
E ,F ,G , two curves of multiplicity 1 meeting E , and two curves of
multiplicity 1 meeting G .



Ik heb het einde van mijn lezing bereikt, dank u


