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Abstract

Soit ¢q(z,y, z) une forme quadratique sur un corps de nombres k,
isotrope en une place v, et soit P(t) un polynéme non nul & coeffi-
cients dans k. Si P(t) est séparable, on établit ’approximation forte
en dehors de la place v pour les solutions de ¢(z,y,z) = P(t). Pour
P(t) quelconque, on montre que sur le lieu lisse de la variété définie
par q(z,y,z) = P(t) Pobstruction de Brauer-Manin entiere est la
seule obstruction & ’approximation forte hors de v.

Let g(x,y, z) be a quadratic form over a number field k, isotropic
at a place v, and let P(t) be a nonzero polynomial with coefficients
in k. If P(t) is separable, we show that strong approximation away
from v holds for the solutions of ¢(x,y, z) = P(t). For P(t) arbitrary,
we show that the integral Brauer-Manin obstruction is the only ob-
struction to strong approximation away from v for the smooth locus
of the variety given by ¢(z,y, z) = P(t).
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1 Introduction

Let X be a variety over a number field F. For simplicity, let us assume in
this introduction that the set X (F') of rational points is not empty. Let S
be a finite set of places of F'. One says that strong approrimation holds for
X off S if the diagonal image of the set X (F') of rational points is dense
in the space of S-adeles X (A7) (these are the adeles where the places in
S have been omitted) equipped with the adelic topology. If this property
holds for X, it in particular implies a local-global principle for the existence
of integral points on integral models of X over the ring of S-integers of F.

For X projective, X (A3) = [1.¢s X(F%), and the adelic topology coin-
cides with the product topology. A projective variety satisfies strong ap-
proximation off S if and only if weak approximation for the rational points
holds off S.

For open varieties, strong approximation has been mainly studied for
linear algebraic groups and their homogeneous spaces. A classical case is
m-dimensional affine space A off any nonempty set S, a special case being
the Chinese Remainder Theorem. For a semisimple, almost simple, simply
connected linear algebraic group G such that [] .4 G(F,) is not compact,
strong approximation off S was established by Eichler, Kneser, Shimura,
Platonov, Prasad.

Strong approximation does not hold for groups which are not simply
connected, but one may define a Brauer-Manin set. In our paper [CTX],
we started the investigation of the Brauer-Manin obstruction to strong ap-
proximation for homogeneous spaces of linear algebraic groups. For such
varieties, this was quickly followed by works of Harari [H], Demarche [D],
Borovoi and Demarche [BD] and Wei and Xu [WX].

Few strong approximation results are known for open varieties which are
not homogeneous spaces. Computations of the Brauer-Manin obstruction
for some such varieties have been recently performed (Kresch and Tschinkel
[KT], Colliot-Thélene et Wittenberg [CTW]).

Just as for problems of weak approximation, it is natural to ask whether
strong approximation holds for the total space of a family f : X — Y
when it is known for the basis Y, for many fibres of f, and some algebraico-
geometric assumption is made on the map f.

In the present paper, we investigate strong approximation for varieties
X/F defined by an equation

q(xlv s ,ZEn) = p<t)7
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where ¢ is a quadratic form of rank n in n > 3 variables and p(t) is a nonzero

polynomial.

In [Wat], Watson investigated integral points on affine varieties which are
the total space of families of quadrics over affine space A'%. When restricted
to equations as above, in particular m = 1, and with coefficients in the
ring Z of integers, under a noncompacity assumption, his Theorems 1 and 2
establish the local-global principle for integral points when n > 4 ([Wat,
Thm. 1, Thm. 2]). Under some additional condition, he also establishes a
local-global principle when n = 3 ([Wat, Thm. 3|, see Remark 6.6 in the

present paper).

The paper is organized as follows.

In §2 we recall some definitions related to strong approximation and the

Brauer-Manin obstruction.

In §3, we give a simple general method for proving strong approximation
for the total space of a fibration. We apply it to varieties defined by an
equation ¢(x1,...,x,) = p(t), for n > 4.

In §4 we detail results of [CTX] on the arithmetic of affine quadrics
q(z,y,2) = a.

In the purely algebraic §5, we compute the Brauer group of the smooth
locus, and of a suitable desingularisation, of a variety defined by an equation

q(x,y,2) = p(t).

The most significant results are given in §6. The results of §4 and §5
are combined to study the strong approximation property off S for certain
smooth models of varieties defined by an equation ¢(z,y,z) = p(t), under
the assumption that the form ¢ is isotropic at some place in S. For these
smooth models, when there is no Brauer-Manin obstruction, we establish
strong approximation off S. We give the precise conditions under which

strong approximation fails.

In §7 we give two numerical counterexamples to the local-global princi-
ples for existence of integral points: this represents a drastic failure of strong

approximation in the cases where this is allowed by the results of §6.

Concrete varieties often are singular. In that case the appropriate proper-
ties are “central strong approximation” and its Brauer-Manin variant. This
is shortly discussed in §8.
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2 Basic definitions and properties

Let F' be a number field, or be the ring of integers of F' and 2z be the
set of all primes in F'. For each v € Qp, let F, be the completion of F at
v. Let cop be the set of archimedean primes in F' and write v < oop for
v € Qp \ cop. For each v < cop, let 0, be the completion of o at v and let
m, be a uniformizer of o,. Write o0, = F}, for v € cop.

For any finite subset S of Qp, let Fg = ], g
S of Qp containing oop, the S-integers are defined to be elements in F

F,. For any finite subset

which are integral outside S. The ring of S-integers is denoted by og. Let
Arp C HUGQF F, be the adelic group of F' with its usual topology. For any
finite subset S of Qf, one defines A%, C (vas F,) equipped with the analo-
gous adelic topology. The natural projection which omits the S-coordinates
defines a homomorphism of rings Ar — A%. For any variety X over F this
induces a map

pro s X(Ap) — X(A3)
which is surjective if [, .o X (F,) # 0.

Definition 2.1. Let X be a geometrically integral F-variety. One says that
strong approximation holds for X off S if the image of the diagonal map

X(F) = X (A7)
is dense in pr¥(X(Ap)) C X(A3).

The statement may be rephrased as:
Given any nonempty open set W C X(A%), if X(Ap) # 0, then the
diagonal image of X (F) in X (Ap) meets W x [[,cq X(F,).

If X satisfies strong approximation off S, and X (A7) # 0, then we have
X(F) # () and, for any finite set T" of places of F' away from S, the diagonal
image of X (F') is dense in [ [, ., X (F,). In other words, X satisfies the Hasse

principle, and X satisfies weak approximation off S.

Proposition 2.2. Assume X (Ar) # 0. If X satisfies strong approzimation
off a finite set S of places, then it satisfies strong approximation off any
finite set S" with S C S'. ]

Proposition 2.3. Let U C X be a dense open set of a smooth geometrically
integral F-variety X . If strong approzimation off S holds for U, then strong
approzimation off S holds for X.



Strong approximation for certain quadric fibrations 5

Proof. This follows from the following statement: for X/F as in the propo-
sition, the image of U(Ar) in X(Ap) is dense. That statement itself fol-
lows from two facts. Firstly, for a given place v, U(F,) is dense in X (F},)
(smoothness of X). Secondly, U admits a model U over a suitable o7 such
that U(o,) # 0 for all v ¢ T' (because U/F is geometrically integral). [

As explained in [CTX], one can refine definition 2.1 by using the Brauer—
Manin set. Let X be an F-variety. Let Br(X) = H%(X,G,,) and define

X(Ap)PX) = {{z,}vea, € X(Ap): VE€Br(X), ) invy(§(z,)) = 0}.

vEQR

This is a closed subset of X (Ap). Class field theory implies
X(F) c X(Ap)P®) ¢ X (Ap).

Let
X (AP = pr¥ (X (Ap)P ™)) € X(AF).

Definition 2.4. Let X be a geometrically integral variety over the number
field F. If the diagonal image of X (F) in (X (A%))B*¥) ¢ X (A%) is dense,
we say that strong approximation with Brauer-Manin obstruction holds for
X off S.

As above, the statement may be rephrased as :
Given any open set W C X(AZ), if [W x [],cq X(Fp)]P'&) £ 0, then
there is a point of the diagonal image of X (F') in W x[],cq X (F,) C X(Ap).

Proposition 2.5. Assume X(Ar) # 0. If strong approzimation with Brauer-
Manin obstruction holds for X off a finite set S of places, then it holds off
any finite set S with S C S’. O

Proposition 2.6. Let F' be a number field. Let U C X be a dense open set
of a smooth geometrically integral F-variety X. Assume:

(i) X(Ap) £ 0;

(ii) the quotient Br(U)/ Br(F) is finite.

Let S be a finite set of places of F'. If strong approximation with Brauer-
Manin obstruction off S holds for U, then it holds for X.

Proof. There exists a finite subgroup B C Br(U) such that B generates
Br(U)/Br(F') and BNBr(X) generates Br(X)/Br(F'). There exists a finite
set T' of places of k containing S and all the archimedean places, and smooth
or-schemes U C X with geometrically integral fibres over the points of
Spec(or) such that
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(a) The restriction U C X over Spec(F') C Spec(or) is U C X.

(b) B C Br(U).

(¢c) BN Br(X) c Br(X).

(d) For each v ¢ T, U(o,) # () (this uses the fact that U — Spec(o7) is
smooth with geometrically integral fibres, the Weil estimates and the fact
that we took 7" big enough).

To prove the proposition, it is enough to show:

Given any finite set T as above and given, for each place v € T'\ S, an
open set W, C X (F,) such that the set

HX XHWXHX

vesS veT\S vgT

is not empty, then this set contains a point of the diagonal image of X (F)
in X(Ap).

Each a € BNBr(X) vanishes when evaluated on X(o,). For any element
a € Br(X) and any place v, the map X(F,) — Br(F,) C Q/Z given
by evaluation of « is locally constant. Since X is smooth, for each place
v, the set U(F,) is dense in X (F,) for the local topology. In particular,
for v ¢ T, the set X(o0,) NU(F,) is not empty. There thus exists a point
{M,} € X(Ap) which lies in the above set such that M, € U(F,) forv e T
and M, € X(o,) NU(F,) forv ¢ T.

We now use Harari’s formal lemma in the version given in [CT]. Accord-
ing to the proof of [CT, Théoreme 1.4], there exist a finite set 77 of places
of k, ' NT =, and for v € T} points N, € X(0,) N U(F,), such that

> B(M,)+ > BN,

veT veT

for each § € B.
For v € T, let N, = M,. For v ¢ T UTy, let N, € U(o,) be an arbitrary
point. The adele {N,} of X belongs to

JIXE) < T W x J]X(0,)]>
veS veT\S vgT
It is the image of an adele of U which lies in
JIUE) < ] wonUF) x [TUEFE) N X(e,) x J] Ulon)]>V
veES veT\S veT vgTUT

Using the finiteness of B and the continuity of the evaluation map
U(F,) — Br(F,) attached to each element of B, we find that there ex-
ist open sets W) C U(F,) for v € TUT,, with W) C W, for v € T'\ S, such
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that the subset
LTI wix T uten®
veTUTy v¢TUT,
of the adeles of U is nonempty. Since strong approximation with Brauer-
Manin obstruction off S holds for U, hence off T'U T} since S C T, there
exists a point in the diagonal image of U(F') in U(A ) which lies in this set.
Since this set maps into

JIXE) x T wo x J]X(0,)P)

ves veT\S vgT

via the inclusion U C X, this concludes the proof. [

Lemma 2.7. Let F' be a number field. Let U C X be a dense open set
of a smooth geometrically integral F-variety X. Assume X (Ap) # 0. Let
ap,...,a, € Br(X). Let S be a finite set of places of F'. The image of the
evaluation map U(A%) — (Q/Z)" defined by the sum of the invariants of
each a; on the U(F,) for v ¢ S coincides with the image of the analogous
evaluation map X (AZ) — (Q/Z)".

Proof. There is a natural map U(A%) — X (A%) which is compatible with
evaluation of elements of Br(X), hence one direction is clear. Let {M,} €
X (A%). There exist a finite set T of places containing S and regular integral
models U C X of U C X over o such that «; € Br(X) C Br(U) for each
i=1,...,n, such that M, € X(o,) for each v ¢ T, and such that moreover
U(o,) # 0 forv ¢ T. Forv e T\ S, let N, € U(F,),v € T\ S be close
enough to M, € X(F,) that a;(N,) = «a;(M,) for each i = 1,...,n (such
points exist since X is smooth). For v ¢ T let N, be an arbitrary point of

U(o,).
Then
M) = > a(M)= > ai(N,) =) (V).
véS veT WS veTwES ve¢S

O

Proposition 2.8. Let F' be a number field. Let U C X be a dense open set
of a smooth geometrically integral F-variety X. Assume X (Ap) # 0.

(i) Assume Br(X)/Br(F) finite. If prg(X (Ap)P" X)) is strictly smaller
than X (A%), then prs(U(Ap)P* W) is strictly smaller than U(A%).

(ii) If Br(X) — Br(U) is an isomorphism, if prs(U(Ag)P"U)) is strictly
smaller than U(A%), then prg(X (Ap)B X)) is strictly smaller than X (A3.).
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Proof. (i) Let o; € Br(X), i =1,...,n, generate Br(X)/Br(F).

If pro(X (Ap)Pr)) is strictly smaller than X (A%), then there exists an
adele {M,} € X(A%) such that for each {N,} € [],.q X(F,) there exists
«; such that

veES

> (M) + ) ai(N,) # 0 € Q/Z.

véS vES
In other words, the image of the map [[, .4 X(F,) — (Q/Z)" given by

{No} = > ,c50i(Ny) does not contain {—3 ,5;(M,)} € (Q/Z)". By
Lemma 2.7, there exists an adele {M!} € U(A%) such that:

(=X a(M)}={=) ai(M,)} € (Q/Z)"
v¢sS vgS
Thus for each {N]} € [],.q U(F,) there exists some i such that

> M)+ ai(N)) # 0 € Q/Z.

v¢S vES
Hence {M!} € U(A?%) does not belong to prg(U(Agp)BY).

(ii) Let {M,} € U(A?%) be an adele such that for each {N,} € []
there exists o € Br(U) such that

> a(M,)+ ) a(N,) #0 € Q/L.

vgS veS

The adele {M,} € U(A%) defines an adele {M,} € X(A?). By hypothesis
Br(X) = Br(U). For each o € Br(X) = Br(U), the image of the evaluation
map of a € Br(X) on U(F,) coincides with the image of the evaluation map
on X(F,). We conclude that for each {N,} € []
element « € Br(X) such that

> a(M)+) a(N,) #0€Q/Z.

vgS veS

veES ( )

ves X (F,) there exists an

3 The easy fibration method

Proposition 3.1. Let F' be a number field and f : X — Y be a morphism
of smooth quasi-projective geometrically integral varieties over F. Assume
that all geometric fibres of f are nonempty and integral. Let W C 'Y be a
nonempty open set such that fy = f~1(W) — W is smooth.

Let S be a finite set of places of F'. Assume
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(1) Y satisfies strong approximation off S.

(ii) The fibres of f above F-points of W satisfy strong approximation
off S.

(iii) For each v € S the map f~Y(W)(F,) — W(F,) is onto.

Then X satisfies strong approximation off S.

Proof. There exist a finite set T' of places containing all archimedean places
and a morphism of smooth quasiprojective op-schemes ¢ : X — Y which
restricts to f: X — Y over F, and such that:

(a) All geometric fibres of ¢ are geometrically integral.

(b) For any closed point m of ), the fibre at m, which is a variety over
the finite field x(m), contains a smooth x(m)-point.

(c) For any v ¢ T, the induced map X (o0,) — Y(o0,) is onto.

The proof of this statement combines standard results from EGA IV 9
and the Lang-Weil estimates for the number of points of integral varieties
over a finite field. Many variants have already appeared in the literature.

To prove the proposition, it is enough to show:
Given any finite set T as above, with S C T, and given, for each place
veT\S, an open set U, C X(F,) such that the open set

[[x@E)x T[] vex ] X(00)

veS veT\S vgT

of X(Ar) is not empty, then this set contains a point of the diagonal image
of X(F) in X(Ar).

The Zariski open set f~'(1W) C X is not empty. For each v € T'\ S, we
may thus replace U, by the nonempty open set U, N f~1(W)(F,). Since f is
smooth on f~Y(W), f(U,) C Y(F,) is an open set. By hypothesis (i), there
exists a point N € Y (F') whose diagonal image lies in the open set

[Ty E) > [T W) <[] Y(e.)

veS veT\S vgT

of Y(Ap). Let Z = Xy = f~'(N). The point N comes from a point N
in Y(or). The or-scheme Z := ¢~'(N) is thus a model of Z. For v ¢ T,
statement (c) implies Z(o0,) # 0. By assumption (iii), we have Z(F,) # ()
for each v € S. For v € T'\ S, the intersection U, N Z(F,) by construction
is a nonempty open set of Z(F,). Assumption (ii) now guarantees that the
product

[[2FE) =< [ vunz(F) <[] Z(.)

veS veT\S vgT
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contains the diagonal image of a point of Z(F'). This defines a point in X (F)
which lies in the given open set of X (Ap). O

Let us recall a well known fact.

Proposition 3.2. Let F' be a number field. Let q(z1, ..., x,) be a nondegen-
erate quadratic form over F and let ¢ € F*. Assume n > 4. Let X be the
smooth affine quadric defined by q(x1,...,x,) = c. Suppose X(F,) # 0 for
each real completion F,. Then X(F) # 0. Let vy be a place of F' such that the
quadratic form q is isotropic at vy. Then X satisfies strong appprozimation

off any finite set S C Qp containing vy.

Proof. This goes back to Eichler and Kneser. See [CTX] Thm. 3.7 (b) and
Thm. 6.1. [

Lemma 3.3. Let q(z1,...,2,) (n > 1) be a nondegenerate quadratic form
over a field k of characteristic different from 2. Let p(t) € k[t] be a nonzero
polynomial. Let X be the affine k-scheme defined by q(x1,...,x,) = p(t).
The singular points of X are the points defined by x; =0 (all i) and t = 6
with 6 a multiple root of p(t). In particular, if p(t) is a separable polynomial,
then X is smooth over k. ]

Proposition 3.4. Let F' be a number field and X be an F-variety defined
by an equation
q(z1, ... 2,) = p(t)

where q(x1,...,x,) is a nondegenerate quadratic form with n > 4 over F
and p(t) # 0 is a polynomial in F[t]. Let X be any smooth geometrically
integral variety which contains the smooth locus Xgnootn as a dense open
set. Assume Xgmooth(Fy) # O for each real place v of F.

(1) X(F) is Zariski-dense in X .

(2) X satisfies weak approzimation.

Let vy be a place of F' such that q is isotropic over F,,.

(3) X satisfies strong approzimation off any finite set S of places which

contains vy.

Proof. Statements (1) and (2), which are easy, are special cases of Prop. 3.9,
p. 66 of [CTSaSD]. Let us prove (3) for X = Xgmooth, the smooth locus of X.
Let f: Xgnooth — Ak be given by the coordinate t. By Lemma 2.2, it suffices
to prove the theorem for S = {vg}. Let W be the complement of p(t) = 0 in
AlL. Given Prop. 3.2, Lemma 3.3, statement (3) for X = Xamooth 18 an im-
mediate consequence of Proposition 3.1 applied to the map f. Statement (3)
for an arbitrary X is then an immediate application of Proposition 2.3. [
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4 The equation ¢(x,y,2) =a

Let ¢(z,y, z) be a nondegenerate quadratic form over a field k of charac-
teristic zero and let a € k*. Let Y/k be the affine quadric defined by the
equation

q(z,y,2) = a.
This is an open set in the smooth projective quadric defined by the homo-
geneous equation

q(z,y, 2) — au® = 0.
Let d = —a.det(q) € k*.

Proposition 4.1. [CTX, §5.6, §5.8] Assume Y (k) # 0. If d is a square,
then Br(Y')/ Br(k) = 0. If d is not a square, then Br(Y')/Br(k) = 7Z/2. For
any field extension K/k, the natural map Br(Y)/Br(k) — Br(Yy)/Br(K)
18 surjective.

(i) If ax + By + vz + 6 = 0 is an affine equation for the tangent plane
of Y at a k-point of the projective quadric q(x,y,z) — au® = 0. then the
quaternion algebra (ax + Py + vz + 6,d) € Br(k(Y)) belongs to Br(Y) and
it generates Br(Y')/ Br(k).

(ii) Assume q(x,y,z) = zy — det(q)z?. Then the quaternion algebra
(x,d) € Br(k(Y)) belongs to Br(Y') and it generates Br(Y')/ Br(k). O

Lemma 4.2. Let F be a number field. Let q(xy,...,2,) be a nondege-
nerate quadratic form over F. Let v be a nondyadic valuation of F. As-

sume n > 3. If the coefficients of q(x1,...,x,) are in 0, and the deter-
minant of q(x1,...,x,) is a unit in o,, then for any d € o, the equation
q(z1,...,2,) = d admits a solution (aq,...,a,) in 0, such that one of
1, ..., 0y 1S @ unit in o, .

Proof. This follows from Hensel’s lemma. O]

Lemma 4.3. Let v be a nondyadic valuation of a number field F'. Let
q(z,y, 2) be a quadratic form defined over o, with v(det(q)) = 0. Let a € o,,
a# 0. Let Y be the o,-scheme defined by the equation

q(z,y,2) = a.
Let Y be the generic fibre of Y over F,. Assume —a.det(q) & F.**. Let
Y*(0,) = {(20, Yo, 20) € Y(0,) : one of y, Yy, 2, € 0, }.

An element which represents the nontrivial element of Br(Y')/ Br(F,) takes
two values over Y*(0,) if and only if v(a) is odd.
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Proof. After an invertible o,-linear change of coordinates, one may write

q(z,y,2) = zy — det(q)2>

over 0,. In the new coordinates, the set Y*(0,) is still defined by the same
conditions on the coordinates. By Proposition 4.1, one has

Br(Y)/Br(F,) ~7Z/2 for —a.det(q) ¢ F)°
and the generator is given by the class of the quaternion algebra
(x,—a.det(q)) € Br(F,(Y)).

If v(a) = v(—a.det(q)) is odd, one can choose (z,,¥,,0) € Y*(0,) where
x, 18 a square, resp. a nonsquare unit in 0. On these points, (x, —a. det(q))
takes the value 0, resp. the value 1/2.

If v(a) = v(—a.det(q)) is even, we claim that for any (z,,y.,2,) €
Y*(0,), v(x,) is even. Indeed, suppose there exists (x,,y,,2,) € Y*(0,)
such that v(z,) is odd. Then y, or z, is in 0. If we have z, € 0, then by
Hensel’s lemma —a. det(q) € F**, which is excluded. We thus have z, ¢ 0
and y, € 0. This implies v(x,y,) is odd. Therefore

v(—det(q).z) = v(a) < v(zuy,)

and —a. det(q) € FvX2 by Hensel’s lemma. A contradiction is derived and the
claim follows. By the claim, the algebra (z, —a. det(q)) vanishes on Y*(o,).
O

Lemma 4.4. Let k = F, be a completion of the number field F'. Let q(z,vy, 2)
be a nondegenerate quadratic form over k and let a € k*. LetY be the affine
k-scheme defined by the equation

q(z,y,2) = a.

Assume —a. det(q) & k*2. AssumeY has a k-point. One has Br(Y')/ Br(k) ~
Z/2. Let £ be an element of Br(Y) with nonzero image in Br(Y)/Br(k).
Then £ takes a single value over Y (k) if and only if v is a real place and q

1S anisotropic over F,.
Proof. By Proposition 4.1, one has
Br(Y)/Br(k) ~ 7Z/2.

Let V' be the quadratic space defined by ¢(z,y,z) over k. Fix a k-point
m € Y (k). To prove the lemma, we may take £ € Br(Y') to be the nonzero
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element, of order 2, which vanishes at m. Associated to the k-point m we
have the map SO(V) — Y sending g to g.m. By a theorem of Witt, this
map induces a surjective map SO(V)(k) — Y (k). By [CTX, p. 331], the
composite map

SO(V)(k) = Y (k) — Br(k),

where the map Y (k) — Br(k) is defined by evaluation of &, coincides with
the composite map

SO(V)(k) = k* /k*2 = & /Nicu(l*) = Br(k),

where K = k(y/—a.det(q)), the map k™ /Ng/p(K*) < Br(k) sends ¢ € k*
to the class of the quaternion algebra (¢, —a. det(q)), the map 6 : SO(V')(k) —
k> /k*? is the spinor map, and k* /k*? — k* /N, (K*) is the natural pro-
jection. This latter map is onto, and it is by assumption an isomorphism
if & = R. For k a nonarchimedean local field, the spinor map is surjec-
tive [OM, 91: 6]. For k = R the reals, the spinor map has trivial image in
R* /R*? ~ +1 if and only if the quadratic form ¢ is anisotropic. ]

The following proposition does not appear formally in §6 of [CTX], where
attention is restricted to schemes over the whole ring of integers. It follows

however easily from Thm. 3.7 and §5.6 and §5.8 of [CTX].

Proposition 4.5. Let F' be a number field. Let Y/F be a smooth affine

quadric defined by an equation

q(z,y,2) = a.

Assume Y (F) # (. Let S be a finite set of places of F. Assume there
exists vg € S such that q is isotropic over F,,. Then strong approrimation
with Brauer-Manin obstruction off S holds for Y. Namely, the closure of
the image of Y (F) under the diagonal map Y (F) — Y (A3) coincides with
the image of Y (Ap)B"Y) C Y(Ap) under the projection map Y (Ap) —
Y (AZ). [

5 Computation of Brauer groups for the equa-
tion q(z,y, z) = p(t)

Let k be a field of characteristic zero, ¢(z,y, z) a nondegenerate quadratic
form in three variables over k and p(t) € k[t] a nonzero polynomial.
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Let X be the affine variety defined by the equation

(5.1) q(z,y, z) = p(1).

The singular points of X3 are the points (0,0, 0,¢) with ¢ a multiple root
of p (Lemma 3.3). Let U C Xgpnootn be the the complement of the closed set
of X defined by z =y =2 =0.

Let 7 : X — X a desingularization of X, i.e. X is smooth and in-
tegral, the k-morphism 7 is proper and birational. We moreover assume
that the map m : 7 (Xgmooth) — Xsmootn 18 an isomorphism. In particular
7.7 (U) — U is an isomorphism.

Write p(t) = c.p1 () ... ps(t)®, where cis in £* and the p;(t), 1 <
are distinct monic irreducible polynomials over k. Let k; = k[t]/(pi(t )) for
1< <s.

Z

Let K = k(t) where k is an algebraic closure of k. The polynomial p(t)
is a square in K if and only if all the e; are even.

In this section we compute the Brauer groups of U and the Brauer group
of the desingularization X of X. By purity for the Brauer group [G, Thm.
(6.1)], we have Br(Xsmootn) — Br(U), and the group Br(X) does not depend
on the choice of the resolution of singularities X — X (see [G, Cor. (7.3)
and Thm. (7.4)].)

The following lemma is well known (see [CTSk, Thm. 2.5]).

Lemma 5.1. Let F be a field, char(F) # 2. Let F be a separable closure
of F, and let g = Gal(F/F). Let f(x,y,z,t) be a nondegenerate quadratic
form over F. Let d € F* be its discriminant. Let X C P3. be the smooth
quadric defined by f = 0.

(a) There is an isomorphism of g-lattices Pic(X) ~ Ze, ® Zes, with the
following Galois action.

(b) If d € F*2, the action of g on Pic(X) is trivial.

(¢) If d & F*2, the action of g factors through Gal(F(v/d)/F), the non-
trivial element of the latter group acting by permutation of e; and es.

(d) The class ey + ey belongs to Pic(X) C Pic(X), it is the class of a
hyperplane section of the quadric X C P3.

(e) There is a natural exact sequence

0 — Pic(X) — Pic(X)? — Br(F) — Br(X) — 0.
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Proposition 5.2. Let p(t) = c.pi(t) ... ps(t), q(z,y,z) and U be as in
the beginning of this section. If p(t) is not a square in K = k(t), i.e. if not
all e; are even, the natural map Br(k) — Br(U) is an isomorphism.

Proof. Let Z be the closed subscheme of P? x A} defined by the equation

q(z,y,2) = p(t)u”

where (z,y, z,u) are homogeneous coordinates for P?. Then X can be re-
garded as an open set in Z with u # 0. The complement of X in Z is given
by u = 0 and isomorphic to D = C' x;, A} where C' is the projective conic
in P? defined by ¢(x,y,z) = 0. Let f : P} x Aj — A} be the projection
onto A}. We shall abuse notation and also denote by f the restriction of f
to Zariski open sets of X.

Let Uy = U x4 k. Let Ux = U x 53 Spec(K) and Zi = Z x o1 Spec(K).
Any invertible function on Ux C Zk has its divisor supported in u = 0,
which is an irreducible curve over K. Hence such a function is a constant in
K*. Since the fibres of f : U — A} are nonempty, any invertible function
on Uy is the inverse image of a function in K[U]* = K* which is invertible
on A%, hence is in k. Thus

Let V = Zgnoon, and Vi =V Xy, k. Since p(t) is not a square in K, the
K-variety
Vik =V Xp1 Spec(K) C P%,

is a smooth projective quadric defined by a quadratic form whose discrimi-
nant is not a square. By Lemma 5.1 (c) (e) together with Br(K) = 0 (Tsen’s
theorem), this implies that the abelian group Pic(Vk) is free of rank one
and is spanned by the class of a hyperplane section of V. Since Ux C Vi is
the complement of the hyperplane section u = 0, this implies Pic(Ux) = 0.
Since U is smooth, Pic(A}) = 0 and all the fibres of f : U — A} are geomet-
rically integral, the restriction map Pic(Uy) — Pic(Ug) is an isomorphism.
Thus
Pic(Uz) = 0.

Lemma 5.1 (e) and Br(K) = 0 then yields Br(Vx) = 0. Moreover, since
V% is regular, the natural map Br(V;z) — Br(Vk) is injective. Therefore
Br(V;) = 0.

Let

OE:Oka and DE:DXkE
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Since D = C x;, A}, and Cf =~ Py, we have H},(Dr, Q/Z) = 0. Since Dy is
a smooth divisor in the smooth variety V%, we have the exact localization
sequence

0 — Br(V5) — Br(Uy) — H, (D7, Q/Z).

One concludes
Br(Uz) = 0.

The Hochschild-Serre spectral sequence for étale cohomology of the sheaf
G, and the projection morphism U — Spec(k) yields a long exact sequence

Pic(Uy)? — H*(g,k[U]*) — ker[Br(U) — Br(Uy)] — H'(g, Pic(Uz))
where g = Gal(k/k). Combining it with the displayed isomorphisms, we get

Br(k) ~ Br(U).

Let us now consider the case where p(t) is a square in K = k(t).

Proposition 5.3. Let p(t) = c.pi(t)...ps(t)%, q(x,y,2) and U be as
above. Assume all e; are even, i.e. p(t) = c.r(t)? with c € k* and r(t) € k[t]
nonzero. Let d = —c.det(q).

The following conditions are equivalent:

(i) d is not a square in k and the natural map H3,(k, G,,) — H3.(U, G,,)
18 1njective;

(11) Br(U)/ Br(k) = Z/2.

If they are not satisfied then Br(U)/ Br(k) = 0.

Proof. We keep the same notation as that in the proof of Proposition 5.2,
in particular g = Gal(k/k). Let M = k(v/d). If d ¢ k*2, let Zq be the rank
one g-lattice defined by the Gal(M/k)-lattice such that o.x = —x for o the
nontrivial element in Gal(M/k). If d € k2, let Zq = 7 with trivial g-action.

Since p(t) is a square in K = k(t), one has Pic(Vy) = Ze; © Zey (cf.
Lemma 5.1). The Galois group g = Gal(k/k) acts on Pic(V) trivially if
d € kX2 If d ¢ k*2, then Gal(k/k) acts on Pic(Vy) through Gal(M/k)
with permutation action on the two generators e; and e;. We thus have an
isomorphism of g-modules Pic(Uy) = Z,.

By the same argument as those in the proof of Proposition 5.2, one has

k’X = E[U]X, PlC(UE) ~ PIC(UK) ~ Zd and Br(UE) =0.
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Using Br(Uy) = 0, we deduce from the Hochschild-Serre spectral se-

quence a long exact sequence
Br(k) — Br(U) — H'(g, Pic(U;)) — H3(k, G,,) — H:(U, G,,).
If d € k*2, one has
H'(g, Pic(Uy)) = Homeoni(g, Z) = 0

and the long exact sequence yields Br(U)/ Br(k) = 0.
Assume d ¢ k*%. From

H'(g, Pic(Uy)) = H'(9,Z) = 2

one gets an inclusion Br(U)/ Br(k) C Z/2, which is an equality if and only
if H3,(k,G,,) — H2,(U,G,,) is injective. O

Remark 5.4. The natural map H3,(k, G,,) — H3,(U, G,,) is injective under
each of the following hypotheses:

(i) the open set U has a point over a finite, odd degree extension of k;
(i) the field & is a number field (in which case Hz,(k, G,,) = 0).

Proposition 5.5. Keep notation as in Proposition 5.3. Assume that we
have Br(U)/ Br(k) = Z/2. Then:

(a) For any field extension L/k, the map Br(U)/Br(k) — Br(U)/ Br(L)
18 onto.

(b) For any field extension L/k and any o € A*(L) such that p(a) # 0,
the evaluation map Br(U)/Br(k) — Br(U,)/Br(L) on the fibre q(x,y,z) =
p(a) is onto.

Proof. The long exact sequence
Br(k) — Br(U) — H'(gx, Pic(Ug)) — H,(k, G,,) — H2(U, G).

is functorial in the base field k. The assumption Br(U)/Br(k) = Z/2 and
the possible Galois actions of the Galois group on Pic(Uy) (as discussed in
the proof of the previous proposition) imply that the map Br(U)/Br(k) —
H*'(gk, Pic(Uy)) is an isomorphism.

(a) Let L be an algebraic closure of L extending & C k. If we have
Br(Ur)/Br(L) = 0, the assertion is obvious. If Br(UL)/Br(L) # 0, then
d ¢ L** and Br(U.)/Br(L) = H' (g, Pic(Uz)) = Z/2. The natural map
Pic(Ug) — Pic(Uy) is an isomorphism of free rank one abelian groups which
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moreover is Galois-equivariant. Under the hypothesis d ¢ L*?, it is an iso-
morphism of Gal(M/k)-modules. Thus the natural map H'(gx, Pic(Uy)) —
H'(gr,Pic(Us)) is an isomorphism. This implies that the map

Br(U)/Br(k) — Br(Ur)/ Br(L)

is an isomorphism, as claimed in (a).

(b) If d is a square in L, then Br(U,)/Br(L) = 0. Assume d ¢ L*?. Let
L be an algebraic closure of L extending k C k. By the functoriality of the
Hochschild-Serre spectral sequence for the morphism U, — U, we have a

commutative diagram of exact sequences
Br(k)— Br(U) — H'(gx, Pic(Uz)) — H2,(k,G,,) — H2,(U, G,)

G2 L 4 ! ! !
Br(L)—Br(U,)— H'(gz, Pic(Uavz))%Hgt(L, G,)— H3(U,,G,)

One readily verifies that the evaluation map Pic(Uz) — Pic(U, 1) is an
isomorphism of Galois modules (split by a quadratic extension), hence the
map H'(gx, Pic(Uy)) — H'(gz,Pic(U, 7)) is an isomorphism Z/2 = 7Z/2.
From the diagram we conclude that Br(U) — Br(U,)/Br(L) is onto. [

Proposition 5.6. Let p(t) = c.[[.c; pi(t)*, q¢(z,y,2), X, U and the map
7: X — X be as above. Assume H3,(k, G,) — H3,(U, G,,) is injective. Let
d = —c.det(q).

Consider the following conditions:

(i) All e; are even, i.e. p(t) = c.r(t)* for c € F* and some r(t) € kl[t].

(ii) d & k*2.

(iii) For eachi € I, d € k**.

We have:

(a) If (i) or (ii) or (iii) is not fulfilled, then Br(X)/Br(k) = 0.

(b) Assume U(k) # 0. If (iii) is fulfilled, then Br(X) = Br(U).

(c) If (i), (ii) and (iii) are fulfilled, then

Br(X)/ Br(k) 5 Br(U)/Br(k) = Z/2.

In that case, for any field extension L/k and any o € L such that p(a) # 0,
the evaluation map Br(X)/Br(k) — Br(X,)/Br(L) is surjective.

Proof. One has Br(X) C Br(U).
Proof of (a)
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By Proposition 5.2, resp. Proposition 5.3, if (i), resp. (ii), is not fulfilled,
then Br(U)/Br(k) = 0. Assume (i) and (ii) are fulfilled. Proposition 5.3
then gives Br(U)/ Br(k) ~ Z/2.

Let F be the function field of the smooth projective conic C' defined by
q(z,y,2) = 0. Assume (iii) does not hold. Let ¢ € I such that d ¢ k*. Let
F; be the composite field F.k;. Since k is algebraically closed in F', so is k;
in F;. Thus d is not a square in F;.

By the same argument as in Proposition 5.5, the map
Z]2 = Br(U)/Br(k) — Br(Ug,)/ Br(F;)

is an isomorphism. Over the field F;, one may rewrite the equation of Xp,
as
ry — det(q)2? = c.r(t)?

and assume that ¢ = 0 is a root of r(t). After restriction to the generic fibre
of Up, — Spec(F;[t]), the quaternion algebra (z,d) € Br(F;(X)) defines
a generator modulo Br(F;(t)). This follows from Proposition 4.1. Now the
algebra (x,d) = (y.det(q), d) is unramified on the complement of the closed
set {x = y = 0} on Ug, of codimension 2 in Ug, thus (z,d) belongs to
Br(Ug,). It thus generates Br(Ur,)/ Br(F;).

Define h(T) € k[T] by Th(T) = cr(T)?. Consider the morphism

o : Spec(F[[T]]) — X

defined by
(x,y,2,t) = (T,h(T),0,T).

The induced morphism Spec(F;((T))) — X has its image in U. Since
7 : X — X is proper, we conclude that the morphism o lifts to a mor-
phism & : Spec(F[[T]]) — X. Suppose (z,d) € Br(Up,) is in the image of
Br(Xr) — Br(Ug). Then ¢*((x,d)) = (T,d) belongs to Br(F;[[T]]). But
the residue of (T,d) € Br(Fy(T)) at T = 0is d # 1 € F*/F . This
is a contradiction. Taking into account Proposition 5.5, we conclude that
the embedding Br(X)/Br(k) — Br(U)/Br(k) = Z/2 is not onto, hence
Br(X)/Br(k) = 0.

Proof of (b)

Let E = k(v/d). By Proposition 5.3, we have Br(Ug)/Br(E) = 0. Using
the hypothesis U(k) # 0, we see that any element of Br(U) C Br(k(U))
may be represented as the sum of an element of Br(k) and the class of a
quaternion algebra (g, d) for some g € k(U)*.
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Assume (iii) is fulfilled. Let  be a point of codimension 1 of X which does
not belong to p~!(U). Let v be the associated discrete rank one valuation on
the function field of X. We then have v(p;(t)) > 0 for some ¢ € I. We thus
have k C k; C k,, where K, = k(x) is the residue field of v. If assumption
(iii) is fulfilled we conclude that d is a square in k,,.

But then the residue of (g,d) at z, which is a power of d in k) /KX,
is trivial. By purity for the Brauer group, we conclude Br(X)/Br(k) =
Br(U)/ Br(k). This proves (b).

Proof of (c)

This follows from Proposition 5.3 and Proposition 5.5. O

Let @ be the smooth affine quadric over k defined by ¢(x,y, z) = ¢. For
simplicity, let us assume Q(k) # (). In the situation of Proposition 5.3, with
d = —c.det(q) ¢ (k*)?, one may give an explicit generator in Br(U) for
Br(U)/Br(k) = Z/2.

The assumption Q(k) # 0 implies U(k) # 0. By Prop. 4.1, we have
Br(Q)/Br(k) = Z/2. Let ax + By + vz + § = 0 define the tangent plane of
@ at some k-point. Not all «, 3, are zero. As recalled in Proposition 4.1,

A= (az+ By +~z+6,d) € Br(k(Q))

belongs to Br(Q) and generates Br(Q)/ Br(k).
Given a nonzero r(t) € k[t], let W = Q x (A} \ {r(t) = 0}). Consider

the birational k-morphism
f:Qxp AL = X CAL (z,y,2,t) = (r(t)x, r(t)y, r(t)z,1).

This map induces an isomorphism between W = @Q x;, {A'\ {r(t) = 0} and
the open set V' of U = X00n defined by r(t) # 0. Let Ay be the image of
A inside Br(V') under the composition map

Br(Q) — Br(W) = Br(V).

Proposition 5.7. Let p(t) = c.r(t)* with ¢ € k* and r(t) € k[t] nonzero.
Assume

d=—c.det(q) & k~°.
Assume Q(k) # 0. With notation as above, the element
B = Ay + (r(t),d) = (ax + py + vz + 6r(t),d) € Br(V)

can be extended to Br(U) and it generates the group Br(U)/ Br(k) ~ Z/2.
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Proof. On'V C U = Xnooth, We have
Ay = (az/r(t)+By/r(t)+yz/r(t)+6,d) = (az+By+vyz+0or(t),d)—(r(t), d).
Thus

B = Ay + (r(t),d) = (ax + By + vz + or(t),d) € Br(k(V))

is unramified on V. To check that it is unramified on U, it is enough to
compute the residue at the generic point of each component of r(¢t) = 0
on U. These are defined by a system p;(t) = 0,¢(x,y, z) = 0. But at such a
point, ax+ fy+yz+0r(t) is a unit since it induces the class of ax+ Sy +2
on the residue field, and this is not zero since ax + Sy + vz is not divisible
by q(z,y, z). Since d is clearly a unit, we conclude that B is not ramified
at such points. The natural map Br(Q)/Br(k) — Br(Qrw))/ Br(k(t)) is the
identity on Z/2. It sends the nontrivial class A to the class of B. The image
of B in Br(U)/Br(k) = Z/2 is thus nontrivial. O

One may use this proposition to give a more concrete description of
specialization of the Brauer group, as discussed in Propositions 5.5 and
5.6.

6 Arithmetic of the equation ¢(z,y, z) = p(t)

Let F' be a number field, ¢(x,y, z) a nondegenerate quadratic form in three
variables over F' and p(t) € F[t] a nonzero polynomial. Let X be the affine
variety over F' defined by the equation

(6.1) q(z,y, z) = p(1).

The singular points of X3 are the points (0,0,0,¢) with ¢ a multiple root
of p (Lemma 3.3). Let U C Xgno0n be the complement of the closed set of
X defined by x =y = 2= 0.

Let 7 : X — X a desingularization of X, i.e. X is smooth and integral,
the map 7 is proper and birational. We assume that 7 : 7Y Xgnootn) —
Xemootn 18 an isomorphism. Thus 7 : 771(U) — U, is an isomorphism. This
allows us to view U as an open set of X.

Write p(t) = c.pi(t)° ... ps(t)®, with ¢ is in F* and the p;(t), 1 <i<s
distinct monic irreducible polynomials over F. Let F; = F[t]/(p;(t)) for
1< <s.
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Under some local isotropy condition for ¢, we investigate strong approx-
imation for the F-variety X.
This variety is equipped with an obvious fibration X — A} = Spec(F[t]).

We begin with two lemmas.

Lemma 6.1. Ifr(t) is an irreducible polynomial over a number field F', then
there are infinitely many valuations v of F for which there exist infinitely
many t, € o, with v(r(t,)) = 1.

Proof. By Chebotarev’s theorem, there are infinitely many valuations v of
F which are totally split in the field F[t|/(r(t)). Let d denote the degree of

r(t). For almost all such v, we may write

d

r(t) =c] [t - &) € R [t)
i=1
with all & in o0, and ¢ and all § —§; (¢ # j) units in o0,. Since there are
infinitely many elements of 0, with v-valuation 1, there exist infinitely many
t, € 0, such that v(t, — &) = 1. Then v(r(t,)) = 1. O

Lemma 6.2. Let F' be a number field, and q(x,y,z) and p(t) be as above.
If not all e; are even, then there exist infinitely many valuations w of F' for
which there exists t,, € 0,, with w(p(t,)) odd and —p(t,).det(q) & Fx2.

Proof. Assume e;, is odd for some iy € {1,---,s}. If s = 1, the result
immediately follows from Lemma 6.1. Assume s > 1.
For any j # iy, there are polynomials a;(t) and b;(t) over F such that

(6.2) a;j(t)p;(t) + b;()pio(t) = 1

holds.

Let S be a finite set of primes such that each of the following conditions
hold:

(i) the coefficients of ¢ are integral away from S;

(i) w(c) = w(det(q)) = 0 for all w & S;

(iii) the coefficients of a;(t), b;(t) for j # ip and of p;(t) for 1 <i < s are
in 0, for all w & S.

By applying Lemma 6.1 to p;,(t), we see that there exist infinitely many
primes w ¢ S and t, € o, such that w(p;(t,)) = 1. By equation (6.2),
one has w(p;(t,)) = 0 for any j # 4p. This implies w(p(t,)) = e€;, is odd.
Therefore —p(t,,) - det(q) & F.X2. O
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Proposition 6.3. Let F' be a number field and X be an F-variety defined

by an equation
q(z,y,z) = p(t)

where q(x,y,z) is a nondegenerate quadratic form over F and p(t) is a
nonzero polynomial in F[t]. Assume Xsmootn(Fy) # O for each place v of F.
Then

(1) Xsmootn(F) is Zariski-dense in X.

(2) Xsmootn Satisfies weak approrimation.
Proof. This is a special case of Thm. 3.10, p. 66 of [CTSaSD]. O

Theorem 6.4. Let F be a number field. Let U C X be as above. Assume
U(Ar) # (0. Let S be a finite subset of Qp which contains a place vy such
that the quadratic form q(x,y, z) is isotropic over F,,. Then strong approz-
imation off S with Brauer-Manin condition holds for any open set V' with
UcVcC X, i particular for Xgmooth-

Since X is smooth and geometrically integral, the hypotheses U (Arp) #0,
Xomooth(Ap) # 0 and X (Ap) # 0 are all equivalent.

Taking into account the isomorphism Br(X,o0tn) = Br(U), the finite-
ness of Br(U)/ Br(F) (§5) and Proposition 2.6, this theorem is an immediate

consequence of the following more precise statement.

Theorem 6.5. Let F' be a number field. Let p(t) = c.pi(t) ... ps(t)e,
q(z,y,2), X, U and X be as above. Let d = —c.det(q). Let S be a finite
subset of Qp which contains a place vy such that the quadratic form q(z,vy, 2)
is isotropic over F,,. Assume U(Ap) # 0.

Then U(F) # 0 is Zariski dense in U.

(1) If at least one e; is odd, then

Br(X)/Br(F) = Br(U)/Br(F) = 0,

and strong approzimation off S holds for U and for X.
(ii) If all e; are even and d € F*?, then

Br(X)/Br(F) = Br(U)/Br(F) = 0,

and strong approzimation off S holds for U and for X.
(iii) If all e; are even and there exists i such that d ¢ F)*, then

Br(X)/Br(F) =0, Br(U)/Br(F) = Z/2,
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strong approximation off S with Brauer-Manin condition holds for U and

for any open set V with U C V C X. Strong approzimation holds for X

and for any open set V with U C'V C X which satisfies Br(X) = Br(V).
(iv) If all e; are even, d ¢ F*%, and for all i, d € F**, then

Br(X)/Br(F) = Br(U)/Br(F) = Z/2,

and strong approximation off S with Brauer-Manin condition holds for U
and for X .

(v) Strong approximation off S fails for U, resp. for X, if and only if the
following two conditions simultaneously hold:

(a) Br(U)/Br(F) = Z/2, resp. Br(X)/Br(F) = 7/2;

(b) d is a square in F, for each finite place v € S and also for each real
place v € S such that either q(x, vy, z) is isotropic over F, or r(t) has a root

over F,.

Proof. By Proposition 6.3, U(F) # () and U(F) is Zariski dense in U. The
various values of Br(U) and Br(X) have been computed in §5. By Proposi-
tion 2.3 and Proposition 2.6, to prove (i) to (iv), it is enough to prove the
strong approximation statements (with Brauer-Manin obstruction) for U.

We fix a finite set T of places, which contains S, the infinite primes, the
dyadic primes and all the finite places v where ¢(z,y, z) has bad reduction.
We also assume that p(t) has coefficients in o7 and that its leading coefficient
c is invertible in 07. We denote by X the o7-scheme given by

q(x,y,2) = p(t).

We let U C X be the complement of the closed set defined by the ideal
(x,y, z). We may extend T so that there is a smooth integral o7-scheme X
equipped with a proper birational opr-morphism X > X extending the map
X > X.

For any v ¢ T, U(o,) is the set of points (z, Yy, 20, t,) with all coordi-
nates in 0y, q(zy, Yu, 2o) = p(t,) and one of (z,,y,, z,) a unit. By Lemma
4.2, given any t, € o0,, this set is not empty.

To prove the statements (i) to (iv), after possibly increasing T', we have
to prove that for any such finite set T' containing S, a nonempty open set
of U(Ap) of the shape

Wy = ([Jv@E) x T[ U x []U(e.))>®

veS veT\S vgT

with U, open in U(F,), contains a point in U(F).
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Given ty € or = Al(or) with p(tg) # 0, we let Uy, /Spec(or) be the fibre
of U/A, _ above ty. This is the or-scheme defined by ¢(x,y, z) = p(ty). We
let Uy, = Uy, X, F.

It is enough to show that in each of the cases under consideration:

There exists ty € o such that the set

JIU(F) x T[] UenUy(F) x [ Usylo0,)]P )
ves vET\S vgT
18 nonempty.

Indeed, Proposition 4.5 implies that such a nonempty set contains an
F-rational point.

We have Br(U)/Br(F) C Z/2. If Br(U)/ Br(F) is nonzero, we may rep-
resent the group by an element £ of order 2 in Br(U). To prove the result,
we may extend T'. After doing so, we may assume that £ vanishes identically
on each U(o,) for v ¢ T

We start with a point {M,} = {(zy, Yo, 22, ty) }oeq, iIn Wy such that
p(t,) # 0 for each v € Qp.

We have

> &(M,) =0€eZ/2.

In case (i), we choose a w ¢ T and a t,, € 0, with w(p(t,,)) odd and
—p(t),). det(q) ¢ F*%. The existence of such w, t], is guaranteed by Lemma
6.2.

Using the strong approximation theorem, we find a tq € o7 which is very
close to each t, for v € T\ {vp} and is also very close to ¢/, in case (i).

By Lemma 4.2, as recalled above, for each v ¢ S, the projection map
U(o,) — Al(o,) is onto. By assumption, ¢ is isotropic at vy € S, hence
U(F,,) — A'(F,,) is onto.

Combining this with the implicit function theorem, we find an adele
{P,} € Uy (Ap) = X,;,(Ap) with the following properties:

e For v € T\ {vo}, P, is very close to M, in U(F,), hence belongs to
U, N Uy, (F,) for v e T\ S. Moreover £(M,) = £(P,).

e Forv ¢ T, P, € Uy(o,), hence {(P,) = 0 = £(M,).

By the Hasse principle, there exists an F-point on the affine F-quadric
Uy, = Xy

Consider case (i). By the definition of w, w(p(ty)) is odd, —p(ty). det(q) ¢
F*? hence —p(ty). det(q) ¢ F*?, thus

Z/2 = Br(U,,)/ Br(F) ~ Br(Us, 1, )/ Br(F,)
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by Proposition 4.1. Let p € Br(U,,) be an element of order 2 which generates
these groups.

If Y p(P,) =0, the adele {P,} € U,,(Ap) belongs to the Brauer-Manin
set of Uy,.

Suppose Y, p(P,) = 1/2. By Lemma 4.3 , p takes two distinct values
on Uy, (0,). We may thus choose a new point P,, € Uy, (0,,) such that now
>, p(P,) =0, that is the new adele {P,} € Uy, (Ar) belongs to the Brauer-
Manin set of U;,, which completes the proof in this case.

Consider case (ii). In this case —det(q).p(ty) € F*%, hence we have
Br(Uy,)/ Br(F) = 0 by Proposition 4.1. Thus the adele {P,} € Uy, (AF) is
trivially in the Brauer-Manin set of Uy, which completes the proof in this

case.

Let us consider (iii) and (iv). In these cases, —c.det(q) ¢ F*?, hence
—det(q).p(t) ¢ F(t)** and —det(q).p(to) & F*? for any t, € F. We have
Br(U)/Br(F) = Z/2 and Br(Uy,)/ Br(F) = Z/2 for any t, with p(to) # 0.
The element ¢ € Br(U) has now exact order 2. It generates Br(U)/Br(F).
The restriction of this element to Br(Uy,)/ Br(F') = Z/2 is the generator of
that group (Propositions 5.3 and 5.5).

By hypothesis, > &(M,) = 0. We then have

Zf(Pv):€<on>+ Z é(Pv):g(on)—i_ Z £(Mv>:§(Pv0)_€(Mvo)'

veT\{vo} veT\{vo}

If d € F}? then Br(Ug, )/ Br(F,) = 0 (Prop. 5.3), from which we
deduce &(P,,) — £(M,,) = 0. We thus get Y &(P,) = 0. The adele {P,} is
in the Brauer-Manin set of Uy,.

Assume d ¢ F5*. Then Br(Ug, )/ Br(F,,) = Br(Uy,r,,)/ Br(Fy,) = Z/2
(Propositions 5.3 and 5.5). The image of § in Br(Uy, r, )/ Br(F,,) generates
this group. By Lemma 4.4, the class £ takes two distinct values on Uy, (F,).
This holds whether v is real or not, because by assumption ¢ is isotropic
at the place vy. We may then change P,, € Uy, (F,,) in order to ensure that
E(Py,) — £E(M,,) = 0, which yields ), &(P,) = 0. The adele {P,} is in the
Brauer-Manin set of Uy,.

This proves (iii) and (iv) for U.

It remains to establish (v).

Assume (a) and (b). Under (a), all e; are even and d ¢ F*2. We let

¢ be an element of exact order 2 in Br(U), resp. Br(X), which generates
Br(U)/Br(F), resp. Br(X)/ Br(F). Under (b), at each finite place v € S, by
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Proposition 5.3 we have (g, € Br(F,), hence ¢ is constant on U(F,), resp.
X(F,). The same holds at a real place v such that d € F*?. At a real place
v € S such that d ¢ F*?, the form ¢(x,y, 2) is anisotropic over F, and r(t)
has no real root. At such v, the equation after suitable transformation reads
2?2 +y* + 22 = (r(t))? and U(F,) = U(R) is connected. Then £ is constant
on U(R).

Let M be a point of U(F), resp. X (F), with p(t(M)) # 0. Since we have
d ¢ F*?, there are infinitely many finite places w ¢ S such that d ¢ F*%. At
such a place w, £ takes two distinct values on Uy (Fy) = Xt(M)(Fw) (use
Proposition 5.5 and Lemma 4.4). Pick P,, € Uy (F,) such that £(P,) #
E(M)p, € Z/2. If we let {P,} be the adele of U, resp. X with P, = M
for v # w and P, as just chosen, then ) &(P,) # 0, and this adele lies
in an open set of the shape [ s U(Fy) X [[,emgUs X I1,¢r U(0,), resp.
[Toes X (o) X[ Ter\s Us X1 Lgr X(0,), which contains no diagonal image of
U(F), resp. X (F). Strong approximation off S therefore fails for U, resp. X.

Suppose either (a) or (b) fails. Let us prove that strong approximation
holds off S. If (a) fails, then Br(U)/Br(F) = 0, resp. Br(X)/Br(F) = 0,
and we have proved that strong approximation holds off . We may thus
assume Br(U)/Br(F) = Z/2, resp. Br(X)/Br(F) = Z/2, hence all ¢; are
even and d ¢ F*2, and that (b) fails. Then either

(i) there exists a finite place v € S with d ¢ F**

or

(ii) there exists a real place v € S with d ¢ F*?, i.e. d < 0, such that ¢
is isotropic over F), or () has a root in F,,.

We let € be an element of exact order 2 in Br(U), resp. Br(X) which
generates Br(U)/Br(F), resp. Br(X)/Br(F). For any t, € A'(F,) with
p(t,) # 0, € generates Br(Uy, )/ Br(F,), resp. Br(X,,)/ Br(F,) (Proposition
5.5). If v is a finite place of S with d ¢ F*? then, by Lemma 4.4, above
any point of t, € AY(F,) with p(t,) # 0, £ takes two distinct values on
U, (F,) = X,,(F,). It thus takes two distinct values on U(F,), resp. X (F,).
The same argument applies if v € S is a real place with d ¢ F*? and ¢ is
isotropic at v. If v is a real place with d ¢ F*? and ¢ is anisotropic at v,

then one may write the equation of X over F, = R as
2+t + 22 =)

The real quadric @ defined by z? + y? + 22 = 1 contains the point (1,0, 0).
Applying the recipe in Proposition 5.7, one finds that the class of the
quaternion algebra (x — r(t), —1) in Br(F(U)) lies in Br(U) and generates
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Br(U xr R)/Br(R). By assumption, r(¢) has a real root. One easily checks
that (x — r(t)) takes opposite signs on U(R) when one crosses such a real
root of r(t). Thus (g = (v — r(t), —1) takes two distinct values on U(F}).
Let now {P,} be an adéle of U, resp. X. If 3 &(P,) = 1/2, then we
change P, at a place v € S so that the new ) &(P,) = 0. We then know
that that we can approximate this family off S by a point in U(F)), resp. a
point in X (F). O

Remark 6.6. Over the ring of usual integers, a special case of Watson’s
Theorem 3 in [Wat] reads as follows.

Assume the ternary quadratic form q(x,vy, z) with integral coefficients is
of rank 3 over Q and isotropic over R. Let p(t) € Z[t] be a nonconstant
polynomial. Assume

(W) For each big enough prime l, the equation p(t) = 0 has a solution
in the local field Q.

If the equation q(x,y, z) = p(t) has solutions in Z,; for each prime l, then
it has a solution in Z.

Let k = Q and X/k and X /k be as above. This result is a consequence
of Theorem 6.5. Indeed, if Br(X)/Br(k) = 0, strong approximation holds
for X, hence in particular the local-global principle holds for integral points
of X. By Proposition 5.6, Br(X)/Br(k) # 0 occurs only if all e; are even,
d ¢ k*? and d € k* for all 4. That is to say, for each i, the quadratic
field extension k:(\/a) of k lies in k;. There are infinitely many primes v of k
which are inert in k(+/d). For such primes v, none of the equations p;(t) = 0
admits a solution in k,. Condition (W) excludes this possibility.

7 Two examples

In this section we give two examples which exhibit a drastic failure of strong
approximation: there are integral points everywhere locally but there is no
global integral point.

The first example develops [Xu, (6.1), (6.4)].

Proposition 7.1. Let X C A2 be the scheme over Z defined by
—92% + 20y + Ty? + 227 = (217 — 1)%

Let U over Z be the complement of t =y =2 =0 in X. Let X = X xz7Q
and U = U x5 Q. Let X — X be a desingularization of X inducing an
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1somorphism over U. Let X — X, with U C 5(, be a proper morphism
extending X — X.
Strong approzimation off co fails for U and for X. More precisely:
(i)
[[X@)#0 and X(zZ)=9.

p<oo

(ii)
(iii)

Proof. With notation as in Theorem 6.5, we have F' = Q, vy = 00, S = {vg}.
One has det(q) = —2" and d = —c.det(q) = 2°. We are in case (iv) of
Theorem 6.5. Over R, ¢(z,y, z) is isotropic. By Theorem 6.5 (iv) we have

Br(X)/Br(F) = Br(U)/Br(F) = 7./2

and by Theorem 6.5 (v) we know that strong approximation off S fails for
U and X.
The equation may be written as

(7.1) (x —y) (92 + Ty) = 22° — (2t — 1)
Let Y/Q be the smooth open set defined by
(7.2) (x —y) (92 + Ty) = 22° — (2t — 1)* £ 0.

Thus Y € U C X. We have Y(Q) = U(Q) = X(Q) since 2 is not a square
in Q. We also have Y(Q,) = U(Q,) = X(Q,) for any prime p such that 2
is not a square in Q,.

On the 3-dimensional smooth variety U, the algebra

(7.3) B=(y—=2) = (2092 +T7y),2) = (92 +7,2)

is unramified off the codimension 2 curve x = y = 0, hence by purity
it is unramified on U. One could show by purely algebraic means that it
generates Br(U)/Br(F) = Z/2 but this will follow from the arithmetic
computation below.

Note that U(Q) = X (Q), since the singular points of X are not defined

over Q.
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For p # 2, there is a point of U(Z,) with ¢t = 1. For p # 3, we have the
point (0,1/3,1/3,1) in U(Z,). Thus [] .. U(Z,) # 0.

For p # 2, and 2 not a square in Q,, for any solution of (7.2) in Z,,
y —x and 9z + Ty are p-adic units. For any p # 2, equality (7.3) thus
implies B(M,) = 0 for any point in X(Z,) N Y (Q,). Since U is smooth,
Y (Q,) is dense in U(Q,). Since X(Z,) is open in X (Q,), this implies that
X(Z,) NY(Q,) is dense in X(Z,) NU(Q,), and then that B(M,) = 0 for
any point in X*(Z,) := X(Z,) NU(Q,). This last set contains U(Z,).

The algebra B trivially vanishes on X*(R) := U(R).

Let us consider a point My € X(Zy) C Y (Qz). From (7.2), for such a
point with coordinates (z,y, z,t), we have

(x —y)(9x + Ty) = £1 mod. 8.

Thus the 2-adic valuation of y—x and of 92+ Ty is zero. If B vanishes on My
then y—x =1 mod. 4 and 92+ 7y = 1 mod. 4. But then 16z = 2 mod. 4,
which is absurd. Thus B(M,) is not zero, that is B(Ms) = 1/2 € Q/Z.

We conclude that for any point {M,} € [, X*(Z,) x X*(R),

> " B(M,) = B(M,) = 1/2.

This implies X(Z) = X(Z) N U(Q) = 0, hence U(Z) = § and X(Z) = 0,
since both sets map to X(Z).
Since X — X is proper, the map X(Zp) — X(Z,) contains X*(Z,) in its
image. We thus have X(Z,) # 0.
One actually has
] X(@,))7® = 0.
p<oo
Indeed, the algebra B = (y — z,2) on U extends to an unramified class on
X. To see this, one only has to consider the points of codimension 1 on X
above the closed point 2t> —1 = 0 of A}@. For the corresponding valuation v
on the field F(X), one have v(2t*> — 1) > 0, thus 2 is a square in the residue
field of v, hence the residue of (y — z,2) at v is trivial. O

The next example is inspired by an example of Cassels (cf. [CTX, 8.1.1]).

Proposition 7.2. Let X C A% be the scheme over Z defined by

2% — 2y + 6427 = (2t* + 3)%.
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Let U over Z be the complement of vt =y =2=01in X. Let X = X xz7Q
and U = U x; Q. Let X — X be a desingularization of X . Let X — X be
a proper morphism extending X > X.

Strong approzimation off co holds for X and fails for U. More precisely:

(i) X(Z) is dense in | J X(Z,).

(ii) There are solutions (x,y,z,t) in Z with p(t) # 0, thus we have
X(Z)nU(@Q) # 0.

(iii) We have [ oo U(Zp) # 0 and [[],co U(Zy)]P ) = 0, hence
U(Z) = 0 : there are no solutions (z,y, z,t) in Z with (z,y, z) primitive.

Proof. With notation as in Theorem 6.5, we have F' = Q, vy = 00, S = {vg}.
We have d = 2°. Over R, ¢(z,y,z2) is isotropic. We are in case (iii) of
Theorem 6.5. We have Br(X)/Br(F) = 0 and Br(U)/Br(F) = Z/2.

According to Theorem 6.5 (iii), strong approximation off oo holds for X.

Theorem 6.5 (v) then says that strong approximation off S fails for U.
That is, U(Q) is not dense in U(Ag).

The point (x,y,z,t) = (3,0,0,0) € U(Q) N X(Z) provides a point in
U(Z,) for each prime p # 3 and for p = oco. In general, for p odd, we have
U(Z,) # 0 by Lemma 4.2.

Let us prove statement (iii).

Since 1 —8z = 0 is the tangent plane on affine quadric 22 — 2y +6422 = 1
over Q at the point (0,0, %), Proposition 5.7 shows that B = (2t +3—8z,2)
is the generator of Br(U)/ Br(F'). We have

(7.4) (2t +3 — 82) (2t + 3+ 82) = 2% — 2¢°
thus
(7.5) B = (2t> 4+ 3 —82,2) = (2t> + 3+ 8z,2).

Let p be an odd prime such that 2 is not a square modulo p. For a point
(z,y,2) € U(Z,), if p divides both 2¢* 4+ 3 — 8z and 2t? + 3+ 8z, then on the
one hand p divides z and on the other hand, by equation (7.4), it divides
2% — 2y%, which then implies that p divides z and y. Thus p divides z, v, 2,
which is impossible for a point in U(Z,). We conclude from (7.5) that for
any odd prime p, B vanishes on U(Z,).

For p = 2, for any t and z in Z,, we have 2t + 3 — 82 = £3 modulo 8,
hence

(2t +3 — 82,2) = (£3,2) = 1/2 € Br(Qy).
Thus
T v =0,

p<oo
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which implies U(Z) = 0.

8 Approximation for singular varieties

The following lemma is well known.

Lemma 8.1. Let k be a local field of characteristic zero. Let X be a geometri-
cally integral variety over k. Let f: X — X be a resolution of singularities
for X, i.e. X is a smooth, geometrically integral k-variety and f is a proper
birational k-morphism. The following closed subsets of X (k) coincide:

(a) The closure of Xgmootn(k) in X (k) for the topology of k.

(b) The set f(X(k)) C X(k).

In particular, this set, called the set of central points of X, does not
depend on the resolution f : X — X. It will be denoted X (k) cent-

Proof. One uses the fact that for a nonempty open set U of X, U (k) is dense
in X (k) for the local topology, and that the inverse image of a compact
subset of X (k) under f is a compact set in X (k). O

Definition 8.2. Let F' be a number field. Let X be a geometrically integral
variety over F. Assume X 00 (F) # (0. Let S be a finite set of places of F.
One says that X satisfies central weak approximation at S if either of the
following conditions is fulfilled:

(a) Xomootn(F) is dense in [], o ¢ Xomootn (£7).

(b) Xemootn(F) is dense in [, g X (F))cent-

One says that X satisfies weak approximation if this holds for any finite
set S of places of F. n

While discussing the possible lack of weak approximation for a given
variety X the natural Brauer-Manin obstruction is defined by means of the
Brauer group of a smooth, projective birational model of X.

Let us now discuss strong approximation.

Lemma 8.3. Let F' be a number field. Let X be a geometrically integral
variety over F. Let f : X — X be a resolution of singularities for X, i.e. X
18 a smooth, geometrically integral F'-variety and f is a proper birational F -
morphism. Let S be a finite set of places of F. The following closed subsets
of X(A%) coincide:

(a) The intersection of X (A%) with [Togs X (Fo)cent-

(b) The image of X(A%) under f : X(A%) — X(AS).
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This set does not depend on the resolution f : X — X. We shall call it
the set of central S-adéles of X, and we shall denote it X (A%)cons-

Proof. There exists a finite set T" of places of I’ containing S and a proper
or-morphism of o7 schemes X - X extending X — X. For v ¢ T, one
checks that
X(0,) = X(0,) X x(5) X(F,).
O

Proposition 8.4. Let X be a geometrically integral variety over the number
field F. Assume Xgnootn(F) # 0. Let f : X — X be a resolution of singu-
larities for X. Let S be a finite set of places of F'. The following conditions
are equivalent:

(a) The diagonal image of Xemootn(F) in X (A7)eent is dense.

(b) The diagonal image of X(F) in X(A%) is dense.

Definition 8.5. If these conditions hold, we say that central strong ap-
proximation holds for X off S.

If central strong approximation off S holds for X, it holds off any finite
set S’ containing S.

Definition 8.6. Let X be a geometrically integral variety over the number
field F. Assume X000 (F) # 0. Let f : X — X be a resolution of singular-
ities. Let S be a finite set of places of F. If the diagonal image of X (F) in
(X(A$))BX) ¢ X(A%) is dense, we say that central strong approximation
with Brauer-Manin obstruction off S holds for X. If central strong approx-
imation with Brauer-Manin obstruction off S holds for X, it holds off any
finite set S’ containing S.

We leave it to the reader to translate the statement in terms of X (A%) cent.

We insist that the relevant group is the group Br(X'), which does not depend

on the chosen resolution of singularities X — X.

Example 8.7. Let k& be a local field of characteristic zero and X be a
k-variety defined by an equation

q(w1, -+ xn) = p(t),

where ¢ is a nondegenerate quadratic form and p(t) € k[t] a nonzero poly-
nomial. Then X (k) # X (k)cent if and only if there is a zero a of p(t) over k
of even order r and the quadratic form in n + 1 variables

q(xla T 7'1771) - pO(a)x721+1
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is anisotropic over k, where p(t) = (t — ) po(t).

Proof. By Lemma 3.3, a singular point of X (k) is given by (0,---,0,a),
where « is a zero of p(t) of order r > 1. Let p(t) = (t — a)"po(t). We may

assume
n

gy, x) = @z,

i=1
Let 7 denote a uniformizer of k if k is p-adic and some nonzero element
with |7| < 1 when k is archimedean.
Suppose 7 is odd. Let oy = a + po(a)a;7m®, hence lim;_,o, oy = a. For
[ >0, one has po(oy) = po(a)e; with ¢ € k* and ¢, — 1 as [ — oo. Then

r—1

P = (60,7 pola)

r+1 Ir
2T 707"' 707al)

are smooth points of X (k) for [ > 0 and P, — (0,---,0,«) when | — oc.
Therefore (0,---,0,a) € X (k)cent-

Suppose 7 is even and the quadratic form ¢(zy,- -+, z,) — po(a)a?,, is
isotropic. There exists

(917"' ,en,9n+1)§£(0,'-- ,0,0)

in k"*! such that g(6,---,0,) = po(a)02, . If 6,41 = 0, then the smooth
points of X (k)

P, = (7'0y,--- ,7'0,,a) = (0,--- ,0,a)

as [ — oo. Therefore (0,---,0,a) € X(k)cent-

If 0,,1 # 0, one can assume that 6,,, = 1. Let t; = a + 7%. Then
po(t;)) = po(a)e? with ¢ € kX and ¢ — 1 as [ — oo. The smooth points of
X (k)

P, = ("&b, - 7"l t;) — (0,---,0,0)

as [ — oo. Therefore (0,---,0,a) € X(k)cent-
Suppose r is even and the quadratic form in n + 1 variables

q(x1, T 7$n) - po(a)xi-i-l

is anisotropic over k. Suppose the singular point Py = (0,---,0,«) is the
limit of a sequence of smooth k-points. There thus exists a sequence of
smooth k-points P, [ € N; satisfying P, — Py when [ — co. Let P, = (Q;, o)
where «; is the t-coordinate of F. Then py(a;) = po(a)el # 0 with ¢ € k>
for [ > 0. Therefore

9(Q1) = plar) = q(Q1) — po(@)[(aw — @)

NI

61]2 =0
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for [ > 0, which implies that q(z1,--- ,z,) — po(a)z2,, is isotropic over k.
A contradiction is derived, the point Py does not lie in X (k)cent- O

We conclude that X (k) # X (k)eent may happen only in the following
cases.

1) The field & is R and g(z1,--- ,2,) is 2-definite over R and there is a
zero « of p(t) over R of even order r such that py(a) has F sign.

2) The field k is p-adic field and n < 3. One can determine if a quadratic

space is anisotropic over k by computing determinants and Hasse invariants,
as in [OM, 42:9; 58:6; 63:17].
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