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Low degree unramified cohomology of
generic diagonal hypersurfaces

J.-L. CoLLIOT-THELENE AND A. N. SKOROBOGATOV

We prove that the i-th unramified cohomology group of the generic
diagonal hypersurface in the projective space of dimension n >
1+ 1 is trivial for ¢ < 3.

1. Introduction

Let k£ be a field with separable closure ks and absolute Galois group
I' = Gal(ks/k). Let u be a finite commutative group k-scheme of order not
divisible by char(k). The datum of such a group k-scheme p is equivalent
to the datum of the finite I-module u(ks) of order not divisible by char(k).
For an integer m > 2 let u,, be the group k-scheme of m-th roots of unity.
If N is a positive integer not divisible by char(k) such that Ny = 0, then
p(—1) denotes the commutative group k-scheme Homy_gps(pn, 1t). The Ga-
lois module pu(—1)(ks) is Homgz (un (ks), u(ks)) with the natural Galois action.

Let X be a smooth integral variety over k. We denote by X (") the set
of points of X of codimension n. In this paper, the unramified cohomology
group H: (X, 1), where i is a positive integer, is defined as the intersection
of kernels of the residue maps

0z H'(k(X), ) — H™ (k(2), (1)),

for all z € X(1). For equivalent definitions, see [CT95, Thm. 4.1.1]. Restric-
tion to the generic point of X gives rise to a natural map

Hiy (X, p) = H (X, p).

Purity for étale cohomology implies that it is an isomorphism for 7 = 1 and
a surjection for i = 2, see [CT95, §3.4]. In the case i = 2 with u = p,,, where
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m is not divisible by char(k), this gives a canonical isomorphism
Br(X)[m]-=Hz (X, ftm),

see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X is a smooth, proper, and
integral variety over k, then H! (X, ) does not depend on the choice of X
in its birational equivalence class, see [CT95, Prop. 4.1.5] and [R96, Remark
(5.2), Cor. (12.10)].

Let n > 2 and let K = k(ai,...,ay) be the field of rational functions in
the variables a1, ...,a,. Let Xx C P} be the hypersurface with equation

ad+azd+. .. +anzd =0,

where d is not divisible by char(k). In this paper, fori =1,2,3 and n > i + 1,
we prove that the natural map

Hi(Ka ,u') - H:'u-(XK’ﬂ)

is an isomorphism, see Theorem 4.8. In the case when i = 2 and p = u,, with
m > 2, this gives that the natural map of Brauer groups Br(K) — Br(Xg)
induces an isomorphism of subgroups of elements of order not divisible by
char(k), see Corollary 4.9. In the case when k has characteristic zero, this
result was obtained in [GS, Thm. 1.5] by a completely different method,
using the topology of the Fermat surface as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which
applies inter alia to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do
not use the Gersten conjecture for étale cohomology [BO74].

Let us describe the structure of this note. In Section 2 we recall some
basic facts about unramified cohomology including a functoriality property
of the Bloch—Ogus complex with respect to faithfully flat morphisms with
integral fibres. In Section 3 we show that for smooth complete intersec-
tions X C P} there are canonical isomorphisms H'(k, ) —— H', (X, u) for
i = 1,2 when dim(X) > 7 + 1. Generic diagonal hypersurfaces are studied in
Section 4. The easy proof of the main theorem in the case i = 1 is given in
Section 4.1. This is used in the proof for i = 2,3 in Section 4.3, after some
preparations in Section 4.2. Finally, in Section 5 we use a similar idea to give
a short proof of the triviality of the Brauer group of certain surfaces in Pi .
defined by a pair of polynomials with coefficients in k. See Theorem 5.1,
which was proved in [GS] in the case when char(k) = 0.



Low degree unramified cohomology 1717

Our proof in this note develops a geometric idea suggested by Math-
ieu Florence during the second author’s talk at the seminar “Variétés ra-
tionnelles” in November 2022. The authors are very grateful to Mathieu
Florence for his suggestion.

2. Functoriality of the Bloch-Ogus complex

For any smooth integral variety X over k and any ¢ > 2 there is a complex

0 — H(k(X), 1) & @ B (k(z),u(-1)) X @ H(k(y), u(~2)),

zeX® yeX®

which we call the Bloch—Ogus complex. The maps in this complex are defined
in [R96, (2.1.0)]. (The map 9, is the residue defined for discrete valuation
rings by Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the re-
sulting sequence is a complex is given in [R96, Section 2]. If y € X @) is a
regular point of the closure of z € X (1), then the map

8y H (k(2), p(- 1)) = H' 7 (k(y), u(-2))

is the residue map for the local ring of y in the closure of x, which is a
discrete valuation ring.

The unramified cohomology group H: (X, ) is the homology group of
this co(n;plex at the term H*(k(X), u), i.e., the intersection of Ker(d,) for all
zeXW,

Let p: X =Y be a faithfully flat morphism of smooth integral k-
varieties with integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there
is a chain map of complexes

0 —=H'(k(X), p) —= Bpex H '(k(z), (1)) —> Bexen H *(k(2), u(-2))

! !

0 ——=H'(k(Y), n) —> @yeye B (k(y), u(-1)) —= Dy H2(k(y), u(~2))

The middle vertical map is the natural one if p(z) = y, otherwise it is zero,
and similarly for the right-hand vertical map.

The morphism X — Y is called an affine bundle if Zariski locally on Y,
it is isomorphic to Y x; A" — Y with affine transition morphisms. In this
case the vertical maps in the above diagram induce isomorphisms on the
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left-hand and middle homology groups, see [R96, Prop. (8.6)]. In particular,
we have an isomorphism

(1) Hy, (X, 1) 2 Hi (Y, ).

Combined with [R96, Cor. (12.10)], this implies that H (X, u) is a stable
birational invariant of smooth and proper integral k-varieties.

3. Low degree unramified cohomology of complete
intersections

For a variety X over a field k we write X® = X Xy ks. By a k-group of mul-
tiplicative type we understand a group k-scheme M such that M* is a group
ks-subscheme of (G, )", for some n > 0. Such a k-group M is smooth if
and only if char(k) does not divide the order of the torsion subgroup of
the finitely generated abelian group Homy, _g,s(M*®, G, k). A finite com-
mutative group k-scheme of order not divisible by char(k) is a k-group of
multiplicative type.

Proposition 3.1. Let X be a smooth, projective, geometrically integral va-
riety over a field k such that the natural map Pic(X) — Pic(X*®) is an iso-
morphism of finitely generated free abelian groups. Then for any smooth
k-group of multiplicative type M the natural map

H?(k, M) — H%(k(X), M)
s injective.

Proof. We have a commutative diagram with exact rows and natural
vertical maps

0—> kX — kg(X)* — Div(X*) —> Pic(X*) —=0

o 11 T

0 —k* —k(X)* —— Div(X) —— Pic(X) —=0

The abelian group Pic(X) is free, so the homomorphism Div(X) — Pic(X)
has a section. Then our assumption implies that the map of I~modules
Div(X*®) — Pic(X?®) has a section. By definition, the elementary obstruction
e(X) € Ext?(Pic(X®), k) is the class of the 2-extension of I'-modules given
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by the upper row of (2). Thus we have e(X) = 0. The result now follows
from [CTS87, Prop. 2.2.5]. O

For injectivity results for the map H?(k, M) — H2(k(X), M) in the case
of integral, smooth k-varieties with a k-point see [CT95, Lemma 2.1.5] and
[CT95, Thm. 3.8.1]. Note that the map H?(k, Gy, k) = H2(k(X), G ) is
not injective when X is a conic without a k-point.

Lemma 3.2. Let X C P} be a complete intersection. Let pu be a finite com-
mutative group k-scheme of order not divisible by char(k).

(a) If dim(X) > 2, then the natural map H'(k, p) — H} (X, p) is an iso-
morphism.

(b) If dim(X) > 3, then the natural map HZ (P}, pn) — HZ (X, ) is an

isomorphism.

Proof. A combination of the weak Lefschetz theorem with Poincaré
duality gives that the map Hgt(lP’}c:,,u) — H:, (X%, p) is an isomorphism
for i < dim(X), see [K04, Cor. B.6]. In particular, if dim(X) > 2, then
H} (X%, 1) = 0. Then the spectral sequence

B39 = HP (k, HY, (X%, p)) = HE(X, p)

implies the first claim.

If dim(X) > 3, then HZ (P} ,u) — HZ (X%, ) is an isomorphism of I'-
modules. The above spectral sequence gives rise to the following commuta-
tive diagram with exact rows

0—> Hz(k’ ﬂ) - Hgt(X’ #) - H(?gt(XSa ﬂ)r - Hz(k’ ﬂ)
T
0—— Hz(k’ ﬂ) - Hgt,(PZa /J') - Hgt(P‘gs ’ ﬂ)l‘ - Hz(k’ ﬂ)

By the 5-lemma we deduce that HZ (P¢, n) — HZ (X, u) is an isomorphism.
O

Proposition 3.3. Let X C P} be a smooth complete intersection of dimen-
sion dim(X) > 3. Let p be a finite commutative group k-scheme of order not
divisible by char(k). Then the natural map

H?(k, ) — H2 (X, 1)

is an isomorphism.
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Proof. The map Z = Pic(P} ) — Pic(X*®) is an isomorphism by [H70,
Ch. IV, Cor. 3.2], hence Pic(X) — Pic(X®) is an isomorphism. By Propo-
sition 3.1 it is thus enough to prove that the map H?(k,u) — H2 (X, ) is
surjective.

Choose an affine subspace A C P} such that X N A} # (. Our map is
the composition of maps in the top row of the following natural commutative
diagram:

H2(kaﬂ) - Hgt(PZ’u) LHE:;(X,#) —"ng(Xa ﬂ)

o |

[~

B2 (k, 1) —~ HE, (A}, 1) —> HZ,(X N AR, ) — H2(k(X), )

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and
the right-hand map is surjective, as was recalled in the introduction. Thus
any a € H2 (X, p) can be lifted to an element b € HZ (P}, u). The image of b
in HZ (A7, ) comes from a unique element ¢ € H?(k, 1). The commutativity
of the diagram gives that the image of ¢ in H2(k(X), p) is equal to the image
of a. But the right-hand vertical map is injective, hence c is a desired lifting
of a to H2(k, p). O

4. Generic diagonal hypersurfaces

Let II; (respectively, IIs) be the projective space with homogeneous co-
ordinates zg,...,x, (respectively, to,...,t,). Write K = k(Ily). Let X C
II; x II; be the smooth hypersurface

(3) toxd 4+ ... +t,zd =0,

where d is coprime to the characteristic exponent of k. Let p be the projection
X — II;, and let f be the projection X — Ilz. The generic fibre Xk of
f is a smooth diagonal hypersurface of degree d in the projective space
(I)x = P}

Lemma 4.1. With notation as above, the following statements hold.

(i) The fibres of f above the codimension 1 points of Ila are integral if
n > 2 and geometrically integral if n > 3.

(ii) The fibres of f above the codimension 2 points of Ily are integral if
n > 3 and geometrically integral if n > 4.



Low degree unramified cohomology 1721

Proof. One only needs to check this for the singular fibres, which are the
fibres above the generic points of the projective subspaces given by t; = 0
Orbyti=tj=0. O

4.1. Unramified cohomology in degree 1

Lemma 4.2. Let f: X =Y be a proper and flat morphism of smooth and
geometrically integral varieties over a field k. Write K = k(Y) and let X
be the generic fibre of f. Assume that the fibres of f above the points of Y
of codimension 1 are integral and Xy is geometrically integral. Let m > 2
be an integer. Then the map f*: Pic(Y)/m — Pic(X)/m is injective if and
only if Pic(X)[m| — Pic(X)[m| is surjective.

Proof. In our situation we have an exact sequence
(4) 0 — Pic(Y) <5 Pic(X) — Pic(Xk) — 0.

Exactness at Pic(Xg): since f is proper and flat, and X is smooth, the
Zariski closure in X of a codimension 1 point of Xy has codimension 1 in
X. On a regular variety, any Weil divisor is a Cartier divisor. Exactness at
Pic(X): if D € Div(X) restricts to a principal divisor on X, then D is the
sum of a principal divisor in X and a divisor D’ supported on a finite union
of irreducible codimension 1 subvarieties of X whose generic points are not
in Xg. Since f is flat and proper, hence surjective, and the fibres f~1(y),
for y € Y(l), are integral, f induces a bijection between the points z € x @
which are not in Xx and the points y € Y1), For such a pair (z,y) with
y = f(x), the inverse image of the divisor on Y defined by y is the divisor on
X defined by z, with multiplicity one. Thus D’ € f*Div(Y). Exactness at
Pic(Y): if D € Div(Y) is such that f*D = divx(¢), where ¢ € k(X)*, then
the restriction of ¢ to Xk is a regular function. Since X g is proper over K
and integral, ¢ is contained in the algebraic closure of K in K(X), which
is K itself because Xk is geometrically integral, see [P17, Prop. 2.2.22].
Thus we have ¢ € K*. Then D — divy(¢) € Div(Y") goes to zero in Div(X).
Since the map f is proper and flat, it is surjective, hence D = divy (@) is a
principal divisor in Y.
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From (4) we get a commutative diagram

0 — Pic(Y) —L > Pic(X) — Pic(Xx) — 0

[m] T (m] T [m] T

0 — Pic(Y) > Pic(X) — Pic(Xx) — 0
Applying the snake lemma to this diagram, we prove the lemma. g

Proposition 4.3. Letm > 2 be an integer. Let k be a field of characteristic
exponent coprime to m. Let f: X —'Y be a proper and flat morphism of
smooth and geometrically integral varieties over k such that

(i) the fibres of f above the codimension 1 points of Y are integral and
the generic fibre Xk, where K = k(Y'), is geometrically integral;

(ii) Pic(X)[m] = 0;

(iii) f*: Pic(Y)/m — Pic(X)/m is injective.

Then H' (K, pm) — HY (XK, ptm) is an isomorphism.
Proof. The Kummer sequence gives rise to an exact sequence
0— K*/K*™ — H} (XK, pm) — Pic(Xg)[m] — 0.
By Lemma 4.2 we have Pic(X)[m] = 0. O

Theorem 4.4. Let pu be a finite commutative group k-scheme of order not
divisible by char(k). Let n > 2. Let I1y, IIs, X, K = k(Il2) be as above. Then
the map HY(K, ) — Hét(XK,#) s an isomorphism.

Proof. Let us first prove the statement for y = u,, with m not divisible
by char(k). We check the assumptions of Proposition 4.3 for f: X — Ils.
Since all fibres of f have the same dimension, f is flat by miracle flatness.
By Lemma 4.1, assumption (i) is satisfied. The projection p: X — II; is a
projective bundle over II;. Therefore we have a commutative diagram with
exact rows

0 — Pic(IL;) Pic(X) Pic(]P’Z(_Hll)) — =0

T

0——s PiC(Hl) — PiC(H1 X HQ) —_— Pic((nz)k(nl)) —0



Low degree unramified cohomology 1723

The right-hand vertical map is induced by the inclusion of a projective hy-
perplane in a projective space, so it is an isomorphism. Hence (ii) holds and
the restriction map Pic(Il; x IIz) — Pic(X) is an isomorphism. It follows
that Pic(Ilz) — Pic(X) is split injective, hence (iii) holds.

Let E/k be a finite Galois extension, with Galois group G, such that
1E = p X E is isomorphic to a finite product of groups pm g where m
is coprime to char(k). Let L be the compositum of the linearly disjoint
field extensions K/k and E/k. We have u(E) = p(L) = HY (XL, p). The
Hochschild-Serre spectral sequence gives rise to the following commutative
diagram with exact rows

00— HI(G’ p(L)) — H};t(XKa p) —= Hét (XL, M)G - Hz(Ga n(L))

N

0 — H(G, p(L)) —> HA(K, ) — H!(L, )& —> HA(G, u(L))

Since the result is already proved for pu,,, all vertical maps, except possibly
the map H'(K, u) = H}, (Xk, i), are isomorphisms. Hence so is this map.
O

Remark 4.5. The geometric argument based on the projective bundle
structure of X C II; x Il over II; in the proof of Theorem 4.4 is needed
only in the case n = 2, that is, when the hypersurface Xy C IP%( is a smooth
curve of degree d. When n > 3 and X C P is an arbitrary smooth hyper-
surface, we have H' (K, ) = H} (X, 1) by Lemma 3.2 (a).

4.2. Basic diagram

We now assume that n > 3 and ¢ > 2, keeping the assumption that p is a
finite commutative group k-scheme of order not divisible by char(k). Recall
the Bloch-Ogus complex from Section 2:

X),u) &3 D H k@), n(-1) » P H(k(z), u(-2)).

zeX® zeX®

Since the fibres X, = f~!(y) above y € Hgl) are integral (which holds for
n > 2, see Lemma 4.1) we obtain a complex

L, (Xi, i) 23 @) HUU(R(X,), u(-1) » @) H2(k(z), u(~2))-

yel1d zeX (@
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To simplify notation, in what follows we do not write the coefficients of
cohomology groups. One should bear in mind that there is a change of twist
when the codimension of points increases.

Since this is a complex, the image of 9, is unramified over the smooth
locus of X,. If X, is smooth we write X, = X,,. In the opposite case, X, is
the projective cone over the hyperplane section of X given by some t; = 0,
and then we denote by X;I; this hyperplane section, which is geometrically
integral and smooth since n > 3. In this case, the smooth locus X, sm C Xy
is an affine bundle over X, so we have Hj '(Xysm) = Hi '(X]) by (1).
Thus Im(d,) is contained in Hi '(X]). Since the fibres X, above y € 1'[52)
are integral (note that they need not be geometrically integral if n = 3), from
the diagram in Section 2 we obtain a commutative diagram of complexes

0 —— H, (Xk)/H (k) —> @ ene Hi (X)) — Dyen H 2 (k(Xy))

! T

0 —— Hi(K) /B (k) ——= @, 0 B (k(y) — @, 0 B 2(k(3))

where the vertical maps are induced by f. Note that since X is a projective
bundle over the projective space Iy, the map H*(k) — H*(k(X)) is injective.
So is the map Hi(k) — HY(K) = H'(k(Il2)).

Let Y = A} C I3 be the affine space given by tg # 0. From the previous
diagram we then get a commutative diagram of complexes

(5)
0 — Hp (Xk)/H' (k) —— @yey o Hir (X)) — D ey H2(k(Xy))

| | |

0 ——H(K)/H' (k) —— @D, ey HH(k(y)) —— Deye H2(k(y))

Since Y = A}, the bottom complex is exact by [R96, Prop. 8.6].

The homology group of the top complex at the first term is
H:, (Xy)/H'(k), where Xy = f~}(Y) C X. Let us show that this group is
zero. The fibres of p: X — II; are hyperplanes in II3. The map p: Xy - U
is an affine bundle, and p(Xy) = U, where U =P; \ {(1:0:...:0)}. By
(1) the map p*: H! (U) — H: (Xy) is an isomorphism. Since U is the com-
plement to a k-point in II; = P}, and n > 2, we have

Hi(ka ﬂ) = Hflr(nla /J') = H:ur(U’ /J')
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The following lemma is proved by a straightforward diagram chase.

Lemma 4.6. Suppose that we have a commutative diagram of abelian
groups

Aot ¢

B

where i is injective, b is an isomorphism, c is injective, the top row is a

complex, and the bottom row is exact. Then a is an isomorphism.
From Lemma 4.6 we conclude:

Proposition 4.7. With notation as above, if the middle vertical map in
diagram (5) is an isomorphism and the right-hand vertical map is injective,
then

f*: Hi(K’ ﬂ) - ng(XKaﬂ)

is an isomorphism.
4.3. Unramified cohomology in degrees 2 and 3

The main result of this paper is the following

Theorem 4.8. Let I, (respectively, Il5) be the projective space with homo-
geneous coordinates x,...,T, (respectively, tq,...,t,). Write K = k(Ily).
Let X C Iy x Ily be the hypersurface

(6) tozd + ... +tazd = 0.

where d is coprime to the characteristic exponent of k. Let f: X — 1ly be
the natural projection, and let X i be the generic fibre of f. Let p be a finite
commutative group k-scheme of order not divisible by char(k).

(i) If n > 3, then f*: H3(K, ) — H2,(Xk, i) is an isomorphism.

(i) If n > 4, then f*: H3(K, pn) = H2.(Xk, ) is an isomorphism.

Proof. (i) Consider diagram (5) for ¢ = 2. Then the middle vertical map
of the diagram is an isomorphism. This follows from Theorem 4.4 when X,
is singular, which happens exactly when the codimension 1 point y is given
by t; = 0 for some ¢ = 1,...,n. (Note that if n = 3 we need Theorem 4.4 in
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the case n = 2.) If X, is smooth, the isomorphism follows from Lemma 3.2
(a). By Lemma 4.1, each fibre X, above a codimension 2 point y is integral,
hence the right hand vertical map is injective. By Proposition 4.7, this proves
(1).

(ii) Consider diagram (5) for i = 3. For y € Y1) such that X, is singu-
lar, the vertical map H?(k(y)), u(—1)) — HZ.(X, u(—1)) is an isomorphism
by (i). For y € Y(V) such that X, is smooth, the map H2(k(y),u(—1)) =
H2 (X, u(—1)) is an isomorphism by Proposition 3.3. For y € 1'[&2) the fi-
bre X, is geometrically integral over k(y) by Lemma 4.1, hence k(y) is
separably closed in k(X,). Thus the restriction map H!(k(y),u(-2)) =
H!(k(X,), n(—2)) is injective, so the right-hand vertical map in the diagram
is injective. By Proposition 4.7, this proves (ii). O

Corollary 4.9. Forn > 3, the map Br(K) — Br(Xg) induces an isomor-
phism of subgroups of elements of order not divisible by char(k).

Proof. This follows from Theorem 4.8 (i) by taking g = pn,, for each
integer m not divisible by char(k). a

Remark 4.10. Only the case n =3 of this corollary requires the above
proof. For n > 4 and any smooth hypersurface in P", we have the general
Proposition 3.3.

5. Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the
surface given by the equation (7) below over the field of rational functions
K = k(7), where 7 = A/p, is naturally isomorphic to Br(K) away from p-
primary torsion if char(k) = p. The motivation for this comes from the recent
paper [GS], where the same result was proved in the case when char(k) =0
(combine [GS, Thm. 1.1 (i)] and [GS, Thm. 1.4]).

Theorem 5.1. Let k be a field. Let d be a positive integer. Let f(zx,y)
and g(z,t) be products of d pairwise non-proportional linear forms. Let X C
11”,1c Xk lP’i be the hypersurface given by

(7) )\f(.'ll, y) = ,u'g(za t)a

where (X : p) are homogeneous coordinates in P and (z : y : z : t) are homo-
geneous coordinates in ]P’i. Let K = k'(lP’,lc) and let Xk be the generic fibre of
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the projection f: X — Pi. Then the natural map Br(K) — Br(Xg) induces
an isomorphism of subgroups of elements of order not divisible by char(k).

Proof. The singular locus Xgine is contained in the union of fibres of f
above A =0 and g = 0. The fibre above p =0 is given by f(z,y) =0. It
is a union of d planes in P} through the line z = y = 0. The intersection
of Xsing with the fibre above u = 0 is the zero-dimensional scheme given
by z =y = g(z,t) = 0. The situation above A =0 is entirely similar. Let
Y = X \ Xing be the smooth locus of X/k. The projection p: X — P} is
a birational morphism which restricts to an isomorphism Yy ——V on the
complement V to the curve in P} given by f(z,y) = g(2,t) = 0. We have

Br(k) = Br(P}) = Br(V) = Br(Yy),

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one
is by purity for the Brauer group [CTS21, Thm. 3.7.6]. Since Y (k) # 0,
we have Br(k) ¢ Br(Y) ¢ Br(Yy) where the second inclusion is by [CTS21,
Thm. 3.5.5]. We conclude that Br(Y) = Br(k).

Let m > 2 be an integer not divisible by char(k). If a closed fibre Xy =
f~Y(M) is smooth, then X is a smooth surface in Pi( M) thus we have

(8) H}, (X, Z/m) = H' (k(M), Z/m)

by Lemma 3.2 (a). The smooth locus of the fibre of f above p =0 is a
disjoint union of d affine planes AZ. We have

(9) Hg, (AR, Z/m) = H' (k, Z/m)

since char(k) does not divide m.
Without loss of generality we can write

d

d
fl@,y) =c][@-&y), 9@zt =[]z~ pt),
j=1

i=1

where ¢,¢ € k* and &;,p; € k fori,j = 1,...,d. We note that for each pair
(i,7) the map sij: (A:p) = ((A:p), (& :1: p;: 1)) is a section of the mor-
phism f: X — ]P’,lc.

Each section s;; gives a K-point of Xk . Thus the natural map Br(K) —
Br(Xk) is injective.

Let a € Br(Xk)[m]. Evaluating « at the K-point of Xg given by s11
gives an element 3 € Br(K)[m|. We replace a by a — 3.
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Note that each section s;;(P}) meets every closed fibre of f at a smooth
point. The new element o € Br(X g )[m] has trivial residue on the irreducible
component of the smooth locus of every fibre of f that s; ;(P}) intersects.
Indeed, by (8) and (9) this residue is constant, but specialises to zero at the
intersection point with 31,1(11”,15). In particular, o has trivial residues at the
smooth fibres of f, as well as at the affine plane given by x — £,y = 0 in the
fibre 4 = 0 and the affine plane given by z — p;z = 0 in the fibre A = 0.

We now evaluate o at the K-point of Xg given by s;;, where j =
2,...,d. The result is an element of Br(K') which is unramified everywhere
except possibly at the k-point of P} given by A = 0. By Faddeev reciprocity
[GS17, Thm. 6.9.1], the residue at that point must be zero, too. This implies
that o is unramified at the smooth locus of the fibre at A = 0. A similar
argument using sections s;; for ¢ = 2,...,d shows that o is unramified at
the smooth locus of the fibre at u = 0.

We see that the residue of « at every codimension 1 point of Y is zero. By
the purity for the Brauer group, a belongs to Br(Y'). We have proved earlier
that the natural map Br(k) — Br(Y) is an isomorphism, hence a € Br(k).
It follows that Br(K)[m| — Br(Xk)[m| is an isomorphism. O
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