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Abstract

We prove that the i-th unramified cohomology group of the generic diagonal
hypersurface in the projective space of dimension n > i+ 1 is trivial for ¢ < 3.

1 Introduction

Let k be a field with separable closure ks and absolute Galois group I' = Gal(ks/k).
Let p be a finite commutative group k-scheme of order not divisible by char(k).
The datum of such a group k-scheme g is equivalent to the datum of the finite
[-module p(ks) of order not divisible by char(k). For an integer m > 2 let u,, be
the group k-scheme of m-th roots of unity. If NV is a positive integer not divisible
by char(k) such that Ny = 0, then pu(—1) denotes the commutative group k-scheme
Homy,_gps (e, pt). The Galois module p(—1)(ks) is Homg(un (ks), p1(ks)) with the
natural Galois action.

Let X be a smooth integral variety over k. We denote by X the set of points
of X of codimension n. In this paper, the unramified cohomology group H’ (X, ),
where 7 is a positive integer, is defined as the intersection of kernels of the residue
maps

O H'(K(X), 1) — H'™ (k(2), p(=1)),

for all z € XM, For equivalent definitions, see [CT95, Thm. 4.1.1]. Restriction to
the generic point of X gives rise to a natural map

Hzet(X7 lu) — H;r(Xv ILL)

Purity for étale cohomology implies that it is an isomorphism for ¢ = 1 and a
surjection for i = 2, see [CT95, §3.4]. In the case i = 2 with yu = p,,, where m is
not divisible by char(k), this gives a canonical isomorphism

Br(X)[m]——H, (X, ),
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see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X/k is smooth, proper, and integral,
then H' (X, 1) does not depend on the choice of X in its birational equivalence
class, see [CT95, Prop. 4.1.5] and [R96, Remark (5.2), Cor. (12.10)].

Let n > 2 and let K = k(ay,...,a,) be the field of rational functions in the
variables ay, ..., a,. Let X C P% be the hypersurface with equation

d d d
Ty + a2y + ... +ayz, =0,

where d is not divisible by char(k). In this paper, for i = 1,2,3 and n > i + 1, we
prove that the natural map

HI (K, 1) — Hi, (X, 1)

is an isomorphism, see Theorem 4.8. In the case when ¢ = 2 and pu = p,,, with m > 2,
this gives that the natural map of Brauer groups Br(K) — Br(Xg) induces an
isomorphism of subgroups of elements of order not divisible by char(k), see Corollary
4.9. In the case when k has characteristic zero, this result was obtained in [GS,
Thm. 1.5] by a completely different method, using the topology of the Fermat surface
as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which applies
inter alia to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do not use the
Gersten conjecture for étale cohomology [BOT4].

Let us describe the structure of this note. In Section 2 we recall some basic facts
about unramified cohomology including a functoriality property of the Bloch—Ogus
complex with respect to faithfully flat morphisms with integral fibres. In Section
3 we show that for smooth complete intersections X C P} there are canonical
isomorphisms H'(k, u) — H (X, p) for ¢ = 1,2 when dim(X) > i + 1. Generic
diagonal hypersurfaces are studied in Section 4. The easy proof of the main theorem
in the case ¢ = 1 is given in Section 4.1. This is used in the proof for i = 2,3 in
Section 4.3, after some preparations in Section 4.2. Finally, in Section 5 we use a
similar idea to give a short proof of the triviality of the Brauer group of certain
surfaces in Pz( 0 defined by a pair of polynomials with coefficients in k. See Theorem
5.1, which was proved in [GS] in the case when char(k) = 0.

Our proof in this note develops a geometric idea suggested by Mathieu Florence
during the second author’s talk at the seminar “Variétés rationnelles” in November
2022. The authors are very grateful to Mathieu Florence for his suggestion.

2 Functoriality of the Bloch—Ogus complex

For any smooth integral variety X over k and any ¢+ > 2 there is a complex

0 — H(k(X), 1) 2 @ H 7 k() n(-1)) 25 @D H2(k(y), m(—2)),

zex @) yeX ()



which we call the Bloch-Ogus complex. The maps in this complex are defined in
[R96, (2.1.0)]. (The map 0, is the residue defined for discrete valuation rings by
Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the resulting sequence is a
complex is given in [R96, Section 2]. If y € X?) is a regular point of the closure of
z € XU then the map

Oyt 0 (k(x), p(=1)) = H*(k(y), u(—2))

is the residue map for the local ring of y in the closure of x, which is a discrete
valuation ring.

The unramified cohomology group H (X, u1) is the homology group of this com-
plex at the term H*(k(X), ), i.e., the intersection of Ker(d,) for all z € X,

Let p: X — Y be a faithfully flat morphism of smooth integral k-varieties with
integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there is a chain map of
complexes

0 —=H'(k(X), p) —= Dpexo H (k(2), 1(=1)) —= Bexer H2(k(2), p(-2))

| T |

0——H'(k(Y), ) —=DB,cy vy HH(E(y), u(—1)) — DB, ey H?(k(y), 1(—-2))

The middle vertical map is the natural one if p(z) = y, otherwise it is zero, and
similarly for the right-hand vertical map.

The morphism X — Y is called an affine bundle if Zariski locally on Y, it is
isomorphic to Y x, A" — Y with affine transition morphisms. In this case the
vertical maps in the above diagram induce isomorphisms on the left-hand and middle
homology groups, see [R96, Prop. (8.6)]. In particular, we have an isomorphism

H;, (X, 1) = H (Y, ). (1)

Combined with [R96, Cor. (12.10)], this implies that H! (X, i) is a stable birational
invariant of smooth and proper integral k-varieties.

3 Low degree unramified cohomology of complete
intersections

For a variety X over a field k we write X® = X X, k;. By a k-group of multiplicative
type we understand a group k-scheme M such that M?® is a group kg-subscheme of
(G k)", for some n > 0. Such a k-group M is smooth if and only if char(k) does
not divide the order of the torsion subgroup of the finitely generated abelian group
Homy, _gps(M?®, Gy i, ). A finite commutative group k-scheme of order not divisible
by char(k) is a k-group of multiplicative type.
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Proposition 3.1 Let X be a smooth, projective, geometrically integral variety over
a field k such that the natural map Pic(X) — Pic(X®) is an isomorphism of finitely
generated free abelian groups. Then for any smooth k-group of multiplicative type
M the natural map

H?(k, M) — H*(k(X), M)
18 1njective.
Proof. We have a commutative diagram with exact rows and natural vertical maps

0 —= kX — ky(X ) — Div(X®) —= Pic(X*) —=0

I T

] @
0 — kX — k(X)* — Div(X) —= Pic(X) —=0

The abelian group Pic(X) is free, so the homomorphism Div(X) — Pic(X) has a sec-
tion. Then our assumption implies that the map of I'-modules Div(X?®) — Pic(X?®)
has a section. By definition, the elementary obstruction e(X) € ExtZ(Pic(X?®), kX)
is the class of the 2-extension of I-modules given by the upper row of (2). Thus we
have e(X) = 0. The result now follows from [CTS87, Prop. 2.2.5]. O

For injectivity results for the map H?(k, M) — H?(k(X), M) in the case of integral,
smooth k-varieties with a k-point see [CT95, Lemma 2.1.5] and [CT95, Thm. 3.8.1].
Note that the map H?(k, G,, 1) — H%(k(X), G, 1) is not injective when X is a conic
without a k-point.

Lemma 3.2 Let X C P} be a complete intersection. Let pu be a finite commutative
group k-scheme of order not divisible by char(k).
(a) If dim(X) > 2, then the natural map H' (k, u) — H (X, u) is an isomorphism.
(b) If dim(X) > 3, then the natural map H% (P?, n) — HZ(X,u) is an isomor-
phism.

Proof. A combination of the weak Lefschetz theorem with Poincaré duality gives
that the map HY (P}, n) — Hi (X5, i) is an isomorphism for ¢ < dim(X), see [K04,
Cor. B.6]. In particular, if dim(X) > 2, then H} (X® x) = 0. Then the spectral
sequence
B = HP(k, HY, (X7, 1)) = HE(X, )

implies the first claim.

If dim(X) > 3, then HZ (P}, ;) — HZ(X®, ) is an isomorphism of I-modules.
The above spectral sequence gives rise to the following commutative diagram with
exact rows

00— HQ(kv :u) - Hg,t(X7 N) - Hgt<Xs, :u)r - Hg(kv N)

I

00— H2(k7 :u) - Hegt(lp)ga :u) - H?et(]P”IzS? M)F - Hg(ka M)
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By the 5-lemma we deduce that HZ (P}, 1) — HZ (X, p) is an isomorphism. O

Proposition 3.3 Let X C P} be a smooth complete intersection of dimension
dim(X) > 3. Let u be a finite commutative group k-scheme of order not divisi-
ble by char(k). Then the natural map

H2(k, p1) — Hp (X, )
s an isomorphism.

Proof. The map Z = Pic(Py) — Pic(X®) is an isomorphism by [H70, Ch. IV,
Cor. 3.2], hence Pic(X) — Pic(X®) is an isomorphism. By Proposition 3.1 it is thus
enough to prove that the map H?(k, u) — H2 (X, u) is surjective.

Choose an affine subspace A} C P} such that X N A7 # (. Our map is the
composition of maps in the top row of the following natural commutative diagram:

o

HZ (X, 1)

H2(k:7:u) —>~H§t(PZ,M) Hzt(Xv :u)

S |

H2(k7 :U“) - Hgt(Aza :u) - He%t(X N AZ7 :U’) - HZ(k(X)v :u)

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and the right-
hand map is surjective, as was recalled in the introduction. Thus any a € H2 (X, i)
can be lifted to an element b € HZ (P?, 11). The image of b in H% (A}, 1) comes from
a unique element ¢ € H?(k, ). The commutativity of the diagram gives that the
image of ¢ in H?(k(X), u) is equal to the image of a. But the right-hand vertical
map is injective, hence c is a desired lifting of a to H?(k, u). O

4 Generic diagonal hypersurfaces

Let II; (respectively, Il;) be the projective space with homogeneous coordinates
xo, ..., T, (respectively, to,...,t,). Write K = k(Ily). Let X C II; x I, be the
hypersurface

toxd + ..+ tart =0, (3)
where d is coprime to the characteristic exponent of k. Let p be the projection
X — II;, and let f be the projection X — II;. The generic fibre Xg of f is a
smooth diagonal hypersurface of degree d in the projective space (II;)x = PpL.

Lemma 4.1 With notation as above, the following statements hold.

(i) The fibres of f at codimension 1 points of Il are integral if n > 2 and geo-
metrically integral if n > 3.

(ii) The fibres of f at codimension 2 points of Iy are integral if n > 3 and
geometrically integral if n > 4.

Proof. One only needs to check this for the singular fibres, which are the fibres above
the generic points of the projective subspaces given by t; =0 or by t; =¢; =0. U
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4.1 Unramified cohomology in degree 1

Lemma 4.2 Let f: X — Y be a proper, dominant morphism of smooth and geomet-
rically integral varieties over a field k. Write K = k(Y') and let X be the generic
fibre of f. Assume that the fibres of f over the points of Y of codimension 1 are
integral and X is geometrically integral. Let m > 2 be an integer. Then the map
f*: Pic(Y)/m — Pic(X)/m is injective if and only if Pic(X)[m] — Pic(Xg)[m] is
surjective.

Proof. In our situation we have an exact sequence
0 — Pic(Y) -5 Pic(X) — Pic(Xx) — 0. (4)

Exactness at Pic(Xg): since X is smooth, the Zariski closure in X of a Cartier
divisor in Xg is a Cartier divisor in X. Exactness at Pic(X): if D € Div(X)
restricts to a principal divisor in Xy, then D is the sum of a principal divisor in X
and a divisor D’ contained in the fibres of f. Since the fibres of f over the points
of Y of codimension 1 are integral, we have D" € f*Div(Y’). Exactness at Pic(Y):
if D € Div(Y') is such that f*D = divx(¢), where ¢ € k(X)*, then the restriction
of ¢ to Xk is a regular function. Since X is proper and integral, ¢ is contained in
the algebraic closure of K in K(X), which is K itself because X is geometrically
integral, see [P17, Prop. 2.2.22]. Thus we have ¢ € K*. Then D—divy(¢) € Div(Y)
goes to zero in Div(X), so D = divy(¢) is a principal divisor in Y.
From (4) we get a commutative diagram

0 —— Pic(Y) = Pic(X) — Pic(Xx) —=0

[m] T [m] T [m] T

0 —— Pic(Y) —> Pic(X) — Pic(Xx) —=0
Applying the snake lemma to this diagram, we prove the lemma. O

Proposition 4.3 Letm > 2 be an integer. Let k be a field of characteristic exponent
coprime to m. Let f: X — Y be a proper, dominant morphism of smooth and
geometrically integral varieties over k such that

(i) the fibres of f over the codimension 1 points of Y are integral and the generic
fibre Xy, where K = k(Y), is geometrically integral;

(ii) Pic(X)[m] = 0;

(iii) f*: Pic(Y)/m — Pic(X)/m is injective.
Then HY (K, pi) — Hi (Xke, ftm) @8 an isomorphism.

Proof. The Kummer sequence gives rise to an exact sequence
0 — K*/K*™ — HL, (Xx, tm) — Pic(Xg)[m] — 0.
By Lemma 4.2 we have Pic(Xg)[m] = 0. O



Theorem 4.4 Let i be a finite commutative group k-scheme of order not divisible
by char(k). Let n > 2. Let Ily, Ily, X, K = k(Ily) be as above. Then the map
HY(K, p) — HE (Xk, 1) is an isomorphism.

Proof. Let us first prove the statement for u = p,, with m not divisible by char(k).
Let us check the assumptions of Proposition 4.3 for f: X — Il,. By Lemma 4.1,
assumption (i) is satisfied. The projection p: X — Il is a projective bundle over
IT;. Therefore we have a commutative diagram with exact rows

0 — Pic(IL) Pic(X) Pic(Py ) —0

Ly

0 — Pic(IT;) — Pic(IT; x ITy) — Pic((ITy)1,)) —> 0

The right-hand vertical map is induced by the inclusion of a projective hyperplane
in a projective space, so it is an isomorphism. Hence (ii) holds and the restriction
map Pic(Il; x IIy) — Pic(X) is an isomorphism. It follows that Pic(Ily) — Pic(X)
is split injective, hence (iii) holds.

Let E/k be a finite Galois extension, with Galois group G, such that pgp = p ¥ E
is isomorphic to a finite product of groups p,, g where m is coprime to char(k). Let
L be the compositum of the linearly disjoint field extensions K/k and E/k. We
have pu(E) = u(L) = H% (X1, 1). The Hochschild-Serre spectral sequence gives rise
to the following commutative diagram with exact rows

0—=HY(G, p(L)) —= Hg (Xx, p) —=Hg (Xp, p)¥ —=H2(G, (L))

L

0—>H1(G7M(L>)—>H1(K7ﬂ) Hl(LaM>G—>H2(G7M(L))

Since the result is already proved for p,,, all vertical maps, except possibly the map
H' (K, p) — H} (Xk, ), are isomorphisms. Hence so is this map. O

Remark 4.5 The geometric argument based on the projective bundle structure of
X C II; x Iy over II; in the proof of Theorem 4.4 is needed only in the case n = 2,
that is, when the hypersurface Xy C P% is a smooth curve of degree d. When n > 3
and X C P% is an arbitrary smooth hypersurface, we have H' (K, ) & H (X, p)
by Lemma 3.2 (a).

4.2 Basic diagram

We now assume that n > 3 and © > 2, keeping the assumption that p is a finite
commutative group k-scheme of order not divisible by char(k). Recall the Bloch—-
Ogus complex from Section 2:

HI(k(X), 1) 2 @D B k(). u(-1) = @D H2(k(x). u(~2).
)

zeX ) xeX (2



Since the fibres X, = f~!(y) over y € Hgl) are integral (which holds for n > 2, see
Lemma 4.1) we obtain a complex

HE (Xio ) 2 @D B k(X)) u(=1) = @D H72(k(x), u(~2)).

yEHél) zeX ()

To simplify notation, in what follows we do not write the coefficients of cohomol-
ogy groups. One should bear in mind that there is a change of twist when the
codimension of points increases.

Since this is a complex, the image of 9, is unramified over the smooth locus of
X, If X, is smooth we write X; = X,. In the opposite case, X, is the projective
cone over the hyperplane section of X given by some ¢; = 0, and then we denote
by X, this hyperplane section, which is geometrically integral and smooth since
n > 3. In this case, the smooth locus X, o C X, is an affine bundle over Xl'/, SO we
have Hi ' (X, an) = Hiy'(X]) by (1). Thus Im(9,) is contained in H{*(X]). Since
the fibres X, over y € HgQ) are integral (note that they need not be geometrically
integral if n = 3), from the diagram in Section 2 we obtain a commutative diagram
of complexes

0 — Hy, (X5 /H () — @),y Hiz (X)) —— @), e H2((X,))

| |

0 ——= HI(K)/H () —— @,y H ™ (k(y)) —— D), e B2 (k(y))

where the vertical maps are induced by f. Note that since X is a projective bundle
over the projective space II;, the map H'(k) — H'(k(X)) is injective. So is the map
H'(k) — H'(K) = H'(k(IL,)).

Let Y = A} C II, be the affine space given by ¢y, # 0. From the previous diagram
we then get a commutative diagram of complexes

0 ——H;, (Xg)/H (k) —— D ey BN (X]) —— D ey ) H2(E(X,))

| T | R

0 —— H'(K)/H'(k) —— @D,y H (k(y)) — By H(k(y))

Since Y = A7, the bottom complex is exact by [R96, Prop. 8.6].

The homology group of the top complex at the first term is H' .(Xy)/H'(k), where
Xy = f71(Y) C X. Let us show that this group is zero. The fibres of p: X — II;
are hyperplanes in II,. The map p: Xy — U is an affine bundle, and p(Xy) = U,
where U = PP\ {(1:0:...:0)}. By (1) the map p*: H (U) — H' (Xy) is an
isomorphism. Since U is the complement to a k-point in II; = P}, and n > 2, we
have

Hz(kjvp“) = H;r(HDN) = H;r(Ua :u)

The following lemma is proved by a straightforward diagram chase.
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Lemma 4.6 Suppose that we have a commutative diagram of abelian groups

At . p_ . (¢

R

0 D E F

where 1 15 injective, b is an isomorphism, c is injective, the top row is a complex,
and the bottom row is evact. Then a is an isomorphism.

From Lemma 4.6 we conclude:

Proposition 4.7 With notation as above, if the middle vertical map in diagram (5)
is an isomorphism and the right-hand vertical map is injective, then f*: H{(K, u) —
H' (Xf, p) is an isomorphism.

4.3 Unramified cohomology in degrees 2 and 3

The main result of this paper is the following

Theorem 4.8 Let 11y (respectively, 115) be the projective space with homogeneous
coordinates x, . . ., T, (respectively, to, ..., t,). Write K = k(Ily). Let X C II; x I,
be the hypersurface

toxd + ..+ tart = 0. (6)

where d is coprime to the characteristic exponent of k. Let f: X — 1l be the natural
projection, and let X be the generic fibre of f. Let u be a finite commutative group
k-scheme of order not divisible by char(k).

(i) If n > 3, then f*: H3(K,u) — H2 (Xg, 1) is an isomorphism.
(ii) If n >4, then f*: H3(K,p) — H3 (Xg, 1) is an isomorphism.

Proof. (i) Consider diagram (5) for ¢ = 2. Then the middle vertical map of the
diagram is an isomorphism. This follows from Theorem 4.4 when X, is singular,
which happens exactly when the codimension 1 point y is given by ¢; = 0 for some
i=1,...,n. (Note that if n = 3 we then need Theorem 4.4 in the case n = 2.) If
X, is smooth, the isomorphism follows from Lemma 3.2 (a). By Lemma 4.1, each
fibre X, at a codimension 2 point y is integral, hence the right hand vertical map is
injective. By Proposition 4.7, this proves (i).

(ii) Consider diagram (5) for i = 3. For y € YY) such that X, is singular, the
vertical map H?(k(y)), u(—1)) — HZ(X}, u(—1)) is an isomorphism by (i). For
y € YW such that X, is smooth, the map H2(k(y), u(—1)) — H2.(X,, u(-1)) is
an isomorphism by Proposition 3.3. For y € Hg) the fibre X, is geometrically
integral over k(y) by Lemma 4.1, hence k(y) is separably closed in k(X,). Thus the
restriction map H'(k(y), u(—2)) — H*(k(X,), #(—2)) is injective, so the right-hand
vertical map in the diagram is injective. By Proposition 4.7, this proves (ii). O
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Corollary 4.9 For n > 3, the map Br(K) — Br(Xg) induces an isomorphism of
subgroups of elements of order not divisible by char(k).

Proof. This follows from Theorem 4.8 (i) by taking p = p,, for each integer m not
divisible by char(k). O

Remark 4.10 Only the case n = 3 of this corollary requires the above proof. For
n > 4 and any smooth hypersurface in P", we have the general Proposition 3.3.

5 Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the surface
given by the equation (7) below over the field of rational functions K = k(7),
where 7 = A/pu, is naturally isomorphic to Br(K) away from p-primary torsion if
char(k) = p. The motivation for this comes from the recent paper [GS], where the
same result was proved in the case when char(k) = 0 (combine [GS, Thm. 1.1 (i)]
and [GS, Thm. 1.4]).

Theorem 5.1 Let k be a field. Let d be a positive integer. Let f(z,y) and g(z,t)
be products of d pairwise non-proportional linear forms. Let X C P} x; P be the
hypersurface given by

M(z,y) = pg(z,t), (7)

where (X : p) are homogeneous coordinates in Py and (z :y: 2 : t) are homogeneous
coordinates in P3. Let K = k(P}) and let Xx be the generic fibre of the projection
f: X — PL. Then the natural map Br(K) — Br(Xg) induces an isomorphism of
subgroups of elements of order not divisible by char(k).

Proof. The singular locus Xgine is contained in the union of fibres of f above A =0
and p = 0. The fibre above p = 0 is given by f(x,y) = 0. It is a union of d planes
in IP’% through the line + = y = 0. The intersection of Xg,, with the fibre above
i = 0 is the zero-dimensional scheme given by x = y = g(z,t) = 0. The situation
above A\ = 0 is entirely similar. Let Y = X \ X, be the smooth locus of X/k. The
projection p: X — P is a birational morphism which restricts to an isomorphism
Yy——V on the complement V to the curve in P} given by f(z,y) = g(z,t) = 0. We
have
Br(k) = Br(P;) = Br(V) = Br(Yy),

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one is by
purity for the Brauer group [CTS21, Thm. 3.7.6]. Since Y (k) # 0, we have Br(k) C
Br(Y) C Br(Yy ) where the second inclusion is by [CTS21, Thm. 3.5.5]. We conclude
that Br(Y') = Br(k).

10



Let m > 2 be an integer not divisible by char(k). If a closed fibre X, = f~1(M)
is smooth, then X, is a smooth surface in Pi( M) thus we have

He(Xar, Z/m) = H' (k(M), Z/m) (8)

by Lemma 3.2 (a). The smooth locus of the fibre of f above u = 0 is a disjoint
union of d affine planes A?. We have

He (AL, Z/m) = H' (k, Z/m) (9)

since char(k) does not divide m.
Without loss of generality we can write

d d
fay) =c]@-&y, g9t =]E-pt)
i=1 j=1

where ¢, € k* and &, p; € kfori,j =1,...,d. We note that for each pair (¢, j) the
map s;;: (A p) = (), (& 1:p;e )) is a section of the morphism f: X — P}.

Each section s;; gives a K-point of Xj. Thus the natural map Br(K) — Br(Xk)
is injective.

Let a € Br(Xk)[m]. Evaluating o at the K-point of X given by s1; gives an
element § € Br(K)[m|. We replace a by a — f.

Note that each section s;;(P;) meets every closed fibre of f at a smooth point.
The new element o € Br(Xg)[m] has trivial residue on the irreducible component
of the smooth locus of every fibre of f that s;;(IP}) intersects. Indeed, by (8) and
(9) this residue is constant, but specialises to zero at the intersection point with
s11(P}). In particular, a has trivial residues at the smooth fibres of f, as well as at
the affine plane given by x — &y = 0 in the fibre © = 0 and the affine plane given
by z — p1t = 0 in the fibre A = 0.

We now evaluate a at the K-point of X given by s ;, where j = 2,...,d. The
result is an element of Br(K') which is unramified everywhere except possibly at the
k-point of P} given by A = 0. By Faddeev reciprocity [GS17, Thm. 6.9.1], the residue
at that point must be zero, too. This implies that « is unramified at the smooth
locus of the fibre at A = 0. A similar argument using sections s;; for i = 2,...,d
shows that « is unramified at the smooth locus of the fibre at p = 0.

We see that the residue of o at every codimension 1 point of Y is zero. By the
purity for the Brauer group, a belongs to Br(Y). We have proved earlier that the
natural map Br(k) — Br(Y) is an isomorphism, hence a € Br(k). It follows that
Br(K)[m] — Br(Xk)[m] is an isomorphism. O
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